Solving a Problem Domain with Brute Force Goal
Regression

Stephen Murtagh and Paul E. Utgoff

Computer Science Department
University of Massachusetts
140 Governor’s Drive, Amherst, MA 01003

Abstract

We present an algorithm that solves for an optimal policy in domains defined by a class
of automata without enumerating the underlying state-space. This is done by constructing
equivalence classes of problem states and regressing them through the automaton. This
class of automata describes fully-observable, non-stochastic, sequential domains in which
one or more agents interact. We apply this technique to the domain of Connect Four and
present the results of that experiment. We show the amount of memory required for our
technique was six orders of magnitude smaller than the amount that would be required for
a standard retrograde analysis approach.

1 Introduction

The problem of how to represent and solve problem domains has been studied in
several different areas. In reinforcement learning, for example, a Markov Decision
Process is used to represent a domain and is typically solved by finding an optimal
policy, while game theory solves games by finding a set of equilibrium strategies.
For each way of representing a domain and its solution there are a variety of tech-
niques available for finding a solution. One property that these techniques share is
that in order to find an exact solution, they typically either directly examine each
state in the state-space or search the space of all possible policies. Both of these
types of approaches, however, require enumerating the entire state-space of the do-
main.

Algorithms that work by enumeration are limited in the size of the domains they can
solve. This is not an issue if a domain is so complex that the only way to describe
it is to list every state and action, but if can be describe far more succinctly, then
one would expect that there is a better method for solving it. If a domain can be

Preprint submitted to Elsevier Science 3 October 2005

represented compactly, it follows that there is a large amount of regularity that an
algorithm should be able to exploit.

Our work seeks to leverage the descriptions of the domains in order to solve them
without enumerating the underlying state-space. Toward this end we define a class
of automata that can compactly represent a variety of domains. We then present
a new technique that combines goal regression and abstraction to solve relatively
large, easily described domains.

Our technique works by regressing sets of states through an automaton describing
the domain. Each of these sets contain all states in the domain that are equivalent
with respect to the optimal outcome and the optimal next action. When regression
terminates, the equivalence classes defined by these sets will have fully partitioned
the state-space. Together, the equivalence classes describe the optimal policy for
every agent, or equivalently, a set of strategies that form a subgame perfect equilib-
rium. By describing these sets with boolean formulae over features of the domain,
they are more space efficient than listing the individual states and by performing
operations on entire sets at once, the amount of computation required to find a
solution can be reduced.

Finally, we demonstrate the effectiveness of this technique on the domain descrip-
tion of the game Connect Four. This is a two-player game played on a seven by six
board in which the players alternate placing pieces, each of which must be placed
at the lowest open cell of a column. The first player to achieve four adjacent pieces
on the same row, column, or diagonal wins, and the game terminates. This game
has approximately 10! states (van den Herik, Uiterwijk & van Rijswijck, 2001),
making a standard brute-force solution infeasible on a single desktop machine. Our
approach finds an optimal policy for each agent this domain in a reasonable amount
of time while consuming far less memory than an enumeration based approach
would.

2 Problem

In order to solve large domains, we need a representation that allows us to describe
the domain without listing the individual states. We have chosen to define a class of
automata that will be used to represent domains. These automata are deterministic
finite automata that are augmented with variables and propositional pre-and post-
conditions on the transitions. This representation can be used to describe a large
class of problems easily, in a way that will allow us to perform regression in a
straight-forward manner.

A domain theory is represented by an automaton defined as:

M= (0Q,%,k,d,s,F) (D

where Q is a finite set of states, Z is a finite alphabet, k a finite set of variables, or
features, each of which can take on any symbol from =, 8: QO x 3¥ - O x=risa
deterministic transition function, s is the start state, and F is a set of goal states with
rewards. Finally, each state in Q has a single agent associated with it. That agent is
the only agent that can ever act in that state.

Throughout this article, we refer to two types of states: states in a domain and states
of the automaton. In order to alleviate the potential confusion, we always refer to
states in the problem domain as problem states. Automaton state, goal state and
initial state all refer to automaton states rather than the domain’s state.

States in the state-space of the problem are described by k variables, each of which
can take on |X| values. In the automaton, these features determine the set of tran-
sitions that can be taken from a given state. The alphabet also contains a special
character, €, which is used only to denote a variable whose value is irrelevant.

A combination of automaton states and features is used to represent the domain.
This simplifies the definition of a domain by separating the actual states of the
domain, which are represented by the features, from the structure imposed on the
domain, i.e. when agents act, what transitions are available, and when agents re-
ceive rewards.

From any given automaton state, multiple transitions may be possible depending on
the current variable settings. A constraint is imposed that in any automaton state,
all transitions whose preconditions can be simultaneously satisfied must move to
the same automaton state. This allows us to reason about the transitions an agent
could not have taken.

The constraint does not limit the set of domains that can be expressed. Any automa-
ton that violates the constraint can be converted to one that does not, by adding an
additional variable that is used to store the successor state and an automaton state
to select the successor state.

The goal of our work is to produce an algorithm that can analytically compute an
optimal policy for a given domain without enumerating the state-space. Analyti-
cally solving a domain allows us to find an exact solution, and by not enumerating
the state-space we can solve otherwise intractably large domains. This is done by
generating a hierarchy of equivalence classes which specify the optimal decisions
for all of the equivalence classes of problem states. These classes are constructed
from the automaton directly.

As described, the automaton can only specify fully observable, non-stochastic do-

mains with one or more agents. The issues that arise from removing these limita-
tions are discussed below.

3 Related Work

We have developed a method for finding an optimal policy in the automaton, which
is a compressed, deterministic, fully observable MDP. A large body of reinforce-
ment learning techniques, such as value iteration (Bellman, 1957) and policy it-
eration (Howard, 1960) could be used instead. Applying such techniques directly,
however, would require searching the entire state space. We would like to take a
brute force approach that does not have this limitation, and we are motivated, in
part, by Etzioni’s (1993) method for carrying out a static analysis in a problem
domain.

Recent work in relational reinforcement learning provides techniques to leverage
compact relational representations similar to the one described above (Kersting,
van Otterlo & De Raedt, 2004). These methods, however, still rely on exhaustive
lookup tables to perform value function updates, which requires them to iterate over
the entire state space and therefore restricts them to small state spaces.

Reinforcement learning techniques on factored MDPs, such as that by Boutilier et
al (2000), provide a method for finding optimal policies in large state spaces. This
work, however, is largely limited to single-agent domains or co-operative multi-
agent domains (Guestrin, Venkataraman & Koller, 2002).

One benefit of the automaton specification is that systems with multiple agents can
be modeled easily. Recent work on adapting reinforcement techniques to learning
for multi-agent systems focuses on stochastic games, matrix games, or games with
hidden information (Tesauro, 2003; Littman, 1994). In these games, every pure
strategy, or deterministic policy, may be dominated, requiring expensive calcula-
tions or approximation techniques to find optimal mixed, or randomized, strategies.
Our approach, however, focuses on the smaller class of non-stochastic, sequential
games with no hidden information, which means that an optimal pure strategy can
always, in principle, be found.

The techniques set forth in this paper are similar to those used in planning, specif-
ically the idea of goal regression (Waldinger, 1976). A planning domain consists
of an initial state, a goal state and a set of operators that alter the state. In goal
regression, a set of goal states is regressed through the operators to find the corre-
sponding set of pre-images, which in turn are regressed though the operators until
the initial state is reached. Furthermore, all operators must be one to one, meaning
that they can be inverted. Our approach performs regression in a similar manner,
except that multiple goal states, whose value may not be the same, are used, and

multiple agents may interact. The objective of our work is to find an optimal policy
rather than a single solution path.

The approach we have taken resembles Schoppers’s (1987) universal plans, which
partition the state space according to which action will take the agent close to the
goal. Universal plans take the form, if condition P arises while trying to reach the
goal, then the appropriate action is A. The equivalence classes we generate perform
the same function from the perspective of the agent applying them. Schoppers’s
work, however, does not deal with multiple goal states or agents.

4 Approach

Our approach is to generate descriptions of sets of states, which describe mem-
bership in the equivalence classes, and to regress these sets backward through the
automaton. All members of a single class are equivalent with respect to the optimal
outcome and the optimal next transition.

Each goal state defines a single outcome, and it has a tuple of rewards associated
with it, one for each agent. An outcome is considered better than another outcome
from the perspective of a particular agent if the reward for that agent is higher or
the outcomes are the same and the distance from the current set of states to the
outcome is shorter.

In effect, one equivalence class is created for each automaton state with a reward,
1.e. the goal states. We assume no intermediate rewards. Each of the initial equiva-
lence classes describes the set of problem states that are zero steps from a particular
goal state.

These descriptions are then regressed one step through the automaton, by finding
the pre-image of each description for each transition that could have generated it
(Waldinger, 1976). If there are multiple transitions through which a description
could legally be regressed, then a copy of the original is regressed though each
transition. The set union of these describe the set of all problem states that are one
step removed from the outcome of the original descriptions.

After each new description is generated, it is compared to the previously generated
set descriptions and removed if it is a subset of an existing set. This process is called
subsumption checking (Hollunder & Nutt, 1990). If the subsumed set describes the
same outcome as the subsuming set, then this is essentially duplicate checking.
However, if the subsumed set describes a worse outcome, from the perspective of
the acting agent, then this set ascribes a suboptimal outcome to the described states
and thus must be discarded. These retained new set descriptions are then regressed
and checked in a breadth-first manner until no further regressions can be performed.

Finally, when the regression is finished, the equivalence classes fully partition the
state space and describe the optimal outcome from any point in the state space.
An agent can then use these classes in the forward direction by finding the class
with the best outcome that contains the current state and taking the associated op-
timal transition. The number of classes generated depends greatly on the specifics
of the automaton, but for the domain tested, Connect-4, the number of equivalence
classes is seven orders of magnitude smaller than the size of the state-space. In
terms of memory, our approach consumed almost 240 MB as compared to 20 ter-
abytes required when storing the outcomes of five problem states in each byte, a
typical approach used in retrograde analysis. This is a reduction of approximately
six orders of magnitude in terms of memory required.

4.1 The AUTRE Algorithm

The AUTRE algorithm (AUTomaton REgressor) implements the approach we have
described. It maintains a list of descriptions of equivalence classes, which are stored
as tuples of the form (s,0,1, ®). The automaton state in which the formula applies
is denoted by s, and o is the optimal outcome. The positive constraint is a logical
formula that describes what must be true in order for a state to be a member of this
set, and @, the set of negative constraints, is a set of logical formulae that must not
hold for members of this set. Finally, ¢ and all ¢ € ® are conjunctions of literals,
and together they describe the set of all problem states contained in the class. All
states for which Y A Aycqp ¢ is true are members of the class and all other states
are not.

The above formulation for equivalence classes was chosen because it is the simplest
formulation we have found that allows regression to be performed. In order to know
what transitions can potentially be applied, the automaton state in which a class
applies must be known. The outcome is needed so that classes can be compared in
terms of a rational agent’s preference between them. Finally, 1 and ® are needed
to define membership in the class and are separate in order to speed regression.

The algorithm proceeds as follows. First, a tuple for each goal state is created with
Y= (vi=eAvy =¢eA..vpy=¢) and ® = (), where ¢ is the special value used to
mark an irrelevant variable. This means that settings of the variables in the goal
state are unconstrained. The tuples describe the set of states that will reach a given
goal state and any agent acting in a goal state can trivially reach that goal state. As
the tuples are regressed they will become more constraining.

The tuples are regressed back through the automaton in a breadth-first manner. To
regress a tuple (s,0,p, @), all transitions to state s whose post-conditions are satis-
fied by are considered. If there is no such transition, no regression is performed,
otherwise a copy of the tuple is regressed though each applicable transition.

p Pre-condition | Post-condition P
vi=b Vi —a vi=b vi—=a
Vi =¢€ vi=a vi=b vi—a
V) = vi=a Vi =¢§€ Vi =ada
V]Zb Vi =€ V1:b Vi =¢€
Vi =§€ Vi =¢€ Vi =€ Vi =§€
vi=a vi=a vi=b L

Fig. 1. Update rules for regressing clause p through an operator with the listed pre and post
conditions

Regressing through a transition 7 : (s, (v}, v5,...,v})) = (s, (v1,v2,...,vk)) produces
a new tuple (s',0,¢’, ®'). Conjunctions of literals, such as the positive or negative
constraints, are updated by regressing each literal in turn. Figure 1 shows the update
rules for regressing a literal through an operator. At any time, there is only one
true, non-epsilon literal for each variable. Also, the pre- and post-conditions of
a transition are considered to be conjunctions of literals. Therefore, if the post-
condition of a transition has a different true literal for a particular variable than the
formula being regressed, as in the last line of Figure 1, the literal in the formula is
replaced with FALSE. Otherwise, regressing a literal is equivalent to changing the
value for a particular variable.

In addition, any transition #’ from state s’ to s” # s, must not be available if the
automaton is being traversed in the forward direction, since we assume that at any
point, there is only one possible successor automaton state. Therefore, the pre-
conditions of all such " are added to @ to produce @'. Any of these negated clauses
where the value of a variable is different from the value in the positive clause,
and neither value is €, can immediately be discarded, as they will never affect the
truth of the formula as a whole. For example, in the formula vi = a A —(v; = b),
—(v; = b) can be dropped because v; cannot have two different values.

Consider the example of regressing Y = (v = b) A (u = ¢) and ® = 0 from state
B to state A, in the automaton shown in Figure 2. By the above update rules, the
new positive constraint)’ will be (v = a) A (u = a). Since we regressed from B, by
our assumption the transition to state C must not have been available and therefore,
its pre-conditions must not have been satisfied. The pre-conditions (v =d) A (u =
e) are then added to @, the set of negative constraints on the membership of the
equivalence class.

Next, " and @' need to be checked for consistency, which is equivalent to verifying
that Y’ A Ayeqr ¢ is satisfiable. Because ¢’ and all ¢’ € @' are conjunctions of
literals, checking that {" does not force any individual ¢’ to be true can be done
cheaply. All inconsistent tuples are discarded.

(v=a, u=a)—>(v=b, u=c)

(v=d, u=e)—>(v=f, u=f)

Fig. 2. A sample automaton.

Finally, subsumption checking is performed. The newly generated tuples must be
checked against previously generated tuples. If the tuple x describes a subset of the
tuple y and does not lead to a better outcome than y, then x is said to be subsumed
by the y and can be discarded. A better outcome is defined to be an outcome with a
higher value or an outcome which has the same value but can be reached in fewer
steps. A tuple that describes a worse outcome will never be used by a rational agent
and can be safely discarded.

Let /=4y A Ayecop ¢ be the formula in a previously generated tuple and let g =
YA A¢cor 7@ be the formula in a newly generated tuple. If f is at least as general
as g and has at least as good an outcome then g is subsumed by f and thus can be
removed from consideration. Similarly, if g subsumes f then the tuple containing f
is marked as invalid and is no longer considered. This will also make any children
of the f, the older tuple, invalid, but they are not updated immediately, because they
will be caught when g’s children are generated.

Consider the case for which regressing a particular negative constraint through a
transition produces FALSE, denoted L. That clause will no longer impact the logi-
cal formula that contains it, as can be seen in Figure 1. Similarly, if regressing the
positive constraint results in L, the formula can never be satisfied and does not need
to be regressed any further.

The situation in which a tuple could be legally regressed through multiple transi-
tions can equivalently be handled by creating one new tuple whose constraints are
an OR over all constraints generated by regressing through each individually. This
OR is instead handled implicitly by creating multiple tuples to simplify the consis-
tency check. When no more regressions can be performed, all states from which a
goal state is reachable are members of at least one equivalence class.

Figure 3 shows an example of regression in the domain of Connect Four. The dark
gray pieces belong to one player, the light gray ‘pieces’, which are the same color
as the background, represent those cells whose values are unknown or unimpor-

Fig. 3. Example regression from the domain of Connect Four

tant, and white represents empty spaces. The second player’s pieces are not shown.
Because Connect Four has the constraint that pieces must be placed on the lowest
unoccupied cell in a column, when a piece is removed in the course of regression,
then all cells above the piece must have been empty.

4.2 Efficiency Improvements

Although the AUTRE algorithm can be more efficient than enumerating the state
space, it can still be expensive in terms of both space and time. We have made two
additional improvements that can greatly reduce the memory consumption and, to
a lesser extent, the run-time.

The first improvement comes from the observation that no rational agent will select
a particular action if a better action is available. In our framework, a rational agent
decides on an action by finding the equivalence class with the best outcome that
includes the current state. Therefore, any given set description will only need to be
evaluated when all descriptions corresponding to better outcomes are false.

This is implemented in the form of a decision list. When a new description has
been generated, it is compared to each element on the list, which is ordered, by
construction, according to the distance to and the value of the outcome. A property
of decision lists is that each formula is evaluated in the context in which all for-
mula above it on the list do not hold. This means that parts of a formula could be
redundant, since they may also be true in the context the formula will always be
evaluated in, i.e. the preceding formulae on the list. These redundant pieces can be
removed, saving space.

Formally, the process works as follows. For each automaton state, there is an asso-
ciated decision list of ordered formulae. Each formula is considered in the context
of the negation of all preceding formula on the list. If the entries on a particular list
are fi,..., f, then a formula f} is equivalent to f; A /\i-‘:_l1 - f;, because no f; can be

true in the context of fy.

When a new tuple is generated, its formula (y’, @) is compared against those on the
list corresponding to the automaton state in which the new tuple applies. When it is
compared against the ith formula in the list (y;, ®;) if ®; =) and {; = ¢’ for some
¢’ € @' then ¢’ can be removed from ®’. This technique allows AUTRE to remove
redundant information from the set descriptions with only a small computational
cost, because the new set already must be compared to each old set to check for
subsumption.

Decision lists are only one possible way of representing boolean formulas. AUTRE
was also implemented using Binary Decision Diagrams (Bryant, 1986) in lieu of of
decision list. BDDs are frequently used in circuit verification to represent boolean
functions. In AUTRE, however, BDDs performed significantly worse than decision
lists both in terms of CPU time and memory consumption. This seems to be a
consequence of encoding multi-valued variables as boolean variables. The types of
formulas used by AUTRE may also have contributed.

The second improvement to the basic algorithm is the representation of clauses.
The number of variables and the range of possible values is specified in the domain
description, therefore each conjunctive clause can be described by k * |Z| bits, where
each bit indicates whether or not a variable can take on a particular value. Although
there are more compact representations, this allows literals to be updated using only
a few bitwise operations that can operate on a number of variables in parallel.

Depending on the number of symbols and the specifics of the machine used, multi-
ple variables can be tested or updated in parallel. The domain of Connect Four, for
example, can be represented using 42 variables which take on values from a four
symbol alphabet, including €, allowing all variables to be stored in four 32-bit inte-
gers. Operations can then be applied to the integers, which is equivalent to applying
the operator to 10 variables in parallel in this example. In general, this will improve
efficiency when Z is small, as more variables can be packed into a single integer.

S Experiments

We implemented the AUTRE algorithm, including the efficiency improvements,
and ran it on the game of Connect Four. The purpose of this experiment was to
show the feasibility of finding exact solutions to large domains.

Connect Four was chosen for two reasons. First, it is a non-stochastic multi-player
game of perfect information. Also, it has a relatively large state-space, approxi-
mately 10'* (van den Herik, Uiterwijk & van Rijswijck, 2001), but it can be de-
scribed compactly by a recursive domain theory with 42 variables, 8 automaton

600000 T T T T T

T T
"time_data"

500000 - b

400000 - Bl

300000 - b

time (cpu seconds)

200000 b

100000 b

L L L L L L
0 200000 400000 600000 800000 1e+06 12e+06 1.4e+06 1.6e+06
regression steps

Fig. 4. Number of CPU seconds vs. number of regressions performed

70000 T T T T T T T
"mem_data" —e—

60000 B

50000 B

40000 Bl

30000 - b

memory(4k blocks)

20000 - b

10000 |- Bl

0 L L L L L L L
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
regression steps

Fig. 5. Memory usage vs. number of regressions performed

states, and 273 transitions. AUTRE completed the game of Connect Four in less
than 7 days of computation and 1.6 x 10°® regression operations. Thus each re-
gression step was, on average, equivalent to solving 62 million problem states and
AUTRE computed the equivalent of almost 200 million states per second. Just 240
megabytes were required to store the equivalence classes generated by the regres-
sion process and thus can fit in the RAM of the average machine.

Figures 4 and 5 show the CPU time and memory consumption respectively. The
running time, as shown in Figure 4 grows approximately quadratically with the
number of regression steps. This is expected since each time a regression is per-
formed, the resulting formula must be checked against all previous formula.

Figure 5 shows that the amount of memory used appears to grow logarithmically
with the number of regression steps, although this is uncertain. Our conjecture is
that this is due to both the subsumption checking and the decision lists. As compu-
tation progresses, more equivalence classes are generated but those classes tend to

contain fewer instances than older ones and are more often subsumed. Finally, the
use of decision lists means that newer formula are evaluated in a more constrained
context than older formula, which allows shorter formula to be stored. This was
observed in the the solution of Connect Four.

6 Discussion

There is currently no brute-force solution of Connect Four in the literature, although
it has been solved previously, however, using knowledge-based techniques (Allis,
1988). AUTRE’s input is simply an automaton encoding the rules of the game.
Our investigation of Connect Four shows that our technique significantly reduces
the size of the problem by more than a factor of sixty million from one hundred
trillion states to three million equivalence classes. More importantly, our approach
is domain general and does not require enumerating the state space, which allows
for a faster and more compact solution process.

The bulk of the running time is spent doing subsumption checks. Whenever a new
tuple is generated, it must be compared to previously generated tuples. Currently,
old tuples are stored on a decision list, one list per automaton state. Each decision
list contains all tuples that apply in the corresponding automaton state. Subsump-
tion could therefore be sped up by further dividing the lists, so that fewer tuples
would need to be compared. A data structure that allows for more efficient lookup
could also be used, but the formula length reduction gained from using decision
lists would be lost.

The efficiency of AUTRE is also dependent on the specifics of the automaton. For
the domain of Connect Four, the obvious formulation of one variable for each
square on the board and a transition for each possible move worked well. How-
ever for some domains the use of propositional logic in the automaton can make
description difficult. For example, in the domain of checkers, a player wins if the
opponent has no available moves. Therefore, the formula describing the states one
step from a win for one player is the conjunction over the negation of all possible
opponent moves, approximately 500. When this is regressed one step, hundreds
of new formula which are almost as long are created. Thus the amount of mem-
ory needed grows much faster for Checkers than it does for Connect Four where it
1s much easier to describe a win. One technique we are exploring to remove this
expense is decomposition of the domain.

0—>(p)

-

(p)—>(p9)

-

~~
=
T
v
S

(a) Before decomposition (b) After decomposition

Fig. 6. Decomposition on transition (p) — (p/)

6.1 Domain Decomposition

Not all domains can be solved quickly with AUTRE. Some domains are simply too
large or complex for the techniques described above to work quickly. A solution to
this problem is to decompose the domain into small, tractable pieces. The pieces
can then be stitched together to solve the complete domain. This idea is similar to
the concept of subgoals and temporally abstracted actions, such as options (Sutton,
Precup & Singh, 1999), in reinforcement learning.

One possible method for decomposing domains in AUTRE is to break the automa-
ton along a set of transitions. In other words, given an automaton and a group of
transitions, define a new automaton with a new start state, which has transitions
with no pre-conditions and the post-conditions of the chosen transitions, and a new
final state reachable by transitions with the pre-conditions of the chosen transitions
and no post-conditions. Figure 6(a) shows a sample automaton before composing
on the transition (p) — (p'), while Figure 6(b) shows the resulting automaton. No
other transition is affected by the decomposition.

Using this technique, a domain encoded by an automaton is broken into several sub-
domains. When a particular set of transitions is taken, the agents move to a different
sub-domain. Furthermore, each sub-domain is described by the same automaton,

(12,12)

(12.11) (11,12)

(2,1) (1,2)

N

(1,1)

Fig. 7. Example domain decomposition of checkers. Tuples show the number of pieces for
the players.

which means that an optimal policy in one sub-domain will be the optimal policy
of almost any sub domain. The exceptions are the first and last sub-domains, where
the agents use the initial and final states of the original automaton.

Although the proposed technique produces a single automaton for all subproblems,
a domain could equivalently be decomposed into several different automata, and
the AUTRE algorithm could be run on each one to obtain the optimal policy. Either
way, the solutions to the subproblems must be reassembled into a solution for the
original domain.

Combining the optimal policies for the sub-domains can be done by constructing
a new abstract automaton that describes the connections between the sub-domains.
The states in this new automaton would correspond to different sub-domains and
the variables would be the same as the original domain’s. Finally, for each equiv-
alence class membership formula that is applicable in the start state of a particular
sub-domain a new transition is constructed whose pre-condition is that formula
and whose post-condition is the final variable settings in that sub-domain using the
optimal policy.

Consider the game of checkers; one simple set of transitions on which the automa-
ton could be decomposed is those corresponding to piece captures. Based on this
selection, the new automaton would describe how to play optimally from one cap-
ture to the next. Then by constraining the number of pieces in each sub-domain, the
problem would be decomposed into the network of connected sub-domains shown
in Figure 7. This decomposition is similar to the one used by the system Chinook
for end-game databases which are based on the total number of pieces on the board
rather than the number of pieces for each player (Schaeffer, Culbertson, Treloar,
Knight, Lu & Szafron, 1992).

6.2 Parallelization

Parallel algorithms have been used in retrograde analysis to solve games quickly
(Lake, Schaeffer & Lu, 1993; Romein & Bal, 2003). A question that arises is
whether the AUTRE algorithm could be parallelized. We sketch two possible meth-
ods for doing so.

The first is to distribute the open nodes among all available processors. Although
this could substantially speed up the algorithm, the subsumption checking and
clause removal could cause a significant bottleneck. All decision lists would need
to be available to, and consistent across, every processor. In a shared memory en-
vironment, this technique would work well, but in a multicomputer system, this
would incur a high communication overhead and force processors to synchronize
often. If the decision lists were not consistent, then processors could both duplicate
work and allow invalid set descriptions to be regressed.

The second approach would be to assign a processor to each automaton state. Since
each decision list is relevant for a single automaton state, they would not need to
be shared across processors. This could cause every set description to be passed to
a different processor after it is generated, but descriptions tend to be small while a
large amount of time is spent comparing new tuples against the decision lists. This
approach does have a drawback, however, which is that the number of processors
would be limited by the number of automaton states, which could be very small.

6.3 Rule Compression and Feature Construction

The set of equivalence classes generated by our approach can be viewed as a list
of rules, described as logical formula, for deciding which transition to take. After
these rules are created, there are two additional techniques that could be applied:
rule compression and feature construction (Muggleton, 1987).

Although the number of classes generated is much smaller than the size of the state-
space, many classes could still be generated. The size of the formulae to describe
the individual classes could also be large. This is due, in part, to representing each
formula as a conjunction of literals and negations of clauses of literals. However,
after the set of classes has been finalized, this representation is no longer necessary
and the formulae could be rewritten in a more compact form. This would have a
negligible effect on the amount of work required for an agent to match classes to
its current state.

There are domains that are still too large for our approach to handle. Even for
domains that are tractable, it may not be possible or necessary for an agent to store
the entire set of rules. In these situations, feature construction could be used to

reduce the amount an agent needs to store, and create rules that can be utilized in
the unexplored regions of the state space. One technique that could be applied is to
create features out of the number of satisfied positive literals (Fawcett, 1996).

7 Summary

We have presented the AUTRE algorithm, which exploits a compact representation
to solve domains without enumerating the underlying state-space. Our technique
uses goal regression to generate classes of equivalent problem states that can be
regressed as a single unit.

Our algorithm, AUTRE, was tested by applying it to the domain of Connect Four by
producing equivalence classes that fully describe the optimal actions and outcomes
over the entire state-space. The amount of memory required for our technique was
six orders of magnitude smaller than the amount that would have been required
for a standard retrograde analysis approach that stores a database of positions and
outcomes. Because of this, our method can be used to solve domains that would
otherwise be intractable.

8 Acknowledgments

This work was supported by grant IRI-0097218 from the National Science Foun-
dation.

9 References

Allis, L. V. (1988). A knowledge-based approach to connect four: The game is over,
white to move wins. Master’s thesis, Department of Mathematics and Computer
Science, Vrije Universiteit.

Bellman, R. E. (1957). Dynamic programming. Princeton, N.J.: Princeton Univer-
sity Press.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic program-
ming with factored representations. Artificial Intelligence, 121, 49-107.

Bryant, R. E. (1986). Graph-based boolean function manipulation. /[EEE transac-
tions on computers, 677-691.

Etzioni, O. (1993). Acquiring search-control knowledge via static analysis. Artifi-
cial Intelligence, 62, 255-301.

Fawcett, T. E. (1996). Knowledge-based feature discovery for evaluation functions.
Computational Intelligence, 12, 42-64.

Guestrin, C., Venkataraman, S., & Koller, D. (2002). Context specific multia-
gent coordination and planning with factored mdps. Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence (pp. 253-259). Edmon-
ton, Canada.

Hollunder, M., & Nutt, W. (1990). Subsumption algorithms for concept languages.
Proceedings of the Ninth European Conference on Artificial Intelligence (pp.
348-353). London, England: Pittman.

Howard, R. A. (1960). Dynamic programming and markov processes. MIT Press.

Kersting, K., van Otterlo, M., & De Raedt, L. (2004). Bellman goes relational. Pro-
ceedings of the Twenty-First International Conference on Machine Learning.
Banff, Canada: Omnipress.

Lake, R., Schaeffer, J., & Lu, P. (1993). Solving large retrograde analysis problems
using a network of workstations, Edmonton, Alberta: University of Alberta,
Department of Computing Science.

Littman, M. (1994). Markov games as a framework for multi-agent reinforcement
learning. Proceedings of the eleventh international conference on maching
learning (pp. 157-163). San Francisco, CA.

Muggleton, S. (1987). Duce, an oracle based approach to constructive induction.
Proceedings of the Tenth International Joint Conference on Artificial Intelli-
gence (pp. 287-292). Milan, Italy: Morgan Kaufmann.

Romein, J. W, & Bal, H. E (2003). Solving the game of awari using parallel
retrograde analysis. IEEE Computer, 36, 26-33.

Schaeffer, J., Culbertson, J., Treloar, N., Knight, B., Lu, P., & Szafron, D. (1992).
A world championship caliber checkers program. Artificial Intelligence, 53,
273-289.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable en-
vironments. Proceedings of the Tenth International Joint Conference on Artifi-
cial Intelligence (pp. 1039-1046). Milan, Italy: Morgan Kaufmann.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intel-
ligence, 112, 181-211.

Tesauro, G. (2003). Extending g-learning to general adaptive multi-agent systems.
Neural Information Processing Systems 2003. Vancouver and Whistler, British
Columbia, Canada.

van den Herik, H. J., Uiterwijk, J. W. H. M., & van Rijswijck, J. (2001). Games
solved: Now and in the future. Artificial Intelligence Journal, 134, 277-312.

Waldinger, R. (1976). Achieving several goals simultaneously (pp. 94-136). In El-
cock & Michie (Eds.), Machine Intelligence. New York: Wiley & Sons.

