
Custom Object Layout for Garbage-Collected Languages

Gene Novark Trevor Strohman Emery D. Berger
University of Massachusetts Amherst

{gnovark,strohman,emery}@cs.umass.edu

Abstract
Modern architectures require data locality to achieve per-
formance. However, garbage-collected languages like Java
limit the ability of programmers to influence object locality,
and so impose a significant performance penalty. We present
custom object layout, an approach that allows programmers
to control object layout in garbage-collected languages. Cus-
tom object layout cooperates with copying garbage col-
lection. At collection time, the garbage collector invokes
programmer-supplied methods that direct object placement.
Custom object layout is particularly effective at improving
the locality of classes with well-known traversal patterns,
such as dictionary data structures. We show that using cus-
tom object layout can reduce cache misses by 50%–77%
and thus improves the query performance of dictionary data
structures by 20%.

1. Introduction
Recent processor speed improvements have far outpaced
memory speed improvements. At the same time, applica-
tion development is shifting from languages like C and C++
that allow programmers considerable flexibility in determin-
ing object layout, to garbage-collected languages like Java
and C#. Garbage-collected languages impose a considerable
performance penalty by preventing programmers from influ-
encing object placement. Past work has shown that careful
placement of objects in memory can yield performance im-
provements as high as 42% in C and C++ applications [5,
11, 26].

This paper makes the following contributions:

• It introduces custom object layout, an efficient way for
programmers to control object placement in garbage-
collected languages. Custom object layout cooperates
with copying garbage collection: the garbage collector
invokes programmer-supplied methods that direct object
placement. Section 2.2 shows how custom object layout
can be implemented safely.

• It demonstrates that custom object layout substantially
improves performance over automatic layout strategies
for a variety of large dictionary data structures. This in-
creased performance stems directly from reducing cache
misses.

The rest of this paper is organized as follows. Section 2
describes the design of our custom object layout approach
and its implementation in Jikes RVM [1, 2] using the MMTk
toolkit [6]. Section 3 presents the experimental methodology
and our benchmark suite, which measures the impact of cus-
tom layout on the query performance of a number of dic-
tionary data structures. Section 4 describes the specific cus-
tom layout policies we employ for these data structures, and
presents empirical results. Section 5 describes related work,
Section 6 discusses planned future work, and Section 7 con-
cludes.

2. Custom Object Layouts
Programmers specify a custom object layout for a particu-
lar class by implementing a CustomLayout interface. The
interface methods provide hints to the runtime system about
how to arrange objects in memory. Programs written using
this strategy run unmodified on other virtual machines, but
enable higher performance when used in conjunction with a
virtual machine modified to use these hints. This section de-
scribes the CustomLayout interface and provides details on
its communication with the garbage collector.

2.1 CustomLayout Design & Implementation
In order to override the default strategy and implement cus-
tom layout, we modified Jikes RVM to look for user classes
that implement the CustomLayout interface. This inter-
face (shown in Figure 1) specifies two methods which the
programmer must implement. The arrangeBegin method
initializes the CustomLayout state. The arrange-Next
method’s semantics are similar to Iterator.next(). Upon
each invocation, the method returns the next item to be
copied. Figure 2 shows a simple implementation that the

public interface CustomLayout {
/// called at start of GC.
public void arrangeBegin ();

/// return next object to place.
public Object arrangeNext ();

}

Figure 1. The CustomLayout interface

UMass Computer Science Technical Report 06-07 1 2006/1/31

// next list node to lay out
private static Node next = null;
// current data object
private static Object obj = null;

public void arrangeBegin () {
// start at list head
next = first;

}

public Object arrangeNext () {
if (next == null && obj == null)

// done with list
return null;

if (obj == null) {
// just copied the node , copy its data
obj = next.data;
return next;

} else {
// copy data , move to next node
Object prev = obj;
next = next.next;
obj = null;
return prev;

}
}

Figure 2. CustomLayout implementation for LinkedList

collector uses to linearize a linked list. Section 4 describes
the implementations for the other data structures we examine
here.

During garbage collection, collection proceeds until the
collector copies an object that implements the CustomLayout
interface. The collector then invokes the object’s arrange-
Begin method, allowing it to initialize its state. The col-
lector then repeatedly calls the arrangeNext method and
places the returned objects into contiguous memory until the
method returns null.

2.2 Safety
The methods implementing custom object layout and the
copying collector must cooperate to ensure that they pre-
serve consistency of the heap. There are four requirements
that, when satisfied, guarantee heap consistency:

1. All reachable objects must be copied.

2. The collector must update all pointers to point to the
correct targets.

3. The custom object layout methods must not corrupt the
heap.

4. The custom code must not mutate the object graph.

The collector ensures requirements (1) and (2)—copying
and updating pointers—by copying objects not placed by the

custom layout code, and by updating pointers in all affected
objects. As collection proceeds, the collector places each ob-
ject on a scan queue. This queueing corresponds to coloring
the object grey in the tricolor abstraction [17], and ensures
that the collector will later find and copy all objects that are
part of the data structure. Scanning also ensures that each
pointer field is updated to point to the correct target. This be-
havior protects against incorrectly-written layout code and
also allows the programmer to ignore less important data
structure objects.

We have not yet implemented static checks to satisfy
requirements (3) and (4), but describe how to do so below.

To avoid heap corruption (3), the CustomLayout im-
plementation cannot allocate memory. To avoid allocating
memory, our implementation uses a preallocated context to
store state. This context is shared per class and allocated at
class load time. In a single-threaded collector, this approach
is safe because the collector traverses only one data struc-
ture at a time. A parallel or concurrent collector would need
either one context per object, or context stored in thread-
local memory. It would be straightforward to check at class
load-time that none of the CustomLayout methods allocate
memory by checking for direct or indirect calls to new.

Finally, to satisfy requirement (4), the implementation
must ensure that the custom layout code does not modify the
structure of the object graph. Pointer modifications to heap
objects may result in stale pointers being stored into new
objects which are already scanned. We cannot simply forbid
custom layout code from performing pointer mutations, as
these operations are required to keep state for object traver-
sal. Static analysis can be used to verify that the pointers mu-
tated by custom layout code are never accessed by mutator
code.

2.3 Pseudo-depth-first Layout
We use Jikes RVM [1, 2] and its MMTk [6] memory man-
agement toolkit as our experimental infrastructure. MMTk
supports several different copying garbage collectors. The
default copy order in MMTk is pseudo-depth-first. This
traversal is used over pure depth-first because it can be im-
plemented more efficiently. Pseudo-depth-first copies an ob-
ject’s children immediately after each other.

The key difference in resulting layouts between the two
policies is that pseudo-depth-first separates parents from
their children. For example, in a binary tree, pure depth-
first copies all of the left subtree before copying any of the
right subtree. However, pseudo-depth first copies the roots
of both subtrees before recursively copying the rest of the
left subtree. Figure 3 shows the effect of different layouts on
a binary tree.

Because CustomLayout only affects annotated data
structures, it requires a default layout algorithm. Because of
its effectiveness at placing general-purpose data structures,
we use pseudo-depth-first. The choice of default layout al-

UMass Computer Science Technical Report 06-07 2 2006/1/31

(a) Example binary tree

(b) Breadth-first layout

(c) Pure Depth-first layout

(d) Pseudo-DF layout

(e) Custom layout

Figure 3. Effects of layout on binary search tree

gorithm has little impact on our microbenchmarks, which
rely primarily on custom object layout.

3. Methodology
We perform our experiments on two architectures. The first
is a 3.0 GHz Pentium 4 with Hyperthreading disabled. It
has a 64 byte DL1 and L2 cache line size, an 8KB 4-way
set associative L1 data cache, a 512KB unified 8-way set
associative L2 cache, and 1GB of main memory. We run
Linux kernel version 2.6.13.2 with the perfctr patch version
2.6.16. We use the perfctr patch and libraries to access the
Pentium 4’s on-chip performance counters to measure the
number of L1 and L2 cache misses for each run.

The second architecture is a 1.8 GHz PowerPC 970. This
processor has 128 byte cache line size, a 32KB 2-way set
associative L1 data cache and a 512KB unified 8-way set
associative L2 cache. The machine has 2GB of physical
memory. It runs Linux 2.6.14.6 with perfctr version 2.7.19.

Our approach requires a copying garbage collector to im-
plement custom object layouts. We use a SemiSpace col-
lector, a standard full-heap copying garbage collector [17].
Semispace collectors are generally less efficient than genera-
tional collectors for overall program performance. However,
we perform our experiments after a full-heap garbage collec-
tion, and no objects are allocated during measurements. We
compare custom object layouts to pseudo-depth-first (Sec-
tion 2.3) and breadth-first layouts.

Structure Per-query cost
Red-black trees O(log N) [3]
Splay trees amortized O(log N) [25]
Skip lists expected O(log N) [22]
Linked lists O(N)

Table 1. Implemented data structures

Our runs use a 512MB maximum heap size. However,
because no objects are allocated during the timing portion
of the benchmarks, no garbage collections may occur. The
reported times are thus insensitive to heap size, as long as
the data structures built can fit.

Our virtual machine infrastructure is Jikes RVM version
2.4.0, configured to compile all methods with the optimizing
compiler. We use a second run methodology, in which we
report performance metrics for a second run of the bench-
mark. The first run allows the system to compile all needed
methods, so the reported results do not include compilation
overhead. This methodology removes variability due to the
default adaptive compilation system in Jikes RVM.

3.1 Benchmarks
We study the average query cost on several data structures.
Our benchmarks consist of multiple queries applied to a
static data structure. They maintain an array of the values
known to be in the data structure, and select only those
values as query parameters. We choose elements using a
uniform distribution.

We investigate four different linked data structures: skip
lists [22], red-black trees [3], splay trees [25], and doubly-
linked lists. Table 1 presents their algorithmic charac-
teristics. The linked list and red-black tree implementa-
tions are from GNU Classpath [14], modified to implement
CustomLayout. The splay tree implementation is based on
the red-black tree from Classpath. We implemented skip lists
to adhere to a limited form of the java.util.Map interface.

Each tree-based benchmark performs 500,000 uniformly-
distributed queries on data structures of varying sizes. The
skip list benchmark performs 100,000 queries, while the
linked list benchmark performs 10,000 queries. To emulate
the effects of unrelated data that would exist in a real pro-
gram, the benchmark builds 4 different data structures of
each size. Omitting this detail can have a significant effect on
locality. For example, a breadth-first collector will linearize
a single linked list in isolation, but will interleave nodes from
multiple linked lists.

We run each benchmark 10 times and report the mean for
each.

4. Results
We present the results of our experiments on each of the data
structures described above. We describe the custom layout
policy we implemented for each. Each experiment reports

UMass Computer Science Technical Report 06-07 3 2006/1/31

Figure 4. Hierarchical Clustering

Benchmark Execution time L1 L2
Red-Black, P4 18.8% 20.2% 51.5%
Red-Black, PPC970 22.0% 12.6% 77.2%
Splay, P4 17.9% 21.0% 50.0%
Splay, PPC970 23.3% 19.3% 62.0%

Table 2. Performance improvements over baseline

the total execution time, L1 data cache misses, and L2 data
cache misses.

4.1 TreeMap Results
We implemented a TreeMap class using both red-black trees
and splay trees. The implementation of the CustomLayout
interface in TreeMap breaks the tree into hierarchical clus-
ters, which it arranges in depth-first order. Figure 4 depicts
hierarchical clustering. Each cluster consists of a node, its
key, and its children, their keys, and so on recursively up to
the cluster size. Because the cache line sizes on the archi-
tectures we examine here are relatively small with respect to
object size, we use a cluster size of 3. We segregate nodes
and keys from values, because values are not needed dur-
ing traversal. This organization prevents unneeded value ob-
jects from polluting cache lines containing keys and nodes,
which queries require. Figure 3 shows the resulting layout
for a small binary tree.

While we use a depth-first hierarchical decomposition
here, it is important to note that this layout is not optimal.
Bender et al. show that the van Emde Boas layout is an
optimal cache-oblivious layout policy for binary trees [4].
However, it is unclear how to write custom layout code
to implement the van Emde Boas layout without imposing
excessive space overhead.

Figures 6–7 show the performance results for these two
structures. Table 2 summarizes the performance improve-
ment that custom layout achieves over pseudo-depth-first,
which is better than breadth-first on all of our benchmarks.

(a) Skip List

(b) Breadth-first layout (c) Depth-first layout

(d) Pseudo-DF layout (e) Custom layout

Figure 5. Skip list layout

Red-Black Trees
Custom object layout significantly reduces runtime and
cache miss rates on both architectures. On red-black trees,
the custom layout achieves up to a 28.1% reduction in av-
erage query time when compared to the next best strategy,
pseudo-depth-first. This decrease is mostly due to a reduced
L2 miss rate. This reduction is especially noticeable for
smaller trees, where custom object layout eliminates prac-
tically all L2 cache misses. For these sizes, custom object
layout allows all relevant tree data to fit into the L2 cache
because it segregates values from keys and nodes. For trees
significantly larger than the L2 cache, the custom layout re-
duces the L2 miss rate by around 33% on the P4 and 52%
on the PPC970.

Splay Trees
Unlike red-black trees, whose structure is unchanged by
queries, splay trees dynamically reorganize themselves. The
most-recently accessed node is “splayed” to become the new
root. Because our benchmark performs random queries, the
resulting tree structure is effectively shuffled.

Despite this restructuring, the custom object layout re-
sults in similar performance improvements. We attribute
these improvements to the segregation of values from keys
and nodes.

Performance Anomalies
We observe several performance anomalies in these experi-
ments, especially on the Pentium 4. In particular, Figures 6
and 7 show that custom object layout causes erratic L2 cache
miss behavior on both types of binary search trees at small
tree sizes. We cannot currently explain why the absolute
number of L2 misses is so much greater at these sizes, as the
entire tree should fit easily within L2 cache. Other anoma-
lies appear at isolated tree sizes. For example, for DL1 cache
miss rates in Figure 7, breadth-first has a large anomaly at
17,000 nodes. This result is consistent over many runs and is

UMass Computer Science Technical Report 06-07 4 2006/1/31

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-first
Pseudo-DF

Arrangeable

(a) Time, P4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-first
Pseudo-DF

Custom

(b) Time, PPC970

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-first
Pseudo-DF

Arrangeable

(c) DL1 Misses, P4

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-first
Pseudo-DF

Custom

(d) DL1 Misses, PPC970

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-first
Pseudo-DF

Arrangeable

(e) L2 Misses, P4

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-first
Pseudo-DF

Custom

(f) L2 Misses, PPC970

Figure 6. Red-Black Tree Performance

not the result of a single outlier in the data. We suspect that
at this size, the collector places some commonly-accessed
data such that cache conflicts occur.

4.2 Skip List Results
Skip lists are a probabilistic dictionary data structure with
expected O(log n) operation time [22]. The data structure is
parameterized by p, which determines the expected level of
the node. Each node has a probability 1/pk of being level k.
A node of level k contains pointers for every level between
1 and k. Nodes on each level are ordered by their keys. A
pointer of level k skips an expected pk−1 nodes in the graph.
A query proceeds by searching down one level of the list

until it finds an object greater than the specified key. The
search algorithm then searches in the same manner on the
next lower level of the list. The algorithm terminates when it
reaches the end of the lowest level.

Our custom layout exploits these properties of the search
algorithm. When the parameter p is greater than 2, the search
is most likely to look at the next node on the level, rather
than moving to the next level. We therefore first linearize
the highest level of the list, then the next level, and so on.
As with binary trees, we place the key and node in adjacent
memory, but segregate values to prevent cache line pollution.
Figure 5 shows the resulting layout for a small skip list.

UMass Computer Science Technical Report 06-07 5 2006/1/31

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-first
Pseudo-DF

Custom

(a) Time, P4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-first
Pseudo-DF

Custom

(b) Time, PPC970

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-first
Pseudo-DF

Custom

(c) DL1 Misses, P4

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-first
Pseudo-DF

Custom

(d) DL1 Misses, PPC970

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-first
Pseudo-DF

Custom

(e) L2 Misses, P4

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-first
Pseudo-DF

Custom

(f) L2 Misses, PPC970

Figure 7. Splay Tree Performance

The actual implementation of skip lists in Java requires
two objects per node. Since each node contains a variable
number of pointers, we use a separate array. Our layout
policy places this array adjacent to the node object (which
contains pointers to the key and value).

Pugh shows that the expected operation cost of a skip
list is optimal when the parameter p ≈ e. However, our
layout linearizes the skip list along single levels, making
the expected cost of a forward traversal lower than that of
moving to the next level of the list. We varied this parameter
to determine the effect of locality and found that optimal
performance on the Pentium 4 was achieved with p set to 5;
we use the same value of p for the PowerPC experiments.

Figure 8 shows the performance of skip list queries for
p = 5. As with binary search trees, custom object layout im-
proves cache performance, especially on the Pentium 4. L1
misses decrease by an average of 42.6%. L2 misses show
a similar decrease, dropping by approximately 40.0% for
skip lists that do not fit in L2 cache and reducing misses by
32.1% over the range of sizes tested. The PowerPC results
show similar trends, although the magnitude of the differ-
ence between the baseline and the custom layout is smaller.
Nonetheless, these miss rate reductions do not translate into
a significant performance improvement over pseudo-DFS on
either platform. We are currently investigating why the sub-
stantial reduction in cache misses does not result in a runtime
improvement on the Pentium 4.

UMass Computer Science Technical Report 06-07 6 2006/1/31

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-First
Pseudo-DF

Custom

(a) Time, P4

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-first
Pseudo-DF

Custom

(b) Time, PPC970

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-First
Pseudo-DF

Custom

(c) DL1 Misses, P4

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-first
Pseudo-DF

Custom

(d) DL1 Misses, PPC970

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-First
Pseudo-DF

Custom

(e) L2 Misses, P4

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-first
Pseudo-DF

Custom

(f) L2 Misses, PPC970

Figure 8. Skip List Performance, p = 5

4.3 Linked List Results
Figure 9 shows performance for the linked list microbench-
mark. Pseudo-depth-first matches the performance of our
custom layout, because it also linearizes the list. Because
the traversal requires both the node and the data object, no
other objects cause cache pollution. L2 misses are negligi-
ble, since the lists span contiguous memory and fit within
the 512K L2 cache.

For this benchmark, the breadth-first collector exhibits
poor performance. Recall that each benchmark creates four
instances of each data structure. Breadth-first interleaves
objects from the four different lists together. As a result, any
cache line can contain data from at most one node, causing
cache residency to drop.

5. Related Work
We describe in this section the most closely related work to
custom object layout. We divide these into three categories:
oblivious layout policies that ignore type or access informa-
tion, adaptive layout policies that respond to such informa-
tion, and other approaches.

5.1 Oblivious Layout
The canonical copying algorithm is Cheney scan [8], which
copies objects in breadth-first order. Previous work [16, 21,
27] has shown that the breadth-first ordering resulting from
Cheney scan has poor locality for many common data struc-
tures. A breadth-first collector may separate objects from all
of their children. They cluster unrelated objects together. In

UMass Computer Science Technical Report 06-07 7 2006/1/31

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ru
nt

im
e

(m
s)

Nodes

Query Runtime

Breadth-First
Pseudo-DF

Custom

(a) Time

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1000 2000 3000 4000 5000 6000 7000 8000 9000

DL
1

Ca
ch

e
M

iss
es

Nodes

Query DL1 Misses

Breadth-First
Pseudo-DF

Custom

(b) DL1 Misses

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1000 2000 3000 4000 5000 6000 7000 8000 9000

L2
 C

ac
he

 M
iss

es

Nodes

Query L2 Misses

Breadth-First
Pseudo-DF

Custom

(c) L2 Misses

Figure 9. Linked List Performance

particular, breadth-first ordering does not linearize lists, one
of the earliest locality optimizations noted in the context of
copying garbage collection.

Unlike breadth-first layouts, a depth-first layout linearizes
lists. However, pure depth-first traversal has important draw-
backs. Because it is recursive, the call stack grows when
traversing a deep structure such as a linked list. While this
overhead can be avoided [23], most collectors avoid it by
implementing less expensive variants like the pseudo-depth-
first approach described in Section 2.3.

Wilson et al. propose hierarchical decomposition which
groups the upper nodes of a tree together. They show that
using hierarchical decomposition over breadth-first layout
significantly reduces the page fault rate for several LISP

programs [27]. We use a specialized form of hierarchical
decomposition to improve the locality of binary search trees,
described in section 4.1.

5.2 Adaptive Layout
Wilson et al. report that hierarchical decomposition impairs
performance for data structures which are not tree-like [19].
They propose instead that the layout be type-directed. Their
system identifies trees and association lists by scanning ob-
jects a few levels ahead and using a recognition heuristic.
It then chooses depth-first or hierarchical decomposition as
appropriate. Rather than attempting to infer the best copying
order, custom object layouts allow the programmer to spec-
ify it directly.

Chilimbi et al. [12] dynamically build a temporal affin-
ity graph and use it to colocate hot objects that are refer-
enced together. In this graph, nodes are objects which are
connected by an edge if the mutator references them to-
gether frequently within a short period of time. Their tech-
nique does not require these objects to be connected. Though
this system requires a read barrier, the recent LO system
uses sampling to decrease the overhead to a few percent [7].
Our system guarantees good locality for annotated contain-
ers, while LO may suffer if the set of hot objects changes
rapidly. On the other hand, LO can improve locality for any
structure in the heap, while ours can only improve annotated
ones.

Huang et al. use method sampling to identify connected
objects which the mutator is likely to access together [16].
Their system analyzes “hot” methods and uses their field
access patterns to identify hot fields on a per-class basis.
Their collector then copies hot fields of an object first, ad-
jacent to the parent. This technique ensures that parents and
commonly-accessed children are close together. Their sys-
tem generally matches the best static layout, rather than im-
proving on it. Our system allows much more flexible poli-
cies, allowing it to beat either static layout.

Chilimbi et al. [11] present a tool called ccmorph that al-
lows C programmers to specify an ordering for tree-like data
structures. The tool reorganizes the data structure on request
based upon this ordering. Unlike custom object layout, cc-
morph can only reorder data structures when there are no
incoming pointers to objects from outside of the data struc-
ture itself. Our system exploits copying garbage collection
to ensure the safety of its reorganization. The program must
invoke ccmorph explicitly, while our system automatically
rearranges the structure at each garbage collection.

Shuf et al. propose a locality-based traversal ordering,
in which pointers local to a section of the heap are tra-
versed first [24]. This approach ensures that connected ob-
jects maintain good locality over multiple collections. They
combine this approach with an allocation colocation scheme
to ensure good initial locality, which their layout policy
maintains.

UMass Computer Science Technical Report 06-07 8 2006/1/31

5.3 Other Approaches
Other approaches to improving cache performance have in-
cluded reordering fields within a structure, splitting a struc-
ture into hot and cold parts [10, 18], allocating objects into
contiguous regions or reaps [5, 9, 15, 20], and non-moving
allocators designed to improve locality [11, 13, 26]. Struc-
ture splitting is complementary to the work presented here.
Our approach improves upon regions by grouping objects by
traversal order rather than by allocation order.

6. Future Work
Our system currently works with a semispace collector. We
would like to support generational copying collection, but
generational collectors present several complications.

First, the current collector identifies the root of the data
structure, rather than the contents. A generational collector
may separate a data structure between two generations so
that the mature space contains the root, and the nursery
contains the contents. In this case, a minor collection will not
organize the portion of the data structure within the nursery.

Second, the implementation of layout annotations as ac-
tual Java code causes problems. Objects must maintain state
during custom object layout such as the current cursor loca-
tion. If this code contains accesses to objects or arrays, these
will invoke the write barrier in a generational (or other incre-
mental copying) collector, which is generally unsafe during
collection.

We are considering the use of declarative annotations
rather than Java code as a way around these problems. A
declarative language could be compiled to low-level code
that would be guaranteed to be safe, i.e., that would satisfy
the requirements given in Section 2.2. Generating safe code
would also eliminate the need for static analyses to check the
safety of user-written code.

7. Conclusion
We designed and implemented a system for specifying cus-
tom layout algorithms for data structures in garbage col-
lected languages. Our system is easy to use, because the an-
notations are in the language itself. It is efficient, because
the mutator phase runs unaltered, and the performance im-
pact during garbage collection is negligible.

Our results show that custom object layout can substan-
tially improve locality and thus performance. For a variety
of large dictionary data structures, custom object layout im-
proves query performance by around 20%, with larger reduc-
tions in L2 cache misses. We plan to extend this work with
static checks to ensure that custom object layout directives
are safe.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,

J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R.

Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM System Journal, 39(1):211–238, February 2000.

[2] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,
T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and
M. Mergen. Implementing Jalapeño in Java. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 314–324, Denver, CO,
Nov. 1999.

[3] R. Bayer. Symmetric binary B-trees: Data structure and
maintenance algorithms. Acta Informatica, (1):290–306,
1972.

[4] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-
oblivious b-trees. In IEEE Symposium on Foundations of
Computer Science, pages 399–409, 2000.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In OOPSLA’02 ACM Conference
on Object-Oriented Systems, Languages and Applications,
ACM SIGPLAN Notices, Seattle, WA, Nov. 2002. ACM
Press.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? high performance garbage collection in Java with
MMTk. In ICSE 2004, 26th International Conference on
Software Engineering, Edinburgh, May 2004.

[7] W.-K. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang.
Profile-guided proactive garbage collection for locality
optimization. In PLDI ’06: Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and
Implementation, June 2006.

[8] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, Nov. 1970.

[9] S. Cherem and R. Rugina. Region analysis and transformation
for Java programs. In Proceedings of the 2004 International
Symposium on Memory Management, Vancouver, Canada,
October 2004.

[10] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-
conscious structure definition. In ACM SIGPLAN Conference
on Programming Languages Design and Implementation,
pages 13–24, Atlanta, GA, May 1999.

[11] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
conscious structure layout. In ACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages
1–12, Atlanta, GA, May 1999.

[12] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
ACM International Symposium on Memory Management,
pages 37–48, Vancouver, BC, Oct. 1998.

[13] Y. Feng and E. Berger. A locality-improving dynamic
memory allocator. In MSP ’05: Proceedings of the 2005
ACM SIGPLAN workshop on Memory systems performance,
Chicago, IL, USA, 2005.

[14] GNU Classpath. http://www.classpath.org/.

[15] D. R. Hanson. Fast allocation and deallocation of memory
based on object lifetimes. Software Practice and Experience,
20(1):5–12, Jan. 1990.

UMass Computer Science Technical Report 06-07 9 2006/1/31

[16] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
Improving program locality. In OOPSLA’04 ACM Conference
on Object-Oriented Systems, Languages and Applications,
ACM SIGPLAN Notices, Vancouver, Oct. 2004. ACM Press.

[17] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, July
1996.

[18] T. Kistler and M. Franz. Automated data-member layout
of heap objects to improve memory-hierarchy performance.
ACM Trans. Program. Lang. Syst., 22(3):490–505, 2000.

[19] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type
directed garbage collection to improve locality. In Y. Bekkers
and J. Cohen, editors, ACM International Workshop on
Memory Management, number 637 in Lecture Notes in
Computer Science, pages 404–425, St. Malo, France, Sept.
1992. Springer-Verlag.

[20] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation,
pages 129–142, Chicago, IL, USA, 2005.

[21] D. A. Moon. Garbage collection in a large lisp system. In
LFP ’84: Proceedings of the 1984 ACM Symposium on LISP
and functional programming, pages 235–246, 1984.

[22] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM, 33(6):668–676, 1990.

[23] H. Schorr and W. M. Waite. An efficient machine-independent
procedure for garbage collection in various list structures.
Commun. ACM, 10(8):501–506, 1967.

[24] Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P. Singh.
Creating and preserving locality of java applications at
allocation and garbage collection times. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
pages 13–25, Seattle, Washington, USA, 2002.

[25] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, 1985.

[26] D. N. Truong, F. Bodin, and A. Seznec. Improving cache
behavior of dynamically allocated data structures. In PACT
’98: Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, page 322,
Washington, DC, USA, 1998. IEEE Computer Society.

[27] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective static-
graph reorganization to improve locality in garbage collected
systems. ACM SIGPLAN Notices, 26(6):177–191, 1991.

UMass Computer Science Technical Report 06-07 10 2006/1/31

