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Abstract
Many research projects have proposed contributory systems

that utilize the significant free disk space, idle memory, and
wasted CPU cycles found on end-user machines. These ap-
plications include peer-to-peer backup, large-scale distributed
storage, and distributed computation such as signal processing
and protein folding. While users are generally willing to give
up unused CPU cycles, a variety of subtle factors conspire to
deter participation in disk and memory-based contributory sys-
tems. First, users are often reluctant to give up disk space even
though they aren’t using it. Second, as contribution consumes
available space, disk performance suffers. Finally, contributory
applications pollute the machine’s memory, forcing user pages
to be evicted to disk. This paging can disrupt user activity for
seconds or even minutes.
In this paper, we describe the design and implementation

of two operating system mechanisms to support transparent
contribution of storage and memory. A transparent file sys-
tem (TFS) leaves the entire disk available to the user while al-
lowing contributory storage applications to use all of the free
space. We show that TFS’s layout and allocation algorithms
permit contributory storage while slowing the file system by no
more than 4%. A transparent memory manager (TMM) con-
trols memory usage by contributory applications, ensuring that
users will not notice an increase in the miss rate of their ap-
plications. TMM is able to protect user pages such that page
miss overhead is limited to 1.7%, while donating hundreds of
megabytes of memory.

1 Introduction

A host of recent advances in connectivity, software, and
hardware has given rise to contributory systems for do-
nating unused resources to collections of cooperating
hosts. The most prominent examples of deployed sys-
tems of this type are peer-to-peer file sharing applications
that enable users to donate outgoing bandwidth and stor-
age and receive bandwidth and storage in return. Other
systems, such as Folding@home and SETI@home, do-

nate excess CPU cycles to science. The research com-
munity has been even more ambitious, proposing sys-
tems that harness idle disk space to provide large-scale
distributed storage like Palimpsest [15], PAST [16],
CFS [4], IVY [14], and Pastiche [3]. All of these ap-
plications, be they primarily storage or processing, re-
quire a donation of idle memory as well as space, since
contributory applications consume memory for mapped
files, heap and stack, as well as the buffer cache.
Contributory systems depend on the participation of

a large number of users to provide the maximum bene-
fits of aggregated capacity and bandwidth, load balanc-
ing, replication, and geographic diversity. To maximize
the number of users, such applications should ideally be
completely transparent with respect to normal, or what
we refer to as opaque, applications. Such opaque ap-
plications may be interactive, batch, or even background
applications, but users prioritize opaque use over con-
tributory applications. Unfortunately, contributory appli-
cations are not at all transparent, leading to significant
barriers to widespread participation:

Loss of free disk space. Despite the fact that end-user
hard drives are often half empty [6, 10], many users
are reluctant to give it up. As anecdotal evidence,
three of the Freenet FAQs express the implicit desire
to donate less disk space. Even when users are not
actively using most of their disk space, the feeling
that this space might not actually be available can
stifle participation.

Impaired file system performance. An unintended
consequence of contributed storage is that it impairs
overall file system performance. As a disk becomes
full, block allocation performance worsens due to
an increase in the number of seeks required for
reads and writes. Throughput can drop by as much
as 77% in a file system that is only 75% full versus
an empty file system [20]—the more storage one
contributes, the worse the problem becomes.



Memory pollution. Finally, contributing storage and
processing leads to memory pollution, forcing the
eviction of the user’s pages to disk. The result is
that users who leave their machines for a period of
time can be forced to wait for seconds or even min-
utes while their applications are brought back into
physical memory. In this paper, we show that this
figure can grow to as high as 50% degradation after
only a five minute break.

A number of traditional scheduling techniques and
policies, such as proportional shares [23], can prevent
only some kinds of interference from contributory ser-
vices. For instance, if the owner is not actively using
the machine, a contributory service can use all of the re-
sources of the machine. When the user resumes work,
the resources can be reallocated to give fewer resources
to the contributory service. However, the time needed
for reallocation directly translates into the acceptability
of the system. The resource allocation of a network link
or processor can be changed in microseconds, faster than
any user can notice. However, storage allocation and
memory allocation do not work well with the same re-
allocation strategies. Due to their reliance on relatively
slow disks, allocation policies for storage and memory
take a noticeable time to adapt. Swapping mapped pages
to disk or deleting files can take minutes while the user
waits.
To support the goal of transparency, we propose two

mechanisms for controlling interference in end-user con-
tributory storage and memory. The first is the transparent
file system (TFS). TFS enables instantaneous reallocation
of storage resources in a host machine while allowing
users to contribute 100% of their free space with less than
4% performance impact on opaque file performance. The
contributed storage is transient in that the user’s machine
may delete this hosted data at any time. Such a sys-
tem depends on application-level mechanisms to repli-
cate that data to other host machines. Because most con-
tributory storage systems assume such unreliable storage
already, they need little to no modification. The second
mechanism we present is transparent memory manage-
ment (TMM), which protects opaque applications from
interference by transparent applications. TMM ensures
that contributed memory is transparent: opaque perfor-
mance is identical whether or not the user contributes
memory.
TMM and TFS can be used together, or in isolation;

each provides a distinct property that has widespread ap-
plicability to other transparent tasks. For instance, in
disk-based web caches, distributed databases, and file
systems, persistence is secondary to performance. For
these applications, TFSmay be used without TMM. Sim-
ilarly, in applications such as P2P file sharing, serv-

ing performance is not essential while persistence is re-
quired.
These strategies are dynamic: they automatically ad-

just the allocation given to opaque and transparent appli-
cations. This is in sharp contrast with schemes like Re-
source Containers that statically partition resources [7].
Such static allocations suffer from two problems. First,
a static allocation will typically waste resources due to
the lack of statistical multiplexing. If one class is not us-
ing the resource, the other class should be able to use it,
but static allocations prevent this. Second, it is unclear
how users should choose an appropriate static allocation.
We believe that the primary concern of users is the effect
that running a service has on the performance of their
computers. It is not normally possible for a lay user to
determine how that translates into an allocation.
In this paper, we first describe the design of both of

our mechanisms, TFS and TMM, and present a work-
ing implementation that runs in a modern operating sys-
tem, Linux 2.6.13. Second, we present empirical results
that show that TFS can donate 100% of the free space
of the disk while impacting file performance by less than
4%. We next demonstrate that TMM is able to accurately
estimate the user’s true working set size, donate the re-
maining memory in the system, and limit the impact of
increased page misses to 1.7%. Finally, we describe re-
lated work and conclude.

2 Design

In designing the two mechanisms that address all three
of the barriers to participation described above, we fol-
lowed these guiding principles:

Eliminate interference. The primary goal of TFS and
TMM is to make hosted applications completely
transparent with respect to user, or opaque, pro-
cesses. In our design, we find that this is a largely
attainable goal. However, we have found certain
circumstances where it is reasonable to allow some
interference. We make these concessions because
they have a minimal negative impact on opaque per-
formance, but a significant positive impact on trans-
parent performance.

Minimize the interface. We believe that the smaller the
API, the more likely it is that mechanisms will be
adopted for a broad range of programs. Requiring
code or compiler modifications violates this princi-
ple. To designate the use of TFS, a program only
needs to place files in a particular directory or one
of its subdirectories. No program modifications
are necessary, except if the program cannot cope
with non-persistent files. For the intended uses, we
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believe that most programs already deal with this
properly. To designate the use of TMM, the pro-
grammer only needs to designate the contributory
application as a transparent program. All other pro-
grams are assumed to be opaque processes.

Additionally, there are two necessary elements that
this paper does not address: small time-scale contention
and security. This system does not focus on problems
presented by small time-scale contention for resources
such as the disk or write-behind cache. If both fore-
ground and background activities contend for a resource
simultaneously, this issue must be solved through judi-
cious use of scheduling and rate control, not the mech-
anisms described here. Although simple CPU schedul-
ing prioritization such as nice may limit these effects,
a complete solution should include these mechanisms as
well. TMM and TFS are also not designed to provide a
secure sand-boxing tool for hosted applications. There
are many ways that transparent applications can inten-
tionally misbehave: they can consume more memory
than they are profitably using, and they can make non-
persistent files persistent. This system is instead meant
for hosting well-mannered guests, while providing those
applications with automatic resource management. Most
scheduling and sand-boxing solutions should be comple-
mentary to the design presented here.

2.1 Transparent File System
Two of the barriers to contributory storage systems are
the apparent loss of free space and interference with
block allocation. We solve both of these problems
though the use of a novel filesystem named the Trans-
parent File System (TFS). In TFS, the block allocation
for files follows the default mechanism as closely as pos-
sible. Any deviation from that policy results in the loss
of opaque performance.
The cost of this insulation is persistence. When TFS

allocates a block for opaque use, it treats free blocks and
transparent blocks the same, possibly overwriting trans-
parent data. Files marked transparent may thus be over-
written and deleted at any time. Fortunately, contributory
services are already written to run on unreliable hosts and
cleanly tolerate faults. For instance, deleting a file from
a BitTorrent peer may cause it to send errors for a while,
but the service will continue to run.

2.2 Block Allocation
In TFS, opaque file performance is protected by min-
imizing the amount of work that TFS must do when
writing opaque files. To illustrate, one possible strat-
egy would be to delete transparent files synchronously

when TFS needed to overwrite them with opaque data.
Clearly, this strategy would severely impact opaque per-
formance. Instead, TFS simply marks transparent blocks
that it needs as dirty and allocates them to opaque files.
Marking the blocks as dirty ensures that TFS does not
present corrupted data to transparent applications.
In TFS, a storage block can be in one of five states:

free, opaque-allocated, transparent-allocated, free-and-
dirty, and dirty-and-opaque-allocated. By contrast,
blocks in a typical file system can only be in one of two
states: free and allocated.
Figure 1 shows a state transition diagram for TFS

blocks. Opaque data can be written over free or trans-
parent blocks. If the block was previously allocated to
transparent data, the filesystem marks these blocks as
dirty-and-opaque-allocated. When a block is denoted as
dirty, it means that the transparent data has been over-
written, and thus corrupted at some point. Transparent
data can only be written to free blocks. It cannot over-
write opaque allocated blocks, other transparent blocks,
or dirty blocks of any sort.

Delete
Transparent

Write
Opaque

Write
Opaque

CleanClean
Transparent

Delete
Opaque

Delete
Opaque

Write
Opaque

Write
Opaque

Figure 1:

When a process opens a transparent file, it must ver-
ify that none of the blocks have been dirtied since the
last time it was opened. If any part of the file is dirty,
the file system returns an error to open signaling that the
file has been deleted, deletes the inode and directory en-
try for the file, and marks all of the blocks of the file as
clean, or clean and opaque allocated. An alternate strat-
egy would be to salvage as much of the file as possible
by turning it into a sparse file. This strategy would re-
quire support from applications and run contrary to our
design goal of a minimal API. The lazy delete scheme
means that if TFS writes transparent files and never uses
them again, the disk will eventually fill with dirty blocks
that could otherwise be used by transparent processes. If
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reclaiming the space is critical, TFS can employ a simple
cleaner that simply opens and closes transparent files.
Many file systems, including Ext2 and NTFS, denote a

block’s status using a bitmap. TFS augments this bitmap
with two additional bitmaps that provide three bits de-
noting one of the five states. In a 100GB file system with
512 byte blocks, these bitmaps use only 50MB of ad-
ditional disk space. These additional bitmaps must also
be read into memory when manipulating files. However,
very little of the disk will be actively manipulated at any
one time, and the additional memory requirements are
negligible.

2.2.1 Performance Concessions

This design leads to two questions: how should we
deal with open transparent files, and how should we
store transparent metadata? In each case, we make a
small concession to transparent storage at the expense
of opaque storage performance. While both concessions
are strictly unnecessary, their negative impact on opaque
performance is negligible and their positive impact on
transparent performance is substantial.
First, TFS stores transparent metadata such as inodes

and indirect blocks as opaque data. This transparent stor-
age will impact the usable space and opaque block al-
location. However, consider what would happen if the
transparent metadata were overwritten. If the data in-
cluded the root inode of a large amount of transparent
data, all of that data would be lost. It may leave an even
larger number of garbage blocks in the file system. De-
termining liveness typically requires a full tracing from
the root as data blocks do not have reverse mappings to
inodes and indirect blocks. This approach does create a
possible security problem: a transparent process could
store all of its data as metadata, e.g., in filenames and at-
tributes. Since TFS does not delete such metadata, that
storage would never be deleted. In keeping with our de-
sign goal, we ignore such security issues; however, sim-
ple limits can be placed on the total amount of metadata
that a transparent process can create.
Second, TFS prevents opaque storage from overwrit-

ing the data of open transparent files. TFS can thus ver-
ify that all blocks are clean only at open time, yielding
a form of session semantics. One alternative would be
to close the file and kill the transparent process with the
open file descriptor. However, not only would it be diffi-
cult to trace from blocks to file descriptors, it could also
lead to data corruption in the transparent process. This
policy raises the same security issue as the preservation
of metadata described above, since it enables transparent
processes to consume an arbitrary amount of disk space.

2.3 Transparent Memory Management
The third barrier to the acceptance of contributory sys-
tems is the pollution of the system’s physical memory.
As contributory applications read and write data from
the file system, allocate heap space, use shared libraries,
and memory map files, the physical memory of the ma-
chines will steadily fill. This active use of memory by
the contributory application will eventually force the op-
erating system to page the user’s normal applications out.
Opaque applications will then suffer from high memory
access times. The problem is particularly acute whenever
the user stops actively using the machine. The OS then
assumes the opaque pages are inactive and evicts them.
One alternative is to allocate no pages to the contribu-
tory application. Unfortunately, this defeats the point of
contribution—users want to donate resources as long as
it does not interfere with their opaque applications.
The goal of Transparent Memory Management

(TMM) is to balance memory allocations between
classes of applications. TMM allocates as much mem-
ory as it can to contributory applications, as long as that
allocation is transparent to opaque applications. The in-
sight is that opaque processes are often not using all of
their pages profitably and can afford to donate some of
them to contributory applications. The key is to decide
howmany pages to donate and to donate themwithout in-
terfering with opaque applications. TMM automatically
determines how many pages the opaque applications can
afford to give up by maintaining a histogram of opaque
page utilization. Using this histogram, TMM then deter-
mines how much memory opaque applications need, and
thus what the allocation of memory should be to trans-
parent applications.
Here we provide an overview of TMM: (i) it samples

page accesses with a lightweight method using page ref-
erence bits, (ii) it uses these sampled references to cre-
ate an approximate Least Recently Used (LRU) queue of
the virtual memory, (iii) it uses the same sampled mem-
ory accesses and the LRU queue to create a histogram
of memory accesses versus LRU queue position, (iv) it
uses that histogram to determine how much memory the
opaque applications are not using profitably, (v) it lim-
its transparent memory usage to that amount, and (vi) it
evicts opaque pages in an approximate LRU manner to
free memory for transparent applications. We describe
these in more detail below.

2.3.1 Determining Allocations

The key metric in memory allocation is the access time of
virtual memory. As TMM donates memory to transpar-
ent tasks, opaque memory will be paged out, increasing
the access time for opaque pages. Thus TMM determines
the amount of memory to contribute by calculating what
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that allocation will do to opaque page access times. The
mean access time (MAT) for a memory page is deter-
mined from the hit ratio (h), the time to service a miss
(m), and the time to service a hit (c):

MAT = (1 − h) · m + h · c. (1)

If the system allows background processes to use
opaque pages, it will increase the miss rate (1 − h) of
opaque applications by a factor of β, yielding an increase
in MAT by a factor of:

MAT’
MAT

=
(1 − h) · β · m + (h · β) · c

(1 − h) · m + h · c . (2)

In the case of a page miss, the page must be fetched
from the page’s backing store (either in the file system or
from the virtual memory swap area), which takes a few
milliseconds. On the other hand, a page hit is a simple
memory access, and takes on average just a few tens of
nanoseconds. Because these factors differ by many or-
ders of magnitude, TMM can estimate that the average
page access time is directly proportional to the number
of page misses. Increasing the miss rate by β will make
the ratio in (2) approximately β. This ratio is valid as
long as there are some misses in the system. TMM uses
a value of β = 1.05 by default, assuming that most users
will not notice a 5% degradation in page access times.
If the user’s working set is large, or there are no

misses, TMM may determine that it cannot donate any
pages to transparent processes. In this case, TMMmakes
a small concession to transparent applications, donat-
ing 256 pages (1MB). This amount provides a minimum
level of performance that suffices for file read-ahead.
Such a small allocation may cause contention for the disk
head due to a high level of paging in transparent appli-
cations. To provide non-interference properties in this
case, the disk scheduler must rate limit transparent swap
activity. TMMdoes not yet prevent such small time-scale
contention.

2.3.2 LRU Histogram

Limiting an allocation’s effect to the factor β requires
knowing the relationship between memory allocations
and the miss rate. This relationship can be directly de-
termined using a Least Recently Used (LRU) histogram,
also known as a page-recency graph [19, 24, 25] or a
stack distance histogram [1]. An LRU histogram allows
TMM to estimate which pages will be in and out of core
for any memory size. Using this histogram, TMM can
determine what the miss rate for opaque processes will
be if it allocates pages to transparent processes. Note
that an LRU histogram uses an idealized view of an OS
eviction policy—we explain how TMM manages page
evictions later in this section.

In an LRU histogramH , the value at position x repre-
sents the number of accesses to position x of the queue.
Thus

∑x
i=0[H(x)] is the number of accesses to all posi-

tions of the histogram up to and including x. This value
is equivalent to the number of page hits that would have
occurred in a system that had a memory size of x pages.
Subtracting this value from the total number of accesses
in the workload gives the number of misses for that given
memory size. It is important to note that the LRU his-
togram contains all of the virtual pages in the system.
With only the physical pages, it would not be able to
predict what the miss rate would be given more mem-
ory pages. A sample cumulative histogram and memory
allocation is shown in Figure 2.
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Figure 2: This figure demonstrates a sample histogram
and allocation. In this case, the user has a working set
size of approximately 390MB and can afford to donate
the rest of the physical memory.

Building an exact histogram requires knowing the or-
der of page references in the system and building an ex-
act model of the LRU queue. When a page in memory is
touched, its current position in the LRU queue is added
to the histogram and the page is moved to the head. It
is well-known that implementing a perfect LRU queue
would severely degrade the performance of the machine,
so TMM estimates the LRU queue based on a sample
of page references. TMM maintains an LRU queue of
virtual pages separate from the operating system’s page
eviction queues and keeps the pages in the queue in ex-
act LRU order for any input of page accesses. For each
access, TMM adds to the histogram the page’s position
in the LRU queue before the access was made, and then
moves the page to the front of the queue.
It is important to note that determining a correct limit

does not depend on a completely accurate histogram. We
have assumed that allocations to transparent processes
will be made so that opaque access has a very high hit
rate, thus limiting interference. This implies that the only
part of the histogram that needs to be accurate is the tail.
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2.3.3 Sampling Page Hits

In order to build the LRU histogram, TMM needs a trace
of memory accesses. One popular method in the memory
management literature is to use a sampling approach trig-
gered by page protections and faults [19, 24, 25]. These
methods, while highly accurate, impose performance
penalty on applications when handling page faults. In-
stead, TMM uses a lightweight sampling approach that
leverages the MMU found in most modern hardware.
The page reference bits provide an easy way of sampling
page accesses without incurring the overhead of a page
fault. TMM periodically clears a set of pages and then
later checks their value. If the reference bit has been set,
at least one access occurred in that period.
This sampling method raises several issues. First,

sampling misses multiple accesses to the same page in
a sampling interval and thus is an approximation of the
real page access behavior. In TMM, the pages that are ac-
cessed more than once will typically be at the head of the
histogram—the left-hand side of Figure 2—and missing
references to the front will only make hits to the tail of
the histogram look more significant. This is conservative
as it will only increase the limit for opaque pages. Sec-
ond, we conduct the sampling in a non-uniform manner.
TMM favors accuracy at the tail of the LRU histogram
and thus samples it more often.

2.3.4 Page Eviction

When applications allocate pages the operating system
will first determine if there are free pages. If there are, it
simply hands them to the process, regardless of the lim-
its determined from the histograms—there is no reason
to deny use of free pages. However, when free pages
run low, the OS will force the eviction of other pages
from the system and must choose between transparent
and opaque pages. The choice depends on the limits
determined by the factor β, and the current allocation
of pages in the system. If both opaque and transparent
applications are above their limits it favors opaque ap-
plications and evicts transparent pages. When evicting
opaque pages, the performance of TMM heavily depends
on evicting pages from the tail of the histogram.
However, it is well known that most OS do not

use a perfect LRU eviction policy. Instead, many op-
erating systems use an approximation of LRU called
CLOCK [2]. We initially assumed that CLOCK would
generally evict the pages that would produce the right
performance guarantees—in principle, CLOCK should
approximately evict pages from the tail of the LRU
queue. However, after plotting the LRU queue position
of page evictions, we discovered that this was not the
case. In fact, CLOCK evicts pages from all over the LRU
histogram. We first blamed this on the clearing of page

reference bits for sampling. However, after making a du-
plicate of the page reference bit for the operating system
to use, the problem remained.
Based on this observation, there are many ways to pro-

ceed. One option is to completely rewrite the eviction
policy of the kernel to use our LRU estimates. This ap-
proach would be the best design, but would require a
large amount of modifications to the kernel. Instead, we
chose to massage CLOCK into favoring evictions from
the tail of the LRU. By adding a hint to the page struc-
ture, we direct the CLOCK eviction policy to favor evic-
tions of pages from the tail of the LRU queue. We use an
integer between 0-19 to denote a quantized LRU queue
position. This hinting is easily implemented and gener-
ally helps page eviction. However, better integration with
the kernel would make this eviction procedure faster and
much more accurate—we are currently pursuing this op-
tion. Figure 3 shows the difference in evicted LRU queue
positions before and after adding this feature.
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Figure 3: A histogram showing the LRU queue posi-
tion of evicted pages. This graph compares Linux’s de-
fault CLOCK eviction policy with TMM’s eviction pol-
icy. TMM tends to evict the pages at, or past, a target
memory size.

2.3.5 Aging the Histogram

The histogram that TMM uses to estimate opaque access
patterns must adapt to changes in user behavior. An ac-
ceptable scheme must exhibit enough agility to adjust to
changes in user behavior, but enough stability that it cap-
tures user activity over a long period of time.
We age the histogram over time using an exponentially

weighted moving average. TMM keeps two histograms:
a permanent histogram that TMM computes limits from,
and a temporary histogram that records only the most re-
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cent activity. After some amount of time t, we first divide
the temporary histogram by the total number of accesses
which happened in that aging period so that the values
represent hit to miss ratios. We then add the temporary
data into the permanent histogram using an exponential
weighted moving average function and then recompute
the cumulative histogram. We adopt a common value
α = 1

16 and adjust the time t to match this.
The difficult part lies in tuning t. If TMM is not agile

enough (too stable), rapid increases in opaque working
set sizes will not be captured by the histogram, transpar-
ent applications will be allocated too many pages, and
opaque page access times will suffer. If TMM is not
stable enough (too agile), infrequently-used opaque ap-
plications will not register in the histogram and may be
paged out.
To deal with this, we adopt a policy that is robust but

favors opaque pages. Normally, t is set to 10 minutes
for stability. This value is large enough that applications
used in the last day or two bear enough significance in
the histogram to force the memory limit to not page them
out. However, to remain agile, the system must move the
limit in response to unusually high miss rates. If TMM
notices that the page misses have violated the stated goal,
it adopts a more agile approach, using the most recent
sample as the temporary histogram and immediately av-
eraging it with the stable one. This policy has the disad-
vantage of stealing pages from transparent applications
based on transient opaque use, but it is required to favor
opaque applications over transparent ones.
To deal with startup effects we introduce two forms

of aging: fast and slow. TMM uses fast aging when the
machine first boots and set t=1 minute, while sampling
page references 10 times per second. This yields higher
CPU utilization, but “primes” the histogram with a start-
ing value. After 15 minutes, TMM switches to its normal
slow aging process with t=10 minutes and samples page
references once per second.

2.3.6 Dealing with Noise

The goal in aging the histogram is to detect phase shifts
in user activity over time. When the user is not ac-
tively using the machine, the histogram should remain
static, directing TMM to preserve the opaque pages in
the cache. However, we have observed that even when
not actively using the machine, our Linux installation
still incurs many page references from opaque applica-
tions. If left long enough, TMM misinterprets these ac-
cesses as shifts in user behavior and will change the allo-
cation of pages to opaque applications. As there are only
a small number of these pages, when the user is not using
the system, it appears that the working set has very high
locality. With very high locality, TMM will act improp-

erly, allowing transparent allocations to consume a large
number of pages in the system. In our Linux installa-
tion, this page activity comes from two primary sources:
unattended cron jobs, and polling for changes in files.
Dealing with unattended cron jobs, such as locate in-

dex building, security scans, update management, and
virus scans, is straightforward: we simply mark them as
transparent processes. While such jobs are not contrib-
utory applications, the user benefits from limiting their
memory consumption and their correspondingly reduced
interference with other opaque applications. Polling for
changes in files is becoming less of a problem with the
advent of kernel-based upcall mechanisms for file mon-
itoring, such as Linux’s inotify and Microsoft Win-
dows’ ChangeNotify.
Nonetheless, both as a stopgap measure and to deal

with poorly written programs, we choose to filter this
background noise out of TMM. To decide whether or
not to age the histogram after an aging period of t sec-
onds, we only consider the opaque page accesses that
have touched the LRU queue at a point farther than 10%
of the total. If there were more than ten such accesses
per second, we age the histogram. This policy also im-
plies that we need to guarantee a minimum of 10% of the
system’s memory to opaque memory, a reasonable as-
sumption. We found that the idle opaque activity rarely
touches pages beyond the 10% threshold. We observed
that with filtering, TMM never ages the histogram during
periods of disuse.

3 Implementation

To demonstrate the efficacy of our approach, and to pro-
vide a test platform for our work, we have implemented
complete and fully usable versions of both TFS and
TMM in using a Linux 2.6.13.4 kernel. 1. Various ver-
sions of TFS have been used by one of the developers for
over six months to store his home directory as opaque
data and Freenet data as transparent data.
TFS requires both an in-kernel file system and a user-

space tool for designating files and directories as trans-
parent or opaque, called setpri. We implemented
TFS using Ext2 as the base file system. The primary
modifications we made to Ext2 were to augment the
file system with additional bitmaps and to change the
block allocation to account for the states described in
Section 2.1. Additionally, the open VFS call imple-
ments the lazy-delete system described in the design.
In user-space, we modified several of the standard tools
(including mke2fs and fsck) to use the additional

1The source code for TFS and TMM, including kernel modifica-
tions and user-space tools, can be downloaded from the following URL
: http://www.prisms.cs.umass.edu/TCSM/tcsm.tar.gz
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bitmaps that TFS requires. Unfortunately, due to the ad-
ditional bitmaps, our implementation is not backwards-
compatible with Ext2.
TMM requires a number of kernel modifications as

well as several user-space tools. Inside the kernel, we im-
plemented tracing methods that periodically mark pages
as unreferenced, and then later test them for MMU-
marked references. The list of page references and recent
evictions are passed through a /dev interface. A user
space tool written in C++ reads these values and tracks
the LRU queue. This tool computes the transparent and
opaque limits and passes that data back into the kernel
through the device interface.
Additionally, we have augmented the Linux eviction

policy kernel with our LRU-directed policy. As the LRU
simulator runs in user space, we built a second approx-
imate LRU queue into the kernel to direct which pages
to sample and to provide the hints for the eviction pol-
icy. We plan to rewrite this part of the kernel, as it is
the largest source of error in TMM. Another user-space
tool, maketransparent, allows users to mark pro-
cesses as transparent. All pages that the transparent pro-
cesses use are then limited using TMM. Pages that are
shared between opaque and transparent pages are marked
as opaque pages, but to ignore noise caused by transpar-
ent process access, hits to those pages do not age the his-
togram.

4 Evaluation

In evaluating TFS and TMM, we sought to answer the
following questions:

• What is the basic overhead of TFS? What is the per-
formance impact of overwriting transparent data?

• Under a scenario where the file system is in use,
how well does TFS prevent background allocation
and fragmentation from affecting opaque file per-
formance?

• How well does TMM prevent transparent processes
from paging opaque memory out, and how does
TMM’s dynamic technique compare to static allo-
cation?

• What is the transient performance of TMM?

• What is the overhead in using TMM?

To answer those questions, we used a series of file sys-
tem and memory benchmarks that are designed to sim-
ulate typical use of an end-user system. For file sys-
tem benchmarks, we used a modified version of the An-

drew Benchmark [9] using a minimal configuration of
the Linux 2.6.14.5 source tree. The source is 325 MB
uncompiled and 347 MB compiled. While there may
be nothing typical about the Andrew Benchmark, it does
show a breakdown of individual file operations and pro-
vides a basis of comparison with other file systems. We
use an unmodified Linux Ext2 file system as a point
of comparison to TFS. For the TMM experiments, we
used a variety of user applications, Mozilla, OpenOffice,
KView, and Gnuplot to simulate typical use. Each ex-
periment was conducted three times, with the exception
of the transient experiments and the slow aging experi-
ments.
We conducted all of the experiments using a small

cluster of Dell Optiplex SX280 systems with an Intel
Pentium 4 3.4GHz CPU, 800MHz front side bus, 512MB
of RAM, and a 160GB SATA 7200RPM disk with 8MB
of cache. In the case of TFS, we restricted our experi-
ments to a 10GB partition to speed experimentation.

4.1 Transparent File System
Our first experiment demonstrates basic, opaque TFS
performance using the Andrew Benchmark. In this ex-
periment, the Andrew Benchmark was run on three file
system configurations. The first was an ordinary, empty
Ext2 file system. The other two were TFS file systems,
one empty, and one filled to 100% with transparent files.
In the two TFS file systems, the Andrew Benchmark was
run as opaque data. The results of this experiment are
shown in Figure 4.
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Figure 4: Andrew Benchmark tests comparing Ext2,
TFS, and a TFS file system completely filled with low-
priority data. An empty TFS system imposes no measur-
able overhead, and a full TFS system imposes less than
4%.

The second bar shows that with no contributed storage
TFS imposes unmeasurable overhead over a basic Ext2
file system. More importantly, the third bar shows the
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performance impact of the presence of transparent file
data. This demonstrates that opaque file access is im-
peded very little by the presence of transparent data, thus
meeting our goal of transparency. The 3.2% overhead
is due to the extra block bitmaps on the disk, and extra
block allocation logic inherent to TFS.
Empty file system performance establishes the base-

line overhead of using TFS, but does not adequately
show how real-world use affects performance. As a more
realistic test, we compare Ext2 and TFS under a simu-
lated contributory system. To provide the abstract prop-
erties of such a contributory application, we developed a
synthetic benchmarking tool called SYNCFS. SYNCFS
copies data to the free space of the host machine’s disk.
When the disk becomes full, SYNCFS deletes random
parts of the downloaded data to return the file system to
15% free and repeats. SYNCFS replicates a mix of file
sizes takes from a Linux machine’s /usr directory.
First, we assume that the user has filled the disk to 55%

full—according to one measurement study this is the me-
dian space used in end-user disks [6]. We then compare
three different scenarios: (i) the user does not contribute
any storage and uses Ext2, (ii) the user contributes stor-
age using Ext2, (iii) the user contributes storage using
TFS. When simulating contribution, we ran SYNCFS for
10 cycles of create-delete on the target file system. We
then run the Andrew Benchmark and measure its perfor-
mance. The results of using the three systems are shown
in Figure 5.
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Figure 5: Andrew Benchmark tests comparing the ef-
fect of contribution. When contributing Ext2 and TFS
perform similarly. When the contribution is handled by
TFS, the file system performs the same as not contribut-
ing.

The first thing to note is the comparison between the
the first and second bars. This difference shows the effect
of contributing space on Ext2 performance. Most of the
overhead comes in the copy phase of the benchmark—in

the 85% full system writes are 100% slower. The loss in
performance is due to two factors. The first is that when
using SYNCFS, the file system is now 85% full not 55%
full, stressing the block allocator and lowering perfor-
mance. The second is the effects of fragmentation, or
aging, of the file system. Both of these factors have been
demonstrated in previous work [20, 18]. When compar-
ing the third bar to the other two, we see that TFS is
able to mask both of these effects and provide the same
performance as if the contributory application was not
running. Note that the negative value is an artifact of
experimental noise. It may be possible to remove the ef-
fects of aging by reorganizing or defragmenting the disk,
but this is problematic as the disk is actually full, making
defragmentation difficult or impossible. However, de-
fragmentation does nothing to remove the performance
impact of having a very full disk, which is the primary
bottleneck.

4.2 Transparent Memory Management
The primary function of TMM is to ensure that contribu-
tory processes that use memory do not interfere with the
user’s applications. To show TMM’s benefits, we sim-
ulate typical user behavior: we use several applications,
take a coffee break for five minutes, and return to using
similar applications. During the coffee break, the ma-
chines runs a contributory application. We use a program
called POV-Ray, a widely-used distributed rendering ap-
plication. For this experiment, we compare five systems
with three different sets of opaque applications. The five
systems are as follows: vanilla Linux, TMM with three
different static allocations for opaque applications (25%,
50%, 75%), and TMM using its histogram-based limit-
ing method. For vanilla Linux, we present results with
and without the contributory application. The three dif-
ferent sets of applications represent different user activ-
ities with different working set sizes: Small (Mozilla),
Medium (Mozilla, OpenOffice, and KView), and Large
(Gnuplot with very large data set). We track the aver-
age and maximum number of page misses per second
recorded in the first minute after the user comes back
from break and present the results in Figures 6 and 7.
Note that we rebooted between each trial, and the TMM
results are based on our fast aging system presented in
Section 2.3.5.
The first thing to note is that with a vanilla Linux

kernel, the system running the contributory application
performs very poorly, incurring as many as 190 page
faults/sec on average. Assuming that the application is
page fault limited, and given an average miss latency of
2.5ms, these faults cause a 50% slow down in the ex-
ecution of the application. Qualitatively, we have ob-
served that this is highly disruptive to the user. Second,

9



0

50

100

150

200

250

Small Medium Large

Working Set

Fa
ul

ts/
se

co
nd

Linux w/o Contribution
Linux w/ Contribution
TMM
25% Static Opaque
50% Static Opaque
75% Static Opaque

Figure 6: This figure shows the average page faults/sec
in the first minute after resuming work. TMM performs
much better than an unmodified operating system, and
better than static limits, except when the static limit is
set very high.

for each static limit, there is a workload that performs
worse than TMM, except for the 75% limit. In that case,
the static limit performs well. However, we could have
easily constructed a working set size larger than 75%,
and TMM would have produced far fewer page misses
than the static allocations.
Most importantly, the performance of TMM is com-

parable to the performance of the vanilla Linux sys-
tem without contribution. The largest number of av-
erage page faults that TMM incurs is for the medium
size working set, at 6.8 page faults/sec. By the same
calculation used above, this faulting rate causes a 1.7%
slow down in the opaque applications, well within our
goal of 5%. This demonstrates TMM’s ability to do-
nate memory transparently. The few pages that TMM
does evict could be recovered by making Linux’s page
eviction more LRU-like. As shown in Figure 7, short-
term violations of our goal are possible—TMM statis-
tically guarantees average performance over long peri-
ods. Nonetheless, TMM provides better short-term per-
formance than the static limits (except 75%), and much
better performance than unmodified Linux. For the large
working set, even Linux without contribution does incur
some page faults.
To measure the actual amount of memory that TMM

donates to transparent applications, we ran the interactive
phase of our benchmarks until it reached the slow aging
stage, waited for the limit to stabilize, and recorded the
transparent limits. We also recorded the amount of mem-
ory donated under the static limits. The static limits ap-
ply to the limit on opaque memory and thus transparent
memory contribution also depends on consumption by
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Figure 7: This figure shows the maximum page faults/sec
of any second in the first minute after resuming work.
Short term violations of the target 5% slowdown are pos-
sible, but TMM perfroms better than unmodified Linux
and the static schemes.
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Figure 8: This figure shows the amount of memory in
MB donated to transparent processes.

the operating system. The results are presented in Fig-
ure 8.
When comparing the amount of memory donated by

each system, we show two things. First, TMM is con-
servative in the amount of memory it donates, favoring
opaque page performance over producing a tight limit.
Also, for static limits, we found that the user’s working
set does not necessarily indicate how much space the op-
erating system uses. Nonetheless, for each static limit,
there is a working set for which the limit fails to both pre-
serve performance and contribute the maximum amount
of memory. TMM succeeds in achieving both of these
goals for every working set.
The next experiment demonstrates how TMM behaves

over time. We conduct an experiment similar to the pre-
vious one and graph the memory use and memory limits
that TMM sets. A timeline is shown in Figure 9. At the
beginning of the timeline, the set of opaque processes
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Figure 9: This figure shows a sample timeline of limits
and utilization of the TMM system.

is using 320 MB of memory and there are no transpar-
ent applications in the system. TMM has set a limit for
both opaque and transparent processes, but as there is
no memory pressure in the system, the memory man-
ager lets opaque processes use more memory than the
limit. Note that at this time, the sum of the transparent
and opaque limits is far less than the physical memory
of the machine (512 MB), the rest of the memory is in
free pages. At time 30, we start a transparent process
that quickly consumes a large amount of the free mem-
ory. TMM now sees a larger pool to divide and increases
the transparent limit. TMM does not adjust the opaque
limit as the user has not changed behavior and does not
need any more memory than the limit allows. The trans-
parent process is now causing memory pressure in the
system, forcing pages out. The number of opaque is over
its limit so it loses them to the evictor. The graph ex-
hibits some steady state error. We have tracked this to
the zoned memory system that Linux uses, something
we would correct in a redesigned evictor.
Lastly, it is important to note the CPU and memory

overhead of TMM. TMM consumes approximately 6%
of the CPU while in fast aging mode and less than 2%
while in slow aging mode. This CPU time is primarily
due to running TMM in user space requiring many user-
kernel crossings to exchange page references and limits.
TMM uses approximately 64MB of memory. This large
memory overhead is due to duplicating the LRU list in
the kernel, another straightforward optimization. A ker-
nel implementation of TMM will reduce both of these
overheads significantly.

5 Related Work

TFS and TMM bring together research from several di-
verse fields, such as support for transparency, use of free
disk space, and memory management. Here we cover the
most relevant work to our own.

5.1 Support for Transparency
A number of systems have been proposed to support
resource management similar to our notion of trans-
parency. For instance, TCP-Nice [22] is a facility to pre-
vent certain network flows from interfering with higher
priority network flows. Many of the applications that
TCP Nice targets are the same applications that will use
TFS, prefetching, content distribution, and peer-to-peer
storage. TCP Nice is a necessary part of any complete
system for supporting contributory services and we are
currently working to integrate the two systems.
MS Manners [5] is a resource-general system for pre-

venting low priority processes from interfering with high
priority processes. Specifically it targets low priority
applications such as a duplicate file merger and high
priority processes such as SQL server. Several factors
make MS Manners inappropriate for providing transpar-
ent memory allocations: First, it only applies to what
they term symmetrical resources that degrade applica-
tions equally when there is contention. Memory con-
tention doesn’t degrade applications such as BitTorrent
at all, whereas it has dire consequences for opaque appli-
cations such as a browser—the authors admit this short-
coming, saying that the system does not work for phys-
ical memory. Second, MS Manners is a reactive sys-
tem, modifying allocations in response to measured re-
ductions in application progress. Unlike highly loaded
servers such as MS SQL, typical desktop applications are
very bursty and have unknown progress rates.
Other facilities include the multitude of scheduling al-

gorithms for manually setting shares and priorities for
resources. UNIX facilities, such as nice, can be used
to deprioritize processes access to the CPU, but cannot
control access to other resources. Systems such as Lot-
tery Scheduling [23] claim general applicability to re-
sources, but are only appropriate for resources that are
quickly renewed, such as bandwidth or CPU time, and
can be quickly reallocated between contending parties.
Similarly, Resource Containers apply general, but static,
allocations to resources [7]. As mentioned in the intro-
duction, such static allocations are inherently inefficient
and do not determine what to set the allocations to. We
have shown in our evaluation the benefits of using a dy-
namic scheme, such as TMM, over static allocations.

5.2 Free Disk Space
Many researchers have noted the large amount of free
disk space, either locally or in aggregate, and have at-
tempted to put that idle space to work. Elastic Quo-
tas allow users to mark files that temporarily exceed
their disk space quotas on multiuser machines [11]. A
background daemon, named rubberd, defines a high and
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low watermark for free space before eliminating these
marked files. While Elastic Quotas support the goal of
transparency, TFS has the distinct advantage in eliminat-
ing the watermarks. TFS also avoids interference with
the block allocator, preserving performance for opaque
files, and allowing transparent storage to use 100% of
the empty space on the disk. In the evaluation, we have
shown that creating a deleting files in the empty space
causes significant performance penalties for opaque file
access.
Most recently, FS2 proposed using this disk space to

provide replication of local data for performance and en-
ergy benefits [10]. FS2 uses high and low watermarks
for files, similar to Elastic Quotas, in order to avoid the
same interference caused with the block allocator. We
believe that FS2 could also benefit from TFS’ ability to
use 100% of the space without the user noticing.
The Elephant file system proposed using the extra free

space for keeping older versions of files for automatic
versioning support [17], while S4 uses the extra space
for security logging [21]. Elephant and FS2 are example
of other ways to use free space but do not address the
performance issues that TFS solves.

5.3 Memory Management
Many efforts have been made to improve upon Least
Recently Used replacement policies by incorporating
the notion of frequency, including the recent work on
ARC [13]. ARC uses two concurrent LRU queues to
differentiate between pages that have been visited once
recently and those that have been visited more than once,
thus separating pages with high and low temporal local-
ity. This helps to make ARC scan resistant, safely ignor-
ing pages that are sequentially read, and avoiding page-
cache pollution. Unfortunately, tuning the balance be-
tween recency and frequency will eventually fail to keep
certain pages transparent. Without the OS knowing the
difference between opaque and transparent activity, the
OS will eventually believe that the transparent activity is
the only activity on the machine and evict opaque pages.
More importantly, there is no assumption that transpar-
ent pages managed by TMM have low temporal locality,
and many contributory storage systems may in fact have
high degrees of temporal locality.
The CacheCOW system [8] generally defines the

problem of providing QoS in a buffer cache. CacheCOW
contains some elements of TMM, including providing
different hit rates to different classes of applications, but
targets Internet servers in a theoretic and simulation con-
text. CacheCOW does not address many of the practical
issues in using, gathering, and aging LRU histograms.
LRU histograms [25], or page recency-reference

graphs [24, 19], are useful in many contexts such as

memory allocation and virtual memory compression and
are essential to TMM. Some optimizations to gathering
histograms have been implemented that rely on page pro-
tection but lower the overhead to 7-10% [26]. In this
paper, we use an adapted form of tracing that requires
less implementation effort in the kernel and avoids the
overhead of handling relatively expensive page faults.
The disadvantage of our referenced bit approach is less
accuracy—the reference bit does not reveal multiple hits
to the same page within one sampling period; however,
we have found the accuracy sufficient given the require-
ments of TMM. Nonetheless, TMM is agnostic with re-
spect to how the LRU histograms are obtained, as long
as the overhead is acceptable.

5.4 Linux Support for Transparency
As we have implemented TFS and TMMon top of Linux,
we note that there is some minimal support for non-
interference in the 2.6 kernel. Specifically, Linux makes
a distinction between two kinds of memory pages: mem-
ory mapped pages, and non-mapped pages. Memory
mapped pages include mmapped files including shared
libraries, and program heap, stack, and data space. Non-
mapped pages include those added to the cache from reg-
ular file access. As part of its eviction policy, Linux 2.6
measures the ratio of mapped to unmapped pages and the
level of distress in freeing pages. Using a unitless param-
eter called swappiness, a systems administrator can con-
trol contention between mapped and unmapped pages.
Given the default value of swappiness, Linux generally
prevents the allocation of non-mapped pages from forc-
ing the eviction of mapped pages until the allocation of
mapped pages exceeds 80% of physical memory. The
consequence is that on many systems, a typical user may
not use more than 80% mapped pages, and non-mapped
accesses becomes transparent. Thus, contributory appli-
cations that only use non-mapped pages will not inter-
fere with mapped opaque pages. For example, BitTor-
rent will not interfere with the user interface. In effect,
Linux has inferred the importance of memory, and thus
applications, using the type of memory the application
used.
While this inference works in certain cases, it does not

work in general. For instance, contributory applications
using non-mapped pages will interfere with foreground
non-mapped pages, such as those used by compilation
or file management. Further, contributory applications
that use mapped pages, such as simulations or distributed
data-set processing, will interfere with opaque applica-
tions, such as X. Anecdotally, we have seen this in our
lab’s use of Condor [12]. After watching X laboriously
page after coffee breaks, all of our users disabled Condor.
To be fair, we have not disabled this inference feature in
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Linux, but TMMwill work slightly better when not com-
peting with this kernel feature.

6 Conclusions

In this paper we present two operating system exten-
sions, the Transparent File System (TFS) and the Trans-
parent Memory Manager (TMM) for supporting trans-
parent contribution of storage and memory. These sys-
tems prevent contributory applications from interfering
with the performance of a user’s application, while max-
imizing the benefits of harnessing idle resources. TFS
is effective in preserving the performance of a user’s file
system, while still donating 100% of the free space on the
disk. TMM protects the user’s pages from unwarranted
eviction and limits the impact on the performance of user
applications to less than 5%, while donating hundreds of
megabytes of idle memory.
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