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Abstract

In many energy-rechargeable wireless sensor networks, sensor nodes must both sense data from the environment,
and cooperatively forward sensed data to data sinks. Both data sensing and data forwarding (including data transmis-
sion and reception) consume energy at sensor nodes. We present a distributed algorithm for optimal joint allocation
of energy between sensing and communication at each node to maximize overall system utility (i.e., the aggregate
amount of information received at the data sinks). We consider this problem in the context of wireless sensor networks
with directional, non-steerable antennas. We first formulate a joint data-sensing and data-routing optimization problem
with both per-node energy-expenditure constraints, and traditional flow routing/conservation constraints. We then
simplify this problem by converting it to an equivalent routing problem, and present a distributed gradient-based
algorithm that iteratively adjusts the per-node amount of energy allocated between sensing and communication
to reach the system-wide optimum. We prove that our algorithm converges to the maximum system utility. We
quantitatively demonstrate the energy balance achieved by this algorithm in a network of small, energy-constrained
X-band radars, connected via point-to-point 802.11 links with non-steerable directional antennas through numerical
simulation.

I. INTRODUCTION
Wireless sensor networks have been proposed for myriad applications, ranging from environmental monitoring,

to surveillance/security, to industrial control [1]. Sensing and communication are two tasks that must be performed
by any such wireless sensor network. The sensing task can be performed either passively (via in-situ observation)
or actively (via remote-sensing technologies such as radar, lidar, or sonar), with these latter sensing modalities
typically requiring more sensor node resources. Communication can be performed over a variety of wireless
radios, ranging from commodity 802.11 (with either longer-distance directional antennas or shorter-distance omni-
directional antennas) to specialized mote-based radios. A common requirement of these networks, however, is that
they are often energy-constrained, and thus must achieve a balance of how energy is expended among sensing,
communication, and computation. This balance needs to be achieved not just locally at an individual node, but
systematically, since sensor network nodes must interact and collaborate with each other to perform the sensor
network’s task.
In this paper, we present a distributed algorithm for optimal joint allocation of energy (a resource) between sensing

and communication tasks within a sensor network. To make the problem concrete, we consider a sensing network
of collaborating low-powered X-band magnetron radars for meteorological sensing, connected via an 802.11 mesh
network with (non-steerable) directional antennas [2]; the energy constraint is imposed by the amount of solar
energy that can be harvested and stored from the environment [3]. From a sensing standpoint, we are interested
in how much data should be ingested at each individual node, taking into account the amount of energy needed
to acquire this data. From the communication standpoint, we are interested in how to route data to a sink, taking
into account the energy needed for frame transmission and reception over 802.11 links; note that routing is coupled
with link capacity assignment, since, for example, little energy would be needed to provide capacity on a seldomly-
used link. The sensing/routing problems are tightly coupled, since it is useless to expend energy acquiring data if
there is not sufficient energy to route that data to its destination. The overall objective of the distributed resource
allocation algorithm is to maximize the overall sensor network system utility, the aggregate rate at which sensed
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information is delivered to sinks. A distributed solution is especially important for wireless sensor networks, given
the unpredictable nature of environmental changes, the need to respond to local changes (e.g., in the amount of
energy need to realize a given link capacity as a result of environmental changes), and the lack of centralized
control.
In this paper, we formulate the sensor network system utility optimization problem as a joint sensing rate control,

data routing and energy allocation problem. We first map the combined sensing/routing problem into a unified routing
problem [4], using so-called dummy nodes to accommodate the (initially unknown) sensed-data input rates. To solve
the resulting two-layer (routing, energy allocation) problem, instead of separating the joint optimization problem into
subproblems coordinated by a master dual problem as [5] [6] [7], we use a penalty function approach, in which the
virtual costs are directly derived from per-node energy consumption. Our distributed algorithm extends Gallager’s
distributed routing optimization algorithm for wired networks [8]. In traditional wired network formulations of the
resource allocation problem [8] [9] [10], the resource are link-level capacities, with a link’s cost increasing as
the link-level resource is consumed. In contrast, we consider energy as a node-level resource, with a node energy
penalty cost that increases as energy is consumed on a node’s incoming links (data sending) and outgoing links (data
receiving). By generalizing [8]’s cost function from link-level to node-level, our energy penalty cost function reflects
the node-level energy consumption. Our approach to routing also shares similarities with Xue et al.’s distributed
routing algorithm for wireless networks with given traffic demands [11]. We prove that our generalized distributed
algorithm will converge to the optimal system-wide energy allocation between data sensing and data routing. Using
our algorithm, we quantitatively demonstrate the energy balance in a network of small, energy-constrained X-band
radars, connected via point-to-point 802.11 links with directional antennas via numerical simulation. Our results
demonstrate that different nodes in the energy-constrained network should indeed strike a different balance among
sensing and communication, e.g., with nodes nearer data sinks expending more energy in communication than
nodes near the edge of the sensor network.
Previous work [5] [12] [6] [13] [14] [7] [11] on maximizing network system utility in wireless communication

networks do not consider traffic demand generation (i.e., the sensing activity needed to gather and ingest data) as a
resource-consuming processes. Assuming that the network system utility is the sum of all data flow utilities, each
of which is a concave and increasing function of the flow rate, these works formulate and solve the problem as
a convex optimization problem. However, in wireless sensor networks, where the energy used for sensing is not
negligible, we demonstrate that energy allocation between both sensing and communication must be considered.
This paper is organized as follows. Section II reviews related work. In section III, we introduce our system

model, and formalize the joint data sensing, data routing, and energy allocation problem to maximize the network
system utility. In section IV, we map the data sensing, data routing, and energy allocation optimization problem
into a data routing, and energy allocation problem. In section V, we present a distributed formulation for this
optimization problem. In section VI, we propose our distributed algorithm to solve this problem by generalizing
Gallager’s result [8]. In section VII, we illustrate the balance achieved between sensing and communication by
considering a scenario in which sensor network nodes must balance their energy expenditures among sensing with
low-power X-band radars, and communication over point-to-point 802.11 wireless links. In section VIII, we discuss
possible extensions and variations to our joint optimization mechanism. We conclude this paper with a summary
of this work and some directions for future research.

II. RELATED WORK

The joint rate control, routing and resource allocation problem in wireless networks has been studied by several
groups from different angles. Dual decomposition is typically used to separate the joint optimization problem into
subproblems, coordinated by a master dual problem, in different ways. In [5], by introducing a price on each link,
the authors decompose the joint optimization problem into a network flow subproblem, which solves the rate control
and routing problems given link prices, and a resource allocation subproblem, which maximizes the network-wide
gain. However, no distributed algorithm is developed to solve the two subproblems. In [6], Lin et al., instead,
introduced a price on each node for forwarding traffic to each destination. The problem is decomposed into a rate
control subproblem, and a joint routing and scheduling subproblem. While the rate control subproblem can be solved
locally by each node, the routing and scheduling subproblem is solved by a centralized algorithm. The impact of
an approximate scheduling algorithm was investigated in [12]. In [7], a similar approach is taken to study the joint
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optimization problem with a node-exclusive interference model in which two links sharing a common node cannot
transmit or receive simultaneously. Here again, the scheduling problem, essentially a matching problem, is solved
in a centralized fashion. A distributed approximate algorithm was presented in the paper. Our approach differs from
this earlier work in the following ways: a) we explicitly take into account energy consumption in sensing; b) we
consider energy consumption in both data transmission and data reception in wireless networks with non-steerable
directional antennas. We develop a fully distributed algorithm to solve the joint sensing rate control, data routing
and energy allocation problem; c) instead of adopting the dual decomposition approach, we introduce the notion of
a virtual price, derived from an energy consumption penalty function, to directly regulate both sensing and routing.
Compared to the dual approach, our approach responds more quickly to environmental changes and avoids energy
consumption overflow. Our virtual price approach is similar to the shadow price approach developed in [9] [10]
for network rate control. While we use the virtual price to regulate energy allocation on each node, the shadow
price in [9] [10] is used to regulate rate allocation on each link. In their setting, each user employs one or multiple
fixed routes and determines how much to send to maximize network-wide utility under capacity constraints on all
links. In our setting, each node can employ any set of possible routes to reach the sink and tries to maximize
network-wide sensing utility under energy constraints on all nodes. The joint scheduling and congestion control
problem has also been studied for multi-hop wireless networks in [13] and cellular networks in [14]. They assume
user routes are fixed and propose a fair resource allocation consisting of a distributed scheduling algorithm and an
asynchronous congestion control algorithm for a node-exclusive interference model.

III. SYSTEM MODEL AND PROBLEM FORMULATION
For ease of reading, we list all notations in Table I. We model the wireless sensor network by a directed

TABLE I
NOTATIONS

G graph ! sink
V n + 1 node set V expanded node set
L link set L expanded link set

LI(i) links terminate at i LO(i) links emanate from i
L(i) LI(i) ∪ LO(i)
Pi power budget at i pi power usage at i
P S

i sensor-on power at i pS
i sensing power usage

P O
ik link-on power at i pO

ik sending power usage
P I

ik link-on power at k pI
ik receiving power usage

τi sensor-on time fraction τik link-on time fraction
Si sensor-on rate at i si average sensing rate

ρikFik link-on goodput fik average link goodput
Z overall power penalty zi power penalty function
D overall link penalty dik link penalty function
U utility function Y cost function
A transformed objective
Ri traffic initiated i → ! ti all traffic i → !
φik routing fraction i → k η step size to adjust φ
T period E energy budget every T

graph G = (V,L) where V is the set of nodes, and L the set of directed lossy links. Each directed link is
implemented by a pair of dedicated radios and non-steerable directional antennas at two end nodes. We assume the
data transmission over different links are interference-free. First, we assume that the data transmission over links
without common nodes are interference-free due to the fact that directional antenna narrows its beamwidth of the
main lobe to the desired direction only. Second, we assume that the data transmission over links with common nodes
are interference-free. The interference arising from sidelobes/backlobes can be resolved/mitigated for low-degree
network, by placing links with common nodes on non-overlapping/partial-overlapping channels (802.11a offers 12
non-overlapping channels, while 802.11b offers 3) with directional antennas separated by 1 meter [15] [16]. Now
we focus on the case where the network has only one data sink. See Section VIII for generalization to multiple
sink case. Let ! denote the single sink node in V , and 1, 2, . . . , n denote non-sink nodes. Let a directional link in
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L, from node i to node k, be represented by (i, k). For node i, we let LI(i) denote the set of links that terminate
at node i, and LO(i) denote the set of links that emanate from i. We denote L(i) = LI(i) ∪ LO(i) as the set of
links adjacent to node i.
Each non-sink sensor node consists of three major components: a sensor, a solar rechargeable battery, and non-

steerable directional antennas. We can think of each node operating in a periodic manner. Within each time period
T , (i) the sensor collects data from its environment, and (ii) locally-sensed data and the data the node receives
from its upstream neighbors are sent out to its downstream neighbors through directional antennas. To save energy,
a sensor/link is assumed to be turned off when no data is being sensed/transmitted. Sensing and data transmission
are powered by a solar-rechargeable battery that is continuously charged by a solar panel. In a real environment,
a solar panel collects energy at a variable rate. We denote Pi as the average rate of energy collection over a long
time duration, which in turn determines the power supply budget of Pi for sensing and data communication. (Note:
depending on its capacity, the battery can support an instantaneous power consumption rate higher than Pi. The
power budget is thus in an average sense and conservatively ensures that the total energy consumption within each
period T is bounded by the energy generation. The system is operated in a period manner. For every period T , the
energy budget is Ei = PiT .
When the sensor of node i is turned on, the data is sensed at fixed rate Si (referred to as the sensor-on data

rate), with fixed power PS
i consumed at node i (referred to as the sensor-on power). We have,

PS
i = αS

i Si (1)

where αS
i is a node-dependent constant.

Sensor of node i is turned on/off to control the amount of sensed data. Let 0 ≤ τi ≤ 1 be the time fraction that
the sensor of node i is on for every period T . The average sensing rate at node i, si, is

si = τiSi ≤ Si (2)

Within period T , for node i, let pS
i be the average power allocated for sensing. Combined with equation (1), we

have
pS

i = τiP
S
i = αS

i si (3)

Each directed link (i, k) is implemented by a pair of non-steerable antennas. When link (i, k) is on, the data is
transmitted at fixed raw data rate Fik (referred to as the link-on data rate), with fixed power PO

ik consumed at sender
i (referred to as the link-on sender power), and P I

ik consumed at receiver k (referred to as the link-on receiver
power). We have,

PO
ik = αO

ikFik (4)
P I

ik = αI
ikFik (5)

where αO
ik and αI

ik are link-dependent constants. Due to multipath of wireless links, packets may get lost during
transmission. We use ρik to denote the link (i, k) goodput probability, the link-on goodput of link (i, k) is ρikFik.
Link (i, k) is turned off when no data are to be transmitted over the link. Let 0 ≤ τik ≤ 1 be the fraction of

time that link (i, k) is on for every period T . The average goodput over link (i, k), fik, is calculated as follows.

fik = τikρikFik ≤ ρikFik (6)

At non-sink nodes, flow conservation constraints require that the aggregate outgoing link data rates equal the
sum of the incoming data rates (sensing plus incoming transmissions):

∑

(i,k)∈LO(i)

fik −
∑

(l,i)∈LI(i)

fli = si, i %= ! (7)

Within period T , for link (i, k), let pO
ik be the average power allocated for transmitting at node i, and pI

ik for
receiving at node k. Combined with equations (4)(5), We have,

pO
ik = τikP

O
ik = αO

ikfik/ρik (8)
pI

ik = τikP
I
ik = αI

ikfik/ρik. (9)
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Then the average overall power consumption at node i is

pi = pS
i +

∑

(l,i)∈LI(i)

pI
li +

∑

(i,k)∈LO(i)

pO
ik (10)

Clearly, pi must be less than or equal to the power budget Pi. Therefore,

pi ≤ Pi, i ∈ V (11)

As shown in Figure 1, our goal is to design a joint sensing rate control, data routing, and energy allocation
mechanism such that the overall information delivered by the wireless sensor network is maximized. We distinguish
here between data and information in the following sense. Let si be the rate at which sensed data from sensor
node i is delivered to the sink !. A utility function Ui(si) quantifies the value of this data to the data-consuming
applications. We assume that Ui is a concave and increasing function, reflecting the decreasing marginal returns of
receiving more data. Our goal is to maximize utility, rather than the rate at which data is delivered.

i Wireless Sensor Network

sending to
outgoing links

receiving from
incoming links

sensing:

system utility:

Fig. 1. Maximizing the utility of a wireless sensor network

The joint sensing rate control, data routing and energy allocation problem is then formulated as follows:

Given: G = (V,L), power budget P , sensor/link on-rate S, F and on-power PS , P I , PO, goodput
probability ρ
Maximize: network sensing utility U =

∑
i Ui(si)

Constraints:
1) Flow conservation. See (7).
2) Power constraint. See (11).
3) Sensor/link capacity constraint. See (2)(6).

Given that the utility function U is concave and increasing, the above problem can be solved as a convex
optimization problem in a centralized manner. In this paper, we are interested in a distributed solution. We first map
the combined sensing/routing problem into a unified routing problem, using so-called dummy nodes to accommodate
the (initially unknown) sensed-data input rates. To solve the resulting two-consideration (routing, power allocation)
problem, we use a penalty function approach, in which the virtual costs are directly derived from node-level energy
utilization. Then we solve the routing/power-allocation problem by generalizing Gallager’s distributed algorithm
for wired networks [8]. Note that the optimal solution is not affected by the length of the period T . However, as
T → 0, the data rates and energy consumption rates are smoothed out to be constant. In practice, it is easier to for
intermediate nodes to handle constant flow than bursty flow. In the following, we assume that T is small enough
to achieve smoothed data flow rates.

IV. SIMPLIFICATION: FROM THREE-CONSIDERATIONS TO TWO-CONSIDERATIONS
Now we simplify the three-consideration (sensing rate control, data routing, energy allocation) optimization

problem defined in III by mapping it to a two-consideration (data routing, energy allocation) optimization problem
with fixed traffic demands. We do so by introducing additional dummy nodes, and dummy links as shown in Figure
2.
For each non-sink node i ∈ V , we introduce a dummy node i′ = i + n. 1 We also add a dummy sensing link

(i′, i), and a dummy difference link (i′,!). A fixed-rate traffic demand enters the dummy node i′ at rate Si, which
1In this paper, we use i′ to denote non-sink node i’s corresponding dummy node. i.e., i′ = i + n
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i Wireless Sensor Network

i’

sending to
outgoing links

receiving from
incoming links

sensing link difference link

Fig. 2. Mapping from three-layer to two-layer problem

is equal to the maximum achievable sensed data rate of node i. At node i′, incoming traffic at rate Si is forwarded
over sensing link (i′, i) at rate si, or difference link (i′,!) at rate Si−si towards/to sink !. The utility to maximize
U =

∑
i Ui(si) corresponds to utility of data routed over link (i′, i). We can equivalently minimize the utility loss

over link (i′,!). i.e., min Y =
∑

i Yi(Si − si) where Yi(x) = Ui(Si)−Ui(Si − x). Since the utility function Ui is
a concave and increasing function, the cost function Yi is a convex and increasing function.
We assume that the dummy node i′ always has infinite power. i.e.,

Pi′ = ∞ (12)

For dummy sensing link (i′, i), let the link-on data rate be Si, the link-on sender power be 0, the link-on receiver
power be PS

i , and the goodput probability be 100%. i.e.,

Fi′i = Si, PO
i′i = 0, P I

i′i = PS
i , ρi′i = 100% (13)

For dummy difference link (i′,!), let the link-on data rate be Si, the link-on sender power be 0, the link-on
receiver power be 0, and the goodput probability be 100%. i.e.,

Fi′# = Si, PO
i′# = 0, P I

i′# = 0, ρi′# = 100% (14)

The sensing rate at node i, si, then corresponds to the goodput rate over link (i′, i), fi′i, where

fi′i = τi′iFi′i (15)

where τi′i is the fraction of time that dummy sensing link (i′, i) is on.
We now formally map the original three-consideration optimization problem into a joint data routing and resource

allocation problem with fixed traffic demands. Let V = {!, 1, ..., n, n + 1, ..., 2n} denote the expanded node sets,
and L = L∪{(i′, i), (i′,!)|i ∈ V −{!}} the expanded link sets. We use R = {R1, . . . , R2n} to denote the traffic
demand, where Ri is the average data rate originated from node i destined to sink !. We have,

Ri = 0, i ∈ {!, 1, ..., n} (16)

Ri′ = Si, i′ ∈ {n + 1, ..., 2n} (17)

Given fixed traffic demand R, the flow conservation constraint is expressed:
∑

(i,k)∈LO(i)

fik −
∑

(l,i)∈LI(i)

fli = Ri, i %= ! (18)

We use pi to denote the node i overall power consumption. Since there is no sensing operation, we have

pi =
∑

(l,i)∈LI(i)

pI
li +

∑

(i,k)∈LO(i)

pO
ik (19)

It is straightforward to see that the joint sensing rate control, data routing, and energy allocation problem defined
in Section III is equivalent to the joint data routing and energy allocation problem defined as follows:
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Given: network G = (V,L), power budget P , link on-rate F and on-power P I , PO, goodput
probability ρ, fixed demand R
Minimize: Cost Y =

∑
(i′,#)∈L Yi(fi′#).

Constraints:
1) Flow conservation. See (18).
2) Power constraint. See (11).
3) Link capacity constraint. See (6).

In this paper, we introduce convex and increasing penalty functions to replace the power constraints, and link
capacity constraints. We use power penalty functions zi(pi) at each node i ∈ {1, . . . , n} to replace power constraints;
and link capacity penalty functions dik(fik) at each link (i, k) ∈ L to replace link capacity constraints. We have,

lim
pi→Pi

zi(pi) → ∞, {1, . . . , n} (20)

lim
fik→ρikFik

dik(fik) → ∞, (i, k) ∈ L (21)

Let D + Z =
∑

(i,k)∈L dik(fik) +
∑

i∈{1,...,n} zi(pi) be the network overall penalty cost. Then the problem
becomes:

Given: network G = (V,L), power budget P , link on-rate F and on-power P I , PO, fixed demand
R
Minimize: Cost A = Y + D + Z.
Constraints: Flow conservation. See (18).

In order to design a distributed algorithm, we further decompose cost A into node-level local costs. The node i
cost, Ai, is defined as follows.

Ai = zi(pi) +
∑

(i,k)∈LO(i)

dik(fik), i ∈ {1, . . . , n}

Ai = Yiw(fiw), i ∈ {n + 1, . . . , 2n} (22)

Therefore,
A =

∑

i∈V
Ai (23)

The use of penalty function can result in an allocation that is not strictly identical to the optimal solution to the
original problem before the penalty function was introduced. However, this standard approach typically results in
a solution that is nearly the optimal solution to the initial problem formulation [17]. A penalty function may also
prevent a node energy (or a link capacity) from being completely allocated. In practice, such remaining energy (or
capacity) could be used to better accommodate the changing demand, or be used for faster recovery in the case of
node or link failures.

V. DISTRIBUTED PROBLEM FORMULATION FOR JOINT ROUTING AND ENERGY ALLOCATION
In the previous section, the joint routing and energy allocation problem formulation used flow rates f as the

optimization control variables. However, these flow rates f are global information. In order to solve this problem
using a distributed algorithm, we reformulate the problem using local routing fractions as control variables.
Let ti be the total expected traffic rate at node i ∈ V . Thus ti includes both Ri and traffic from other nodes that

is routed through i. Let φik be the fraction of ti that is routed over link (i, k). Since ti is the sum of the data rate
entering the network at i and the traffic routed to i from other nodes,

ti = Ri +
∑

l

tlφli (24)

fik = tiφik (25)
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Equation (24) implicitly expresses the conservation of flow at each node: the traffic rate into a node for sink
! is equal to the traffic rate out of the node for sink !. Next, we define φ the same ways as [8] to ensure that
equation (24) has a unique solution of t given R and φ.
Definition : A routing variable set φ for network G = (V,L) with sink node ! is a set of nonnegative numbers

φik, i, k ∈ V , satisfying the following conditions.
1) φik = 0 if i = !, or (i, k) /∈ L,
2)

∑
k φik = 1 if i %= !,

3) ∀i %= !, there is a routing path from i to !, which means there is a sequence of nodes, i, k, l, . . . , m such
that φik > 0, φkl > 0, . . . , φm# > 0.

Theorem 5.1: Let a network G = (V,L) have input set R and routing variable set φ. Then the set of equations
(24) has a unique solution for t. Each component ti is nonnegative and continuously differentiable as a function
of R and φ.

Proof: Proved in [8]. Included in Appendix A for completeness.
The joint data routing and energy allocation problem is reformulated using routing variable Φ as control variables:

Given: network G = (V,L), power budget P , link on-rate F and on-power P I , PO, fixed demand
R
Minimize: Cost A =

∑
i Ai.

Constraints: Flow set f is implemented by routing variable set φ.

Next, we propose a distributed algorithm to solve the above problem. In this algorithm, each node makes its own
local energy allocation decision and constructs its own routing tables based on periodic update information from
its neighbors.

VI. DISTRIBUTED ALGORITHM FOR JOINT ROUTING AND ENERGY ALLOCATION
Now we solve the joint routing and energy allocation optimization problem by generalizing Gallager’s distributed

algorithm [8]. We note that while Gallagers algorithms need only consider the rate of flows at link-level (due to its
assumption of a wired network, and the goal of minimizing delay), in wireless networks, we must further consider
both incoming and outgoing links at node-level, since node energy is expended in both sending and receiving
packets. We first solve this optimization problem in the case of fixed routing (thus fixed data flow). With a fixed
set of routes, the energy allocation problem is then decoupled so that each node independently allocates energy to
satisfy the data flow. In addition, each node also locally calculates the marginal cost with respect to link data rates.
These marginal cost then drive the global routing optimization similar in spirit to [8].

A. Power Allocation for Fixed Data Flow f

With fixed route set φ (thus fixed f ), each node i requires power pO
ik(fik) on outgoing link (i, k) for data

transmission, and power pI
li(fli) on incoming link (l, i) for data reception. From equations (6)(8)(9), power

allocation pi is determined by flow rates f (or data routing φ). Combined with equation (22), the objective
function A to minimize can be viewed solely as a function of flow rates f (or routing variables φ). Next, we
use Af (f) =

∑
i A

f
i (f) (or Aφ(φ)) to denote A as a function of f (or φ).

While optimizing energy to satisfy a fixed data flow f , each node i also locally calculates the marginal cost
with respect to the link data rates ∂Af

i (f)/∂fkl, (k, l) ∈ L(i). An increase of data flow fkl requires a concomitant
increase of energy consumption at both sender node i and receiver node j, which results in the increase of cost at
both sender node i and receiver node j. Therefore, the marginal global cost with respect to the link data rate of
link (k, l), ∂Af (f)/∂fkl, is calculated as the sum of marginal node cost over two end nodes k and l.

∂Af (f)
∂fkl

=
∂Af

k(f)
∂fkl

+
∂Af

l (f)
∂fkl

(26)

Note that these marginal global costs ∂Af (f)/∂fkl can be derived through local communication between nodes k
and l.
Next, we focus on distributed routing optimization. i.e., an algorithm for each node to locally adjust routing

variables to converge to the optimal set of routes by generalizing Gallager’s result [8]. We first generalize [8]’s
necessary and sufficient condition for optimal set of routes.
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B. Necessary and Sufficient Conditions for Optimal Cost
Now we generalize [8]’s necessary and sufficient conditions to minimize Aφ over all feasible sets of routes.

Similar to [8], we compute the partial derivatives of Aφ with respect to the inputs R and the routing variables φ
as follows.

∂Aφ(φ)
∂Ri

=
∑

k

φik

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

]
(27)

∂Aφ(φ)
∂φik

= ti

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

]
(28)

The existence and uniqueness of ∂Aφ(φ)/∂Ri and ∂Aφ(φ)/∂φik is given by the following theorem.
Theorem 6.1: Let a network G = (V,L) have input traffic set R and routing variable set φ, and let each marginal

link cost ∂Af (f)
∂fik

be continuous in fik, (i, k) ∈ L. Then the set of equations (27) has a unique set of solutions for
∂Aφ(φ)
∂Ri

. Furthermore, (28) is valid and both ∂Aφ(φ)
∂Ri

and ∂Aφ(φ)
∂φik

for (i, k) ∈ L are continuous in R and φ.
Proof: See Appendix B.

Using Lagrange multipliers for the constraint
∑

k φik = 1, and taking into account the constraint φik ≥ 0, the
necessary conditions with respect to φ are, (i, k) ∈ L,

∂Aφ(φ)
∂φik

{
= λi φik > 0
≥ λi φik = 0.

(29)

However, as shown by [8], (29) is not a sufficient condition to minimize Aφ even for the routing optimization
problem in wired networks. Next, we proceed to show the sufficient condition for the optimization problem.
Theorem 6.2: Let F be a convex and compact set of flow sets, which is enclosed by |L| planes (each of which

corresponds to fik = 0, (i, k) ∈ L), and a boundary envelope F∞. Assume that Af is convex and continuously
differentiable for f ∈ F − F∞, Let Ψ be the set of φ for which the resulting set of flow rates f are in the above
convex and bounded set F − F∞. Then (30) is sufficient to minimize Aφ over Ψ, for all (i, k) ∈ L

∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

≥ ∂Aφ(φ)
∂Ri

(30)
Proof: See Appendix C.

C. A Distributed Algorithm for Routing Optimization
Based on the above sufficient condition, we now develop a gradient-based algorithm by generalizing [8]. Each

node i must incrementally decrease those routing variables φik for which the marginal cost ∂Af (f)/∂fik +
∂Aφ(φ)/∂Rk is large, and increase those for which it is small. The algorithm breaks into two parts: a protocol
between nodes to calculate the marginal costs, and an algorithm for calculating the routing updates and modifying
the routing variables.
Given goodput rates fkl for each incoming and outgoing link (k, l) ∈ L(i), each node i locally allocates power to

satisfy the traffic, and calculates ∂Af
i (f)/∂fkl, (k, l) ∈ L(i). Then, for each pair of neighbor node i, j with common

link (i, j), node j sends ∂Af
j (f)/∂fij to node i. Upon receiving it from node j, node i computes ∂Af (f)/∂fij

using (26).
In order to see how node i can calculate ∂Aφ(φ)/∂Ri. Define node m to be downstream from node i (with

respect to sink node !) if there is a routing path from i to ! passing through m (i.e., a path with positive routing
variables on each link). Similarly, we define i as upstream from m if m is downstream from i. A routing variable
set φ is loop free if there is no i, m (i %= m) such that i is both upstream and downstream for m. The protocol
used for an update, now, is as follows: each node i waits until it has received the value ∂Aφ(φ)/∂Rk from each
of its downstream neighbors k %= !. The node i then calculates ∂Aφ(φ)/∂Ri from (27) (using the convention
that ∂Aφ(φ)/∂R# = 0) and broadcasts this to all of its neighbors. It is easy to see that this procedure is free of
deadlocks if and only if φ is loop-free.
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To avoid deadlocks, our algorithm requires a small amount of additional information to maintain loop-free
property: each node i maintains a set Bi of blocked node k for which φik = 0 and the algorithm is not permitted
to increase φik from 0. Next, we first introduce the algorithm, and then define B more accurately.
The algorithm Γ, on each iteration, maps the current routing variable φ into a new set φ1 = Γ(φ). The mapping

is defined as follows. For k ∈ Bi,
φ1

ik = 0, ∆ik = 0. (31)

For k /∈ Bi, define

aik =
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

− min
m/∈Bi

[
∂Af (f)
∂fim

+
∂Aφ(φ)
∂Rm

]
(32)

∆ik = min[φik, ηaik/ti] (33)

where η is a scale parameter of Γ to be discussed later. Let kmin(i, j) be a value of m that achieves the minimization
in (33). Then

φ1
ik =

{
φik − ∆ik k %= kmin(i, j)
φik +

∑
k !=kmin(i,j) ∆ik k = kmin(i, j). (34)

The algorithm reduces the fraction of traffic (and thus energy) sent on non-optimal links and increases the fraction
on the best link. The amount of reduction, given by ∆ik, is proportional to aik, with the restriction that φ1

ik cannot
be negative. In turn aik is the difference between the marginal cost to sink ! using link (i, k) and using the best
link. Note that as the sufficient condition (30) is approached, the changes get small, as desired. The amount of
reduction is also inversely proportional to ti. The reason for this is that the change in link traffic is related to
∆ikti. Thus when ti is small, ∆ik can be changed by a large amount without greatly affecting the marginal cost.
Finally the changes depend on the scale factor η. For η very small, convergence of the algorithm is guaranteed, as
shown in Theorem 6.4, but rather slow. As η increases, the speed of convergence increases but the danger of no
convergence increases.
We now complete the definition of algorithm Γ by defining the block sets Bi. See [8] for further reasoning on

how this definition guarantees the loop-free property.
First define a routing variable φik to be improper if φik > 0 and ∂Aφ(φ)/∂Ri ≤ ∂Aφ(φ)/∂Rk. We have already

said that Bi includes only k for which φik = 0, and thus, from (27),

min
m/∈Bi

∂Af (f)
∂fim

+
∂Aφ(φ)
∂Rm

≤ ∂Aφ(φ)
∂Ri

(35)

Assuming positive marginal costs, ∂Aφ(φ)/∂Ri < ∂Af (f)/∂fik +∂Aφ(φ)/∂Rk if φik is improper, and we see that
the algorithm always reduces improper routing variables. In fact, since ∂Aφ(φ)/∂Ri is the marginal cost for the
traffic originating from i to !, we would expect marginal cost to decrease as we move downstream, and improper
routing variables should be rather atypical. Note that if there are no improper routing variables, the set of marginal
costs ∂Aφ(φ)∂Ri would form an partial ordering of the nodes i. Similar to [8], if φ is loop-free and φ1 = Γ(φ)
contains a loop, then the following two conditions must hold.
1) The loop contains some link (i, k) for which φik = 0, φ1

ik > 0, and ∂Aφ(φ)/∂Ri > ∂Aφ(φ)/∂Rk.
2) The loop contains some link (l, m) for which φlm is improper and for which φ1

lm > 0.
The first condition reiterates that some routing variables must be increased from 0 to form a loop and that the
algorithm only increases routing variables on links to nodes with smaller marginal cost. The second make use of
the fact that if nodes are ranked by marginal cost, ∂Aφ(φ)/∂Ri, then it is impossible to move around a loop of
nodes and have marginal cost monotonically decrease.
Definition: The set Bk is the set of nodes k for which both φik = 0 and k is blocked. A node k is blocked if k

has a routing path to sink ! containing some link (l,m) for which φlm > 0, and ∂Aφ(φ)/∂Rl ≤ ∂Aφ(φ)/∂Rm,
and

φlm ≥ η

[
∂Af (f)
∂flm

+
∂Aφ(φ)
∂Rm

− ∂Aφ(φ)
∂Rl

]/
ti (36)



UMASS CMPSCI TECHNICAL REPORT 06-12 11

Theorem 6.3: If the marginal link costs ∂Af (f)/∂flm are positive and φ is loop-free, then φ1 = A(φ) is loop-
free.

Proof: Following similar proof in [8].
The protocol required for a node i to determine the set Bi is as follows. Each node l, when it calculates

∂Aφ(φ)/∂Rl, determines, for each downstream m, if φlm > 0, and ∂Aφ(φ)/∂Rl ≤ ∂Aφ(φ)/∂Rm, and satisfy (36).
If any downstream neighbor satisfies these conditions, node l adds a special tag to its broadcast of ∂Aφ(φ)/∂Rl.
The node l also adds the special tag if the received value ∂Aφ(φ)/∂Rm from any downstream m contained a tag.
In this way all nodes upstream of l also send the tag. The set Bi is then the set of nodes k for which the received
∂Aφ(φ)/∂Rk was tagged.
Theorem 6.4: Let F be a convex and compact set of flow sets, which is enclosed by |L| planes (each of which

corresponds to fij = 0, (i, j) ∈ L), and a boundary envelope F∞. Assume that Af is a convex and increasing
function for f ∈ F − F∞ and that ∀f∞ ∈ F∞, limf→f−

∞
Af = ∞. For every positive number A0, if φ0 satisfies

Aφ(φ0) ≤ A0, then with scale factor η = [M |V|7]−1,

lim
m→∞

Γ(φm) = min
φ

(Aφ(φ)) (37)
where

M = max
(l1,m1),(l2,m2)∈L

max
f :Af (f)≤A0

∂2Af (f)
∂fl1m1∂fl2m2

(38)

Proof: See Appendix D.
Compared with result from Gallager’s work [8], our work requires smaller η to guarantee convergence because

we consider more general problem definition than [8]. The proof uses a ridiculously small value of η to guarantee
convergence under all conditions. In next section, we use simulation to identify practical values for η.
We have proposed a distributed algorithm for routing optimization. Note that in each iteration, the power allocation

achieves optimality through local independent local power allocation. Combining the collective routing optimization,
and independent local power allocation at all nodes, we have achieved the optimal cost over all feasible resource
allocation and routing combinations.

D. Mapping solution back to three-consideration optimization problem
The optimal solution of the two-consideration (data routing, energy allocation) optimization problem can be easily

mapped back to the optimal solution of the three-consideration (data sensing, data routing, and energy allocation)
optimization problem as follows.
First, for each node i, the optimal average sensing rate si is equal to fi′i. Therefore,

si = fi′i, pS
i = αS

i fi′i, τi = si/Si (39)

Second, for each link (i, k), the optimal average goodput rate fik is directly derived from optimization result.
Therefore,

τik =
fik

ρikFik
(40)

Finally, the routing fraction φik is directly derived from two-consideration optimization results. We have mapped
the two-consideration solution back to three-consideration solution.

VII. RESULT
In this section we examine the optimal solution of the joint sensing and routing problem. We first focus on

energy rich networks, then energy constrained networks.
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A. Energy rich wireless sensor networks
As a special case of wireless sensor networks, energy rich network is not energy constrained: it either has direct

power supply, or good energy harvest source. For energy rich network, we show that if all nodes use the same
utility function, the optimal sensing rates is max-min fair.
Theorem 7.1: For an energy rich sensor network G = (V,E) with a single sink, all nodes use the same utility

function. i.e., Ui = Uj ∀i, j ∈ V . If the utility function is strictly concave, the optimal sensing rates s∗ (of problem
defined in section III) satisfy max-min fairness.

Proof: Since there is no energy constraints in energy-rich wireless sensor networks, link capacity can be
fully implemented as link-on goodput rate. In the following proof, we use link capacity and link-on goodput rate
interchangeably.
Let s∗ be the optimal sensing rate allocation, and x be the sorted order of nodes such that ∀k ∈ {1, . . . , n− 1},

s∗xk
≤ s∗xk+1

.
If ∀k ∈ {1, . . . , n − 1}, s∗xk

= s∗xk+1
, then s∗ is max-min fairness.

Otherwise, ∃k ∈ {1, . . . , n − 1}, s∗xk
< s∗xk+1

. We further prove the theorem through three steps.
Step 1, if s∗xi

< s∗xj
, then node xi doesn’t forward traffic injected from node xj .

Otherwise, {. . . , s∗xi
+ δ, . . . , s∗xj

− δ, . . .} would be a feasible and better solution where δ is an arbitrary small
amount of traffic.
Step 2, if s∗xk

< s∗xk+1
or k = n, then

∑
i≤k s∗xi

= Ck where Ck is the minimum cut of graph Gk, which
is constructed as follows: given graph G with sink !, we add a virtual source S. Then we add links between
virtual source node S, and xi (∀i ≤ k). The link-on goodput rate of link (S, xi) is set to be ∞. Ck refers to the
minimum cut of graph Gk between the virtual source S and sink !. Because Ck is the min cut between virtual
source S and sink !, we have

∑
i≤k s∗xi

≤ Ck. If
∑

i≤k s∗xi
< Ck, then there exists an augmenting path in graph

Ck: S, xj , . . . ,!, j ≤ k. If all links on the augmenting path do not include any traffic from node xl, l > k, then
one can increase x∗

j by δ and get a better solution {. . . , s∗xj
+ δ, . . .}. Contradiction! Otherwise, the augmenting

path must include a link carrying traffic from some node xl where l > k. Let node m be the first node on the
augmenting path forwarding traffic for node xl (l > k). As the augmenting path has reached node m, it is enough
to increase j’s traffic by reducing traffic carried by node m for node l. Again, {. . . , s∗xj

+ δ, . . . , s∗xl
− δ, . . .} will

be a feasible and better solution. Contradiction!
Step 3, {s∗i } is max-min fair. Since ∀k ∈ {1, . . . , n − 1}, if s∗xk

< s∗xk+1
, then

∑
i≤k s∗xi

= Ck, as well as
∀k ∈ {1, . . . , n − 1}, s∗xk

≤ s∗xk+1
, one cannot increase s∗xk

without decreasing s∗xj
, j < k.

Due to the uniqueness of max-min fair sensing rates [18], Theorem 7.1 also suggests that the optimal sensing
rates are independent of choice of utility function. Moreover, efficient algorithms [19] exist to find the max-min
fair solution.
However, as we identified in this paper, Theorem 7.1 generally does not hold for energy constrained networks.

Next, we demonstrate this via a simple counter example. In this example, we use a three-node network shown in
Figure 3.

1

2

Fig. 3. A topology to illustrate that optimal sensing rates are not max-min fair for energy constrained wireless sensor networks

In this example, both node 1 and node 2 have a power budget of P1 = P2 = 1W . For simplicity, we assume that
only data sending consumes energy, while data receiving and data sensing consumes no energy. We also assume
data transmission is loss-free. The link-on goodput rates of all links are 1Mbps. However, the energy used per unit
traffic are different. αO

1,# = 1W/Mbps, αO
2,# = 2.5W/Mbps, αO

2,1 = 2W/Mbps. Clearly, the max-min fair solution
is (s1, s2) = (0.5Mbps, 0.5Mbps). However, (s1, s2) = (1Mpbs, 0.4Mpbs) is a better solution when node 1 and
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node 2 uses the same concave utility function log(x+1). Therefore, the optimal sensing rates must not be max-min
fair in this case.
We have seen that Theorem 7.1 generally does not hold for energy constrained networks. Next, we further

examine the optimal solution for energy constrained networks through numerical simulations.

B. Energy constrained wireless sensor networks
We examine the optimal sensing rates through numerical simulation using parameters derived from an on-going

weather-monitoring project [2]. Our numerical simulator use the model and the optimization algorithm as described
in previous sections. In the simulation scenario in Figure 4, we consider a wireless sensor network composed of 30
collaborating lower-powered X-band magnetron radars for meteorological sensing, connected via an 802.11b mesh
network with non-steerable directional antennas. All sensed data are destined to sink !. Each link is implemented by
a pair of radios and directional antennas at the sender and the receiver. Note that between each pair of neighboring
nodes, we only need one pair of directional antennas because of the loop free property of optimal routing solution:
data can only fly in one direction at one time. To reduce the interference, we use four partial-overlapping channels
(1, 4, 8, 11) (marked as A, B, C, D in Figure 4): links on straight line reuse the same channel every 4 hops; links
sharing the same sensor node are assigned to different channels. To further reduce the interference, at each node,
we physically separate the radios and antennas on different channels by 1 meter. For sink node, we physically
separate the distance between antenna (6,!) and (30,!) by 100 meters.
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Fig. 4. Topology used for Simulation

When a sensing radar is on, its power consumption is pS
i = 34W (based on a RayMarine 24 inch, 4kW

radar), generating sensed data at rate Si = 1.5Mbps. When a link is on, the power consumption at the sender
is PO

i = 1.98W , and P I
i = 1.39W at the receiver. The link-on data rate is determined by distance between

two end nodes. Based on our preliminary measurement, the link-on goodput rate for links (6,!) and (30,!) are,
ρ6,#F6,# = ρ30,#F30,# = 1Mbps; the link-on goodput rate for link (18,!) is, ρ18,#F18,# = 5.5Mbps. For all
other links (i, k), ρikFik = 2Mbps.
A solar-rechargeable battery is used for power. The energy charging process is affected by weather. During a

sunny day, the energy collected per day is measured at 312Wh, which translates to a power budget Pi = 13W .
During the cloudy day, the energy collected per day is measured at 168Wh, which translates to Pi = 7W . The
battery capacity is 110Ah, for 12V operation, it can store energy 1230Wh, that relates to 94 hours if the power is
consumed at 13W . We prefer a smoothed energy usage: every 24 hours, we recompute the power budget Pi based
on the overall energy in the battery: Pi is set to be the overall energy in the battery at that time divided by 48
hours. By doing so, the energy consumption rate is smoothed over a window size of 48 hours.
We use the negative standard error of the environment’s reflectivity estimate σi as the node i utilization function

[20].
Ui(si) = −ωis

−0.5
i (41)

in which ωi is the weight of utility at node i.
Next, we first present numerical results of our distributed algorithm in the synthetic wireless network described

above. We will illustrate how the choice of step-size scale factor η affects convergence speed. It will become clear
that, in practice, it is possible to choose a η much larger than the value used in the proof of Theorem 6.4 to expedite
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the convergence. Second, through optimization over different power budgets, we demonstrate how the power budget
affects the energy allocation decision between data sensing and data communication.
1) Scale factor η and convergence: In the previous section, with a small scale factor η, we have shown that

optimization algorithm Γ will eventually converge to the optimum. The question of the speed of convergence
deserves more study. Now, we numerically compare how the proposed algorithm converges to the optimum with
different ηs.
We run our distributed algorithm assuming that all nodes have the same power budget P = 7W , and have the

same utility weight ωi = 1. At iteration 0, the sensing rate is si = 0 at all nodes. We choose three different scale
factors η = {0.5, 5, 10} to run the algorithm, that minimizes the overall function A. Note that all three choices
of η are much larger than the value given in Theorem 6.4. As shown in Figure 5, the algorithm converges to the
optimum for all three step sizes. We see that the optimization reduces the objective function A from ∞ to 24.1.
We also see that the convergence of the algorithm depends to a great extent on the value of η: a larger value of η
may lead to faster convergence. From Figure 6.4 we see that for η = 0.5, 5, 50, the algorithm takes roughly 30000,
300 and 300 iterations to reduce A to within 10% of optimality.
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= 50
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Fig. 5. Comparison of convergence speed for different ηs

2) Power budget affects optimization result: The energy collection rates of solar panels vary with weather
condition, and thus affect power budget P . We next demonstrate how power budgets change the network-wide
power allocation and the aggregate sensing utility. We assume all nodes have the same power budget P . We run
our distributed algorithm for 7 different power budgets P = 7W → 13W , which correspond to 7 different weather
conditions. Figure 6 shows the aggregated sensing utility increases as energy budget P increases. We also plot in
the same figure the average sensing power on all nodes as P increases. The more power available is, the more
data will be collected by sensors. Notice that both the utility curve and sensing power curve eventually flat out
when P gets large. This is because when there is abundant power, all wireless links can operate at their maximum
capacities, e.g. 11Mbps for 802.11b (goodput may vary). Consequently, the amount of data that can be sent to the
sink is bounded from above. This upper bound is determined by both link maximum capacities and the network
topology. Due to this data transmission limit, the aggregate sensing utility is also bounded, and there is no point
for sensors to waste energy on collecting more data which can not be delivered to the sink.
Figure 7 shows the average power used for communication at all nodes for different energy budgets. As expected,

as P increases from 7W to 9W , sensors collect more and more data to be sent to the sink. Consequently, the overall
communication power, both for transmitting and for receiving, increases. Interestingly, when P increases from 9W
to 13W , the communication power decreases slightly. To understand this somewhat counter-intuitive phenomenon,
we looked into not only the aggregate data rate flowing into the sink, but also the sources of those data. When
P is low, the major performance bottleneck is sensing, all sensed data can be completely delivered to the sink.
Therefore, the larger P , the more data collected by sensors, the higher the communication power. As seen in
Figure 6, when P ≥ 9W , wireless links operate almost close to their full capacities. The aggregate data rate to the
sink approaches its upper limit. Due to this data rate limit, not all sensors need to sense data at their full capacities.
When P increases, sensors close to the sink have more power for sensing. Therefore in the optimal solution given
by our algorithm, while the aggregate data rate is fixed, more and more data are from sensors close to the sink,
consequently, we see a slightly decrease in communication power consumption.



UMASS CMPSCI TECHNICAL REPORT 06-12 15

-180

-175

-170

-165

-160

-155

-150

 7  8  9  10  11  12  13
 5
 5.2
 5.4
 5.6
 5.8
 6
 6.2
 6.4
 6.6
 6.8
 7

power for sensingutility
power

sy
st

em
 u

tili
ty

 U
 

power budget

Fig. 6. Utility and sensing power increases as power budget increases

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 7  8  9  10  11  12  13

Po
we

r f
or

 C
om

m
un

ica
tio

n

transmitting
receiving

power budget

Fig. 7. Communication power changes as power budget increases

To further illustrate this, we compare in Figure 8(a), 8(b) and 8(c) the power allocation on a subset of node for
P = 7, 9, 13W . In Figure 8(a), when P is low, nodes far away from the sink, such as node 1, 7 spend most of their
power on sensing; nodes close to the sink, such as node 5, 6, 12, 17, 18 are responsible for forwarding sensed data
to the sink. On those nodes, the communication power is more than 33% of overall power budget. Consequently,
the sensing power is lower than that of node 1 or 7. In Figure 8(b), when P increases to 9W , all nodes have more
power for sensing; nodes close to data sink, 6, 12, 18, spend a large portion of power (50% or more) to forward data
to the sink at their close-to-full goodput capacities, 1, 2, 5.5Mbps respectively. In Figure 8(c), when P = 13W ,
because wireless links connecting to the sink are already saturated, the overall link data rates delivered to the sink
only slight increases compared to 8(b). However, due to the concavity of the utility functions, nodes close to sink,
such as 6, 12, 17, 18 increase their sensing power further and generate more data, while nodes far way for the sink,
such as node 1, 7, have to reduce their sensing rates (and thus sensing power) accordingly. Now a larger portion of
data are from sensors close to the sink, the power spent on data communication to the sink at P = 13W is lower
than that at P = 9W , as indicated in Figure 7. Actually, when P = 13W , there is no longer power constraint at
each and every node, the optimal sensing rates given by our distributed algorithm are thus max-min fair as proved
in Theorem 7.1.
3) Adaptation to link failure and application needs: So far, we have demonstrated the performance of our

algorithm using parameter settings with static network topology and fixed node utility weights (i.e., data collected
at different nodes are equally important). In addition, we conducted simulations to evaluate how our algorithm
adapts to link failures and changes of node utility weights. Next, we show two typical simulation results: one for
link failure, and the other one for change of node utility weight. In both cases, we use power budget P = 7W and
η = 50. Our algorithm would adapt and re-converge to 10% of optimality in 100 − 200 iterations.
First, we show the performance of our algorithm in the case of link failure. In Figure 9(a), we plot the change of

system utility when link (11, 12) fails at iteration 5000 and then later comes back at iteration 10000. At iteration
5000, as link (11, 12) fails, nodes with their sensed data forwarded over the failed link have to reduce their sensing
rates. Consequently, the system utility decreases. As nodes start to find alternative paths to forward their sensed data
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Fig. 8. Individual node power consumption pi for different power budgets and node utility weights

to data sinks, their sensing rates increase, and the system utility increases as well. At iteration 10000, when link
(11, 12) comes back, since nodes have already found alternative paths to forward their sensed data, the recovery
of link (11, 12) just slightly improve the system utility.
Second, we show the performance of our algorithm in the case of node utility weight change. In Figure 9(b),

we plot the change of system utility when the weight of node 18 increases from 1 to 25 at iteration 5000 and later
resets to be 1 at iteration 10000. At iteration 5000, node 18 increases its weight from 1 to 25. As expected, when
node 18 starts to collect more data, nodes with data forwarded via node 18 would reduce their sensing data rates.
The overall system utility decreases. At iteration 10000, node 18 reduces its weight from 25 to 1. When node 18
reduces its sensing rate, it starts to forward more data for other nodes. Therefore, other nodes will increase their
data rates, and the system utility increases as well.
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(b) Adaptation of our distributed algorithm to the change of
utility weight at node 18

Fig. 9. Adaptation of our distributed algorithm to link failure and change of utility weight

VIII. EXTENSIONS AND VARIATIONS
We have proposed a distributed algorithm for allocating energy between sensing and data routing in order to

maximize the system utility in a network in which all data is routed to a common sink. In this section we discuss
how this work can be extended to the case of multiple sink scenario, and to the case of more general resource
constraints.
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A. Extensions to the Multiple Sink Scenario
With multiple data sinks, we identify two problem formulations. In the first case, which we refer to as ”single

commodity routing”: data can be routed to any one of multiple sinks. This model would be appropriate when the
goal is to route data to a sensor network gateway that would make the data available to the outside world. In
”multiple commodity routing”, data injected at node i must be delivered to a predetermined node j. This model
would be appropriate for data communication networks. Our distributed algorithm can be extended to solve the
optimization problem under both single commodity routing and multiple commodity routing. In this paper, as our
interest is wireless sensor networks, next, we discuss the single commodity case thoroughly, while the multiple
commodity case briefly.
For single commodity routing, as shown in Figure 10, the multiple sink problem can be mapped to a single sink

problem, in which all data traffic is destined to a virtual sink node via any of the multiple sinks. To implement
this virtual node, our distributed algorithm needs to be modified slightly. Recall that for a single sink node !, the
marginal cost for this sink node !, ∂Aφ(φ)/∂R#, is set to be 0. With multiple sink nodes {!1, . . . ,!m}, in order
to implement this virtual sink node, we set ∂Aφ(φ)/∂R#j = 0 for j ∈ {1, . . . , m}. This is the only extension that
is needed to take multiple sinks into account for single commodity routing.

i

Wireless Sensor Network

virtual sink

receiving from
incoming links

sending to
outgoing links

Fig. 10. Mapping from multiple sinks to single sinks

For multiple commodity routing, we have to introduce a dedicated set of routing variables φ(!j) for each
destination !j . Consequently, for each destination !j , we get a set of demand variables R(!j), a set of node
traffic variables t(!j), a set of flow rate variables f(!j), and a set of blocking nodes B(!j). For each destination
!j , the distributed algorithm for updating the routing variable φ(!j) is similar to that of a single destination: first,
∂Af (f)/∂fkl(!j) is calculated using equation (26); second, ∂Aφ(φ)/∂φik(!j) is calculated using equations (27)
and (28); third, based on ∂Aφ(φ)/∂φik(!j), we update φ(!j) similar to that for a single destination. Following
similar proofs, we are able to generalize Theorem 6.1, Theorem 6.2, Theorem 6.3, Theorem 6.4 to the case of
multiple commodity routing, and prove the convergence of the generalized algorithm to the optimal solution. See
[21] for more details. However, as indicated by [14] [12], in general, Theorem 7.1 does not hold for multiple
commodity routing.

B. Extensions to exclusive transmission and reception model
For wireless networks with small node degree, we have used non-steerable directional antennas and non-

overlapping channels to allow simultaneous data flow over all links. However, in the case of limited number
of non-overlapping channels, and/or limited number of (but steerable) directional antennas, simultaneous data flow
over all links may not be possible. Next, we extend our algorithm to exclusive transmission and reception model
as introduced in [22]: a node can only transmit or receive packets at any time.
For exclusive transmission and reception model, [22] proved the NP-hardness of the problem, and provided a

heuristic solution. The heuristic solution requires that the node utilization (overall time fraction in data transmission
and reception over all incoming and outgoing links) must be bounded by 2/3.

∑

(i,k)∈LO(i)

τik +
∑

(k,i)∈LI(i)

τki ≤ 2/3 (42)

Next, based on equation (42), we extend our distributed algorithm to achieve 1/3 of maximum utility.
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At each node i, we introduce additional convex and increasing penalty function gi(τik ∈ LO(i), τki ∈ LI(i)) to
replace the time fraction constraint given by equation (42). We have,

lim∑
(i,k)∈LO(i) τik+

∑
(k,i)∈LI (i) τki→2/3

gi(τik ∈ LO(i), τki ∈ LI(i)) → ∞ (43)

The optimization goal is thus A = Y + D + Z + G, where G =
∑

i gi(τik ∈ LO(i), τki ∈ LI(i)).
As shown by [22], if the time fraction constraints given by equation (42) are satisfied, the scheduling problem can

be further solved optimally using centralized algorithms (maximum weighted matching) or 2-approximate distributed
algorithms (greedy matching).
Using greedy matching to solve the scheduling problem, our fully-distributed algorithm would guarantee to

achieve 1/3 of optimality. First, the optimal sensing rates s∗ must satisfy the sufficient condition as follows.
∑

(i,k)∈LO(i)

τik +
∑

(k,i)∈LI(i)

τki ≤ 1 (44)

Therefore, 2s∗

3 , which satisfies the time fraction constraints, would achieve
2U(s∗)

3 because of the concavity of utility
functions. The system utility is further reduced by 1/2 due to the approximation ratio of the greedy matching
algorithm. Overall, our fully-distributed algorithm would guarantee to achieve 1/3 of optimality.

IX. CONCLUSION
In this paper, we proposed an optimal sensing and routing strategy for energy constrained wireless sensor networks

with non-steerable directional antennas. We first formulated a joint sensing rate control, data routing and energy
allocation problem. We then converted the combined sensing/routing problem into a unified routing problem. A
distributed algorithm was developed for all nodes to co-operatively drive the sensor network to its optimal operation
point, where the network-wide sensing utility is maximized under node power constraints. Simulations for a network
of small solar powered X-band radars illustrated the operation of our distributed algorithm. The trade-off between
sensing and communication was illustrated in different simulation settings on power collection rates.
Further research can be pursued in the following directions:
• Our simulation results are encouraging. We plan to implement our distributed algorithm in a network of X-band
radars currently under development. We are especially interested in testing how our algorithm adapts to real
environmental conditions, such as the strength of sunshine, the link goodput probabilities, and the location and
movement of sensed objects.

• In this paper we have not considered a sensor node’s consumption of power for computation. This factor
will become more important as processing demands increase, e.g., if compression is performed before data
transmission. Then there is a trade-off on power allocation between processing and routing. In the case of
compression, the more one node compress, the less data the network will have to transmit to the sink. We
plan to incorporate computation into our framework in future work.

• In our current formulation, we assume sensing utility is elastic and try to maximize the aggregate utility as
long as the power consumption on each node is lower than its power expenditure budget. A dual formulation
is to minimize aggregate power consumption given that the aggregate/individual sensing utilities are above
some threshold. This may be a more appropriate problem formulation to consider if one want to maximize
the life time of a sensor network under a given energy constraint.
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X. APPENDIX A
Next is the proof for Theorem 5.1. It was proved in [8]. We include it for completeness.
Proof:

Summing both sides of equation (24) over i, we see that any solution to (24) satisfies

t# =
∑

i

Ri. (A1)

Temporarily let φ#i = Ri/t# and substitute this in (24).

ti =
|V|∑

l=1

tlφli. (A2)

Any solution to (A1) and (A2) satisfies (24) and vice versa. Let Φ̂ be the |V| × |V| matrix with components φli.
Φ̂ is stochastic (i.e., φli ≥ 0 for all l, i and

∑
i φli = 1 for all l) and (A2) is just the formula for steady-state

probabilities in a Markov chain.
It is well know that if Φ̂ is irreducible, then (A2) has a unique solution, aside from a scale factor determined by

(A1), and ti > 0, 1 ≤ i ≤ |V|. The matrix Φ̂ is irreducible; however, if for each i, k there is a path i, l,m, . . . , p, k



UMASS CMPSCI TECHNICAL REPORT 06-12 20

such that φil > 0, φlm > 0, . . . , φpk > 0. If Ri > 0 for 1 ≤ i ≤ |V| − 1, then node ! has a path to each i,
1 ≤ i ≤ |V| − 1. By the definition of routing variables, each i has a path to ! and consequently Φ̂ is irreducible.
Thus (24) has a unique solution, with positive ti, if Ri > 0 for 1 ≤ i ≤ |V| − 1.
Now let t = (t1, . . . , t|V|−1), R = (R1, . . . , R|V|−1) and let Φ be the |V| − 1 × |V| − 1 matrix with components

φli(1 ≤ i, l ≤ |V| − 1). Equation (24) for 1 ≤ i ≤ |V| − 1 is then t(I − Φ) = R. Since this equation has a unique
solution for Ri > 0, I − Φ must have an inverse, and

t = R(I − Φ)−1 (A3)

Since the components of t are positive when the components of R are positive, components of t are nonnegative
when the components of R are nonnegative. Differentiating (A3), we get the continuous function of Φ

∂ti
∂Rl

= [(I − Φ)−1]li (A4)

Using (A4) in (A3), the solution to (24) is conveniently expressed, for any t, as

ti =
∑

l

∂ti
∂Rl

Rl (A5)

Finally, differentiating (24) with respect to φkm, we get

∂ti
∂φkm

=
|V|−1∑

l=1

∂tl
∂φkm

φli + tkδim

where δim = 1 for i = m and 0 and otherwise. For fixed k, m, this is the same of equations as (24), so that the
solution, continuous in φ, is

∂ti
∂φkm

=
∂ti
∂Rm

tk (A6)

XI. APPENDIX B
Next is the proof for Theorem 6.1.
Proof:

First we show that (27), repeated below, has a unique solution.

∂Aφ(φ)
∂Ri

=
∑

k

φik

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

]
(B1)

Let bi =
∑

k φik∂Af (f)/∂fik and let b the column vector (b1, . . . , bn). Let ∇ • Aφ be the column vector
(∂Aφ(φ)/∂R1, . . . , ∂Aφ(φ)/∂Rn) Then (B1) can be rewritten as

∇ • Aφ = b + Φ(∇ • Aφ). (B2)

We saw in the proof of Theorem 5.1 that I − Φ has a unique inverse with components given by (A4). Thus the
unique solution to (B2) is

∂Aφ(φ)
∂Ri

=
∑

l

∂tl
∂Ri

∑

m

φlm
∂Af (f)
∂flm

(B3)

=
∑

l,m

∂flm

∂Ri

∂Af (f)
∂flm

(B4)

Differentiating ∂Aφ(φ) directly with (25), we get the same unique solution, which, from Theorem 5.1, is continuous
in φ.



UMASS CMPSCI TECHNICAL REPORT 06-12 21

Finally we calculate ∂Aφ(φ)/∂φik directly using (25),

∂Aφ(φ)
∂φik

=
∑

l,m

∂Af (f)
∂flm

φlm
∂tl
∂φik

+
∂Af (f)
∂fik

ti

= ti

[ ∑

l,m

∂Af (f)
∂flm

φlm
∂tl
∂Rk

]
+ ti

∂Af (f)
∂fik

= ti

[
∂Aφ(φ)
∂Rk

+
∂Af (f)
∂fik

]
(B5)

We have used (A6) and (B3) to derive (B5), which is the same as (28). This is clearly continuous in φ given the
continuity of ti and ∂Aφ(φ)/∂Ri, and the proof is complete.

XII. APPENDIX C
Next is the proof for Theorem 6.2.
Proof:

First we show that (29) is a necessary condition to minimize Aφ by assuming that φ does not satisfy (29). This
means that there is some i, k and m such that

φik > 0,
∂Aφ(φ)
∂φik

>
∂Aφ(φ)
∂φim

(C1)

Since these derivatives are continuous, a sufficiently small increase in φim and corresponding decrease in φik

will decrease Aφ, thus establishing that φ does not minimize Aφ.
Next we show that (30), repeated below, is a sufficient condition to minimize Aφ.

∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

≥ ∂Aφ(φ)
∂Ri

, all i, k. (C2)

Suppose that φ satisfies (C2) and has link data rates f and node data rates t. Let φ∗ be any other set of routing
variables with link data rates f∗ and node data rates t∗. Define

f(λ) = (1 − λ)f + λf∗ (C3)

Af (λ) = Af (f(λ)) (C4)

Since Af is a convex, non-decreasing function of the flow rate sets f , therefore Af (λ), is convex in λ, and hence

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ Aφ(φ∗) − Aφ(φ) (C5)

Since φ∗ is arbitrary, proving that dAf (λ)/dλ ≥ 0 at λ = 0 will complete the proof. From (C3) and (C4),

dAf (λ)
dλ

∣∣∣∣
λ=0

=
∑

i,k

∂Af (f)
∂fik

(
f∗

ik − fik

)
(C6)

We now show that ∑

i,k

∂Af (f)
∂fik

f∗
ik ≥

∑

k

Rk
∂Aφ(φ)
∂Rk

(C7)

Note from (C2) that
∑

k

∂Af (f)
∂fik

φ∗ik ≥ ∂Aφ(φ)
∂Ri

−
∑

k

∂Aφ(φ)
∂Rk

φ∗ik (C8)
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Multiplying both sides of (C8) by t∗i , summing over i, and recalling that f∗
ik = t∗iφ

∗
ik (see (25)) , we obtain

∑

i,k

∂Af (f)
∂fik

f∗
ik ≥

∑

i

t∗i
∂Aφ(φ)
∂Ri

−
∑

i,k

t∗iφ
∗
ik
∂Aφ(φ)
∂Rk

(C9)

From (24),
∑

i t
∗
iφ

∗
ik = t∗k − Rk. Substituting this into the rightmost term of (C9) and canceling, we get (C7).

Note that the only inequality used here was (C8), and that if φ is substituted for φ∗, this becomes an equality from
the equation for ∂Aφ(φ)

∂Ri
in (27). Thus

∑

i,k

∂Af (f)
∂fik

fik =
∑

k

Rk
∂Aφ(φ)
∂Rk

(C10)

Substituting (C7) and (C10) into (C6), we see that dAf (λ)/dλ ≥ 0 at λ = 0, completing the proof.

XIII. APPENDIX D
We prove Theorem 6.4 through a sequence of seven lemmas. The first five establish the descent properties of

the algorithm, the sixth establishes a type of continuity condition, showing that if φ does not minimize Aφ, the for
any φ∗ in a neighborhood of φ, Aφ(Γm(φ∗)) < Aφ(φ) for some m. The seventh lemma is a global convergence
theorem which does not require continuity in the algorithm Γ; Lemmas 13.6 and 13.7 together establish Theorem
6.4.
Let φ be an arbitrary set of routing variables satisfying Aφ(φ) < A0 for some A0. Let φ1 = Γ(φ) and let

t, f, t1, f1 be the node and link data rates corresponding to φ and φ1, respectively. Let fλ, (0 ≤ λ ≤ 1) be defined
by fλik = (1 − λ)fik + λf1

ik, and let
Af (λ) = Af (f(λ)) (D1)

From the Taylor remainder theorem,

Aφ(φ1) − Aφ(φ) =
dAf (λ)

dλ

∣∣∣∣
λ=0

+
1
2

d2Af (λ)
dλ2

∣∣∣∣
λ=λ∗

(D2)

where λ∗ is some number, 0 ≤ λ∗ ≤ 1. The continuity of the second derivative above will be obvious from the
proof of Lemma 13.4, which upper bounds that term. The first three lemmas deal with dAf (λ)

dλ |λ=0.
Lemma 13.1:

dAf (λ)
dλ

∣∣∣∣
λ=0

=
∑

i,k

−∆ikaikt
1
i (D3)

Proof: Using the definitions of aik and ∆ik in (32) and (33),
∑

k

∆ikaik =
∑

k "=kmin(i)

[φik − φ1
ik]

{
∂Af (f)

∂fik
+

∂Aφ(φ)
∂Rk

− min
m/∈Bi

[
∂Af (f)
∂fim

+
∂Aφ(φ)
∂Rm

] }

=
∑

k

[φik − φ1
ik]

[
∂Af (f)

∂fik
+

∂Aφ(φ)
∂Rk

]
(D4)

=
∂Aφ(φ)

∂Ri
−

∑

k

φ1
ik

[
∂Af (f)

∂fik
+

∂Aφ(φ)
∂Rk

]
(D5)

In (D4), we have used (34) to extend the sum over all k and in (D5), we have used (27). Multiplying both sides
of (D5) by t1i , summing, and using (24) and (25), we get

∑

i,k

∆ikaikt
1
i =

∑

i

t1i
∂Aφ(φ)
∂Ri

−
∑

i,k

f1
ik
∂Af (f)
∂fik

−
∑

k

[
t1k − Rk

] ∂Aφ(φ)
∂Rk

= −
∑

i,k

f1
ik
∂Af (f)
∂fik

+
∑

k

Rk
∂Aφ(φ)
∂Rk

(D6)

=
∑

i,k

(fik − f1
ik)

∂Af (f)
∂fik

(D7)

= −dAf (λ)
dλ

∣∣∣∣
λ=0

(D8)
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We have used (C10) to get (D7), and (D8) from (D1), completing the proof.
Lemma 13.2:

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ − 1
η(|V| − 1)3

∑

i

∆2
i t

2
i (D9)

where
∆i =

∑

k

∆ik (D10)

Proof: From the definition of ∆ik in (33), −aik ≤ −ti∆ik/η. Substituting this into (D3) yields

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ −1
η

∑

i,k

∆2
iktit

1
i

≤ − 1
(|V| − 1)η

∑

i

∆2
i tit

1
i (D11)

where (D11) follows from Cauchy’s inequality, (
∑

k αkβk)2 ≤ (
∑

α2
k)(

∑
β2

k), with αk = 1, βk = ∆ik, and the
sum over k %= i.
Now define t∗i as the total flow at node i if the routing variables φik (for k %= kmin(i)) are reduced by ∆ik but

φik for k = kmin(i) is not increased. Mathematically t∗i satisfies

t∗i =
∑

l

t∗l [φli − ∆li] + Ri (D12)

This has a unique solution because of the loop freedom of φ. Subtracting (D12) from (24) results in

ti − t∗i =
∑

l

[tl − t∗l ]φli +
∑

l

t∗l ∆li (D13)

From (A5), using
∑

l t
∗
l ∆li for ri,

ti − t∗i =
∑

l

∂ti
∂Rl

∑

k

t∗k∆kl (D14)

Since φ is loop-free, ∂ti/∂Rl ≤ 1. Also if ∂ti/∂Rl > 0, then l is upstream of i and φil (and hence ∆il) is zero.
Thus

ti − t∗i ≤
∑

l

∑

k )=i

t∗k∆kl =
∑

k )=i

t∗k∆k (D15)

Multiplying the left side by ∆i ≤ 1 preserves the inequality, yielding

ti∆i ≤
∑

k

t∗k∆k (D16)

Since the right-hand side of (D14) is nonnegative, we also have ti∆i ≥ t∗i ∆i. We interrupt the proof now for a
short technical lemma, which was proved by [8]. We include it here for completeness. The lemma will be used for
further proof.
Lemma 13.3: Let αi, βi(1 ≤ i ≤ m) be nonnegative numbers satisfying αi ≤

∑
k βk; αi ≥ βi for 1 ≤ i ≤ m.

Then
m∑

i=1

αiβi ≥
1

m2

∑

i

α2
i (D17)

Proof: ∑

i

αiβi ≥
∑

i

β2
i ≥ 1

m
(
∑

βi)2 (D18)

where we have used αi ≥ βi and then Cauchy’s inequality. Since
∑

βi ≥ αk for all k,
∑

i

αiβi ≥
1
m
α2

k, for all k. (D19)
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This implies (D17), completing the proof of Lemma (13.3).
Now let αi = ti∆i and βi = t∗i ∆i. Since these terms are nonzero only for i %= !, we can take m = |V| − 1.

Since the conditions of the lemma are satisfied for this choice,
∑

i

∆2
i tit

∗
i ≥ 1

(|V| − 1)2
∑

i

∆2
i t

2
i . (D20)

Since t∗i ≤ t1i , we can substitute (D20) into (D11), getting (D9) and completing the proof of Lemma (13.2).
Lemma 13.4: Let M be an upper bound of ∂2Af (fλ)

∂fλ
l1m1

∂fλ
l2m2

over all l1,m1, l2, m2 and over 0 ≤ λ ≤ 1. Then for
any λ, 0 ≤ λ ≤ 1,

d2Af (λ)
dλ2

≤ M(|V| + 2)|V|2(|V| − 1)
∑

j,k

∆2
kt

2
k (D21)

Proof: The bound M must exist because ∂Af (λ)
∂fλ

l1m1
∂fλ

l2m2
is a continuous function of λ over the compact region

0 ≤ λ ≤ 1. Taking the second derivative, we get

d2Af (λ)
dλ2

=
∑

l1,m1

∑

l2,m2

∂2Af (λ)
∂fλl1m1

∂fλl2m2

(f1
l1m1

− fl1m1)(f
1
l2m2

− fl2,m2)

≤
∑

l1m1

∑

l2m2

M |f1
l1m1

− fl1m1 ||f1
l2m2

− fl2m2 |

≤
∑

i,k

M |L||f1
ik − fik|2

≤
∑

i,k

M |V|(|V| − 1)|f1
ik − fik|2 (D22)

We now upper bound |f1
ik − fik| by first upper bounding |t1i − ti|. As in the proof of Lemma 13.2, we have

t1i − ti =
∑

l

[t1l − tl]φ1
li +

∑

l

tl[φ1
li − φli]

=
∑

l

∂t1i
∂Rl

∑

k

tk[φ1
kl − φkl] (D23)

Since 0 ≤ ∂t1i /∂Rl ≤ 1, we can upper bound this by

t1i − ti ≤
∑

k

tk∆k

We can lower bound (D23) in the same way, considering only terms in which φ1
kl − φkl < 0, and this leads to

|t1i − ti| ≤
∑

k

tk∆k (D24)

f1
ik − fik = [t1i − ti]φ1

ik + ti[φ1
ik − φik]

|f1
ik − fik| ≤

∑

l

tl∆lφ
1
ik + ti|φ1

ik − φik| (D25)

The sum in (D25) has at most |V|− 1 nonzero terms (i %= !). Using Cauchy’s inequality on both terms together,
we get

|f1
ik − fik|2 ≤ |V|

{
∑

l

t2l ∆
2
l [φ

1
ik]

2 + t2i [φ
1
ik − φik]2

}

∑

k

|f1
ik − fik|2 ≤ |V|

{
∑

l

t2l ∆
2
l + 2t2i ∆

2
i

}
(D26)

Summing over i and substituting the result in (D22),we get (D21) completing the proof.
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Lemma 13.5: For given A0, define

M = max
l1,m1,l2,m2

max
f :Af (f)≤A0

∂2Af (f)
∂fl1m1∂fl2m2

(f) (D27)

η = [M |V|7]−1. (D28)

Then for all φ such that Aφ(φ) ≤ A0,

Aφ(φ1) − Aφ(φ) ≤ − 1
2η(|V| − 1)3

∑

i

∆2
i t

2
i . (D29)

Proof: Temporarily let M be as defined in Lemma 13.4. Combining Lemma 13.2 and Lemma 13.4,

Aφ(φ1) − Aφ(φ) ≤
[
− 1
η(|V| − 1)3

+
M(|V| + 2)|V|2(|V| − 1)

2

] ∑

i

∆2
i t

2
i . (D30)

For η = [M |V|7]−1, the second term in brackets above is less than half the magnitude of the first term, yielding
(D29). It follows that Aφ(φ1) ≤ Aφ(φ) ≤ A0. By convexity then Af (fλ) ≤ A0 for 0 ≤ λ ≤ 1. Thus M as given
in (D27) satisfies the condition on M in Lemma 13.4, completing the proof.
Lemma 13.6: Let the scale factor η satisfy (D28) for a given A0 and let φ be an arbitrary set of routing variables

that does not minimize Aφ and satisfies Aφ(φ) ≤ A0. Given this φ, there exists and ε > 0 and an m, 1 ≤ m ≤ n,
such that for all φ∗ satisfying |φ− φ∗| < ε,

Aφ(Γm(φ∗)) < Aφ(φ) (D31)
Proof: We consider three cases. The first is the typical case in which no blocking occurs and Aφ(Γ(φ)) <

Aφ(φ), the second is the case in which blocking occurs, and the third is the case in which Aφ(Γ(φ)) = Aφ(φ).
Case 1: No blocking; ∆iti > 0 for some i. If no nodes are blocked for φ, then by the definition of blocking

(36), there is a neighborhood of φ∗ around φ for which no blocking occurs. In this neighborhood,

aik =
[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

]
− min

1≤m≤|V|

[
∂Af (f)
∂fim

+
∂Aφ(φ)
∂Rm

]
(D32)

which is continuous in φ. It follows from (33) that ∆ik is continuous in φ, and the upper bound to Aφ(Γ(φ))−Aφ(φ)
in (D29) is continuous in φ. Since by assumption the bound in (D29) is strictly negative, there is a neighborhood
of φ∗ around φ for which

Aφ(Γ(φ∗)) − Aφ(φ∗) < − 1
4η(|V| − 1)3

∑

i

∆2
i t

2
i (D33)

where ∆i and ti correspond to the given φ. Choose ε small enough so that (D33) is satisfied for |φ− φ∗| < ε and
also so that

|Aφ(φ∗) − Aφ(φ)| <
1

4η(|V| − 1)3
∑

i

∆2
i t

2
i

Combining this with (D33), we have (D31) for m = 1.
Case 2: Blocking occurs. For any φ, we can use (27) to lower bound aik by

aik ≥ ∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

− ∂Aφ(φ)
∂Ri

(D34)

∆ikti ≥ min
{
φikti, η

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

− ∂Aφ(φ)
∂Ri

]}
(D35)

The lower bounds above are continuous functions of φ. Since blocking occurs in φ, there is some i, k such that
both

∂Aφ(φ)
∂Rk

− ∂Aφ(φ)
∂Ri

≥ 0 (D36)

and
φikti ≥ η

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂Rk

− ∂Aφ(φ)
∂Ri

]
(D37)
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Combining (D35) to (D37)

∆ikti ≥ η
∂Af (f)
∂fik

(D38)

Since the right-hand side of (D35) is continuous in φ, there is a neighborhood of φ∗ around φ for which

∆∗
ikt

∗
i ≥ η

2
∂Af (f)
∂fik

(D39)

Equation (D31), for m = 1, now follows in the same way as in case 1.
Case 3: ∆ikti = 0 for all i, k. Let Φ3 be the set of φ for which ∆ikti = 0 for all i, k. Let φ(l) = Γl(φ) for the

given φ and let m ≥ 2 be the smallest integer such that φ(m−1) /∈ Φ3. We first show that m ≤ |V|. Note first that
for any φ ∈ Φ3, Γ changes φik only for i such that ti = 0 and thus the node data rates t and link data rates f
cannot change. ∂Aφ/∂Ri can change, however, and as we shall see later, must change for some i if φ does not
minimize Aφ.
Now consider φ(l) (0 ≤ l ≤ m − 2, where φ(0) denotes the original φ). Since φ(l) ∈ Φ3, ∆(l)

ik > 0 implies that
ti = 0. From (33), φ(l)

ik = ∆(l)
ik and φ(l+1)

ik = 0. For a given i, all φ(l)
ik are reduced to 0 except for the k which

minimizes ∂Af (f)
∂fik

+ ∂Aφ(φ(l))
∂Rk

. Thus, using (27),

∂Aφ(φ(l+1))
∂Ri

= min
k

[
∂Af (f)
∂fik

+
∂Aφ(φ(l))
∂Rk

]
≤ ∂Aφ(φ(l))

∂Ri
(D40)

Since this equation is satisfied for all l, 0 ≤ l ≤ m− 2, we see that ∂Aφ(φ(l))/∂Ri can be reduced on iteration l
only if ∂Aφ(φ(l−1))/∂Rk is reduced on iteration l − 1 for some k such that ∂Aφ(φ(l−1))/∂Rk < ∂Aφ(φ(l))/∂Ri.
This reduction at node k however implies a reduction at some node k′ of smaller differential cost at iteration l− 2
and so forth. Since this sequence of differential costs is decreasing with decreasing l and since (from (D40)) the
differential cost at a given node is nondecreasing with decreasing l, each node in the sequence must be distinct.
Since there are n nodes other than the given destination available for such a sequence, the initial l in such a
sequence satisfies l ≤ |V|− 2. On the other hand, if ∂Aφ(φ(l))/∂Ri is unchanged for all i, we see from (D40) that
φ(l) satisfies the sufficient conditions to minimize Aφ and then φ also minimizes Aφ contrary to our hypothesis;
thus we must have m ≤ |V|.
Now observe that the middle expression in (D40), for l = 0, is a continuous function of φ and consequently

∂Aφ(φ(1))/∂Ri is a continuous function of φ for all i. It follows by induction that ∂Aφ(φ(l))/∂Ri is a continuous
function of φ for all i and for l ≤ m − 1. Finally φ(m−1) /∈ Φ3, so it must satisfy the conditions of case 1 or 2;
it will be observed that the analysis there apply equally to φ(m−1) because of the continuity of ∂Aφ(φ(m−1))/∂Ri

as a function of φ. This completes the proof.
Our last lemma will be stated in greater generality than required since it is a global convergence theorem for

algorithms that avoids the usual continuity constraint on the algorithm. (See Luenberger [23]) for a good discussion
of global convergence).
Lemma 13.7: Let Φ be a compact region of Euclidean N space. Let Γ be a mapping from Φ into Φ and let

Aφ be a continuous real valued function in Φ. Assume that Aφ(Γ(φ)) ≤ Aφ(φ) for all φ ∈ Φ. Let Aφmin be the
minimum of Aφ over Φ and let Φmin be the set of φ ∈ Φ such that Aφ(φ) = Aφmin. Assume that for every
φ ∈ Φ − Φmin, there is an ε > 0 and an integer m ≥ 1 such that for all φ∗ ∈ Φ satisfying |φ− φ∗| < ε, we have
Aφ(Γm(φ∗)) < Aφ(φ). Then for all φ ∈ Φ,

lim
m→∞

Aφ(Γm(φ)) = Aφmin. (D41)
Proof: See [8].

Proof of Theorem 6.4: Let Φ be the set of loop-free routing variable φ such that Aφ(φ) ≤ A0. We have verified
that Γ maps loop-free routing variables into loop-free routing variables, and from Lemma 13.5, Aφ(Γ(φ)) ≤ Aφ(φ)
for φ ∈ Φ. Thus Γ is mapping from Φ into Φ. It is obvious that Φ is bounded and easy to verify that any limit of
loop-free variables with Aφ(φ) ≤ A0 is also loop-free with Aφ(φ) ≤ A0. Thus φ is compact. The final assumption
of Lemma 13.7 is established by Lemma 13.6. Thus Lemma 13.7 asserts the conclusion of Theorem 6.4.


