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Abstract

Since September 11, 2001, the threat of terrorism has become a greater
concern for the United States. As concern has grown, so has the need
for technological innovations tailored for tighter security. This paper de-
scribes the vision portion of a system to upgrade security at airports,
sporting events, federal buildings, and other locations where there is a
threat from vehicles carrying contraband into the facility. The proposed
under-vehicle inspection system uses an array of cameras and mosaicing
techniques to generate views of a vehicle’s undercarriage from different
perspectives. These views provide a pseudo three-dimensional view of
the undercarriage in a graphical user interface. The paper discusses the
problems inherent in matching and mosaicing images taken with small
separation between cameras and object, as is found in the under-vehicle
inspection system, and proposes a partial solution to the problem.

1 Introduction

1.1 Motivation

Inspection stations for vehicles at locations under terrorist threat have become
a part of life, and one of the locations checked on vehicles is the undercarriage.
Two main techniques are currently used to inspect the undercarriage. The first
technique has an inspector slide a mirror under the vehicle [1, 2]. It has the
advantage of being inexpensive and easy to set up. It’s disadvantage is that the
inspector cannot view all areas of the undercarriage because of the compound-
ing problems of viewing angle, physical constraints on mirror placement, and
occluded portions of the undercarriage. Typical examples of the mirrors used
in these systems can be found on the Internet [1, 2]. Some work has been done



Figure 1: High-level system design

to improve this technique by replacing the mirror with a camera [3]. This will
solve some of the problems of viewing angles typically found with mirrors but
the other disadvantages remain.

The second technique for inspecting an undercarriage uses an inspection bay.
This has the distinct advantage that the inspector can see all portions of the
undercarriage and can easily focus on any suspicious portion. Disadvantages
are that this both exposes the inspector to danger and requires the construction
of an inspection bay.

One other inspection technique is beginning to be used but has not as yet
gained the widespread acceptance of the first two methods: a vehicle is driven
across a line of cameras that capture images of the undercarriage. The system
proposed here is based on this technique. The only system currently available
simply records the input from the cameras to videotape and allows the inspector
to inspect the undercarriage by moving the tape forward and backward in a
VCRJ[4]. Like the first method, this technique does not allow an inspector to
view the entire undercarriage at one time.

1.2 System overview

The goal of this paper is to discuss the vision aspects of the Under Vehicle
Inspection System (UVIS), which is designed to allow a complete inspection of
the vehicle undercarriage. The overall layout of the system is similar to that of
the commercial system with the line of cameras that the vehicle drives over, and
is shown in Figure 1. Images are continuously taken as the vehicle drives over
the cameras. These images are then mosaiced together to generate perspective
mosaics of the vehicle undercarriage from five different viewing directions. These
mosaics are displayed together within a GUI for visual inspection by an operator.



1.3 Prior work

The mosaic generation techniques used in UVIS were originally designed to
create a compact representation of aerial video of forest canopies used for envi-
ronmental monitoring [5]. The techniques were further refined for construction
of mosaics from camera movement that was primarily translational [6]. The
translational shift model of a stationary forest with a plane flying over it at
constant height is, for all practical purposes, the same as a stationary camera
set with a vehicle driving over it. In both cases only one part of the model is
moving, and the movement is mostly translational.

One of the main elements of the previous work that has been adopted by
UVIS is the creation of mosaics with different perspectives, or stereo mosaics
[5, 6]. These techniques will be described in detail in sections 3.2.4 and 3.3.2.
The stereo mosaicing techniques were originally developed for use with rotating
cameras [7, 8, 9]. The original method proposed by Huang and Hung [7] used
a pair of rotating cameras to create stereo mosaics. This idea was then refined
by Peleg and Ben-Ezra [8] and Shum and Szeliski [9] to require only a single
off-center rotating camera. As was discovered previously [5, 6], techniques based
solely on rotation do not translate well to motion that is primarily translational.

The basis of stereo mosaic generation is that motion parallax can be used
to create perspective images. This technique requires that depth difference be-
tween objects in the scene are small relative to the distance between the cameras
and the scene. For example, the manifold projection by Peleg and Herman [10]
cannot create seamless mosaics within the UVIS domain because the depth dif-
ferences between different parts of the undercarriage can approach 25% of the
distance between the cameras and the vehicle. A previous version of UVIS
[11] included the local alignment work of Shum and Szeliski [12] and an effi-
cient ray interpolation technique based on the local alignment techniques in the
matching phase of the mosaicing process. The new system represents a marked
change in methodology, shifting from local alignment techniques developed for
unknown camera-to-object motion matching to a more rigid epipolar geometry-
based matching approach that searches only specified regions for matches.

The previous version of UVIS [11] showed that relatively seamless mosaics
can be created even by a system in which the cameras are close to the object.
It successfully used simulated data to create a two-dimensional (2D) repre-
sentation of the three-dimensional (3D) vehicle undercarriage. These mosaics
demonstrated an effective improvement of view when compared with current
inspection techniques. The simulated data was created by using a video Web
server to connect to the cameras that took pictures of a model of a vehicle
undercarriage. This system proved unable to mosaic more realistic data.

1.4 System goal

The goal of the new system was to take the concept proved by the previous
version of UVIS [11] and implement it so that it would work with realistic data
and in a manner that would allow it to function in close to real time. This



paper will not describe the computation time required by the new system, but
a discussion is attached in Appendix C.

The new system uses camera position information and vehicle rigid-body
information to find matches between images. This new methodology should be
faster than the old methodology because geometric constraints eliminate large
portions of the search space within the matching problem. This new system is
tailored to work with synchronized cameras likely to be used in the eventual
system.

2 Vehicle inspection problem

2.1 Problem definition

The goal of the UVIS project was to create a system that would eventually
replace the current systems used for inspecting vehicles undercarriages. The
initial design considerations were that the system should be portable, have no
moving parts, and run in close to real time. In addition, it was hoped that a
system could be designed that would eventually support automatic detection of
unwanted material under a vehicle. For the system to be an improvement, it
had to include at least as good an inspection as was previously achieved as well
as address current problems.

As mentioned above, the most common current system for inspection is to
have an inspector view the undercarriage using a mirror. The advantage of
an inspector with a mirror is that the inspector can view most regions of the
undercarriage if enough ingenuity is used in mirror placement, but occluding
objects still cause problems. There is also the issue that an inspector cannot
get a complete view of the undercarriage and therefore does not see all areas in
context. In addition the inspector is put within range of anything attached to
the vehicle.

Any system that uses stationary cameras connected to a stationary inspec-
tion system will, by definition, remove the inspector from harm’s way. The
ability to give a complete representation of the undercarriage would improve
upon current inspection techniques. The mechanics of the undercarriage repre-
sentation would depend on the method used to view the undercarriage.

The view of an undercarriage provided by an inspection bay will not be
rivaled by a camera system with anything less than complete 3D reconstruction.
Because inspection bays are dangerous to the operator and require a permanent
structure to be built, a system that gives close to the same information with no
risk and with no construction required would be an improvement.

There are two primary ways to display the undercarriage information. One
is to reconstruct the 3D scene so that the inspector can traverse a model of the
undercarriage. The other is to present the data to the inspector in a manner
that gives the inspector many of the angles that could be achieved with the
mirror.

Of these two possibilities, the complete 3D reconstruction should give better



results. A complete 3D reconstruction of a vehicle’s undercarriage would allow
an inspector to view any portion of the undercarriage from any angle and give
visual access to the undercarriage better then that achieved with a mirror and
approaching that provided by an inspection bay. These 3D models would also be
easy to compare with previous models of the same vehicle or a sample vehicle of
the same make and model to see whether anything had been added to a vehicle’s
undercarriage. There are two downsides to this technique. The first is that
current 3D reconstruction techniques will quite often create visual artifacts in
regions of occlusion since the reconstruction algorithm has no information from
which to create the 3D model. The wrongness of these artifacts to the human eye
tend to draw a viewer’s attention, distracting the inspector from other regions
of the undercarriage. In addition the regions where the reconstruction fails are
those in which items are most likely to be hidden as they are less obvious to
inspection because of their occlusion. The artifact could hinder an inspector’s
ability to focus on a region that might have been viewed using a mirror or a
different camera technique.

A more serious concern is the time required to create the 3D reconstruction.
Usually it is possible to reconstruct an object simply by taking several images
from different angles, the larger the number of different views the better the
reconstruction. In order to create a 3D reconstruction, multiple views of all
portions of the undercarriage are required. If the undercarriage were far enough
from the cameras to allow complete images of the undercarriage to be taken
this would not be a problem. Because the cameras must be located under
the vehicle, the maximum coverage of a camera field of view is less than a 2
foot square. Considering that cars tend to be at least 5 feet wide and 10 feet
long that means is would take a minimum of 3 images across and 5 images
along the length of the vehicle to get a single view of the undercarriage. This
means that there would be a minimum of 15 images to get complete coverage
of the undercarriage. This does not take into account that the coverage of the
undercarriage will not see every portion of the undercarriage from the same
view. Let us consider for the moment that these 15 images can provide one of
the perspective views necessary for 3D reconstruction. Requiring 15 images per
view for the reconstruction makes data processing very time consuming. If the
quality of the eventual 3D construction needs to be improved either more views
or more images per view would be necessary. Each would increase the time
taken to integrate the images, the first linearly and the second by the square of
the image count. The only way to speed this process is by using more computer
resources, so reconstruction does not appear to be a viable solution. The above
argument against full 3D reconstruction has not been proven, but was assumed
true when the problem and solution were initially discussed.

The other solution mentioned is to present 2D images that give the inspector
3D information. The advantage of 3D over 2D is that a 3D model can be
rotated and zoomed, allowing the viewer to look around objects. To give the
same functionality a 2D model must contain the same information and present
it in a way that an inspector can interpret. The proposed solution is to create
complete views of the undercarriage from different perspectives and then present



Figure 2: The two images show the same view from two different angles. These
two images demonstrate that 2D images can be used to represent 3D informa-
tion.

these views to the inspector. Figure 2 shows a pair of perspective views that
illustrate this point. 3D information is needed to show what can be found
behind occluding objects and to allow an inspector to look at an object from
a different angle if something looks suspicious. Figure 2 shows how a pair of
2D images gives a view under the square in the upper right corner to reveal the
object below it. It also shows how different perspective views allow one to look
at the vertical object surrounding the muffler pipe from different angles, giving
3D information from 2D images.

Most of the 3D information in a scene can be presented by using a series of
perspective views in this manner. An advantage of this scheme is that it should
run nearly in real time because of the easy parallelization of the mosaicing
techniques used to generate these perspective views. In addition, mosaicing
techniques work well with large numbers of images. Disadvantages are that
there will not be a complete 3D model for the inspector to view and that, as a
result of irregularities in the mosaics caused by camera perspective, automatic
detection will be difficult to implement.

There are three possible methods for getting the data for mosaicing. The
first is to have a platform over a rectangular array of cameras that a vehicle
drives onto. The second is to have a platform that the vehicle drives onto and
remains stationary while a strip of cameras slides under the vehicle body, much
like a flat-bed scanner. The third is to have a line of cameras stationary within
a platform and to have the vehicle drive over them, like a scanner where the
paper moves instead of the scanning device.

The array of cameras solution has the advantage of no moving parts. Also,
the fixed positions of the cameras permits the location of each image to be
known in relation to all the other images, making for easier matching. The



chief disadvantage is that it requires a huge number of cameras (on the order of
2000) because of the small separation required between cameras (to be discussed
later). The platform would also be difficult to transport.

The advantage of the moving camera setup is that the images can be taken at
predefined locations, much like the camera array, which will help the matching
process. It also allows fewer cameras to be used since the cameras can be moved
to any location under the vehicle. This solution is, thus, less expensive and
mosaicing is as easily implemented as for the camera array. The disadvantage
is that it requires moving parts. The cameras will have to be moved under the
vehicle body, which is an area where grime is likely to build up. The dirt is likely
to get into the equipment that moves the cameras and breakdowns are likely
to occur. This also makes the system more difficult to transport and calibrate
on setup. The original guidelines called for the system to be transportable and
have no moving parts.

The stationary camera-moving vehicle solution has none of the problems of
the moving camera system. The lack of moving parts means that jamming is not
an issue, so the camera set to be smaller and more portable. A disadvantage is
that it must be able to account for drivers who cannot drive at a consistent speed
over the cameras. The matching techniques must be able to accommodate data
inconsistencies. It will also require more cameras than a moving camera system,
because a moving camera system could theoretically use a single camera to take
all of the required images. More cameras make the system more expensive than
the moving camera technique, although less so than the rectangular camera
array, which more cameras. A vision system for this design was chosen to be
implemented and tested because of it having the best combination of probable
run time, price, and mobility.

2.2 Vision problem description

Most current vision systems that match images assume either a single camera
being moved or multiple cameras viewing the same object. These are both
easier for mosaicing than the UVIS configuration. The advantage of matching
multiple images from a single camera is that images have similar lighting and
distortion characteristics even when camera movement is present. Additionally,
all images taken with a single camera will have the same intrinsic parameters,
lens distortion, and, when the images are taken close together in time and
space, color constancy. The multiple cameras needed within UVIS eliminate
these advantages for the matching process. Rectification can use the intrinsic
camera parameters to eliminate most of the lens distortion, but no rectification
is perfect. Working with UVIS, it has been found that matching algorithms
function better on multiple images from the same camera than on multiple rec-
tified images from different cameras. Color constancy is another major problem
for matching in UVIS. When a single camera is moved 3 inches between im-
ages, it can be assumed that the colors are relatively similar between images
because so much of the scene is similar. When two UVIS cameras are placed 3
inches apart color constancy cannot be assumed: no two CCDs have the same



color response, and well-calibrated CCD cameras are, so far, not an option for
UVIS. Regarding the latter point, well-calibrated CCD cameras are more ex-
pensive, which becomes significant when more than 30 cameras are required. In
addition, the synchronization of 30 cameras at 30 Hz between multiple image
acquisition machines is a significant problem. The cameras currently used in
UVIS automatically synchronize, a capability not available on well-calibrated
CCD cameras.

As compensation, there is typically an 80% overlap between images to be
matched for mosaicing. Also, the difference in the incident angle to a common
element is the scene between adjacent cameras tends to be small when the sep-
aration between camera positions is relatively small compared to the separation
between camera and scene. (A typical example of this comes from aerial im-
age mosaicing. The images of the tree cover taken from an airplane may have
been taken 100 feet apart, but because the airplane is flying at over 1000 feet
the incident angles to objects within the scene are similar.) The large overlap
and similar viewing angle result in great similarity of images to be matched
in typical mosaicing situations. Matching is, then, relatively easy despite the
between-camera differences in distortion and color. The matching problem in
UVIS is more difficult because the short distance between scene and cameras
creates significantly different viewing angles for points in the scene as shown in
Figure 3. A 3 degree incident angle difference between images may not seem to
be significant but Figure 4 shows the problem. Every deep portion of the un-
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Figure 3: The figure, not drawn to scale, shows the difference in angle of in-
cidence based on camera to image separation. The left image shows relative
camera separation to camera scene separation more typical when matching and
mosaicing, the right image shows the situation found within UVIS.



Figure 4: Two typical images of the vehicle undercarriage taken with 3 inch
separation that are used to mosaic.

dercarriage looks different in the two images in Figure 4, with particularly large
discrepancies occurring in the area around the muffler pipe that runs through
the center of the images. The viewing angle difference showing in Figure 3 means
that in UVIS a large number of side views of vertical elements will be seen. The
number of these side views seen will be far larger then the then would be typical
of image to mosaic. Regions with significantly different incident angles, as seen
in Figure 4, appear as regions in which no match is possible because the side of
a vertical region is visible in one image but appears only as a line in the other.

In addition to these matching problems, UVIS also has to match in two
orthogonal directions to create images of the entire vehicle undercarriage. A
typical mosaicing system matches a given image only to the images that come
before and after it; that is a typical system will mosaic images taken in a line.
Within UVIS we create a plane of images to give a complete view of the under-
carriage. Therefore each image needs to be mosaiced not just to the images in
front and back of it in relation to the motion of the vehicle, but also to those on
either side of it, perpendicular to the motion of the vehicle as shown in Figure
5.

This problem is extremely difficult and time consuming to solve, as there
are approximately 25 images across and 60 images down the length of a typical
undercarriage, giving roughly 1500 images to be matched. An approach to this
problem is to match first in one direction and then match the generated mosaics
in the other direction, giving the effect of matching in two directions without
requiring as much processing time.

The UVIS domain has a significant advantage in that the cameras are known
to be next to each other in line, so it is easy to create epipolar lines that will
significantly improve the speed of the matching process. These epipolar lines can
be more easily used in the crosswise mosaicing than in the lengthwise mosaicing.



Figure 5: This figure shows the central image and the 4 surrounding images
that it must be matched and mosaiced to.

2.3 Design considerations

As described previously [11], a 3-inch camera separation was empirically deter-
mined to create acceptable mosaics. Achieving comparable image separation in
the direction of vehicle motion requires a vehicle speed of approximately 5 mph
over the cameras at a frame rate of 30 frames per second, the maximum speed
of the cameras. The system can robustly create mosaics at higher vehicle speeds
but a speed of 5 mph returns good quality mosaics. The ability to handle faster
and varying speeds is important because it is not realistic to believe that drivers
can maintain a constant speed while driving over the cameras.

The negative effect of perspective distortion can be reduced by increasing
the distance between the cameras and the undercarriage to reduce the motion
parallax. Increasing this distance is possible by placing the cameras lower, in a
ditch, or by elevating the platform, effectively creating a large speed bump. We
suggest folding the optical path of the cameras (Figure 6) in future implemen-
tations.

The next design consideration is the camera field of view. A smaller field of
view means smaller perspective distortion and motion parallax, which makes it
easier to match and mosaic between images. As the field of view is increased,
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Figure 6: Camera position within the platform used to bend the optical path

the matching and mosaicing processes become more difficult but the informa-
tion from the perspective mosaics increases. The information increases because
the greater the field of view the greater the angle from which the perspective
mosaics are generated, increasing the inspectors ability to look around occluding
objects. A field of view of 72° was chosen because it created mosaics with good
perspective without creating parallax sufficient to break the matching function.

Several environmental issues are associated with an under-vehicle inspection
system. The major ones are lighting the undercarriage, dealing with weather
as it affects the undercarriage, and eliminating grit buildup on the surface of
the camera house. These issues have not been addressed as yet and are not
discussed in this paper.

2.4 Proposed Solution

The proposed solution to this problem is to have a line of cameras that con-
tinuously take images as the vehicle drives over them (Figure 1). This design
appears to be the best combination of price, mobility, and robustness. The
two-part mosaicing scheme of first mosaicing crosswise or perpendicular to the
vehicle motion before mosaicing lengthwise or in line with the vehicle motion
seems to be the only feasible solution and it can use the epipolar geometry
implicit within the system.

3 System description

A high-level view of UVIS can be seen in Figure 1. The platform that the
vehicles drive over appears in Figure 7. As mentioned, the camera separation is
3 inches. The transparent surface has yet to be determined but glass or Lexan
is most likely to be used. Images are taken constantly as the vehicle drives over
the platform. These images are taken by a series of image-acquisition machines
(Figure 8; discussed in section 3.1) and transfered to a series of computers that
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Figure 7: Camera platform; the bent optical path is not shown in order to
simplify the image

perform all actions associated with the crosswise mosaicing (discussed in section
3.2.4). These crosswise images are then transfered to the lengthwise mosaicing
computers (discussed in section 3.3) before being passed to the GUI (discussed
in section 3.4). Figure 9 shows how the steps described in section 3 take the
images and first mosaic them crosswise before mosaicing them lengthwise to
create a complete single image.

Section 4 describes results from the model of the system created within
the lab environment. These results are discussed in Section 5 and conclusions
drawn in Section 6. Appendix A contains details of the experimental model and
Appendix B contains sample crosswise mosaics generated as well as the disparity
images containing the match information. Appendix C contains the description
of a similar UVIS system with slightly different mosaicing algorithms that has
been studied to determine a computational model capable of running it in real
time.

3.1 Acquisition

Synchronized images are continuously taken as the vehicle drives over the plat-
form. The system will eventually include more than 30 cameras, which is why
the speed of the mosaicing process is important. The images are taken us-
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Figure 8: Diagram of the UVIS operation

ing Point Grey’s black and white DragonFly firewire cameras. These cameras
were chosen because they require no frame grabbers, auto synchronize, and take
640x480 pixel 8-bit gray scale images.

3.2 Crosswise mosaicing
3.2.1 Rectification

A rectification step is performed on each image before mosaicing to geomet-
rically correct the images by removing most of the distortion intrinsic to the
camera lenses. FEach camera has been calibrated to determine both intrinsic
and extrinsic camera parameters. These parameters are used to modify each
raw image during the rectification step. The rectification and calibration model
used are those of Kovalenko [15]. The rectification process does not remove
all distortion but will remove most of it, making the images similar enough to
mosaic. An example of the effect of the rectification appears in Figure 10. The
effect of the rectification process can be seen in the difference image in Figure
11.
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Figure 9: Mosaic building step

3.2.2 Normalized cross-correlation matching

The crosswise matching process used in UVIS relies heavily on normalized cross
correlation, which is the method used to match points in our algorithm. Other
matching methods, including sum of squared differences with and without image
brightness normalization, were also tried, but the normalized cross-correlation
matcher (NCCM) was empirically determined to return the best results.

NCCM is an established method within the field of computer vision for
matching regions [16]. It uses two equal-size rectangular portions of images.
The first step is to determine the average pixel value for each rectangle:

—- Zi\il Image 4[i]
A= S (1)

5 - iy Imagenl] @

A and B are average pixel values in images A and B within the correlation
window and N is the size of the correlation window. N will be defined in
the following sections. I'mage[i] and Imagep]i] refer to specific pixels in the
correlation windows within images A and B.

A and B are then used to determine the variance of each correlation window,
Vars and Varg:

Zﬁil (Imageali] — A)?

N —1 (3)

Vara =
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Figure 10: The image on the left is the raw image and the image on the right
the same image rectified.

Figure 11: The image is the difference image between the rectified and unrecti-
fied images that appear in Figure 10.
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Figure 12: Crosswise matching algorithm

Zilil(fmage [i] — B)?
s 0

Varg =
These are used to determine the match score p:

_ SN (Imageali] — A) * (Imageg[i] — B) 5)
p (N =1)x+/Vara«Varpg
As can be seen from 5, the regions with the highest variance will give the
most accurate match score. The closer p is to 1 the better the match is.

3.2.3 Crosswise match

The algorithm for the crosswise match appears in Figure 12. The match starts
at one end of the line of cameras in the platform and continues to the other end,
matching images between each pair of cameras.

One of the chief improvements of this new algorithm over the old algorithm
is that it uses epipolar geometry between cameras to narrow the search phase
of the mosaicing process [11]. The rectification step described above rectifies
the images and in doing so creates epipolar lines between the images. The idea
behind epipolar lines is that an object in space will appear on a corresponding
line in both images. In the context of UVIS where the camera locations are
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known, this means that everything that appears on one horizontal line in one
image will appear on a corresponding horizontal line in the next image assuming
there is no occlusion. (The match overlap between cameras is referred to as the
horizontal match and the offset in the direction of the vehicle motion is referred
to as vertical because when the final results are viewed by the inspector on a
computer screen, the sides of the undercarriage are parallel to the sides of the
monitor and the front and back of the undercarriage are parallel to the top and
bottom of the screen. This makes it logical to call the assumed match between
cameras the horizontal match and the offset between epipolar lines the vertical
offset.)

There is also have another piece of information to use: an educated guess
as to where the match will occur. The educated guess or assumed match is
determined in the following manner. The average separation between cameras
and undercarriage of vehicles likely to travel over the inspection system is known.
Also, the separation of the cameras is 3 inches. With this information and the
known focal length of the lenses we can predict where a point along an epipolar
line in one image will match along an epipolar line in the other. This gives
an assumed horizontal match from which the actual match will vary depending
on the actual undercarriage to camera separation of the vehicle compared to
the average. This match point can be determined during calibration. At the
same time vertical offsets between camera pairs can be determined. Ideally,
the cameras will have been aligned perfectly in the vertical direction with the
epipolar lines corresponding exactly between cameras. As this will not happen
in reality, the vertical offset will need to be determined during calibration by
matching points. These match points should give a set of vertical offsets for
matches that does not change as the epipolar lines are set, barring physical
misalignment of the cameras. As stated above, the horizontal portion of the
assumed match can be created for an average vehicle undercarriage to camera
separation.

The advantage to using an assumed match point along with epipolar ge-
ometry is that it can speed the matching process. If the physical layout is
completely unknown, then entire images must be searched in order to match
points. If epipolar geometry is known then search for match points need only
be made along the epipolar lines and if an assumed match point is known only
a limited portion of the epipolar lines need be searched as there are only a few
possible offsets from the assumed match because there is a limited range of
undercarriage to camera separations.

Given the calibration step described above, the algorithm has assumed matches
between the cameras in the horizontal direction. The algorithm must refine the
assumed matches to find actual matches. The algorithm begins by determining
an area in the first image that is completely overlapped by the second image.
This area in the first image is determined by using the camera separation, ver-
tical match, and minimum undercarriage to camera distance of a vehicle to be
inspected. The algorithm then finds a match between every point within this
area in the first image and the second image.

The algorithm matches using an NCCM match window. The epipolar geom-

17



etry and assumed matches are employed here. Instead of matching each point
from the first image with every point in the second image, which would be time
consuming, we match the points only within a limited search window. The
search window can be only a few pixels tall, because we know the match will oc-
cur on the epipolar line that corresponds to the epipolar line on which the pixel
to be matched is located. A range of pixels above and below the epipolar line is
employed in case vibration from vehicles traveling over the platform has slightly
misaligned the cameras since calibration. The width of the match window is
determined by the possible undercarriage to camera separations of the vehicles
to be inspected. The possible clearances determine how many pixels to the left
and right of the horizontal assumed match must be searched to determine the
exact match between cameras. The match locations for all of the pixels from
the area in the first image are then averaged to determine the exact match be-
tween images. As has just been shown, the assumed match allows a significant
reduction in the amount of the second image that needs to be searched in order
to determine a match. For testing purposes these matches are used to create
a disparity image that is stored for future reference and for determination of
algorithm match success; samples of these appear in Appendix B.

A match window of 37x37 pixels is used in NCCM. This window size was em-
pirically determined from the images in Figure 13, which shows sample matches
for different window sizes. A 37x37 pixel window was chosen as the smallest
window that gave smooth results. A larger match window would have further
smoothed the data, but run time depends on the size of the window squared so
a smaller size is advantageous. The 37x37 pixel window size is useful for proof
of concept but a smaller size might be viable within an actual system.

This cross correlation is extremely time consuming because NCCM is O(n?)
and the search process described above is O(n?), making the entire process
O(n®). For the eventual system the time for this process will be reduced by
matching only a subset of the area in the first image, by limiting the size of the
match window, and by limiting the size of the search window. The algorithm
for this proposed faster system appears in Figure 14. For the present testing,
none of these improvements has been made to the speed of the process and the
algorithm from Figure 12 is used. The absence of speed improvements within
the test runs gives to more complete results from this testing phase.

Obtaining the match by averaging the best results does not truly solve the
match problem; it only accounts for translation between images and ignores
rotation and scale change. Later versions of the system will be able to account
for the latter based on the matches found, but for this proof-of-concept paper
where it is known that no rotation or scale changes exist, this simpler rotationless
match is used. The matching process stores the match offsets between images
in a file that is used by the mosaicing process.

3.2.4 Crosswise mosaicing

The mosaicing process takes the output match scores from the matching pro-
gram and uses these to construct three crosswise mosaics. These mosaics form
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Diameter 21 ‘ Diameter 37

Diameter 61

Figure 13: Disparity maps generated with square match windows of diameter
21, 37, and 61. These disparity images only contain the X-direction disparity
as the Y-direction should not be a factor in the actual system. The disparity
values are expanded to fill the entire brightness spectrum so that the data may
be viewed

the basis of the perspective mosaics used to give the 3D information. A mosaic is
created from individual images that are stitched together to create a continuous
image. Controlling where the stitched portions of the images are located in the
original image determines the perspective view of the created mosaic. Figure 15
shows how the slices from the original images can be taken to create left, center,
and right mosaics. The left and right mosaics are both created by stitching
together the regions from the extreme edge of the original images. The center
mosaic is created by stitching together the regions from the center portion of
each image.

The mosaicing process used currently does not allow for any rotation between
images to be stitched as was present in the previous version of this system used
to test the concept [11]. Just as rotation will be added to the matching process
later, the rotation and scale shifts necessary for seamless mosaics will be added
later to the mosaicing algorithm.

After completion, the crosswise mosaics are transfered to a computer that
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Figure 14: Crosswise matching algorithm with speed improvement
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Figure 15: Example of how slices are taken from the original images to create
perspective mosaics

will perform the lengthwise mosaics.

3.3 Lengthwise mosaics
3.3.1 Lengthwise matching

The lengthwise matching function uses the same basic principles as used for
crosswise mosaicing, the main difference being that there are no assumed matches
in the lengthwise direction. Lengthwise assumed matches cannot be generated
because they would require the speed of the vehicle over the platform to be
constant, which cannot be assumed.

For the purpose of testing, the lengthwise matching process has been im-
plemented in the following slow but comprehensive manner. A series of match
windows are obtained from the first image, and each of the windows is matched
across a corresponding strip in the next image as shown in Figure 16. NCCM is
again used to determine the match scores between windows. The best matches
from each of these searches are then averaged to determine the match offsets
between images. As with crosswise matching, the lengthwise matching process
ignores possible rotation and scale change information while matching between
images. Again, a later version of this system will require the implementation of
these features, but this is merely a test of the concept on real data and these
features have not yet been implemented. For testing purposes, disparity images
are also generated from this match information and stored for future reference.
This process is shown in Figure 17. Although it is slow because of the O(n)
run time, it returns detailed match results.

As the lengthwise match algorithm described above is O(n®), a faster method
of match determination is proposed. This lengthwise match algorithm has the
same basic methodology as the crosswise match, as can be seen by comparing
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Figure 16: The match process takes each section of the first crosswise mosaic
and matches it within a strip of the second crosswise mosaic.

Figure 14 with Figure 18. Both algorithms function similarly to find the exact
match location; they differ in that the lengthwise match must find an initial
match instead of loading it from a file as the crosswise match does with the
assumed match. The faster algorithm finds its assumed matches by initially
matching a few select points in depth as described above and as shown in Figure
16. It then uses these matches in the same manner as the assumed matches
from the crosswise algorithm as a basis for determining the true match between
images.

Separate matching functions are performed on each of the three crosswise
perspective mosaics created. This separate matching will ensure that each of
the final perspective mosaics generated has good continuity within itself because
the images in each will have been matched specifically to those stitched around
them.

3.3.2 Lengthwise mosaicing

The lengthwise mosaicing process functions the same as the crosswise mosaic-
ing process. Only center mosaics are generated from the left and right crosswise
mosaics which creates complete left and right perspective views of the undercar-
riage as shown in Figure 19. As both mosaics are created in the same manner
Figure 19 shows only the creation of the left perspective mosaic. Three sepa-
rate lengthwise mosaics are generated from the center crosswise mosaics. The
perspective mosaics are from the top, center, and bottom to create the three
remaining perspective views as seen in Figure 20. The same mosaicing function
used to generate center mosaics is used to generate center and perspective mo-
saics together with just a parameter change. As above, the mosaicing function
will need to be altered in the next version of the algorithm so that it can handle
more than simple translation. The generated mosaics are then transfered to a
computer that runs the GUI to display them.
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Figure 17: Lengthwise matching algorithm

3.4 GUI
3.4.1 GUI design

The GUI is the heart of UVIS. It allows the inspector to view the five perspective
views in concert to present the 3D information. An image of the GUI being used
appears in Figure 21. Six small images are displayed on the left and the view of
the entire undercarriage is on the right, which enables the operator to inspect the
complete undercarriage. As the operator uses a cursor to move a box around the
right-side image, five corresponding images appear as a cross on the left side.
These five images are windows into the five perspective mosaics. By moving
this box, which is red in the Figure 3.4, the operator is able to look around
occluding objects within the undercarriage and get 3D information from the
2D representation. Because this inspection does not always yield satisfactory
results, it is also possible for the operator to view the original images from which
the mosaics were generated. The operator can do this by selecting a region on
the right image for display of the original image. This original image is displayed
in the upper left hand corner of the GUL As this upper left hand corner of the
GUI is not large enough to display the entire image, only a portion is displayed,
but the inspector can use the mouse to scroll around and view the entire image.
The location from which the original image is taken from is displayed as a
green box in the image on the right of the GUL. A sample of the GUI can be
downloaded from the project web page [14].
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Figure 19: Left perspective crosswise mosaics being mosaiced into the left per-
spective mosaic
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and bottom perspective mosaics
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Figure 21: The GUI used to display the generated mosaics

4 Results

The results of this study fall into two categories: the results of the crosswise
mosaic generation and the results of the lengthwise mosaic generation that builds
on them. Only the images associated with the center mosaic are discussed
because the problems found with the center images are the same as those for the
perspective mosaics. Though the errors are more pronounced in the perspective
mosaics, the concept can be proved or disproved within the confines of the center
mosaic.

4.1 Crosswise mosaic generation results

The complete set of crosswise mosaics generated are given in Appendix B. In
this section we will discuss the results by looking at specific regions cropped
from the mosaics that appear in Appendix B.

The first result to discuss is a breakdown in the matching algorithm, an
illustration of which can be seen in Figure 22. Inspection of Figure 22 makes
it clear that the match found by the algorithm is not correct and that greater
overlap of images would have created a better mosaic. No system will ever
function perfectly and Figure 22 shows an instance in which failure occurs within
this system.

Another problem found in the resulting mosaics is caused by the perspective
differences between camera views to be mosaiced. In Figure 23 the top arrow
points to a region that is aligned correctly but that does not create a smooth
mosaic due to the perspective differences within the images. The different angles
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Figure 22: This portion of one of the crosswise mosaics illustrates failure of the
matching algorithm to find a correct match. The arrows point to specific regions
where the human eye can see that the images should have been overlapped more

in order to get a correct match. Enlargements of the arrowed regions appear on
on the right.

into the trench in the vehicle undercarriage show different amounts of the side
wall of the trench. There is no way to make a completely successful match
because the images contain different data within the same region. The specific
error shown by the top arrow in Figure 23 will not occur in an actual system
because the vertical misalignment of the cameras will not be as great, it only
occurs here because the cameras were misaligned within the system test bed.
The error identified by the bottom two arrows is not as clear, but is caused by
the same perspective shift as the top arrow error. The left portion of the image
in Figure 23 comes from an image that shows a large portion of the side of the
trench. The right portion from an image that shows very little of the side of
the trench. When they are mosaiced together a line appears where the different
perspectives meet. No information is lost but the mosaic created will not be as
clear as if there was no perspective difference.
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Figure 23: The arrows show where perspective differences within the original
images cause a misalignment of portions of the resulting mosaic.

Figure 24: The image on the left shows a cut line within a mosaic. The top
arrow points to a location with a match and the bottom arrow points to a
location with a mismatch. The image on the right displays the disparity map of
the matches used to create this portion of the mosaic. The dark vertical region
in the circled portion corresponds to the lower arrow in the left image.

Errors were also found that resulted from a match between images that
was correct for part, but not all, of the images to be mosaiced. Figure 24
shows a mosaic that was created by a match that is not correct down the entire
cut line. The top arrow in the left image in Figure 24 shows a region where
the match is correct, but the bottom arrow shows a region where there is a
mismatch, as shown by the lack of alignment of the pipes across the cut line.
The disparity image on the right side of Figure 24 tells the whole story. The
area corresponding to the simulated muffler is a relatively uniform color in the
disparity image, indicating that the match is the same through that region in
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the two original images. The circled region at the bottom of the disparity image
shows a location where the match is nonuniform, as illustrated by the sharp,
localized color change. This color change, or different match, means that the
two images will not align along the same line whereas the regions at the top
will. There is no solution to this problem short of warping the images, which
both introduces errors and lengthens run time.

K

WL
e

Figure 25: The arrows illustrate where the errors occur due to a difference in
scale between the original images.

There were also errors that occurred because of differences in scale between
the original images. Figure 25 shows a cut line between a left image that is more
zoomed than the right image. The middle arrow points to alignment while the
top and bottom arrows point to misalignment. The manner of misalignment,
the left image being higher than the right at the top arrows and lower than the
right at the bottom arrows, shows that the left image is larger, that is, more
zoomed in. This type of error has occurred within the results primarily because
the cameras were only hand aligned with visual focusing and positioning. In an
actual system the alignment and focusing of the cameras would be more precise,
eliminating most of this type of error. As this will not eliminate all such errors,
an implementation of a scaling algorithm into the mosaicing process will be
necessary. The ability to handle scale changes will make the algorithm more
similar to that found in [11].

Another type of error can be created by the rectification process. Figure 26
shows a mosaic in which the top and bottom arrows point to misalignment and
the middle arrow points to alignment. Unlike what is seen in Figure 25, the
top and bottom arrows in Figure 26 both show the image on the right of the
cut line to be higher than that on the left of the cut line. This suggests that
some warping of one of the two original images has occurred that has changed
the ratio of the distance from the top to middle arrow to the distance from the
middle to bottom arrow enough so that proper alignment cannot occur even
with scaling. The only warping that has been performed on these images has
been the warping within the rectification process, so the errors seen in Figure 26
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Figure 26: The arrows in this mosaic show misalignment at the top and bottom
of the mosaic while there is alignment at the middle.

suggest that the calibration done to in preparation for image rectification was
not sufficiently exact and that errors occurred. This suggests that errors of this
type could be eliminated with a proper calibration in the eventual system.

Sy |
A

Figure 27: This mosaic section shows a region where the cut lines are visible
due to different gray scales between the original images.

The region of a mosaic that appears in Figure 27 demonstrates the problem
mentioned above of color inconsistency between cameras. The arrow points out
a region of the cut line showing a correct match, and a visual inspection of the
entire image will confirm this match. The problem is that the apparent difference
in illumination as seen by the two cameras leads to an apparent discontinuity
between the two stitched images. This situation might be improved through
calibration, but most likely can only be solved by using, in combination, more
expensive cameras that would be cost prohibitive for UVIS and better, more
even lighting.

Figure 28 shows a region where the match was successful. The stitch line is
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Figure 28: This mosaic portion illustrates a successful match and mosaic of
images.

only barely visible along this line except in the region where the arrow points to
the horizontal drive shaft. This problem with the drive shaft can be eliminated
by simply aligning the cameras better vertically within the eventual system.

Overall, the crosswise mosaics appear to give a good representation of the
undercarriage with generally only minor errors that can be solved through better
calibration and alignment. These results show that the design is feasible for the
crosswise mosaicing process and that the results are acceptable. Appendix B
shows the complete results of the crosswise mosaicing process, including the
disparity images used to create on the the crosswise mosaics.

4.2 Lengthwise mosaic generation results

Figure 29 shows the complete center perspective view of the vehicle undercar-
riage model used for testing. The image shows many areas of breakdown, too
many to discuss at once, so specific problems will be addressed by referencing
figures that show specific regions of breakdown.

Figure 30 shows a region where the match worked correctly. The arrows
point to certain locations where the horizontal cut line is slightly more visible.
Even in these locations the mosaic is relatively seamless. Note that the two
images which have been mosaiced together in order to create Figure 30 look
relatively similar, with the same vertical lines alignments in each. Though it
cannot be seen, the depths of the model surface at the two locations stitched
together are similar. Equally important to the seamlessness of the mosaic is
that the two original images from which it is created have the same width, since
the algorithm has no scaling factor to handle differences in width.
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Figure 29: Complete center image of undercarriage
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Figure 30: Section of the center mosaic where the model height is relatively
uniform
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Figure 31: Section of the center mosaic with breakdown due to crosswise mosaic
width difference.

Problems arise when the widths of the crosswise mosaics to be mosaiced
lengthwise are not the same. In the strip of the center mosaic that appears in
Figure 31, the vertical lines in the left part of the image connect and those in the
right part with the arrows pointing to them are all offset by the same amount.
The problem results from perspective differences and is illustrated in Figure 3.
The depth of the model at a given location changes the viewing angle and hence
where the match is located within the images; Figure 32 shows the situation
geometrically. The 8-inch depth difference shown in Figure 32 translates to
a 5-pixel match location shift that causes the broken vertical lines shown in
Figure 31. These depth changes add up with each crosswise mosaic, creating
the image in Figure 29 in which every vertical line is broken at least once. It is
worth noting that the problems found in Figure 31 are not matching problems
but instead reflect differences in the widths of the images used to create the
mosaics.

The underlying problems in Figure 31 are reflected in the corresponding
disparity map, Figure 33, of the match. The extreme breakdown in the match
over the left-most 10% and the right-most 20% (which has been removed from
Figures 30 and 31) can be ignored because it results from an attempt to match
regions outside of the model of the undercarriage. These regions of extreme
breakdown can seen on the left and right sides of Figure 29. The uniformity of
the match on the left side of Figure 33 shows where the clean match was made,
whereas the right side shows the breakdown in the match. This breakdown
could be fairly easily handled by adding warping to the mosaicing process. This
warping could expand the middle of the image, shifting the right side so that
it would match like the left side, creating a smooth output image. This is
fairly easy to do in this case as there is only one depth change causing the
match to break. Warping might not be feasible in general where there could be
multiple depth changes. Another problem with adding warping is that warping
will change the sizes and shapes of parts of the car, making it harder for an
inspector to identify any contraband.

Figure 33 shows a simple case of mismatched widths; a more representative
case as shown in Figure 34. This section of Figure 29 is generated from a large
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Figure 32: Diagram of match location shifts due to height differences

contoured section of undercarriage typical of a real vehicle and shows widespread
misalignments as are found over most of Figure 29. Figure 35 shows one of the
original images of this contoured section of the undercarriage. The extent of
the problems with the match can be seen in Figures 36 and 37, which show the
X and Y components of the disparity map, respectively. Considering Figure 36,
again ignoring the edges outside the model, it is evident that, unlike Figure 33
where the X offset fit into two distinct regions, the X offset shifts continually
across the model. This constant shifting would require warping across the entire
image to get it to match the previous image and eliminate the breaks in vertical
lines seen in Figure 34. This total image warping would add large areas of
distortion, calling into question anything observed by the inspector viewing the
end results.
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Figure 33: The X component of the disparity map between the images used to
create the Figure 31 section of Figure 29. The values within this disparity map
are expanded fill the range from black to green for easier viewing. The brighter

the color the greater the disparity.

Figure 34: Representative case of most of the breakdown regions present in the
lengthwise mosaicing process

Figure 35: Original image used to generate undercarriage mosaics
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Figure 36: The X portion of the disparity map created when matching Figure
34

Figure 37: The Y portion of the disparity map created when matching Figure
34

Figure 37 shows evidence of another breakdown, this one caused by depth
differences found in the Y direction of mosaicing. The differences in shades of
color closer to the edges of the model show that the gas tank will not match
vertically around the edges at the same point as it does vertically in the center.
This suggests a need to warp crosswise mosaics in the Y direction in addition to
warping in the X direction to make them fit seamlessly, possibly creating more
artifacts.

| T .' H

Figure 38: Section of the complete undercarriage from Figure 29 where complete
breakdown of matching occurs
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Finally, matching may break down entirely. The best example of this occurs
at the bottom of Figure 29, which appears in Figure 38. This can easily be
seen to be a complete breakdown where no sections of the undercarriage line
up smoothly. Figure 39 shows the complete break in the matching process that
causes this broken mosaic to occur. The disparity map clearly shows, by the
complete lack of uniform color and hence match regions, that no overall match
was found between the crosswise mosaic strips. The breakdown most proba-
bly occurs because of the contours present in the model. The resulting depth
changes create differences in views between cameras that cannot be handled by
the matcher. No amount of warping will fix this problem. Although no definite
solution is known, it has been hypothesized that a smaller match window might
lead to a greater ability to match contoured regions because less of the contour
would appear in any single match window. Appendix B contains all of the dis-
parity maps used to generate the complete center image of which Figure 39 is
an example.

Figure 39: Complete disparity map between the crosswise mosaics used to create
the section of Figure 29 shown in Figure 38

5 Discussion

The results show that the system as currently designed gives overall results
that are not error free. While the system does give a complete view of the
undercarriage, the image is not smooth enough to equal the quality of what the
inspector sees with a mirror. The quality issue is illustrated by Figure 40 which
shows the gas tank from the complete center mosaic. While the inspector will
have a complete view of the undercarriage, the broken lines and missing sections
of the image will severely limit his ability to identify objects.

Some of the problems listed in the results section that lead to what is seen
in Figure 40 could be eliminated with the introduction of warping. The warping
would smooth the results and create more seamless cut lines that would signifi-
cantly improve the overall view and ease of inspection. There are three problems
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Figure 40: This image is the bottom of the complete undercarriage view.

with this, the first of which is that warping alters the images. The alterations
could add or eliminate details about the undercarriage by either stretching or
compressing parts of the image to look like something they are not. Every mod-
ification of the original images adds a degree of uncertainty and possible error
to inspection. Taking the original images and mosaicing them is one degree
of modification, taking all of the original data, cutting it down, and fitting it
together to give a complete view. This modification adds an overall view of the
undercarriage but does so at the expense of some of the data from the original
images that will appear in none of the mosaics. Any warping performed on the
original images will add a second modification to that data already modified by
mosaicing.

The second problem with warping the images is the time it will add to the
mosaicing process. As described above, the algorithms to match are O(n®),
which makes close to real-time operation extremely difficult. A study of the
feasibility and timing of a similar system to this which appears in Appendix C
determined that a system using 320x240 pixel images instead of the 640x480
pixel images used here might just be able to generate and display results within
30 seconds, the run time goal of this system. However, the timing model used
did not include a warping process, suggesting that adding warping will make
the process take too long and therefore be unfeasible in the real world.

The final issue with adding warping is not a factor now but will be in the
future. It was hoped that this project would create a system that could eventu-
ally automatically detect contraband. A system to auto detect would probably
begin by comparing of the undercarriage of the vehicle being inspected to the
undercarriage of a vehicle of the same make and model. If the element of warp-
ing is added, there is little chance that the undercarriage will look similar from
one run to the next as the images will likely be warped differently from one
vehicle run to the next.

Another possibility for improving the results would be to implement it us-
ing flat field cameras. Flat field cameras would eliminate errors added by the
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rectification process and would give more uniform images that would be easier
for the system to mosaic. The better quality original images would lessen errors
caused by scale changes and color consistency by eliminating any noise added
by rectification. The problems with shifting to flat field cameras is that they
will add to the price, and would create a need to add software to automatically
synchronize the cameras to the system.

6 Conclusion

The current method of generating mosaics does not work sufficiently well or
quickly enough to make it an improved method for under-vehicle inspection.
The methodology used was chosen to be fast, accurate, and inexpensive. When
the system was developed in concept, these three factors caused the idea of a
full 3D reconstruction to be eliminated from consideration even though it has a
possibility for better results. The work done on the timing model of a similar
system (see Appendix C) suggests that the system in its current format is not
fast enough for real time under-vehicle inspection. The research also suggests
that the computation power required to improve the system to run close to real
time would be expensive and hard to transport because of the sheer number
of processors required. This suggests that the proposed system was almost too
slow and expensive before the addition of the warping required to make usable
results. As the present results indicate that it is improbably that the system
will be able to automatically detect contraband.

Thus, the conclusion is that the system is not a solution to the problem
of under-vehicle inspection in its current form, and that other methodologies
must be explored in order to find a feasible solution. It is the opinion of the
researcher that a full 3D reconstruction should be the next method to try as
it would probably allow true inspection and, later, automatic detection. As
3D reconstruction is probably not currently feasible in real time within the
constraints of UVIS, it seems unlikely that the problem can be solved with
current technology and without a breakthrough in either mosaicing or multi-
camera reconstruction.
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Appendix A

Experimental setup

Because it is not feasible to build a scale working prototype of the system, one
had to be simulated in the lab environment. To this end, a scale model of
a vehicle undercarriage was created as shown in Figure 41. The model is a
combination of carved and painted Styrofoam and actual car parts.

The cameras are mounted on a frame around the undercarriage as shown
in Figure 42. The idea behind the model is that moving the cameras above a
stationary model is equivalent to having a moving undercarriage over stationary
cameras. The camera-to-undercarriage movement will be the same either way.
As can be seen from Figure 42, the frame allows the cameras to be set at any
location above the simulated vehicle undercarriage.

Figure 43 shows the actual cameras as they are attached to the frame pic-
tured in Figure 42. The cameras are attached to circuit board material with
wires. This setup allows for easy camera movement to test different separations
of the cameras. However the model does not lend itself to a stable platform or
careful camera alignment. In the eventual system the cameras will have to be
rigidly mounted in place and their fields of view will have to be controlled for a
consistent overlap. Because the cameras are hand mounted and their placement
is suspect a mathematical derivation of the assumed match locations cannot be
derived as it would be in a actual system, as such the assumed matches were
instead created by hand matching points between the four camera images.

The cameras themselves sit on a sled (Figure 42) that rides down the frame
on rail runners designed for this project (Figure 44). These runners allow the
camera sled to be pulled down the frame at varying speeds to simulate the
actions of a vehicle traversing the platform with an uneven speed.

Camera setup

The Point Grey DragonFly cameras used were calibrated and rectified using
techniques and software provided by Kovalenko [15]. Figures 45 and 46 show,
respectively, a raw input image and a rectified image. The radial distortion
shown in Figure 45 demonstrates the need for image rectification. Without
removal of the distortion, no possibility exists for matching the images.

Experimental model

Only 4 cameras are available, so it is not possible to test the system with the
30+ cameras the final system will have. Because four points of data are not
enough to reasonably extrapolate to a 30+ camera, systems behavior from more
cameras had to be simulated. A 16-camera system was simulated by taking the
4 cameras and taking images from them at four different locations across the
vehicle undercarriage. This was done by shifting the longitudinal pipes to which
the cameras are attached (Figure 42). These 16 cameras had to have the same
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Figure 41: Image of scale vehicle undercarriage model
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Figure 42: The frame on which the cameras are mounted above the undercar-
riage model

Figure 43: View from under cameras
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Figure 45: A raw input image from one of the cameras
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Figure 46: The same image as in Figure 45 rectified

simulated movement in the direction of simulated car movement; therefore, the
cameras were drawn down the length of the model, taking images every 3 inches
for each horizontal location of the cameras.

Because the 4 cameras needed to simulate the 16 cameras with known as-
sumed offsets, the 16 simulated cameras were hand matched for each of the
19 locations down the model length. This 16-by-19 grid of images is the set
of images from which all timing model information is determined. The images

appear in Figure 47.
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Figure 47: Complete set of images used for timing model

Appendix B

The following images are alternating rectified original image and disparity im-
ages. The alternation is such that each line contains a rectified original image
followed by the disparity image that contains that match information between
the rectified image on that line and the following line. The disparity images vary
in overall color scheme because of the hand alignment of the cameras. The in-
exactness of the hand alignment means that the X and Y displacement, showed
in green and red respectively, vary greatly between camera pairs. If the cameras
had been better aligned then all of the disparity images would have looked sim-
ilar in that they would have had similar shades of green present and almost no
red. It is the fact that there are four cameras maintain their inexact alignment
that makes the disparity images rotate between the four different general color
combinations. The crosswise mosaic generated from these images appears after
all of the images that create it.
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The following image is the crosswise mosaic generated from the images above.

U I

The following images alternate crosswise mosaics and disparity images or-
dered so that the disparity image appears between the two mosaics. The mosaics
have been cropped to remove the area outside of the model; the disparity im-
ages have not been cropped. As with the crosswise disparity images, the red
and green channels have been expanded to fill the range from 0 to 255 to make
the disparities easier to see. The red channel contains the Y offset and the green
channel contains the X offset.
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Appendix C-Paper: Paul Dickson, Mosaic Genera-
tion and System Description for an Under-Vehicle
Inspection System, Synthesis Project, University
of Massachusetts, Amherst, Massachusetts, 2004.

Abstract

Since September 11, 2001, the threat of terrorism has become a greater
concern for the United States. As the concerns have grown, so have the
needs for technological innovations tailored for tighter security. This pa-
per proposes a system to upgrade security at airports, sporting events,
federal buildings, and other locations where there is threat based on ve-
hicles carrying contraband into the facility. The proposed under-vehicle
inspection system uses an array of cameras and mosaicing techniques to
generate views of a vehicle’s undercarriage from different perspectives.
These views provide a pseudo three-dimensional view of the undercar-
riage in a graphical user interface. Because the system must also run in a
timely manner for it to be useful, a timing model of the system is given
and discussed. This model is used to create several possible hardware con-
figurations of the final system and to discuss the ramifications of certain
aspects of the system design.
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Introduction

Motivation

Inspection stations for vehicles at locations under terrorist threat have become
a part of life, and one of the locations checked on vehicles is the undercarriage.
Two main techniques are currently used to perform this inspection. The first
technique has an inspector slide a mirror under the vehicle to view the under-
carriage [1, 2]. This technique has the advantages of being inexpensive and easy
to set up. The disadvantage is that the inspector cannot view all areas of the
undercarriage because of the compounding problems of viewing angle, physical
constraints on mirror placement, and occluding portions of the undercarriage.
Typical examples of the mirrors used in these systems can be found on the In-
ternet [1, 2]. Some work has been done to improve this technique by replacing
the mirror with a camera [3]. This will solve some of the problems of viewing
angles typically found with mirrors but has the same disadvantages.

The other typical method for inspecting an undercarriage uses an inspection
bay. This has the distinct advantage that the inspector can see all portions
to of the undercarriage and can easily focus on any suspicious portion. The
disadvantage is that this both exposes the inspector to danger and requires the
construction of an inspection bay.

One other method of inspection is beginning to be used but has not as yet
gained the widespread acceptance of the first two methods. In this method, a
vehicle drives across a line of cameras that capture images of the undercarriage.
The proposed system is based on this method. The only system currently on
the market simply records the input from the cameras to video tape and allows
the inspector to inspect the undercarriage by moving the tape forward and
backward in a viewer[4]. Like the previous methods, this technique does not
allow an inspector to view the entire undercarriage simultaneously.

System overview

The goal of this paper is to describe the Under Vehicle Inspection System
(UVIS), which will allow a complete inspection of the vehicle undercarriage
to occur. The overall layout of the system is similar to that of the commercial
system with the line of cameras that the vehicle drives over and appears in
Figure 48. Images are continuously taken as the vehicle drives over the cam-
eras. These images are then mosaiced together to generate perspective mosaics
of the vehicle undercarriage from five different viewing directions. These mo-
saics are displayed together within a GUI to an operator who performs a visual
inspection.

Prior work

The mosaic generation techniques used in UVIS were originally designed to
create a compact representation of aerial video of forest canopies used for envi-
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Figure 48: High-level system design

ronmental monitoring [5]. The techniques were further refined for construction
of mosaics from camera movement that was primarily translational [6]. The
translational shift model for a stationary forest with a plane flying over it at
constant height is, for all practical purposes, the same as a stationary camera
set with a vehicle driving over it in UVIS. In both cases only one part of the
model is moving, and the movement is translational.

One of the main elements of previous work has been adopted by UVIS is the
creation of mosaics with different perspectives, or stereo mosaics [5, 6]. These
techniques will be described in detail in sections 2.2.4 and 2.3.3. The stereo
mosaicing techniques were originally developed for use with rotating cameras
[7, 8, 9]. The original method proposed by Huang and Hung [7] used a pair of
rotating cameras to create stereo mosaics. This idea was then taken by Peleg
and Ben-Ezra [8] and Shum and Szeliski [9] and refined to require only a single
off-center rotating camera. As was discovered previously [5, 6], techniques based
solely on rotation do not translate well to motion that is primarily translational.

The basis of stereo mosaic generation is that motion parallax is used to create
the perspective images. Implicit in this technique is that the depth difference
between objects in the scene are small relative to the distance between the
cameras and the scene. For example, the manifold projection by Peleg and
Herman [10] cannot create seamless mosaics within the UVIS domain because
the depth differences between different parts of the undercarriage can approach
25% of the distance between the cameras and the vehicle. A previous version
of UVIS [11] included the local alignment work of Shum and Szeliski [12] and
an efficient ray interpolation technique based on the local alignment techniques
in the matching phase of the mosaicing process. The new system represents
a marked change in methodology, shifting from the aforementioned alignment
techniques that specialize in unknown camera to object motion matching to
a more rigid epipolar geometry-based matching approach that searches only
specified regions for matches.

The previous version of UVIS [11] showed that it is possible to create rela-
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tively seamless mosaics within the confines of a system where the cameras are
situated close to the object. It successfully demonstrated that the proposed
system could effectively upgrade current inspection techniques by using a cam-
era array to provide an inspector with a two-dimensional (2D) representation
of three-dimensional (3D) information. This system relied on image acquisition
through a video web server to circumvent the use of specific frame grabbers for
each camera. This setup did not allow for synchronized image acquisition or for
the images to be taken at necessary frequencies. In addition, this system failed
to use any of the camera position information or vehicle rigid-body information
implicit in the problem domain. The new system described here solves some of
the problems from the previous version and uses information previously ignored.
A time analysis is performed to determine the true feasibility of the system.

Design considerations

As described previously [11], a 3-inch camera separation was empirically deter-
mined to create acceptable mosaics. Applying the 3-inch camera separation in
the direction of vehicle motion means a vehicle speed of approximately 5 mph
over the cameras for a frame rate of 30 frames per second. The system can
robustly create mosaics at higher vehicle speeds but a speed of 5 mph returns
good mosaics. The ability to handle faster and varying speeds is important
because it is not realistic to believe that drivers can maintain a constant speed
while driving over the cameras.

Perspective distortion still has a negative effect on the matching in a mo-
saicing process. This effect can be reduced by increasing the distance between
the cameras and the undercarriage to reduce the motion parallax. Because it is
not feasible to increase this distance by placing the cameras lower, which would
require the construction of a ditch for camera placement, we instead fold the
optical path of the cameras (Figure 49). This allows the separation between the
cameras and the undercarriage to increase without increasing the height of the
camera bed, which would have the effect of creating a large speed bump (Figure
48).

The next aspect of design consideration is the camera field of view. The
trade offs are that the smaller the field of view, the smaller the perspective
distortion and motion parallax and the easier matching and mosaicing of the
images; the larger the view, the better the information gained from the per-
spective mosaics. A field of view of 72° was chosen because it created mosaics
with good perspective without creating parallax sufficient to break the matching
function.

Several environmental issues are associated with an under-vehicle inspection
system. The major ones are lighting the undercarriage, dealing with weather as
it affects the undercarriage, and eliminating grit buildup on the surface of the
camera house. These issues have not been addressed as yet.
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Figure 49: Camera position within the platform used to bend the optical path

System description

The high-level system description of UVIS can be seen in Figure 48. The plat-
form that the vehicles drive appears in Figure 50. As mentioned, the camera
separation is 3 inches. The transparent surface has yet to be determined, but
glass or Lexan is most likely to be used. Images are taken constantly as the
vehicle drives over the platform. These images are taken by a series of image
acquisition machines as pictured in Figure 51 and discussed in section 2.1 and
transfered to a series of machines that perform all actions associated with the
crosswise mosaicing, section 2.2. These crosswise images are then transfered
to the lengthwise mosaicing computers as discussed in section 2.3 before being
passed to the GUI discussed in section 2.4. Section 2 also details the algo-
rithms used and the layout of the timing model. Figure 52 shows how the steps
described in section 2 take the images and first mosaic them in a crosswise man-
ner before mosaicing them in a lengthwise manner in order to create a complete
single image.

Section 3 will describe the parameters used in the model and specifics of
the system. In section 4 the exact run time of the system proposed will be
discussed, and in section 5 the model will be reevaluated with an emphasis on
possible ways of tuning the system to make it a feasible design. Appendix D
contains the details about how the timing model was determined and Appendix
E contains details of the experimental model.

Acquisition

Synchronized images are continuously taken as the vehicle drives over the plat-
form. These images are taken using a still-to-be-determined number of ma-
chines, each of which has an as yet unknown number of firewire cameras at-
tached. The cameras used are black-and-white Point Grey DragonFlys, chosen
because they require no frame grabbers, auto synchronize, and take 640x480
pixel 256 gray scale images. For a description of how the number of images
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taken was determined, see Appendix D. The acquisition machines transfer the
images as a set of simultaneous images (images from all of the cameras in the
platform that are taken at the same time) to the cross-mosaicing machine.

At this time no exact image transfer time data can be listed because unknown
problems are slowing down the image transfers during testing; a full explanation
appears in section Appendix D.

Crosswise mosaicing
Rectification

Prior to mosaicing, a rectification step is performed on each image to remove
all distortion intrinsic to the camera lenses. Each camera has been calibrated
to determine both the intrinsic and extrinsic parameters. These parameters are
used to modify each raw image during the rectification step. The rectification
and calibration model used are those of Kovalenko [15]. The rectification process
has been found to take the following time:

T, = C % 0.2100 (6)

T, is the rectification time and C is the number of cameras in the camera
platform.

Normalized cross-correlation matching

The crosswise matching process used in UVIS relies heavily on normalized cross
correlation, which is the method used to match points in our algorithm. As
such we will begin with a description of a normalized cross-correlation matcher
(NCCM) and the algorithm used to compute the NCCM within UVIS.

NCCM is an established method within the field of computer vision for
matching regions. It uses two equal-size rectangular portions of images. The
first step is to determine the average pixel value for each rectangle:

A= L [mageal] ™

5 - Zin [magesfi] ®)

A and B are average pixel values in images A and B within the correlation
window and N is the size of the correlation window. N will be defined in the
following sections and Image[i] and Imagep|i] refer to specific pixels within
the correlation windows within images A and B. A and B are then used to
determine the variance of each correlation window, Var4 and Varg:

SN (Image ai] — A)?
N -1

(9)

Vara =
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YN (Imageg[i] — B)*
N-1
These lead to the determination of the match score p:

Varg =

(10)

. Zil (Imageali] — A) x (Imageg[i] — B) (11)
(N—1)+/Vara * Varg
As can be seen from 11, the regions with the highest variance will give the
most accurate match score.

Crosswise match

The algorithm for the crosswise match appears in Figure 53. The match starts
at one end of the line of cameras in the platform and continues to the other end,
matching between each pair of cameras. The first step is to load in the assumed
match location.

One of the chief improvements of this new algorithm over the old algorithm
[11] is that it accounts for the epipolar geometry between cameras. The recti-
fication step described above rectifies the images and at the same time creates
epipolar lines between the images. The idea behind epipolar lines is that an ob-
ject in space will appear on a corresponding line in both images of that space.
In the context of UVIS where the camera locations are known, this means that
everything that appears in one horizontal line in one image will appear on a
corresponding horizontal line in the image next to it. At the time of calibration,
an assumed match point can be created between every pair of cameras based
on the camera locations. These match points should give a set vertical matches
that do not change as the epipolar lines are set, barring physical misalignment
of the image. The horizontal match can be assumed for an average distance
between vehicle and cameras.

These assumed match locations are then refined by the algorithm. The
match locations cannot be assumed because the horizontal match will vary with
vehicle height over the cameras (i.e., the motion parallax varies with distance
from cameras, so the location of a specific object in one image will vary in the
other depending on height). Therefore, a first pass over the image is performed
to determine suitable locations for running NCCM. This first pass is run over a
subsample of the first image of the image pair. The first pass searches a window
within the first image of size (width — buf ferX) = (height — buf ferY), where
buf ferX and buf ferY are given in equations 12 and 13, respectively.

bufferX 2+« (Ws+W.+2)+of fX (12)
bufferY =2« (Ws+W.+2)+offY (13)

The buffers act as cushions that keep the search within points guaranteed
to be in both images. W; is the radius of the square search window, W, is
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the diameter of the square correlation window used, and of fX and of fY are
the assumed X and Y match location offsets. This window is then subsampled
using an input incrementor to the function to get a total number of points P,
to check, as defined in 14.

width — buf ferX . height — buf ferY
inc nc

P, = (14)

On each of these locations, P,, a test is performed to see whether the variance
is sufficient to match well using NCCM. The test involves determining whether
the variance over the given correlation window in the first image is greater
than an input threshold, signifying that it is a good location for a match to be
performed. It has been empirically determined that the time to perform a given
check of the variance T, is

T.=0.0108 % 1078 « W.% 4+ 0.0211 * 10~ % « W, + 0.1707« 10~ ¢  (15)

If a given point has a sufficiently high variance and the maximum number of
points, P;, to be checked and input to the algorithm has not been reached, then
a search is performed in the second image to locate an exact match. This search
is performed within a square window radius W, around the assumed match
location. For every location within this search window within the second image,
the correlation from the first image is compared with the correlation window in
the second image using NCCM and the best match within the search window
is recorded. This match has been empirically determined to take time 7T, from
16.

T, =0.0273% 107 %« W,%2 4+ 0.0301 * 10 %« W, 4+ 0.3023x 105 (16)

These recorded match scores and locations are then placed in a 2D histogram
of match locations relative to the assumed match location, with a single bin for
every possible location within the search window. Only matches with values
above a threshold are included in the histogram. The mode of this histogram is
then taken as the match between the pair of images. This total search strategy
is performed between all pairs of cameras with adjacent locations on the camera
platform. The time to perform the basic function overhead consisting of image
loading and match determination was determined empirically and is T:

Ty, = 0.0012 % C + 4.9167 x 10~° (17)

This means that the total time to perform the crosswise match Ty, is

Tie = (C = 1) (P, % T + Pi((2% Wy 4+ 1)% % Ty,)) + Ti (18)

Crosswise mosaicing

The mosaicing process takes the output match scores from the matching pro-
gram and uses these to construct three crosswise mosaics. These mosaics form
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Figure 53: Crosswise matching algorithm
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Figure 54: Example of how slices are taken from the original images to create
perspective mosaics

the basis of the perspective mosaics used to give the 3D information. When a
mosaic is formed, it is created from various images that are stitched together
to create one continuous image. Controlling where the portions of the images
stitched together come from in the original image controls the perspective view
of the created mosaic. Figure 54 shows how the slices from the original images
can be taken to create left, center, and right mosaics. The left and right mosaics
are both created by stitching together the regions from the extreme edge of the
original images. The center mosaic is created by stitching together the regions
from the center portion of each image. The time to create these mosaics is Tt
and defined in 19.

T, = 0.0042 % C + 0.0236 (19)

These crosswise mosaics are then transfered to three separate computers
using the message passing interface (MPICH) on which the lengthwise mosaics
are created.

Lengthwise mosaics
Crosswise mosaic transfer

The time required for transfer of the mosaics between computers is largely a
function of the size of the images and hence the amount of data transferred.
As such it is necessary to know how the size of the mosaics changes with the
number of cameras. The width of these mosaics can empirically be defined as

width = 586 + 54 C (20)

The height of these mosaics can be empirically determined to be 531 pixels.
The height of the crosswise mosaics varied but the maximum of all of the tests
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was 531, so it was chosen as a good upper bound for the timing equation. Hence
the time to transfer a crosswise mosaic T,,,; can be written as

Teomt = width * height x 4 % 2.101 x 1078
Tomt = (586 + 54 % C) % 4.463 x 107°

Tome = 2.410 % 1072 « C 4 0.02615 (21)

Lengthwise matching

The lengthwise matching function uses the same basic principles as does the
crosswise mosaicing, the main difference between the two matching techniques
being that there are no assumed matches in the lengthwise direction. Lengthwise
assumed matches cannot be generated because they would have to rely on an
assumed constant speed of the vehicle over the platform, which is not a valid
assumption.

The lengthwise match algorithm has the same basic methodology as the
crosswise match, as can be seen by comparing Figure 53 with Figure 55. Both
algorithms function similarly to find the exact match location; they differ in
that the lengthwise match must find an initial match instead of loading it from
a file as the crosswise match does with the assumed match.

The initial matches are found in the lengthwise match process by following
the same two phases as for the final match: finding high-variance regions and
correlating those regions. A buffered window within the first image is again
determined, this time with buf fer defined as

buffer m2x (W + Wy + 2) (22)

Wo is the radius of the second match search window and W, is the diameter
of the normalized correlation window. The window to be subsampled is now of
size (width; — buf fer) = (height; — buf fer). This means that the number of
points that have their variance checked, P.1, is defined as

width — buf fer . height — bu f fer

incy incy

P, = (23)

incy is an input variable to the function used for subsampling. The time to
check the variance of a given point is the same as it was for T, in the crosswise
match, so T, the time to check a given variance for the lengthwise match, can
be written in terms of W, the lengthwise correlation window diameter, as

T, =0.0108 % 1078 « W, + 0.0211 % 107% « W, + 0.1707 % 10~° (24)

Again, for a given number of points defined by the input P;; that have a
sufficiently high variance, NCCM is run to find an exact match. Because there
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is no assumed speed of the vehicle to indicate where in the second image the
point will match, an exhaustive search of the second image must be performed.
This search of the second window is for the height of the image, minus the buffer
to keep the search in the matchable region, from the given point minus Wy, to
plus Wys. This search window Wy, defined in 25, is assumed to contain the
point because the vehicle motion will be primarily in the lengthwise direction
and hence will not shift very far off a given point in the first image.

Ws1 = (height — buf fer) * (2% W + 1) (25)

The time to check a given pair of correlations windows again functions as it
did for the crosswise matching and hence T},;, the time to correlate windows in
the lengthwise direction, defined in terms of W, is

T = 0.0273 % 1078 « W2 + 0.0301 % 1076 « W, + 0.3023 x 10~¢ (26)

When all P,; points have been matched, the results are averaged to create
first-match data equivalent to the assumed matches from the crosswise match.
The second phase of the lengthwise match now begins by searching a new sub-
sampled portion of the initial image. The window subsampled is the same as
that defined above. A new incrementor input to the function, inc,, is now used
to create the subsampling of the window, so the new number of points to have
their variance check, P,s, is defined as

width — buf fer . height — buf fer

incs incy

PCQ = (27)

P;» points are then matched using NCCM to determine the exact match
offsets, where P;» is an input to the function. The time to perform each of these
matches is Ty, defined in 26. The search window is defined as a square around
the found match with radius Wss. The best results of this search are again
recorded for each point up to Pjs.

As with the crosswise match, the results are stored in a histogram of match
locations and the mode of these locations is stored as the overall match. Again,
the only results put into the histogram are those that have match scores greater
then a given threshold. The time to perform all of the basic algorithm steps,
Ty, was determined empirically and is defined as

T = (7.4478 x 10~ % C + 0.0088) I + (=7.7525 % 10~ x C' — 0.0022) (28)

C' is the number of cameras in the camera platform and I is the number
of synchronized image sets taken as the vehicle drives over the platform. This
means that the total lengthwise match time, Ty, can be defined as

Ty = (I—=1)(Pay % T+ Py W1 %Trg) + Pea* Ty + Pio (2% Wz +1)? % Tpt)) + Tha
(29)
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Separate matching functions are performed on each of the three crosswise
perspective mosaics created. This separate matching will ensure that each of
the final perspective mosaics generated has good continuity within itself because
the images in each will have been matched specifically to those stitched around
them.

Lengthwise mosaicing

The lengthwise mosaicing process functions the same as the crosswise mosaicing
function. For the mosaics of the left and right crosswise mosaics, only center
mosaics are generated, which creates complete left and right perspective views
of the undercarriage. Three separate lengthwise mosaics are generated from the
center crosswise mosaics. The perspective mosaics are from the top, center, and
bottom to create the three remaining perspective views. The same mosaicing
function used to generate center mosaics is used to generate center and per-
spective mosaics together with just a parameter change. The time to run the
lengthwise mosaicer Ty, is empirically defined as

Tim = (0.0017 + C + 0.0189) x I + 0.0011 x C + 0.0253 (30)

T is the time to generate the three mosaics from the central image. Times
are not given to generate the single mosaics for the left and right perspective
views because they take less time to run than do the three mosaic generations;
they are run in parallel with the central mosaicing and thus do not affect the
overall run time.

GUI

Length mosaic transfer

The lengthwise mosaic transfer is based on the same transfer rate (2.101 x
10~ 8second per bit) as the crosswise mosaic transfer. The width is still de-
fined by equation 20, but now the height is empirically defined by the equation

height = 497 + 66 % I (31)

This height will vary in the real system as a result of the inconsistencies in
vehicle speed but gives the necessary ball park figure for the model. This gives
us the following lengthwise mosaic transfer equation:

Time = width * height * 4 % 2.101 %+ 10~ 8

Time = (586 4 54 % C) (497 + 66 % I) * 8.404 x 1078

Timt = 2.995% 10 1% T« C +2.255% 1073 % C' +3.250 %« 103 % T +2.448 %102 (32)
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Figure 56: The GUI used to display the generated mosaics

GUI design

The GUI is the heart of UVIS. It allows the inspector to view the five perspective
views in concert to present the 3D information. An image of the GUI being used
appears in Figure 56. Six small images are on the left and the view of the entire
undercarriage is on the right, which enables the operator to inspect the complete
undercarriage. As the operator moves a box around the right-side image with
the cursor, five images appear as a cross on the left side. These five images are
windows into the five perspective mosaics. By moving this box, the operator
is able to look around occluding objects within the undercarriage and get 3D
information from the 2D representation. Because this inspection does not always
yield satisfactory results, it is also possible for the operator view the original
images from which the mosaics were generated. The operator can do this by
selecting a region on the right image for which the original image is wanted. A
sample of the GUI can be downloaded from the project web page [14].

Vision and Timing Models

This section is in two parts. Aspects of the vision model are discussed in section
3.1: known problems with the algorithms are explained and the best settings
found for the parameters of the timing model are given. In section 3.2 the
timing model is discussed in relation to the parameter settings. With this as a
basis, models of actual system configurations and their attendant run times are
proposed.
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Vision model

Let us discuss the vision model by first considering each of its input parameters
and then how each affects the algorithm function. The first input is the incre-
mentor used to determine the subsampling of the crosswise images in equation
14. Increasing the size of inc decreases the number of points to have their vari-
ance checked, P, thus increasing the speed of the overall algorithm. If P, is
decreased too much, then there will not be P; points with a variance over the
given threshold and the match will take place with fewer than P; points being
matched. If inc is too small and P.is too large, then the run time T}. from
equation 18 will increase, but the points matched, P;, will all be from the top of
the pair of images being matched and the overall match may falter as a result.

About 1 in 20 of the points that have their variance checked have a variance
above the threshold used for these tests. With this in mind, an inc value of 5 has
been suggested because it creates a P, of 26 times P;. The percentage of points
that have a sufficiently high variance is completely dependent on the threshold
value used. Currently, this threshold is a value that has been empirically found
to return good results for matches. The amount of variance within a certain
area is determined in part by the size of this area. In the future this threshold
should be created as a function of the size of the correlation window W2 instead
of having a set value of 300 regardless of W, as it does now. The setting of this
threshold will affect the percentage of points P. that have a variance that is
high enough to use for P;. As such, setting inc to a specific value and expecting
that the points matched are a thorough sampling of the image space is not
sound logic. In the future a rewrite of the subsampling should be performed
that guarantees that all areas of the image have their variance tested equally in
order to create a spatially unbiased match of the image pair.

The next input to be discussed is W,, the diameter of the correlation window
used in NCCM. Common experience has always held that the larger the corre-
lation window used, the better the match found. This would suggest that the
larger the W,, the better the match used to create the crosswise mosaic. This
has not been found to be the case within the context of UVIS. Our tests have
shown that changing the size of W has little effect on the quality of the match
found. Figures 57 and 58 show crosswise mosaics generated with different corre-
lation window sizes. The mosaic in Figure 57 has fewer broken areas than does
the mosaic in Figure 58. This suggests that within the context of UVIS a smaller
correlation window returns better results. There are two possible explanations
for this. The first is that the distortion intrinsic to images used in large motion
parallax mosaicing makes it more likely for a larger window to experience more
distortion than a smaller window, which negatively affects the ability of the
larger window to match successfully. The second possible explanation is that
because the threshold used to determine good match points is not a function
of W., points with lower variance are getting chosen as good match locations
and these low-variance regions are returning poor overall match scores as well
as match scores with a spacial bias to the upper portions of the match region.
This second possibility can be eliminated in the future by creating a threshold
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Figure 58: Crosswise mosaic with W, = 15

for variance that is a function of W,. Regardless, for the purposes of our model
in this project, a value of 2 will be given to W, within the crosswise matching
model.

The next input to be considered is the size of the search window around the
assumed match. The goal of the search window is to discover whether any small
shift has occurred that would have thrown the assumed matcher off. The size
of Wy, the radius of the search window, does not have to be large, and a value
of 7 should be sufficient to discover shift. This search window does not take the
height of the vehicle undercarriage into account. As the height of the vehicle
varies, the overlap of the images will vary, which will cause massive shifts in the
assumed match for any given undercarriage height change. A point that will
have to be addressed in the future is that an initial match must be made and
used to make appropriate changes to the assumed match before the crosswise
matcher is run. This initial match would only have to find a match once and
then propagate it through the crosswise mosaicing computers.

Those are all of the inputs to the crosswise matching and mosaicing func-
tions except for the number of cameras, C', which will be left without a value,
to be used later to show the scalability of the model. Let us now begin to ad-
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dress the inputs to the lengthwise matcher. The first input to consider is incy,
which helps determine the size of P.;. Again, the smaller the size of incy, the
larger the size of P,; for the tests run incihas been set to 5. In the future,
how the size of inc;affects the distribution of P.; should be investigated, and
incishould be determined as a function of the width of the crosswise mosaics,
which is determined by the number of cameras. The same theory should go into
the formulation of incy, which determines P,,. For the purposes of this model,
incawill be set to 10 because it has been shown empirically to return good re-
sults, not because of any well-thought-out reasoning. P.jand P.both determine
the locations where matches are found and hence both should be checking lo-
cations throughout the entire images matched that can be used for the exact
points P;;and Pjs. The process of guaranteeing the spacial distribution has not
yet been accomplished.

Again, the number of points checked, P.;and P,z, that have sufficient vari-
ance to be used to determine an exact match is determined by a threshold that
is input to the algorithm. For these tests a threshold of 300 is used because it
has been found empirically to work. As was described with the crosswise match,
this threshold should be determined in terms of the size of the correlation win-
dow, which is set by W,. The number of points used for the exact matches,
P;;and Pjs, have been empirically set at 20 and 300, respectively.

Unlike the situation for the crosswise direction, the size of the correlation
window seems to directly affect the quality of the mosaic generated, with the
better mosaics being generated from matches performed with larger correlation
windows. That said, the correlation window diameter, W, of 15 appears to
give a sufficiently good quality mosaic (Figure 59). It has also been discovered
empirically that a search window with radius Wy, of 9 pixels is sufficient for
good mosaic generation.

Timing model

With these set values for the timing model, we can rewrite equation 14 as

equation 33:
_ 640 —82 480 —22

*

5 5
of fX is assumed to be 60 and of fY is assumed to be 0. By substituting

in the value of W, into equations 15 and 16, we get T, = 2.56 x 107 and

T, = 4.72 %« 10~7. With these numbers we can rewrite equation 18 as

Ty = (C—1)(10222%2.56%x10"+300((2%7+1)?+4.72x1077))+0.0012+C+4.916 7105
(34)

P,

= 10222 (33)

Tie = (C —1)(0.0452) + 0.0012  C + 4.9167 % 10~°

T = 0.0464 x C — 0.0451 (35)

We then have the necessary information for determining the total time spent
by each cross-mosaicing machine to rectify, match, and mosaic a crosswise set
of images as seen in equation 36:
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Figure 59: Lengthwise mosaic with W, = 15
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Tewm =Tr + Tie + Tem (36)

Tewm = 0.2100 % C' + 0.0464 « C' — 0.0451 + 0.0042 x C' + 0.0236

Tewm = 0.2606 x C — 0.0215 (37)

The total time to complete the crosswise mosaicing Tty along with the
time to transfer the three created crosswise mosaics will give us the total time
taken per set of images as shown in equation 38:

thwm = Tcwm + 3% Tcmt (38)

Tiewm = 0.2606 * C' — 0.0215 + 3 * (2.41 % 1072 x C + 0.02615)

Ticwm = 0.2678 x C' 4+ 0.0570 (39)

Let us now rewrite the timing equations for the lengthwise matcher with the
values from above. We can first rewrite equation 23 as follows in equation 40:

_ 640+ C' x 54 — 56 . 531 — 56
B 5 5
With those values we can also determine the time T,; = 2.92x 1075, T},; =

6.70 % 107%, and W, = 9177. We can then determine the number of points
checked in the second phase, P2, using equation 27:

Pcl

= 1026 % C + 11096 (40)

640+ C x 54 — 56 531 — 56
10 BT
With these values we can write Ty from equation 29 in terms of I and C,
the number of images and cameras.
Ty = (I —1)(3.745 % 1073 % C' + 1.955) + (7.4478 x 10~* + C' + 0.0088) = I +
(=7.7525% 10~* x C — 0.0022)

P62:

= 256.5 % C + 2774 (41)

Ty = (44901073« C +1.964) x T —4.520 % 1072« C — 1.957  (42)

With T}, the total time to run a lengthwise mosaic can now be determined:
Trwm =Ty + Tim (43)

Tiwm = (6.19% 1073« C +1.983) [ —3.44% 1073« C — 1.932  (44)

We can now take T}, and combine that with both the time to transfer the
mosaics onto the system and the time to transfer the three lengthwise mosaics
from the system to get the total length time, T}, as seen in equation 46:
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Ttlwm = Tcmt + lem + 3 irlmt (45)

Titwm = (7.089 % 1073 x C +1.993) * I + 5.735 % 1073 + C — 1.832 (46)

Results

Minimum time system

Now that we have a complete timing model for the system, we can determine the
hardware necessary to complete the fastest possible system for generating the
mosaics. We must assume that a faster transfer rate is possible from the image-
grabbing machines than we have been able to simulate, because the numbers
found would require the same number of input-grabbing computers as cameras.
This does not take into account the fact that all of the computers are connected
to the same network. The same assumption must be made for the transfer of the
crosswise mosaics to the machines that will run the lengthwise mosaics, because
the bottleneck present with the current transfer rates would slow the system to
only as fast as the mosaics could transfer, with no perceptible increase in speed
when the number of processors is increased.

Steady state run time

Although it is impossible with the current design to create a system that is
guaranteed to function within a given time for any input number of images I, it
is possible to create a system that will finish the crosswise mosaicing, for a given
number of cameras, within a constant amount of time after the final image has
been taken. This system will require enough processors so that there is always
one coming free to handle a new crosswise mosaic every time a new image is
taken. This number of processors can be determined by taking the time for a
single processor to perform a complete crosswise mosaic Tjeqyp, and multiplying
it by the speed of the cameras, 30Hz. Equation 47 gives the determination of
this number of processors required in terms of the number of cameras in the
platform C.

Pcross = (thwm * 30—' (47)

Prross = [(0.2678 x C + 0.0570) * 30]

P.ross = [8.034% C + 1.71] (48)

As can be seen from equation 48, this model is still not feasible because the
system will take a minimum of 30 cameras, which would require 243 separate
computers for the crosswise mosaicing alone, which is not an option. This would
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also require an additional 3 computers to handle the lengthwise mosaicing step,
bringing the number of processors to 246 still not including the image acquisition
computers. The total run time of this system not including the image acquisition
could be defined as

I
T= % + thwm + Ttlwm

I
T = %+0.2678*C’+0.0570+(7.089*10_3*C+1.993)*I+5.735*10_3*C—1.832

T = (7.089 x 1073 x C +2.026) * I + 0.2735 « C — 1.775 (49)

If the system were to have the 30 cameras, 90 images taken, and an estimated
3 seconds to drive over the platform, then the total runtime of the system would
be just under 208 seconds.

Discussion

As can be seen from the discussion section, the system as currently designed is
completely infeasible. Therefore, the results section will largely be a discussion
of what changes can be made in the future to make this a feasible system.

Transfer rates

Current transfer rates are not high enough to make the system work. A small
number of image-grabbing machines cannot take the images and transfer them to
a line of crosswise mosaicing machines because no method exists for successfully
transferring sufficient data. This can been seen as the major bottleneck in
Figure 51. Without a sufficiently high transfer rate, the system will never be
implementable. A close study of the data that must be transfered shows that
the system pictured in Figure 51 would not be feasible with a gigabit network
even without the unexplained overheads discussed in this paper. The volume of
data to be transfered is more than a gigabit network can handle. The proposed
system will have a minimum of 30 cameras running at 30Hz, which means that
the network would have to transfer 900 images per second. If each image is
307KB, then the network would have to be transferring 269.8MB or 2.11Gb of
data per second, which is more than a gigabit network can sustain.

There are three possible solutions to this problem. The first is to redesign the
setup between the image capture computers and crosswise mosaicing computers
as shown in Figure 60. This method will allow a gigabit network to be used
but will require the crosswise mosaicing code to be rewritten to handle the
new two-step mosaicing process. In addition it will increase the number of
computers needed for the crosswise phase because images will have to be in
essence mosaiced twice in the crosswise direction.
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Figure 60: Second proposed image acquisition to crosswise mosaic network
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The second solution proposed is to change from a gigabit ethernet network
to a firewire optical network. The optical network will allow for greater transfer
rates than from the ethernet network and will not require the algorithms to be
rewritten. This solution has the disadvantage that optical networks are still
expensive and so may increase the cost of the system more than additional
computers would.

The third solution is to use images that are a quarter of the size of the images
currently used. This reduction is reasonable because it is half the width and
half the height of the original images. The data transfer rate would decrease
to 540Mb per second, which is within the scope of a gigabit ethernet network.
This solution will not require changes to the algorithms and will speed up the
entire mosaicing process, thus decreasing the number of computers needed. The
disadvantage is that this will require either the addition of a reduction stage or
the use of different cameras. This solution makes the most sense because if it
ever goes into production, an arrangement will surely be able to be reached with
the company that builds the cameras to use a lower resolution in the CCD of
the camera. The only problem with this is that the lower resolution will hurt an
operator’s ability to focus on an object under the vehicle. Currently more detail
than is necessary exists within the mosaics, so this should not be a problem.

Crosswise mosaicing

The number of processor currently required to perform the crosswise mosaicing
step is too large and will remain so, as shown in equation 48. To reduce the
number of processors needed, we will have to reduce the components of P,,.,;.
Most of the processor requirement of P..,;; comes from the rectification portion
T, of Tewm, which makes up Ticwm- As seen in equation 6, the time required
to rectify an image is a large bottleneck. The speed of the system cannot be
improved without improving the speed of the rectification: it currently takes
over one-fifth of a second to rectify a single image. The solution requires a
hardware change. Hardware rectification devices exist that can pipeline the
rectification process to the point where an image comes out of the pipeline
every clock cycle. Although this will increase the cost of the system, it will
increase the speed and reduce the number of processors necessary for crosswise
mosaicing enough to make up for it. With this hardware added to the acquisition
machines, the step could be skipped in the crosswise mosaicing and the total
crosswise mosaicing time, T¢q,,,; total crosswise mosaicing machine time, T} cypm;
and number of processors necessary for crosswise mosaicing, P.,ss, could be
reduced from equations 37, 39, and 48 to equations 50, 51, and 52, respectively.

Tewm = 0.0506 x C — 0.0215 (50)
Tiewm = 0.0578 x C + 0.05695 (51)
Piross = [1.735 % C + 1.709] (52)

97



This alteration would reduce the number of computers necessary for the
crosswise mosaicing step to 54 for 30 cameras. This number of computers is
still too large to be a feasible solution. As can be seen from equation 18, the
best place to achieve a speed increase is to reduce the squared term W, the
search window. This reduction can be achieved either by reducing the size of
the search window, which would make the match algorithm less robust with
regard to varying depth within a given undercarriage, or by changing the shape
of the window. Because the model uses epipolar geometry, there should be
very little shift in the vertical direction between images. This means that the
search window need go only 1 pixel above or below the assumed match location,
which would change the search window size from (2 * W + 1)? to a far smaller
(2xW4+1)+3. For the Wy of 7 that is currently used, this would reduce the points
searched from 225 to 45. This reduction in points searched in conjunction with
the reduced images discussed for image acquisition allows us to rewrite question
35 as

T;. = 0.009826 « C' — 0.008571 (53)

Without factoring the speedup into the mosaicing step but with factoring in
transfer speedup, we can rewrite equations 50, 21, 51, and 52 as

Towm = 0.01402 % C + 0.01502 (54)
Tomt = 5.446 % 1074 % C 4 6.454 %« 1073 (55)
Tiewm = 0.01565 x C' + 0.03438 (56)
Peross = [0.4696 x C' + 1.031] (57)

This proposed system would only require 16 computers for the crosswise
mosaicing step and would finish the crosswise mosaicing within 1 second of the
vehicle traversing the platform.

Lengthwise mosaicing

The time taken by the lengthwise mosaicing step does not need to be reduced
because of the number of computers required (it runs on only three machines)
but because it is excessive. The first step is to write the time in terms of the
reduced image size:

Ty = (16661072 % C +1.370) % I — 1.697x 1073« C — 1.363  (58)

Tywm = (0.003366 % C' 4+ 1.389) % I —5.97 x 10~ %+ C' — 1.338
Tyt = (7.488 % 107° % C' + 8.875 % 10™4) x T +2.723 % 10™* x C + 3.227% 1073
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Tytwm = (3.590 % 104 % C + 1.390) * I + 6.674x 10 x C — 1.322

Using T'as defined in equation 49, we can rewrite it as

T = (3.590 % 10™* x C 4 1.423) * I +0.02232 x C' — 1.288 (59)

Using equation 59, we can see that the total run time for a 30-camera system
with 90 images taken will be just under 129 seconds, which is far too long a run
time for this system. Looking back at equation 58, we can see that it is the
lengthwise matching that takes the long run time because the crosswise match
and mosaic now take less than 1 second. By looking at equations42, 40, 41,
and 28 together, we can see that the time-consuming portion of the lengthwise
match is the search associated with P;. A good method for reducing the search
space could easily cut the run time of the system in half. At this time no such
method has been determined. It is possible to simply cut down on the number of
points for which a search and exact match are found, but this would undermine
the algorithms robustness and not drastically reduce time.

Another method would be to use previous found matches to direct the first
phase search in the length match. Because it is impossible for a vehicle to
drastically change its speed within %th of a second, the match from one instant
might be used to find the match of the next instant. This would drastically
reduce the size of the first search window W,. This would in turn allow for
a more confined search to get an exact match, allowing Wy, to be reduced
and drastically lessening the run time, because the second search window is
(2 * Ws2 + 1)2'

Final thought

The system described in this paper shows the possibility of eventual implemen-
tation in locations where under-vehicle inspections are required. Before that
can be done, though, more work is required to get the system to function in a
sufficiently short time so that major delays are not created by the inspection.
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Appendix D: Timing model accuracy

This appendix covers the details of the model determination of UVIS. Each
section is a mirror to a section of the paper and includes details of how the
model for that section was determined.

Acquisition

The number of cameras that can be connected to the image acquisition com-
puters is determined as follows. Two bottlenecks occur when images are taken;
the first occurs when the images are acquired. Through empirical examination
on a Pentium 4 1.6 GHz machine, the maximum number rate for images to be
stored from the cameras into RAM was found to be 22 cameras running at 30
images per second. Because the images must also be sent out at the same rate
as acquired and the RAM cannot read data out any faster then it writes data
in, this sets our maximum number of 11 cameras per computer.

The maximum rate that data from cameras can be taken without hitting a
bottleneck when saving them into RAM was determined as follows. A program
was written that creates image files using the same protocols as those used by
the camera drivers. This program times how long it takes to write a given
number of images from the camera being simulated. Because it was empirically
discovered that the memory could handle about 22 cameras at 30 images per
second, a test run was set up to simulate 1 million images being written, thus
creating a test run that would take 1461 seconds to run, which would eliminate
any timing errors caused by the limitations of the C programing languages time
library (which has a resolution of 1 second). These tests were performed with
the images being written to a RAM-disk partitioned into memory for this test.

The second bottleneck appears in transferring the images to the next set of
processors, which will handle the image rectification and the crosswise matching
and mosaicing (see Figure 51). The transfer rate for the raw images over a 1
gigabit network is 38 images per second, which gives us the maximum transfer
rate of one camera per input computer for the acquisition phase. The image
transfer is accomplished using MPICH, the free distribution of MPI, and shows
obvious overhead in the file transfer. A transfer of 38 images that are each
approximately 300KB would mean a sustained transfer rate of just over 11MB
per second, which would be about 90Mb per second, which is under one-tenth the
bandwidth of a gigabit network. This level of overhead means that a problem is
occurring with the MPICH program that is transferring the files. If this system
is to be developed, this problem with have to be found and fixed.

Rectification

The rectification model was determined by timing the rectification process for
simulated data of 2-16 cameras and 1-19 images. For all images rectified, the test
showed a steady state average time of 0.2029 seconds per image with a standard
deviation of 0.0061 seconds. Because the goal of this paper is to design a system
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that can run within a certain amount of time, using the upper bound of 0.2100
images per second for the rectification in equation 6 seemed advisable.

Crosswise matching

The timing model to determine the run time of the crosswise match was de-
termined by first analyzing the structure of the algorithm and then empirically
testing to determine the coeflicients within each equation of the system model.

The number of points checked is determined as shown by equations 12, 13,
and 14. The assumed offsets in 12 and 13 cannot be known though, so no exact
model of P, can ever be determined. The model presented proved to be accurate
within 14% of the actual P, values tested with a 11% standard deviation. These
numbers were determined by timing the matching algorithm with 32000 different
combinations of the input variables to the function.

The equation for T, was known to be polynomial because the number of
locations that had to be checked to determine the variance grows as a function
of window diameter W, squared. A test run to time the determination of the
variance of a given point for a minimum of 5 * 10% times took a minimum of
113 seconds. Because the accuracy of the time library in programing language
C is only accurate to within 1 second, a maximum error in time of under 1%
was considered sufficiently rigorous. The error rate dropped even lower for the
larger W, values and was under 0.25% for tests of W, equal to 7 or greater,
which is the value for W, when UVIS has typically been run. A least-squares
fit was run on the data to determine the coefficients of T, in 15. The average
time per point checked is plotted with T} in Figure 61.

The method of determining 7, was the similar to that of T¢, which is also
known to take polynomial time in terms of the size of the correlation window
W, because of its structure. Again, NCCM was run a minimum of 5 108 times
and it took a minimum of 216 seconds, which leaves a possible timing error of
under 0.5%, which is a timing error of 1 second as described above. The error
rate was under 0.1% in the area of W, equal to 7, where the system is usually
run. Again, a least-squares fit was run on the data to determine the coefficient
of 16. T, is plotted below with the empirical data from which its coefficients
were generated 62.

The baseline time for the program T} was determined by running the algo-
rithm repeatedly, with the algorithm never running either the variance test or
NCCM. The algorithm was run repeatedly for each number of cameras until the
total run time was greater then 1000 seconds to make sure the timing error was
under 0.1%. The run time was assumed to be linear in terms of camera size
because all portions of the algorithm were run a set number of times except for
the variance test and NCCM, which were not included. The results were fitted
with a line using the least-square method, and the coefficients of the equation
of T}, were determined to be those seen in equation 17. The equation and the
actual Tjdata appear in Figure 17. The algorithm was only run with a simula-
tion of up to 16 cameras, which is the maximum number of cameras that could
be simulated within the lab environment.
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x10° Time to Check Variance for Given Correlation Window Size
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Figure 61: Time for testing the variance of a correlation window empirical data
and timing model

x10° Time to Perform Correlation Match for Given Window Size
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Figure 62: Time for testing NCCM of a pair of correlation windows empirical
data and timing model
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Figure 63: Time to run the baseline match algorithm and the equation of said
baseline time plotted vs. the number of cameras

The overall model of run time for the crosswise match Ty, can be found in
18. 18 comes directly from analysis of the algorithm, with each portion of the
match relating to the number of pairs of images on which it is run, where the
number of pairs is the number of cameras minus 1. The (2 W, +1)%term comes
from the fact that NCCM is run on a search window with radius W, around the
assumed match.

When the total time model is compared to actual run times of the algorithm
the results are found to be within 3% of each other when averaging the run time
difference of 32000 separate tests. These 32000 tests are runs of the crosswise
matching algorithm with differing inputs and each specific test took more then 1
second to lower the error from the Time function under Linux that has precision
of .01 seconds. The 3% difference in total run time was found with a standard
deviation of 4%.

Crosswise mosaic

The time to run the crosswise mosaicing 7., was determined by timing the
mosaicing process for each given number of cameras 2-16 for synchronized image
sets 1-19. The average time to mosaic each simulated number of cameras from
2-16 was taken, and a linear function was fit to those data using the least-square
method. This determined the coefficients used in 19. Figure shows T, plotted
with the empirical data it was created from.
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Figure 64: Time to perform the crosswise match empirical data and model

Crosswise mosaic transfer

The times to transfer the crosswise mosaics will also include whatever overhead
is causing the slowdown of the single image transfer. The amount of data to be
transfered per image is the number of pixels within the mosaic to be transferred
(the width times height) multiplied by the size of the data type of each pixel,
which is 4 for the black and white pgm images being used. The transfer rate
was found to be 2.101 % 10 seconds per bit of data to be transfered. This rate is
still only approximately 45 bits per second, which is far lower then the gigabit
ethernet network should be able to handle. The times used to determine the
transfer rate were determined by repeatedly sending mosaic files of various sizes
(corresponding to crosswise mosaics generated from 2 to 40 cameras) and timing
the process. Each image was sent 8200 times to get minimum total transfer times
of 235 seconds, thus eliminating error caused by the C timing library.

Lengthwise matching

The number of locations that must have their variance tested in the first pass,
P,.1, is determined by the evaluation of the algorithm.

T.; and T,;are the same as T.and T,,, respectively, and have the same equa-
tions, 24 and 26 and 15 and 16, respectively. The variables are named differently
to avoid confusion when discussing the crosswise matching vs. the lengthwise
matching.

P, is like P, and is determined through analysis of the algorithm.

The final piece of the lengthwise matching puzzle is the baseline match al-
gorithm time, T};. The algorithm was analyzed and the equation for T}; was
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Coefficients of Tkl as Number of Cameras Changes
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Figure 65: Baseline time equation coefficients and the lines fit to them

determined to be linear in terms of the number of images I. Because the lin-
earity was determined by the size of the crosswise mosaics matched and the
crosswise mosaics size was determined linearly by the number of cameras, Ty,
is written in terms of both I and cameras C'. Equation 28 was determined by
first fitting equations to the baseline times to match for crosswise mosaics of
2-16 cameras. Equations were then fit to the coefficients of these equations to
get 28. The equations to get 28 are plotted in Figure 65 with the baseline times
from which they are derived.

The total time for the lengthwise matching, Ty;, is found from analysis of
the algorithm to be 29.

Lengthwise mosaicing

The lengthwise mosaicing step is linear in terms of the number of images because
it merely stitches parts of different images together. The size of these images
and hence the time to mosaic depends on the size of the crosswise mosaics, so
the time to mosaic must again be written in terms of both the number of images
and the number of cameras. The coeflicients for the lengthwise match time are
determined for each set number of cameras, 2-16, and then the coefficients for
the lines that fit the previous coeflicients are determined, again using a least-
squares fit. These coefficients are used to write 30. The coefficients of 30 and
the data from which they are determined are plotted in Figure 66.
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Lengthwise Mosaicing Coefficients
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Figure 66: Coefficients of lengthwise mosaicing and empirical data

Lengthwise mosaic transfer

The lengthwise mosaics transfer was postulated from the crosswise mosaic trans-
fer data.

Appendix E

Experimental setup

Because it is not feasible to build a scale working prototype of the system; one
has had to be simulated in the lab environment. To this end a scale model
of a vehicle undercarriage was created as shown in Figure 67. The model is
a combination of Styrofoam that has been carved and painted and actual car
parts.

The cameras are mounted to a frame around the undercarriage as shown
in Figure 68. The idea behind the model is that moving the cameras above a
stationary model is equivalent to having a moving undercarriage over stationary
cameras. The camera-to-undercarriage movement will be the same either way.
As can be seen from Figure 68, the cameras are attached to a metal frame above
the model. This frame allows the cameras to be set at any location above the
simulated vehicle undercarriage.

Figure 69 shows the actual cameras as they are attached to the frame pic-
tured in Figure 68. The cameras are attached to circuit board material with
wires. This setup allows for easy camera movement to test different separations
of the cameras. It does not lend itself to a stable platform or careful camera
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Figure 67: Image of scale vehicle undercarriage model
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Figure 68: The frame on which the cameras are mounted above the undercar-
riage model

alignment. In the eventual system the cameras will have to be rigidly mounted
in place and their fields of view controlled for a consistent overlap. In the model
setup the camera mounting does not allow for this careful placement and the
fields of view do not have a consistent overlap. Because this would affect the
assumed ability that is to be mathematically derived, the assumed matches were
instead created by hand matching points between the four camera images.

The cameras themselves sit on a sled (Figure 68) that rides down the frame
on rail runners designed for this project (Figure 70). These runners allow the
camera sled to be pulled down the frame at varying speeds to simulate the
actions of a vehicle traversing the platform with an uneven speed.

Camera setup

The Point Grey DragonFly cameras used were calibrated and rectified using
techniques and software provided by Kovalenko [15]. Figures 71 and 72 show,
respectively, a raw input image and a rectified image. The radial distortion
shown in Figure 71 demonstrates the need for image rectification. Without
removal of the distortion, no possibility exists for matching the images.
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Figure 70: Camera platform runners
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Figure 71: A raw input image from one of the cameras

Figure 72: The same image as in Figure 71 rectified
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Experimental model

Only 4 cameras are available, so it is not possible to test the system with the
30+ cameras the final system will have. Because four points of data are not
enough to reasonably extrapolate to a 30+ camera, systems behavior from more
cameras had to be simulated. A 16-camera system was simulated by taking the
4 cameras and taking images from them at four different locations across the
vehicle undercarriage. This was done by shifting the longitudinal pipes to which
the cameras are attached (Figure 68). These 16 cameras had to have the same
simulated movement in the direction of simulated car movement; therefore, the
cameras were drawn down the length of the model, taking images every 3 inches
for each horizontal location of the cameras.

Because the 4 cameras needed to simulate the 16 cameras with known as-
sumed offsets, the 16 simulated cameras were hand matched for each of the
19 locations down the model length. This 16-by-19 grid of images is the set
of images from which all timing model information is determined. The images
appear in Figure 73.
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Figure 73: Complete set of images used for timing model
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