
Learning to Communicate in a Decentralized Environment∗

U. of Massachusetts, Amherst, Computer Science Dept., Tech. Report UM-CS-2006-16

Claudia V. Goldman1 Martin Allen2 Shlomo Zilberstein2

1Caesarea Rothschild Institute
University of Haifa, Mount Carmel, Haifa, 31905 Israel

ph.: 972-4-8288355
2Department of Computer Science

University of Massachusetts Amherst, Amherst, MA 01003
ph. : 1-413-5451985
clag@cri.haifa.ac.il

{mwallen,shlomo}@cs.umass.edu

Abstract

Learning to communicate is an emerging challenge in AI research. It is known that
agents interacting in decentralized, stochastic environments can benefit from exchanging
information. Multiagent planning generally assumes that agents share a common means of
communication; however, in building robust distributed systems it is important to address
potential miscoordination resulting from misinterpretation of messages exchanged. This
paper lays foundations for studying this problem, examining its properties analytically and
empirically in a decision-theoretic context. We establish a formal framework for the problem,
and identify a collection of necessary and sufficient properties for decision problems that
allow agents to employ probabilistic updating schemes in order to learn how to interpret
what others are communicating. Solving the problem optimally is often intractable, but our
approach enables agents using different languages to converge upon coordination over time.
Our experimental work establishes how these methods perform when applied to problems
of varying complexity.

1 Introduction

Cooperative decentralized planning is the problem of computing a set of local behaviors for a
group of agents that act in the same environment while maximizing a global objective. Each local
policy maps the information known or believed by the agent to actions (i.e., domain actions and
possibly communication acts as well). It has been shown [4] that in the worst case, solving such
multiagent problems optimally is significantly more complex than is the case for single-agent
sequential decision problems. One of the main sources of this difficulty is the fact that each
individual decision-maker lacks global information when they compute their local behaviors.
Allowing agents to share information may reduce uncertainty about this global information, for
instance by reducing the number of possible belief-states that each agent needs to consider. In
extreme cases, when communication is free and mutually understood, decentralized planning
becomes equivalent to single-agent planning (e.g., see the MMDP model [6]). However, in

∗This work was supported in part by the National Science Foundation under grants number IIS-0219606
and IIS-0535061 and by the Air Force Office of Scientific Research under grants number F49620-03-1-0090 and
FA9550-05-1-0254.

1

practice, communication has some cost, be it the actual bandwidth used by a transmission,
or some other function that quantifies the resources required for the information exchange.
We have previously shown that computing policies involving costly communication can be as
hard as computing optimal solutions without communication [25]. Consequently, although
communication can indeed be helpful in simplifying coordination at execution time, computing
when to communicate and what to communicate may still be a complex process.

Beyond overcoming the computational problem of decentralized planning under uncertainty,
we are interested in robust decentralized systems. Such robustness will often require agents to
adapt their means of communicating in the face of new situations, or when miscoordination
arises. Autonomous systems, developed separately, interact more and more often in contexts
like distributed computing, information gathering over the Internet, and wide-spread networks
of machines using distinct protocols. As a result, systems may be called on to deal with new sit-
uations and information, as autonomy increases and environments grow more complex. Agents
that act cooperatively may not necessarily share the same language of communication, and may
not simply be able to exchange a translation, mapping discrepancies in the languages, in an
off-line manner. Such problems may occur, for instance, when the content of an agent’s com-
munication arises from observations available solely to that agent, in the midst of some shared
task. Even agents with the same sensing apparatus may still lack the contextual information
necessary to correctly interpret each other’s messages. Alternatively, the ability to learn new
meanings can guard against unintentional design-time errors. In many applications, the misin-
terpretation of messages can lead to miscoordination and an eventual decrease in performance.
NASA’s Climate Orbiter probe, for instance, crashed as a result of an unwitting use of different
(metric and imperial) conventions of measure in calculations communicated between different
design teams, causing the spaceship to follow an incorrect flight plan [31]. Such considerations
also arise where users of a system may have different levels of competence—as in automated and
interactive tutoring—or where it is practically infeasible to specify all necessary communication
protocols at design time. The latter problem arises, for instance, in automated control and
diagnosis. In such contexts, the range of ways a particular mechanism may go wrong cannot
generally be known in advance, and encountered problems often require novel diagnoses and
solutions [8]. Such problems are compounded when various mechanisms are combined as parts
of a larger overall process, as is common in manufacturing plants.

The ability to communicate is thus a double-edged sword. While it has the potential to
make multiagent coordination problems much easier to solve, the possibility of miscommunica-
tion opens up difficulties of its own. In this paper, then, we focus on the problem of how agents
may learn how to interpret the messages they exchange, while acting together in an uncertain
and decentralized environment. We isolate this problem from the problem of computing optimal
policies with costly communication and concentrate on: (1) algorithms that update the under-
standing of messages exchanged while improving the value of the joint policies of behavior; and
(2) the properties of systems and environments that allow such learning to take place.

The standard of success by which we will judge the particular process of learning to com-
municate will be directly related to the system-wide measure of utility, rather than to the
individual cost of using that language [23]. In this context, agents attempt to learn correlations
between languages with pre-existing simple semantics, distinguishing the approach from such
as [43], in which agents collectively learn new shared concepts for the purpose of learning per
se and not in the framework of a planning problem. Furthermore, agents learn to communicate
while attempting to maximize some global objective, which need not be the specific one of
learning to communicate itself, as opposed to work in which agents are specifically rewarded for
pre-determined “correct” responses to messages [45]. Finally, our work on cases where misco-
ordination arises is to be distinguished from such as that in verification systems [39], where the

2

aim is to identify inconsistencies between a software specification and its execution code, which
can then be eventually fixed manually. Our purpose, on the other hand, is to explore methods
by which agents automatically learn to correct a misinterpretation in addition to identifying it
(on-line or by simulation), in the framework of decentralized control.

We provide a general practical and formal framework for studying the problem of learning to
communicate, and isolate sufficient and necessary conditions under which agents can maximize
their joint expected utility by successfully solving that problem. We show this in particular for
agents that communicate their observations and actions; in the process, we shed light on the
difficulties involved with learning languages in general. One of the contributions of this work
is in understanding how hard this problem can be. The basic framework is decision-theoretic;
agents operate with probabilistic models of the meaning of languages of communication, and
base decisions on the given probabilities. The problem of determining message meanings may
then become unsolvable for languages in general—since it may be impossible to generate a
meaningful probabilistic model of a sufficiently rich language—and can be quite complex even
for relatively simple languages. Another contribution is to provide an algorithm that, under
the identified conditions, converges to some mutual understanding of a language which is not
initially shared by the agents. We show how such convergence eventually leads to a situation
in which agents can then maximize the value of their joint policy.

Sections 2 and 3 present the general language-learning process and show how the problem can
be framed as a process of updating belief-states in the context of a decentralized Markov decision
process. We explain this process further in Section 4. Important properties of decision problems
and necessary and sufficient conditions for learning to communicate while acting are explained
in Sections 5 and 6. These are followed by empirical evidence about the possibilities of the
approach, presented for scenarios with increasing complexity, in Section 7. Finally, Sections 8
and 9 provide an overview of other work done on communication in multiagent systems and
give our conclusions.

2 The general language-learning process

Figure 1 gives a graphical overview of the interrelations between the various components of the
language-learning process as it occurs in the case of two inter-communicating agents. These
elementary parts, which will be discussed in more detail later on, are as follows:

• State: The global state of the environment at any given time.

• Observation: How the global state actually appears to an individual agent.

• Message: The communications exchanged between agents.

• Belief-state: An agent’s belief about the current state of affairs, consisting of:

– Translation: An understanding of another agent’s language, and of the most recent
message in particular.

– Belief-features: All other beliefs about the current state of the environment.

Such a process involves many elements that are familiar from the specification of problems
involving agents acting under uncertainty. In particular, we will want to specify two important
components:

State-action transitions: Given any global state si at some time ti, and the actions taken
by each agent, the environment will transition to some next state sj .

3

!

!1 !# !$

#
1%

#
#
"

#
1"

#
$"

#
#& #

$
&

#
1' #

#
'

#
1'1

1'

1
1
"

#
1" 1

$
"

1
1& #

1& 1
$&

(#(1 (# ($

)%*+,- %/
0%1123+,'(+%3

#
1&#!) "

#!) !
#!) #

#") #
#") !

#") "

#
#%

#
$%

1
$%#

1%1
1%

1
1!

#
1

#
1

#
#

$

1
$

!

45*+5/!!('(5 267'(5

)%*+,- %/ 8,(+%3

!

!

!

si State i tj Time-step j

σj
i Message j, sent by Agent i oj

i Observation j of Agent i

aj
i Action j of Agent i βj

i Belief-state j of Agent i

P j
τi Translation-distribution j of Agent i F j

i Belief-features j of Agent i

Figure 1: A sketch of the language-learning process.

Observation functions: For each agent α, at any global state sj , that agent makes some
observation oj .

Furthermore, an agent in such a situation will possess, or learn a behavior which includes the
following three components:

Policy of action: Given a belief-state, the agent takes some action.

Policy of communication: Given a belief-state, the agent communicates something (maybe
nothing) to some other agent.

Belief-state update: Given a belief-state, action taken, observation, and message received,
the agent generates some new belief-state.

Language learning thus takes place within a general framework of action and communication
between agents. While the process of updating belief-states involving the interpretation of what
other agents say has certain special features arising from the fact that language is involved, it
is a special case of a general problem, to do with finding successful policies that are based on
one’s beliefs. The main distinguishing feature of this work is the notion of a translation. While
the usual approach to many problems of action and communication assumes that the language
of communication is shared, we make no such presumption. Instead, we include an agent’s

4

possibly imperfect understanding of another’s language as part of the belief-state. We represent
the degree to which agent αi understands agent αj by a correspondence between messages sent
by αj , and those that αi might itself send. (Looking ahead a bit to the formal definitions
found in Section 3, as far as αi is concerned, the meaning of some received message forms a
distribution over its own possible messages.)

Formally, we capture this model as a decentralized Markov decision process with direct
communication (originally formulated in [25]). For simplicity of exposition we focus here on the
case of two agents; the model can easily be extended to n agents.

Definition 1 (Dec-MDP-Com). A decentralized MDP with direct communication is given by
the tuple M = < S, A1, A2, P, R,Σ, CΣ,Ω1,Ω2, O, T > where:

• S is a finite set of world states with a distinguished initial state s0.

• A1 and A2 are finite sets of control actions. ai denotes an action performed by agent i.

• P is the transition probability function. P (s′|s, a1, a2) is the probability of moving from
state s ∈ S to state s′ ∈ S when agents 1 and 2 perform actions a1 and a2 respectively.

• R is the global reward function. R(s, a1,σ1, a2,σ2, s′) represents the reward obtained by
the system as a whole, when agent 1 executes action a1 and sends message σ1 and agent
2 executes action a2 and sends message σ2 in state s resulting in a transition to state s′.

• Σ denotes the alphabet of messages and σi ∈ Σ represents an atomic message sent by
agent i (i.e., σi is a letter in the language). When this language is not mutually shared
by all the agents, we will denote by Σi agent i’s language of communication. A formal
definition of a language appears in Definition 6.

• CΣ is the cost of transmitting an atomic message: CΣ : Σ → $. The cost of transmitting
a null message is zero.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(o1, o2|s, a1, a2, s′) is the probability of observing o1 and
o2 (respectively by the two agents) when in state s agent 1 takes action a1 and agent 2
takes action a2, resulting is state s′. A Dec-MDP is jointly fully observable, i.e., there
exists a mapping J : Ω1 × Ω2 → S such that whenever O(o1, o2|s, a1, a2, s′) is non-zero
then J(o1, o2) = s′.

• T is the time horizon of the problem (finite or infinite).

The framework we will propose is based on several important observations. First, learning
to communicate occurs while the agents are involved in acting towards the maximization of
some objective function. Second, agents share some context, in terms of their presumptions
about the possible content of shared messages. While, this may not be a single context, agents
still consider only a relatively small set of plausible candidates. Third, agents are assumed to
base their understanding of one another upon probabilistic models of the relationship between
language and the environment. A more philosophical question can be asked about the learning
to communicate problem when such model is not accessible, but this is beyond the scope of this
paper. Finally, we observe that obscuring the content of messages in the state features is not
desirable. Solving the problem of learning to communicate will then become intractable given
the complexity results and algorithms known to date to solve general Dec-POMDPs [4, 25].
Thus, we consider the use of communication separately from domain actions to allow us to

5

study techniques and features specific to language itself. We believe that this focus can enrich
our understanding of the interactions and the capabilities of autonomous agents.

In a Dec-MDP-Com with a mutually shared communication language Σ, the local behaviors
of the agents are given by local policies of action and communication, based on sequences of
observations and messages as follows:

Definition 2 (Local Policy of Action with a Shared Language).

δA
i : Ω∗ × Σ∗ → Ai.

Definition 3 (Local Policy of Communication with a Shared Language).

δΣ
i : Ω∗ × Σ∗ → Σ.

Note that we assume here and throughout the paper that the communication-policy δΣ for
an agent α returns some message given every possible observation; that is, α communicates
something after every observation. We may wish that agents do not always communicate; this
can be handled by either adding some special “null” message to the language Σ, or perhaps by
re-defining δΣ as only a partial function on Ω.

In order to solve a decentralized process with a mutually shared communication language op-
timally, we evaluate the possible local policies of behavior and find one optimizing the expected
value of the joint policy. This expected value is computed as the expected reward obtained while
following the policies, equal to the summed reward for each state-action transition, weighted by
the probabilities of those transitions. In previous research, we have computed this value for the
case when communication lead to joint full observability [25]. In that case, whenever the agents
exchange information, they both observe the global state. Thus, the local policies of action of
these agents include the last synchronized state; that is: δA

i : S × Ω∗ × Σ∗ → Ai. Here, we
give the more general form of the relevant equations. The interactions among the agents are
described as a process in which agents perform an action, then observe the environment, and
then send a message that is instantaneously received by the other agent.

To compute the expected reward attained by a joint policy, we first define the probability of
transitioning over a sequence of states. This is given by the one-step transition probability of
reaching a destination state s′ from any origin state q (which is part of the model), multiplied
by the cumulative transition probability for any possible sequence suffix that leads to this state
q, and weighted by the probability of sensing the given observation sequence. Formally:

Definition 4 (Transition Probability Over a Sequence of States). The probability of
transitioning from a state s to a state s′ following the joint policy δ=(δ1, δ2) while agent 1 sees
observation sequence o1o1 and receives sequences of messages σ2, and agent 2 sees o2o2 and
receives σ1 of the same length, written Pδ(s′|s, o1o1,σ2, o2o2,σ1) can be defined recursively:

1. Pδ(s|s, ε, ε, ε, ε) = 1.

2. Pδ(s′|s, o1o1,σ2σ2, o2o2,σ1σ1) =
∑

q∈S

Pδ(q|s, o1,σ2, o2,σ1)∗P (s′|q, δA
1 (o1,σ2), δA

2 (o2,σ1))∗

O(o1, o2|q, δA
1 (o1,σ2), δA

2 (o2,σ1), s′)

such that δΣ
1 (o1o1,σ2) = σ1 and δΣ

2 (o2o2,σ1) = σ2.

Then, the value of the initial state s0 of the Dec-POMDP-Com after following a joint policy
δ for T steps can be defined as the expected reward attained over all possible sequences of states
visited by δ starting in s0:

6

Definition 5 (Value of an Initial State Given a Policy). The value V T
δ (s0) after following

policy δ=(δ1, δ2) from state s0 for T steps is given by:

V T
δ (s0) =

∑

(o1o1,o2o2)

∑

q∈S

∑

s′∈S

Pδ(q|s0, o1,σ2, o2,σ1) ∗ P (s′|q, δA
1 (o1,σ2), δA

2 (o2,σ1))∗

R(q, δA
1 (o1,σ2), δΣ

1 (o1o1,σ2), δA
2 (o2,σ1), δΣ

2 (o2o2,σ1), s′)

where the observation and the message sequences are of length at most T−1, and both sequences
of observations are of the same length l. The sequences of messages are of length l + 1 because
they considered the last observation resulting from the control action prior to communicating.

Decentralized control with direct communication in a shared language is therefore the prob-
lem of finding an optimal joint policy δ∗ for action and for communication such that δ∗ =
arg maxδ V T

δ (s0). We stress again that while it is straightforward to write the definition of
policy-value as above, actually calculating the value of joint policies, and thus of finding the
optimal policy, is generally very difficult.

In the problems studied in this paper, on the other hand, agents do not share a common
language of communication. Following Figure 1, we notice that the local behaviors of the
agents are mappings from belief-states to either domain actions or messages. That is, we
wish to define the local policies of action and communication as functions from belief-state
sequences, δA

i : β∗
i → Ai and δΣ

i : β∗
i → Σi, respectively. These belief-states are composed

of both translations of messages received and beliefs about the features of the states based
on observations and message sequences. Section 4 discusses these policies and their value in
full detail. Here, we simply note that our work is based on the idea that that agents learn
to communicate on-line while acting towards the maximization of some global objective. We
assume that each agent already has been assigned some policy of behavior that includes a local
policy of action and a local policy of communication. For every possible belief-state of its own,
an agent will know how to act and what message from its own language to send. All they lack,
then, is a way to correctly interpret the messages received. Learning to act, to communicate
and to interpret messages all at once on-line is beyond the scope of this paper. Here, we are
interested in the process of updating these belief-states, resulting in updated interpretation of
messages and consequently better coordination between agents.

3 Formal Definitions

The elementary items comprising the theory of language learning are agents taking actions and
making observations in some environment, along with: (i) languages of communication between
different agents; (ii) translations governing how messages in different languages are interpreted;
(iii) beliefs about the environment, governing which messages are sent and which actions are
taken; and (iv) contexts which govern how the interpretations of messages are generated and
changed in response to feedback from the environment.

Definition 6 (Language). A language is a pair Σ = (W, ∫), where:

1. W = {σo, σ1, . . . , σn} is a set of primitive words, the smallest atomic units of which any
message may be comprised.

2. ∫ is a syntax-function, defined as follows:

• Wn = W × · · ·× W︸ ︷︷ ︸
n

is the set of all possible n-word messages; let W+ =
⋃

n∈N Wn.

7

• ∫ : W+ → {1, 0}.

A message σ+ ∈ W+ is legal for language Σ (written σ+ ∈ Σ) iff Σ = (W, ∫) and ∫(σ+) = 1.
For the sake of convenience we will have occasion to use the name of some language Σ to stand
for the set of legal messages {σ+ ∈ Σ}; such uses shall be clear from context.

As given, the definition of a language does not specify any particular structure for a language;
in general, the syntax-function can be essentially arbitrary. For most purposes, of course, we
would define such a syntax-function in some structured (perhaps compositional) way, so that
the set of legal messages in our language was similarly structured.

Previous results [25] proved that agents controlling a Dec-MDP-Com benefit most by ex-
changing their own last observations when the cost of communication is constant over all mes-
sages. For more general cases, it may be worthwhile for the agent to send information about
the actions it has performed. Since individual observations and actions are the components of
a decentralized MDP that are only known locally, they are natural candidates to be exchanged
as messages between the agents. For example, agents acting in a 2D grid may be modeled as
observing their own local coordinates. A language of communication can then be defined as the
set of pairs of possible coordinates: the language Σxy = (N, ∫) of coordinates in a 2D grid of size
(MaxX × MaxY) is given by the set of messages (x, y) where x, y ∈ N and ∫(x, y) = 1 if and
only if both (0 ≤ x ≤ MaxX) and (0 ≤ y ≤ MaxY). Of course, other languages could have yet
more complex syntaxes, as for example messages that include the actions taken as well. So far,
there has been no study of Dec-MDPs featuring communication of messages that are different
from observations. Our work here considers just such cases.

Note that we do not specify a semantics as part of the definition of a language. In fact,
no detailed treatment of the meaning or truth-conditions of messages is given. Rather, the se-
mantics of any language Σ arises implicitly from elementary practices of actual communication.
Agents communicate particular messages, based simply on their own observations, actions and
resulting beliefs, according to the agent’s local policy of communication, which can be presumed
to depend upon the global goals. “Meaning,” then, is simply a correlation between particular
messages and the beliefs that cause their originator to send them; this is discussed in further
detail below. Similarly, an agent establishes a translation between its own language and another
by correlating the sets of messages in each (and so, indirectly, between messages in the other
language and its own beliefs about the environment).

Definition 7 (Translation). Let Σ and Σ′ be two sets of messages. A translation, τ , between
Σ and Σ′ is a probability function over message pairs, i.e., for any messages σ, σ′, τ(σ, σ′) is
the probability that σ and σ′ have the same meaning. τ+

Σ,Σ′ is the set of all translations between
Σ and Σ′.

An agent translates between its own language and (some subset of) another by establishing
a probabilistic correlation between the meanings of the messages in each.1 Here we point out
that “means the same thing” is given sense simply in terms of the agents’ beliefs. For agent α1

to say that message σ2 ∈ Σ2, sent by agent α2, is likely to mean the same as message σ1 ∈ Σ1,
is simply to say that it is likely that the situations in which α2’s beliefs cause it so send message
σ2 are the same as those in which α1’s beliefs would cause it to send σ1.

For example, assume that the messages σ1 ∈ Σ1 and σ2 ∈ Σ2 name locations in a fully
observable 2D grid, and that agent α1 always sends out the name of its current location x,
whenever it observes that it is in fact at x. Further, suppose that we have a completely specified

1In the most general case, the uncertainty of interpreting a message correctly can be captured by some general
feasibility measure. In this paper, we focus on probabilities as an example of such measure. Other measures are
beyond the scope of this paper.

8

translation τ between Σ1 and Σ2. Then, the probability τ(σ1, σ2) is simply the probability that
the belief that causes α2 to send σ2 arises exactly when α2 is in the same location that α1 names
using σ1. Furthermore, in such a situation, any functional output τ(σ1, σ2) = 1 will mean that
α1 is absolutely certain that σ2 is to be translated as σ1. This discussion can be made more
precise by defining the notion of a belief-state.

Definition 8 (Belief-state). For any agent α with language Σ in some state-space S, a belief-
state β is a pair (Pτ , F), where:

1. Pτ is a probability distribution over translations.

2. F is a probability distribution over state-set S. That is, for any s ∈ S, F (s) is the
probability that the agent is in state s.

An agent’s belief-state thus consists of a probability distribution over states—a familiar
notion from the literature on partially observable Markov decision processes (POMDPs)—along
with a probability distribution over the set of translations between the agent’s own language and
the language of another with which the agent communicates. In the case that there exist more
than one such other agent, the belief-state will require multiple such translation-distributions; in
this work, we will treat only of the two-agent case, and so only provide a single such distribution.
Furthermore, since each translation τ∗ is in itself a probability distribution over message pairs,
(σ, σ′) ∈ (Σ × Σ′), we can write Pτ (σ, σ′) for the overall probability that some particular pair
are equivalent, defined as:2

Pτ (σ, σ′) =
∑

τ∗∈τ+
Σ,Σ′

Pτ (τ∗)τ∗(σ, σ′). (1)

Thus, each agent may possess any number of distinct translations between its own language
and some other, each assigned its own probability. The process of learning to communicate
is thus the process of adjusting these sets of translations, replacing them with others that
differ in the probabilities they assign to individual message pairs, or with respect to their
own individual probabilities. In particular, we will assume that this process is governed by the
observed outcomes of actions taken by the translator. That is, an agent α learns to communicate
in some language Σ′ as a result of taking actions based (at least partially) on messages received
in that language, and then adjusting its current set of possible translations of Σ′.

In general, as given in Definition 7, a translation between language Σ and some other
language Σ′ involves a complete function over Σ. That is, the translation assigns values to
translations for every possible message σ ∈ Σ. In real situations, of course, agents will not
generally consider literally every possible meaning of a message σ received in some unknown
language, for if they did, the process of interpretation and translation would never get off the
ground. Rather, agents tend to restrict their attention to certain specific subsets of plausible
meaning for the utterances of others, where such restricted subsets are given by contextual
considerations of such things as relevance and expected intent.

Effectively, then, a context allows an agent to bound the possible interpretations of other
agents, or to pre-assign translations to specific parts of the language, as for example in cases
where two agents already share part, but not all, of their two languages. The models and the
bounds involved in contexts of translation can also correspond to such things as assumptions

2As given in Definition 7, a translation τ∗ ∈ τ+
Σ,Σ′ is total over an agent’s own language Σ, but may be partial

over the other language, Σ′, especially as all the particular contents of that second language may not yet be
known. In general, if some incomplete translation τ∗ is such that the particular pair (σ, σ′) is not part of its
domain, then we set τ∗(σ, σ′) = 0 for the purposes of the summation given in equation (1).

9

about the syntax of messages in the target language, or about the grammatical role of particular
parts of certain messages. Such models, and their restrictions, are what makes language learning
possible. Without some available context for translation—some model of the relationships
between messages, actions, and outcomes—an agent α will be simply unable even to begin
interpreting the language of another.

Our notion of context is thus in the same vein as the local models semantics/MultiContext
Systems (LMS/MCS) model reviewed in [37]. This approach assumes that an agent has a local
theory which contains the knowledge it needs to solve a problem. An agent can switch between
contexts when it reveals that the current context is not adequate. Ghidini and Giunchiglia [20]
argued that two principles govern contextual reasoning: the principle of locality (i.e., reasoning
always happens in a context) and the principle of compatibility (i.e., reasoning processes can
interact in different contexts). Each agent in our work associates a context-dependent vocabu-
lary to the context in question. We assume that agents share the same context, although each
agent may have a different vocabulary associated with it. This paper studies algorithms that
map one vocabulary to the other so that agents can correctly interpret messages sent in the
relevant context.

4 On Belief-State Updates

The problems studied in this paper involve agents that do not share one language of communi-
cation, and base their actions in part upon how they translate one another’s messages. In our
framework, an agent translates between its own set of messages and another by establishing
a probabilistic correlation between them. Furthermore, in most cases agents need to consider
multiple possible translations between messages; that is, agents possess beliefs regarding which
translation to utilize in any given situation, and update those beliefs over time based on their
experience. We now consider this update process, both in general and under some special simpli-
fying assumptions. First, we discuss the way that the general process of updating translations,
based on sequences of past observations, messages, and actions, interacts with policies of action
and their value. Next, we look at the simplified special case, where translation updates are
based solely upon information from immediately prior time-steps.

4.1 Belief Updates in General

As already mentioned, the local behaviors of agents are mappings from sequences of belief-
states to either domain actions or messages, δA

i : β∗
i → Ai and δΣ

i : β∗
i → Σi. As given

by Definition 8, the belief-state βi = (Pτ i, Fi) is composed of probability distributions over
translations and system states, respectively. In particular, we are interested in updates of the
translation portion, Pτ i, of the belief-state (the portion Fi is itself dependent upon the current
translation-distribution, along with the observation and message sequences), since the current
translation of the foregoing sequence of messages will have direct effect upon an agent’s current
policy. That is, letting P+

τ i be the space of all possible distributions over translations between
languages Σi and Σj , we can write the local policies of each agent αi in a manner analogous to
those involving shared languages (Definitions 2 and 3).

Definition 9 (Local Policy of Action with Different Languages).

δA
i : Ω∗

i × Σ∗
j × P+

τ i → Ai.

Definition 10 (Local Policy of Communication with Different Languages).

δΣ
i : Ω∗

i × Σ∗
j × P+

τ i → Σi.

10

That is, the policies for each agent are functions (to either actions or messages) from observation
and message sequences, along with translation-distributions.

We want to define transition probabilities over state sequences given such a policy, and define
its expected value, as in the case of Dec-MDP-Coms with shared languages (Definitions 4 and
5). This task is complicated by the need to factor in updates to the translation-distributions.
In general, agents will update their beliefs about translations (the distribution P+

τi
) based on

sequences of observations, messages, and actions.

Definition 11 (Translation-Update Function). Translation updates are functions:

Uτ i : Ω∗
i × Σ∗

j × A∗
i × P+

τ i → P+
τ i .

By convention, if any of these sequences is empty, then Uτ i returns some designated distribution,
P̂τ i ∈ P+

τ i , the default distribution; that is:

Uτ i(ε, σj , ai, !) = Uτ i(oi, ε, ai, !) = Uτ i(oi, σj , ε, !) = P̂τ i.

Over time, then, these updates influence actions taken, and the outcomes of those actions
in turn influence further updates. Relative to a given local action policy, which generates the
action sequences, we define the update function based on observation or message sequences
alone.

Definition 12 (Translation Updates for an Action Policy δA
i). For a given local policy

of action δA
i , and update function Uτ i, we define the translation-updates for δA

i , written U δA
τ i ,

recursively on observation and message sequences as follows:

U δA
τ i (ε, ε) = U δA

τ i (oi, ε) = U δA
τ i (ε, σj) = Uτ i(ε, ε, ε, !) = P̂τ i. (2)

U δA
τ i (oioi, σjσj) = Uτ i(oioi, σjσj , δA

i (oi, σj), U δA
τ i (oi, σj)), (3)

where, for oi = 〈o1
i o

2
i . . . on

i 〉 and σj = 〈σ1
jσ

2
j . . .σn

j 〉, we have action sequence, δA
i (oi, σj) as:

〈δA
i (o1

i ,σ
1
j , U

δA
τ i (o1

i , σ
1
j)) δ

A
i (o1

i o
2
i ,σ

1
jσ

2
j , U

δA
τ i (o1

i o
2
i , σ

1
jσ

2
j)) . . . δA

i (oi,σj , U δA
τ i (oi, σj))〉.

That is, whenever we have either an empty observation or message sequence, we return the
default translation-distribution, P̂τ i. Further, when we have full sequences of observations
and messages, the update is based upon those sequences, along with the actions and updates
previously generated by their prefix sub-sequences. (Note that the action sequence is given
under the supposition that oi and σj are of the same length; this is merely for convenience,
and the definition can be rewritten easily for sequences of unequal length, given the proviso on
Uτ i concerning empty sequences. Note also that by convention the action sequence for empty
observation or message-sequences is also empty: δA(ε, ε) = ε.)

Given such a translation-update function for the series of actions generated by a given local
policy, it is straightforward to extend the definitions of transition probability and value for
policies with a shared language (Definition 4 and 5) to the case of language learning. The
transition probability Pδ() with translations is similar to the sequence-transition probability as
given in Definition 4. The difference is the inclusion of the processing of the messages received,
i.e. the update function, U δA

τi . Thus, when we consider the actions taken under each individual
policy, we take into account not only the most recent sequence of observations and actions, but
also the latest state of the translation, given those sequences.

11

Definition 13 (Transition Probability Over a Sequence of States with Translations).
The probability of transitioning from a state s to a state s′ following the joint policy δ=(δ1, δ2)
in the presence of translations while agent 1 sees observation sequence o1o1 and receives se-
quences of messages σ2, and agent 2 sees o2o2 and receives σ1 of the same length, written
Pδ(s′|s, o1o1,σ2, o2o2,σ1), can be defined recursively:

1. Pδ(s|s, ε, ε, ε, ε) = 1.

2. Pδ(s′|s, o1o1,σ2σ2, o2o2,σ1σ1) =
∑

q∈S

Pδ(q|s, o1,σ2, o2,σ1)∗P (s′|q, δA
1 (o1,σ2, U δA

τ1 (o1, σ2)), δA
2 (o2,σ1, U δA

τ2 (o2, σ1)))∗

O(o1, o2|q, δA
1 (o1,σ2, U δA

τ1 (o1, σ2)), δA
2 (o2,σ1, U δA

τ2 (o2, σ1)), s′)

such that δΣ
1 (o1o1,σ2, U δA

τ1 (o1o1, σ2)) = σ1 and δΣ
2 (o2o2,σ1, U δA

τ2 (o2o2, σ1)) = σ2.

Similarly, we define the value of a joint policy with translations analogously to the case
with a shared language (Definition 5). Again, the update function U δA

τi
is taken into account to

reflect how the sequence of past messages and actions is viewed, given the current state of the
translation.

Definition 14 (Value of an Initial State Given a Policy with Translations). The value
V T

δ (s0) after following policy δ=(δ1, δ2) from state s0 for T steps is given by:

V T
δ (s0) =

∑

(o1o1,o2o2)

∑

q∈S

∑

s′∈S

Pδ(q|s0, o1,σ2, o2,σ1)∗

P (s′|q, δA
1 (o1,σ2, U δA

τ1 (o1, σ2)), δA
2 (o2,σ1, U δA

τ2 (o2, σ1)))∗

R(q, δA
1 (o1,σ2, U δA

τ1 (o1, σ2)), δΣ
1 (o1o1,σ2, U δA

τ1 (o1o1, σ2)),

δA
2 (o2,σ1, U δA

τ2 (o2, σ1)), δΣ
2 (o2o2,σ1, U δA

τ2 (o2o2, σ1)), s′)

where the observation and the message sequences are of length at most T−1, and both sequences
of observations are of the same length l. The sequences of messages are of length l + 1 because
they considered the last observation resulting from the control action prior to communicating.

Once again, the optimal policy for a Dec-MDP-Com with given translation-update functions,
Uτ i for each agent αi, is that joint policy maximizing expected value. As before, we stress the
difference in difficulty between stating the value-function, and actually calculating the value so
that we can determine an optimal value-maximizing policy. Solving such a problem will be no
easier in general than for general problems with shared languages. In any case, our work does
not involve the generation of such policies. Rather, we are interested in the translation-update
functions that produce behavior in concert with given policies. Therefore, we look now at ways
in which these update functions can be simplified.

4.2 Belief Updates with Limited Information

In the processes we consider, belief-state updates need not be based upon possibly unbounded
sequences of observations, messages, and actions. Figure 1 (in Section 2) has given a general
overview of the relationships between various components of the language-learning process. As
shown there, the belief-state of an agent at any time t, βt, depends upon the following pieces
of information:

12

1. The prior belief-state, βt−1.

2. The prior action, at−1, taken on the basis of that belief-state.

3. The most recent observation of the environment, ot, resulting from that action.

4. The most recent message received, σt.

It is to be noted that these points describe an ideal case for language learning. In particular, we
are assuming here that our updates rely only upon information and action taken from the current
and immediately prior time-step; as we shall see, the process may become quite complicated,
if not infeasible, when updates rely upon information from further in the past. Furthermore,
we cannot always guarantee that these sorts of updates are always possible, even given just
the time-limited information specified here; we shall also examine cases in which updating the
probabilities assigned to certain translation entries are simply infeasible, due to defects in the
structure of the language in question.

As given by Definition 8, a belief-state is a two-part structure, consisting of an agent’s
current best belief about the meaning of the other language under consideration (the probability
distribution over translations, Pτ), along with a belief concerning all other features of the
environment (the probability distribution over states, F). The process of updating the belief-
state therefore involves updating each of these components, either separately or together. As we
model this process, it takes place sequentially, updating each part in turn. Let βt

i = (P t
τ i, F t

i)
be the belief-state of agent αi, to be calculated at time t; ideally, we want the probabilities
reflected in the two component distributions to be set correctly by way of a two-step update:

1. First, agent αi updates its belief about language, setting the probability distribution
over possible translations based upon its prior belief-state and action, its own current
observation, and any message just received from agent αj . This update should be such
that for any pair of messages, it yields the probability that this pair has the same meaning
(written σi = σj):

(∀σi, σj) P t
τ i(σi, σj) =

∑

τ∗∈τ+
Σi,Σj

P t
τ i(τ

∗)τ∗(σi, σj) = P(σi = σj |P t−1
τ i , F t−1

i , at−1
i , σt

j , ot
i).

2. Second, the agent needs to update its belief about the state of the environment, setting the
probability distribution over states according to the prior such belief and action, the most
recent message and observation, and the current (just-updated) translation distribution:

(∀s) F t
i (s) = P(st = s |P t

τ i, F t−1
i , at−1

i , σt
j , ot

i).

In our model, learning to communicate is therefore the process of systematically updating
belief-states with respect to translations. Agent αi chooses an action, ai, based upon its local
observation, oi, any messages received, and the current belief-state, βt

i , about how to translate
those messages. The choice of ai, along with the actions chosen by other agents, leads to
some state-transition, which in turn results in some new observation, ot+1

i . This observation
then leads to an update to a new belief-state, βt+1

i , further affecting how later messages are
translated, and thus influencing future actions.

The procedure governing the update from belief-state βt
i to βt+1

i comprises the agent’s lan-
guage model : a function from actions, messages, and observations, to distributions over trans-
lations and system states. (Definition 11 and what follows, above, gives a formal treatment of

13

93!$: !(56!

!; !1
<

!#
<

!3!1
<

!3
<

!3!1

!3

!#

!1

====== ===

Figure 2: A process for which arbitrarily many messages and belief-states must be memorized.

the language portion of these updates.) Such probabilistic models can range from quite sim-
ple to highly complex, depending upon the nature of the languages and problem environment.
For instance, in a Dec-MDP-Com in which agents already share a common language—so that
translation is not an issue—and can freely communicate with one another, all that is required is
that agents update their state-distributions. This, however, is elementary: since a decentralized
MDP is jointly fully observable (Definition 1, clause 8), agents can compute the actual global
state directly, and probabilities are strictly unnecessary. Where agents begin without a com-
monly understood language, things are obviously much more complicated, and the prescribed
belief updates can be difficult to compute correctly. Indeed, it is not clear that it would be pos-
sible to generate a meaningful, let alone usefully tractable, probabilistic model of a full-blown
natural language. Thus, our work has concentrated upon languages that are restricted to suit
the needs of agents working in decentralized MDP environments, communicating specifically
about their own observations and actions as they endeavor to achieve optimal performance in
some set task. As it turns out, even such basic languages provide interesting challenges and
difficulties.

4.2.1 Is the Update Markovian?

Much work in machine learning has focussed on first-order Markov processes, since the ability
to usefully employ common learning algorithms often relies upon the fact that action transitions
depend only upon the current state of the system. As the problems being solved become higher-
order, and expected transitions depend upon longer and longer histories, state representations
and necessary computations can quickly become intractable. For the same reasons, we would
prefer that our agents’ ability to generate probability distributions over message meanings also
only depended upon their most immediate actions, observations, and communications. As it
happens, however, this sort of update, which correctly sets the various probabilities based only
on information from the current or prior time-step, is not always possible. In particular, even
for very simple languages of communication, there are cases of the language-learning problem in
which an agent’s ability to correctly update the probability assigned to some state of the world
or translation depends upon that agent remembering an arbitrarily long sequence of message,
actions, and so on, from its past experience.

An example of such a process is given in Figure 2. Here, we imagine a case in which agent
α1 is trying to determine the location of agent α2, based on what α2 communicates at each
time-step. At time t0, we suppose that α2 is known to occupy the location s0; furthermore,
agent α1 understands all of the terms in the language of α2, except for the terms for “Left” and

14

“Right”. Now, agent α2 communicates that it is moving either to the left or to the right, and
we can suppose that α1 has no way of determining exactly which, thinking either possibility
equally likely. Thus, at time t1, α1 believes that α2 is either in location s1 or s∗1, with equal
probability. For the next (n − 1) time-steps, α2 moves upwards, and communicates this fact.
Since it understands this part of α2’s language, α1 updates its belief-state at each step, so that
at any time tj , α1 believes that α2 is either in location sj or s∗j , with equal probability. Finally,
suppose that at time tn, agent α1 makes some observation (other than the actual location of
α2) that allows it to finally translate all of α2’s language, including the terms for “Left” and
“Right”. At this point, it becomes possible for α1 to determine the location of α2, and update
its belief-state about that location appropriately. However, that update is only possible if α1

has remembered the sequence of things that α2 communicated all the way back to time t0,
along with the original location at that time. Since the sequence of steps taken before α1 comes
to understand the required terms in the language may be arbitrarily long, it is not generally
possible to bound how much information needs to be remembered in order to correctly update
the belief-state over time.

Figure 3 shows the update relationships at work in the example just given. (Actions taken
by agent α1 are not shown, as we assume they do not affect the belief-state updates.) What we
see in this figure is that at every time up to (n− 1), the belief-state update depends only upon
information from the prior or current time-step. However, at time n, when new information
allows the agent to correctly translate the other’s language, the update process takes on a new
character. Now, the belief distribution over world states at that later time, Fn, depends not only
upon local information, but also about newly understood information from time-steps long past.
Furthermore, that past information can only be understood if various components of the belief-
state from those past time-steps are updated again, based now upon the translation available
only at the current time-step. (Specifically, beliefs about α2’s location at those time-steps are
updated based upon the new translation of terms for “Left” and “Right”.)

In general, then, the presence of a language which is not completely understood adds po-
tential complexity to the whole problem of belief-update. When the language of other agents is
fully known, we may be able to base our beliefs about the current state of the world solely upon
current or recent observations and communications; however, where we do not fully understand
that language, we may need to revise our current beliefs based upon information about things
long past, which we have only now come to understand.3 The process of updating beliefs about
the current state of the world can require that we remember every message, observation, and so
on, in order that if and when we do come to understand another’s language, we can reinterpret
the various things we have seen based on our new understanding.

Such a situation is highly undesirable, if what we seek is tractable methods for updating
translations and beliefs given uncertain communication. If agents must potentially remember
unbounded amounts of past information, and attempt to update current belief-states based
upon histories of arbitrary length, we cannot guarantee that they can perform these updates
within acceptable bounds on computational resources. This is analogous to the difficulties faced
in determining optimal courses of actions in partially observable MDPs (POMDPs), where an
agent’s belief-states over actual global states can rely upon observation histories of unbounded
length. Thus, we would face the same sorts of intractability results [32] in our work, if we
allowed agents to update their beliefs about communication in such a way as to guarantee

3Of course, such a situation can arise even for fully understood languages, especially as complex utterances
may involve references to past situations. I can always say to you today, “You ought now to do that thing I told
you about last Tuesday,” and your being able to understand and follow that directive will require that you recall
what I in fact said at that past time. What the example just given shows, however, is that the need to recall past
events may arise even if we are dealing with simple languages, involving just present actions and observations.

15

!

;
&;)1

&1)#
&# 93!$:=== ===)3!1

&3!1)3
&3

%; %1 %# %3!1; 1 # 3!1! ! !

)

Figure 3: Belief-state update relationships for the process of Figure 2.

optimal behavior. We thus provide methods, described later, that do not guarantee optimal
action at every step of a decision process. Rather, we focus on techniques that allow agents
to converge eventually upon mutual understanding and optimal action in certain particular
problem-environments, while basing belief updates solely upon their most recent observations,
actions, and messages.

4.2.2 The Need to Restrict Languages

Unfortunately, the potential need to understand past communications in terms of current in-
formation can give rise to another potential problem, having nothing to do with the length of
history an agent must consider, but rather concerning the very possibility of updating beliefs
and interpretations coherently. On the one hand, an agent’s current translation will depend
upon what it believes about the world; on the other hand, its beliefs are affected directly by
how it translates messages received. This then leads to a situation in which the update of a
present belief about the language of another agent may affect how we are to understand our
environment, and in turn, our new understanding of the environment affects our beliefs about
language. Such a circular relationship can in fact turn vicious; it is possible, that is, to construct
cases in which a “correct” process of updating beliefs is non-terminating.

For instance, suppose we have two agents in a gridworld environment. Agent α1 is attempt-
ing to understand the language of agent α2, and has learned to interpret all of that language
with certainty, apart from a single expression, σ#. In our framework, this entails that the
probability assigned any meaning of σ# by α1’s current translation is strictly less than 1. We
further suppose that α1 is also uncertain about the location of α2, and that α1 attempts to infer
that location given what α2 communicates. Finally, suppose α2 sends the following composite
message:

At time t − 1: “σ#, which means ‘I am at location x’, if you are not certain that I am at
location x; otherwise, it means ‘I am at location y’.”

The difficulty here is relatively obvious: based on these messages, α1’s belief-update process
at time t is thrown into confusion. In order to fix its belief about the present location of α2,
the interpreter needs to assign a meaning to σ#, which was part of the message just received.
According to what it has now learned, σ# should be translated as “I am at location x,” since
α1 is uncertain as to α2’s location; that is to say, we have the translation:

P t
τ (σ

#, “I am at location x”) = 1.

16

(

(

%(!1

(
(

)(
#

(!1!

&

Figure 4: A vicious circle arises in the belief-update process.

Given this translation, then, α1 can now assign location x to α2, and so the environment-
distribution gives us:

F t(α2 is at location x) = 1.

This, however, leads to our problem, namely that α1 is now certain about the location of α2,
and according to its most recent message should interpret σ# to mean “I am at location y.” In
turn, this should lead to a reassignment of y as the location of α2, which means that α1 is no
longer certain that α2 is at location x. This lack of certainty then leads to another re-translation
of σ#, and so on in a circular fashion, as shown in Figure 4.

Obviously, the problem here is simply a variant of the Liar Paradox, as exploited in such as
Gödel’s famous theorems. Our point in bringing it up here is, as in the prior section, to illustrate
the need for care in both language design and attempts to learn language. Given unrestricted
linguistic resources it is easy to construct messages that will prove difficult, if not impossible, to
translate correctly given what we know of our problem environment. We therefore concentrate
in what follows upon simple languages, to do with the immediate actions and observations of
agents in decentralized MDP environments. Furthermore, we restrict our update scheme to the
elementary single time-step version already sketched. After having presented the main concepts
relevant to the problem of learning to communicate, we continue with a formal analysis of the
problem, learning algorithms and various properties. This work lays the groundwork to study
other versions of this problem in more complex scenarios and under different characteristics.

5 The Language Learning Problem

As we have explained, the general problem of learning to communicate while acting in a de-
centralized environment can be captured as the process of updating belief-states about system-
states and translations, together with policies that allow agents to act based upon these beliefs
Such problems may arise in any number of contexts. One plausible use for such techniques
arises in cases of automated systems coping with errors in their design or specification, as for
instance the problem of disparate metric and imperial measures encountered in the Mars orbiter
program [31]. Such systems, when communicating with one another, or with human operators,
may need to learn to reinterpret instructions or state specifications, in light of new information.
In our Dec-MDP-Com framework, agents would each possess a model of the overall problem do-
main, in terms of possible states of the system, along with a probabilistic model of action effects
in terms of state transitions, and a model of expected reward for actions. When observations
indicate discrepancies between the world and how received messages are understood, agents will
then need to learn how to re-translate those messages. The Mars orbiter, for example, upon
observing that following its given flight-path information was leading it too close to the surface,

17

might have been saved had it the capacity to learn how to adjust its understanding of those
instructions by translating them into another system of measure.

Lacking any particular restriction on the updates and action choices, this general process
can be very complex and is not guaranteed to converge to either a correct interpretation of the
messages exchanged, or an optimal policy of action. In this section, we define the problem of
learning to communicate precisely, giving criteria for what it means to solve it. Then, we identify
desirable properties of algorithms for doing such learning, and give properties of Dec-MDP-Coms
that allow us to give some guarantees on the performance of a system of probabilistic belief
updates. The rest of the paper will concentrate on a particular implementation of an algorithm
that solves the learning problem in such problem instances.

5.1 Solutions and Solution Algorithms

“Learning to communicate” comprises a very broad set of behaviors and capacities. We give
the phrase specific meaning in terms of convergence to optimal action policies in a decentralized
MDP. In this context, agents learn to communicate while acting towards a jointly optimal
solution of the Dec-MDP-Com at hand, and thus we evaluate how successful learning has been
according to its usefulness in achieving such a value-maximizing policy.

To make the problem studied here precise, we refer to the expected reward of the optimal
joint policy, given some translations, as explained in Section 4.1. Then, we can tell that a system
of agents has learned to communicate while acting if there exists some point in time such that
the best plan based on translations from that point on is in fact optimal. We note here that we
are not studying the optimality of the learning process itself, i.e., how much time the learning
process takes until such a point in time is found. Instead, we are studying the performance
of a decentralized system when miscoordination may arise as a result of discrepancies in the
interpretation of messages exchanged.

We begin by defining what it is for a joint policy, in combination with agents’ update
functions, to converge. (In our formal definitions, we again restrict the presentation to a two-
agent case. All definitions are directly extensible to the n-agents case.)

Definition 15 (Policy Convergence with Translation Updates). Let M1 be a Dec-MDP-
Com process with multiple languages:

M1 = 〈S, A1, A2, Σ1, Σ2, CΣ, P, R, Ω1, Ω2, O, T 〉,

and let agents α1 and α2 have translation-update functions Uτ1 and Uτ2, and joint policy δM1 =
[(δA1

1 , δΣ1
1), (δA2

2 , δΣ2
2))], where the local policies of each αi are as follows:

δAi
i : Ω∗

i × Σ∗
j × P+

τ i → Ai δΣi
i : Ω∗

i × Σ∗
j × P+

τ i → Σi.

Further, let M2 be a Dec-MDP-Com process that is identical to M1, except that it has only the
one shared language Σ+ = (Σ1 ∪ Σ2):

M2 = 〈S, A1, A2, Σ+, CΣ, P, R, Ω1, Ω2, O, T 〉,

and for any state s at time t, let δ∗M2(st) = arg maxδ V T−t
δ (st) be the optimal policy for M2,

starting from s at t. We say that the joint policy δM1, with update functions Uτ1 and Uτ2, has
converged at some state s and time t if and only if:

VδM1 (st) = Vδ∗
M2 (st)(st).

18

That is, a policy converges, along with the associated update functions, when the agents
reach a point in time after which their actions, in accord with their translations at that point
and at all points afterwards, return the maximum value that could be expected if the agents
did in fact share all their linguistic resources. This definition highlights the dual nature of
convergence in the language-learning context, in that it depends upon both the policies of
action and communication, as well as the translation-update functions in use. Given this notion
of convergence, it is straightforward to give an exact statement of the learning problem.

Definition 16 (Learning to Communicate while Acting - The Problem). Let M be
a Dec-MDP-Com process with multiple languages: and let agents α1 and α2 have translation-
update functions Uτ1 and Uτ2, and joint policy δM = [(δA1

1 , δΣ1
1), (δA2

2 , δΣ2
2))]. We say that the

agents have solved the problem of learning to communicate while acting at some state s at time
t if and only if δM , with update functions Uτ1 and Uτ2, has converged at st.

That is, the agents have solved the problem of learning to communicate whenever they
arrive at a policy of action that, in combination with their given translation-update functions,
leads to a course of action equal in value to one that would maximize return if the agents in
fact shared all the same language. The definition therefore says nothing about the character
of the translations at work. In particular, we are not committed to any view as to whether or
not these translations are “correct” or not. Rather, agents are said to have solved the problem
of learning to communicate whenever their actions, however they translate one another, are
optimal. This opens the door to a number of possibilities, including translations that are only
partially complete, or ones that conspicuously mistranslate certain language items. So long as
these kinds of omissions or mistranslations do not affect the optimality of the associated policy,
we accept that the agents have indeed learned to communicate.

5.1.1 Optimality of Converged Policies

A consequence of this manner of defining a solution to a communication problem is that it takes
into account the possibility that the joint policy, along with the update functions, may converge
to a pattern of behavior that is not absolutely optimal. That is, the optimality of that policy is
relative to the point of convergence, st, and we do not guarantee optimal results if the agents
were to “start over,” implementing the policy from the initial Dec-MDP-Com start-state, s0.
This is a result of an unavoidable fact, namely that the time it takes to learn something in the
setting of a decision problem may have negative consequences on the expected value in that
environment. In general, we cannot guarantee that the time taken for learning does not cut
agents off from some potential expected value. For instance, in some problem domains, there
are states of the environment which are simply unreachable given the optimal joint policy of
action. In such cases, an absolutely optimal policy need not prescribe actions that actually
maximize value for such states; since they are never reached, any action whatsoever may be
assigned to them without affecting overall optimality. When agents are learning, however, and
taking sub-optimal actions along the way, they may very well find themselves in such states of
the environment, and so their final policies may end up very different.

There is one important exception, however. In an ergodic, infinite-horizon Dec-MDP-Com,
every state reachable with non-zero probability by following any action policy recurs infinitely
often under that same policy in an aperiodic fashion; the set of such states visited is called
the recurrent set [33]. If the recurrent set for every policy comprises the entire state space
S, then the process is irreducible. It is well known that the expected value of policies in such
environments is indifferent to the exact starting state, allowing us to establish the following.

19

Claim 1 (Optimality in Irreducible Dec-MDP-Coms). Let M1 be an irreducible two-
agent and two-language Dec-MDP-Com, with an infinite time horizon. Let δM1, with update
functions Uτ1 and Uτ2, have converged at some st in M1. Then δM1 is absolutely optimal for
the shared-language version of the problem, M2; that is, for initial state s0 of M2:

δM1 = δ∗M2 = arg max
δ2

Vδ2(s
0).

Proof: δM1 , along with Uτ1 and Uτ2, have converged at st, and so by definition,

VδM1 (st) = Vδ∗
M2 (st)(st), (4)

where δ∗M2(st) is the policy that is optimal in the shared-language problem M2 from point st

onwards. Since M1 is irreducible and infinite-horizon, so is M2, as the problems are identical
apart from the languages involved. Thus, starting at st in M2, and following policy δ∗M2(st), we
will visit original initial state s0 infinitely often. Therefore, this policy is absolutely optimal:

δ∗M2(st) = arg max
δ2

Vδ2(s
0). (5)

Equations (4) and (5) establish Claim 1.

Our empirical work, as described in Section 7, has not in fact generally involved problems
that are fully irreducible, nor even properly ergodic. On the other hand, because we wanted
to impose natural stopping conditions on our learning algorithms, we dealt with problems
in which agents eventually encountered every state in the environment often enough to drive
their translations to a point at which those translations were in fact complete (in the sense of
Definition 19, below). In such cases, then, and because starting conditions for our decision tasks
repeated randomly (so that there are no “dead ends”), it is easy to show that the convergent
policies of action with translation that we arrive at are in fact absolutely optimal for those
problems. We do not prove this fact here, as it is only incidental to the goals of this paper.
Rather, we note it only to point out that the choice was one of convenience: our proposed
methods require neither the special properties just mentioned, nor full irreducibility, to succeed.
For instance, we prove in Claim 6, Section 6, that a particular protocol for action and translation
update converges to an optimal policy. While that claim requires an infinite time horizon in
general, to allow enough time for learning, irreducibility is not assumed; the convergence proven
is thus that of Definition 15.

5.1.2 τ-Learning Algorithms

The central feature of any attempt to solve the given problem is an algorithm for updating
translations; here, we call such a communication-learning method a τ -learning algorithm. An
example of such an algorithm is given in Section 6. In our work, we have concentrated upon
instances in which policies of action and communication are given ahead of time. That is,
the central problem facing an agent is that of updating its translations. Once this has been
accomplished, these pre-selected policies dictate what is to be done, based upon the current
interpretation. (More details of the policy-selection process are given below.) Of course, different
τ -learning algorithms may result in different belief updates, and can thus have differing effects
upon the values of the associated policies. For example, τ -learning algorithms that generate
correct translations of only a proper subset of messages can result in an overall system utility
that is lower than would be expected if agents were able to translate all messages properly. In

20

other instances, however, this may not be the case, as for instance when not all messages are
actually essential to the successful performance of the system.

In addition to a τ -learning algorithm, agents may need a rule that instructs them how to
choose one meaning for a message received out of their translations. We give an example of
such a rule in the protocol presented in Section 6 where agents will act upon the meaning that
maximizes the probability of a translation being the correct one. Another reasonable assumption
to enable the agents to learn to communicate is that observations sensed after actions were taken
upon interpretation of messages are informative. While this does not tell an agent the actual
correct meaning of a message, it provides some guidance about whether it has acted correctly
or not. There may be many ways to act right or wrong, and this observation is not required
to distinguish among these. However, we avoid cases in which observations provide no useful
information at all; clearly, such environments make language learning impossible, but this is a
defect in the problems, not in the methods for solving them. Similarly, we are not interested
in cases where any action taken upon any interpretation results in the same expected reward,
since in such cases, there is clearly no more benefit to be had from learning language than from
ignoring it altogether. This section focuses on some formal properties that τ -learning algorithms
may have. These properties are helpful in understanding the guarantees of optimality of learning
algorithms.

Definition 17 (A τ-learning algorithm is certain with respect to (σi,σj)). A τ -learning
algorithm is certain with respect to (σi,σj) if the algorithm is guaranteed to converge to a
translation τ such that τ(σi,σj) = 1 or τ(σi,σj) = 0.

Definition 18 (A τ-learning algorithm is ε-certain with respect to (σi,σj)). A τ -
learning algorithm is ε-certain with respect to (σi,σj) if the algorithm is guaranteed to converge
to a translation τ such that τ(σi,σj) ≥ ε, or τ(σi,σj) ≤ (1 − ε).

This type of learning algorithms will enable us to test the levels of coordination in multiagent
systems that have learned to communicate at different ε levels. This measure will serve us as
a quantifier to compare the performances of such systems. Furthermore, we may be able to
switch between contexts when the translations cannot be ε-certain for some ε. We leave this for
future work.

Definition 19 (A τ-learning algorithm is complete). A τ -learning algorithm is complete
if it is certain with respect to all pairs of messages in Σi.

That is, an agent employing a τ -learning algorithm that is complete to learn how to com-
municate in some language Σ will have converged upon a translation that is ultimately certain
in all its assignments to message-pairs. In order to use such a translation to actually generate
an optimal policy of action, it can also be necessary that agents are able to communicate about
all relevant features of the environment.

Definition 20 (Fully describable). A Dec-MDP-Com is fully describable if and only if each
agent αi possesses a language Σi that is sufficient to communicate both: (a) any observation
made in the system, and (b) any available action.

The application of a complete τ -learning algorithm in a fully describable environment allows
agents to solve Dec-MDP-Coms to optimality.

Claim 2. Solving the problem of learning to communicate for a fully describable Dec-MDP-Com

M2 =< S, A1, A2,Σ1,Σ2, CΣ, P, R,Ω1,Ω2, O, T >

with a complete τ -learning algorithm is a sufficient condition for solving M2 optimally.

21

Proof. Since the τ -learning algorithm is complete, it is certain with respect to all pairs of
messages. Then, there exists some time t for which the agents are guaranteed to know with
certainty a mapping between messages in both languages Σ1 and Σ2. Furthermore, since the
Dec-MDP-Com is assumed to be fully describable, given enough time, the agents know to map
any possible observation and action in Ai and Ωi to any action and observation in Aj and
Ωj . Therefore, given enough time for the learning algorithm to converge and without loss of
generality, agent α1 can exchange messages in Σ2 instead of in its original language Σ1. Hence,
the expected value of the joint policy of action and communication that solves M2 will be equal
to the expected value of the optimal solution to the corresponding problem with a mutually
shared language.

While this result establishes that we can in fact solve a Dec-MDP-Com optimally given a
complete method, such a τ -learning algorithm is not a necessary condition for optimality. A
τ -learning algorithm may not be complete—that is, it may not reach full certainty for every
possible pair of messages—and nevertheless the agents’ performance may be optimal. For
example, this may occur when messages that do not get translated with certainty are not
relevant for the optimal solution of the problem. Such uncertain translations cannot affect the
value of the joint policy of action and therefore, agents may behave and communicate optimally
even though their translations are not complete. For example, assume a set of two agents is
assigned a task of revealing a hidden treasure. Agents need to move around a two-dimensional
grid in order to find the treasure. Agents can exchange messages about locations, for example
instructing the other agent to move towards a certain place. Discrepancies in the language of
communication means in this example that agents do not have the same system of coordinates
and therefore need to correlate pairs of locations in both languages. There may be some set
of locations that is never used in the solution of the problem, so the fact that one agent may
not know how to interpret the names of those locations correctly will have no effect on the
quality of the solution. Similarly, agents may achieve optimal performance using an incomplete
algorithm that does not assign complete certainty to translations, but is correct in terms of
relative certainty (so that the correct translation of any message is always the most probable).
In such a case, if agents always choose the most likely interpretation of any message as its actual
interpretation, then the lack of absolute certainty will have no effect upon the value of those
actions.

5.2 Suitability of Dec-MDP-Coms

The ability of agents to learn to communicate depends not only upon the algorithms employed
to update belief-states, but also upon features of the problem instance at hand. In the previous
section, we identified one such feature, full describability (Def. 20); here, we identify further
properties of Dec-MDP-Coms, and discuss their usefulness and possible necessity in the learning
process. The first of these properties has to do with the cost of communication in the system;
while the general definition of a Dec-MDP-Com allows arbitrary costs for each message sent,
we are particularly interested in cases where communication is cost-free.

Definition 21 (Freely describable). A Dec-MDP-Com is freely describable if and only if
the cost of communicating any message σ is 0.

Free communication has the potential to considerably simplify a Dec-MDP-Com, since agents
may communicate as much as they like without affecting overall system utility. Where the
system is not freely describable, optimal control policies need to consider not only what to com-
municate, but when, according to a cost-benefit analysis of the potential value of the information
shared as compared to the price of communicating it. Thus, as discussed in Section 5.2.1 below,

22

it may not be possible to generate optimal solutions to such problem instances in an effective
manner. Detailed study of the communication-learning problem in a non-free decentralized
environment is beyond the scope of this paper.

When combined with free communication, the ability to describe a Dec-MDP-Com in full
can radically simplify the problem at hand. For example, we have shown [1] that when agents
in fact share a common language, a Dec-MDP-Com that is both freely and fully describable
is reducible to the much simpler case of a multiagent MDP (MMDP). MMDPs, in which each
agent effectively observes the entire global system state, are known to allow for polynomial
algorithms that generate optimal policies, and are thus tractable in ways that Dec-MDP-Coms
are not [6]. As discussed below, such properties also affect the possibility of optimal solutions
when agents must first learn to communicate before they can undertake their policies.

As we have pointed out, optimal action in a Dec-MDP-Com is importantly related to agents’
ability to communicate effectively about their observations and actions. Similarly, the ability
to update belief-states so that agents learn to communicate about such factors depends upon
their capacity to discern more likely interpretations over time. We thus define what it is for a
Dec-MDP-Com to be suitable for language learning, allowing agents in such a system to update
their translation belief-states in a monotonic fashion, so that correct translations become ever
more likely. Among other things, such monotonic updates allow agents to avoid the sorts of
vicious-circle problems previously discussed in Section 4.2.2. To define the required property,
we first give some additional notation:

Notation 1. Let M be an n-agent Dec-MDP-Com. In some state s, at time t, suppose each
agent αj observes oj and intends to take action aj, communicating both facts to other agents
by messages σo

j and σa
j . Then, for any agent αi, let

P σ
i (oj |σo

j , β
t
i) (6)

be the probability assigned by αi to the possibility that αj observes oj, given message σo
j and αi’s

current belief-state βt
i . Similarly,

P σ
i (aj |σa

j , βt
i) (7)

is the probability that αj will take action aj, given message σa
j and αi’s current belief-state.

Let maxσ
i (oj)t and maxσ

i (aj)t be the observation and action maximizing expressions (6) and
(7), respectively (i.e., the observation and action that αi considers most likely for αj).

Notation 2. Let M be an n-agent Dec-MDP-Com. In some state s, at time t, suppose each
agent αj observes oj and takes action aj, causing a transition to state s′, with observations
〈o′1, . . . , o′n〉 at time t + 1. Then, for any agent αi, let

P o
i (oj | o′i)t+1 (8)

be the probability that agent αj previously observed oj, given that αi now observes o′i. Similarly,

P a
i (aj | o′i)t+1 (9)

is the probability that αj took action aj given αi’s current observation.

Two observations are worth making here. First, the probabilities indicated by each of the
new notations are different in character. That is, the probability of Notation 1 is essentially
subjective, whereas the probability of Notation 2 is objective. Notation 1 identifies a probability
that each agent assigns to an event, given that agent’s update scheme and language model.
Notation 2, on the other hand, identifies a probability found in the Dec-MDP-Com model itself.

23

As we go on to show, in certain circumstances, these probabilities can be made to match, so
that agents do in fact employ update schemes that cohere with the dynamics of their problem
environment. The second important point concerns the nature of the observation o′i, as it
appears in Notation 2. In much research into decentralized MDP models, system-wide reward
is separated from an agent’s observations, and as such is not generally available to each agent;
while the goal may be to find policies that maximize this reward, agents do not act directly in
response to these rewards. In other research, however, agents do in fact observe the system-wide
reward; work using MDP models in reinforcement learning contexts, for instance, often uses the
state-transition reward as the primary motive force driving the agents toward optimal action
over time [36]. In some of the examples we will consider, we have chosen the latter path, and
made the reward available to the agents at each step of the process. Nothing vital depends
upon this choice, however, and readers who are used to the idea that reward is unobserved can
simply choose other, analogous examples. Further, we sometimes distinguish between those
components of the observation directly related to language-learning issues, and those related to
the rest of the environment. Again, this is just for convenience. As given in the notation, we
are concerned simply with the probabilities of certain actions and observations, given what is
observed during a state transition; if only certain features of the observation are informative,
this will not affect the relevant probabilities.

Definition 22 (Suitability). Let M be any fully describable Dec-MDP-Com in which agents
do not share a common language. In any state s at time t, let each agent αi observe oi and
take action ai, communicating both to other agents using messages σo

i and σa
i . We say that M

is suitable just in case for any agents αi and αj, if oj .= maxσ
i (oj)t, then for any time t′ ≥ t at

which αj observes oj (the same observation as at time t),

P o
i (oj | o′i)t′+1 > P o

i (σmax
i

(oj)t | o′i)t′+1, (10)

and similarly for aj .= maxσ
i (aj)t,

P a
i (aj | o′i)t′+1 > P a

i (σmax
i

(aj)t | o′i)t′+1. (11)

That is, in a suitable Dec-MDP-Com, suppose agent αj observes oj and takes action aj ,
communicating both to other agents using messages σo

j and σa
j . However, based upon its belief-

state at that time, some other agent αi incorrectly considers a different observation maxσ
i (oj)t .=

oj most likely for αj . In such a case, at any later state (including the next one), αi’s resulting
observation o′i “corrects” the situation. That is, at the next time-step, αi will now consider it
more likely that αj observed oj , rather than the incorrect observation. And, since this property
holds at all future time-steps, any time that αj happens to observe that same oj again, αi will
still consider that correct observation more likely than the one previously thought most likely.
(And similarly for the action aj taken by αj .)

This property is quite complicated to state, and may take a little time to digest. However,
while suitability is somewhat difficult to formalize precisely, we do not consider it to be an overly
strong or artificial condition. As we argue in the next section, lack of suitability may make it
simply impossible to update the probabilities assigned to action- or observation-messages in any
meaningful fashion, and in unsuitable environments a decision-theoretic agent may be incapable
of achieving optimal performance. Furthermore, suitability is not necessarily an uncommon
property of Dec-MDP-Coms. Note that the property as given does not require that the actual
identity of the correct prior observation and action of other agents be determined exactly by
individual observed outcomes. Rather, it is only needed that the correct such observation or
action be to some degree more likely than ones that might have seemed most likely before. For

24

instance, domains in which agents have no idea what actions others are taking, but can at least
positively eliminate some incorrectly chosen candidate—assigning it zero (0) probability given
the immediate effects of the action taken—can be suitable with respect to those actions (given
the proper conditions on communication): the evidence after any action is taken will eventually
eliminate incorrect candidates, while increasing the probability of the correct action towards
eventual certainty. Similarly, environments in which one agent observes some state variable
a time step before another can be suitable with respect to observation, since the latter agent
will eventually be given positive evidence allowing the determination of the correct observations.
Lastly, we note that Section 7.2 contains an example implementation of a relatively complicated,
realistic, and suitable problem instance, in which agents are able to learn to communicate in an
effective fashion.

5.2.1 Importance of the Dec-MDP-Com Properties

We now establish that the three properties outlined in the previous sections—free communica-
tion, full describability, and suitability—are not overly strong or ad hoc. To do so, we argue
for the claim that the lack of each in turn has the potential to make probabilistic updates of
translations, and optimal action based on those updates, either intractable or impossible. In
the absence of such properties, then, agents will either require additional restrictions upon the
system if they are to generate optimal solutions to the associated decision problem, or must
employ some completely different form of learning algorithm in order to converge to optimal
behavior. Later, we will show an implementable technique for such convergence in the presence
of all three properties, establishing their sufficiency with respect to communication learning.
For now, we concentrate upon their necessity.

Claim 3 (Necessity of free communication). Learning to communicate and act optimally
in a Dec-MDP-Com that is not freely describable is generally intractable.

Discussion: As already described, solving decentralized MDPs without communication is gen-
erally intractable [4]. While the presence of free communication can radically simplify such
problems, prior work has shown that decentralized control in the presence of costly communi-
cation in a commonly understood language is also computationally hard in general [25, 24]. It
is easy to see that the problem of learning to communicate in a Dec-MDP-Com without free
message-passing mechanisms can be no easier. In the end, even if agents are able to converge
upon a jointly understood language of communication, the task of calculating an optimal policy
based upon sharing messages in that language can still remain too complex for solution in all
cases. The value of a joint policy in such cases depends not only upon whether the language
is interpreted correctly but also upon whether the agents should communicate at all due to its
cost. If the cost of communication is too expensive, an optimal joint policy might in fact be
to never communicate at all, thus making any learning of message-meanings useless at best, if
not impossible. Therefore, we cannot guarantee any tractable means of convergence to mutual
understanding and optimal action.

Claim 4 (Necessity of full describability). Learning to communicate and act optimally in
a Dec-MDP-Com that is not fully describable is generally intractable.

Discussion: The same complexity results just discussed demonstrate the need to have full
describability in order to solve a Dec-MDP-Com optimally in a tractable manner. The general
hardness of decentralized MDPs without communication arises when agents only observe the
state space in part, and cannot always know what other agents are observing, nor what actions
they are taking. As mentioned, the ability to share such information freely can simplify these

25

;=> ;=>

1!;

1
1% #

#%9 :

1
1% 1

#9 :%

1
1' #

#'9 :

1
1' 1

#'9 :

#
1

1
#''9 :
#
#'#

19 :'?
?
?

? @
@
@
@

A1
A1

!1

!1

1
1' #

#'9 :

1
1' 1

#'9 :

#
1

1
#''9 :
#
#'#

19 :'?
?
?

? @
@
@
@

A1

A1

!1
!1

;=> ;=>

!

Figure 5: An unsuitable decentralized decision-problem for which optimal action cannot be
achieved through probabilistic belief updates.

problems. However, even if communication is free, a simple lack of the linguistic resources to
communicate all relevant information can once again make the decision problem too hard to
solve in general. A simple example makes the point: a Dec-MDP-Com in which agents have
no language for communicating their observations or actions at all, but can only communicate
about the joint system reward, reduces to a simple decentralized MDP. Here, the limited ability
to share only this particular information is tantamount to the case where no communication is
available at all, since all that is being communicated between agents are facts about a reward
that is already shared by all. Thus, the lack of full describability turns the problem of generating
an optimal policy in the Dec-MDP-Com into the problem of solving a decentralized MDP
without communication, which is generally intractable.

Claim 5 (Necessity of suitability). In the absence of suitability, agents will be generally
unable to update translation-belief probabilities so as to allow them to act optimally.

Proof : We consider a counter-example instance of an unsuitable Dec-MDP-Com for which
agents will be unable—given the available evidence of observations and rewards—to update
translation probabilities in a fashion that eventually allows them to act optimally. Figure 5
diagrams this simple problem, consisting of two states, s0 and s1, and two agents α1 and α2.
Each agent αi possesses two possible actions, a1

i and a2
i , and two possible observations o1

i and
o2
i ; thus, there are four possible combinations of actions and four possible combinations of

observations available at any point. System dynamics are as follows:

Actions: In each state, actions have the same possible transition effects; namely, in state si,
any of the four action combinations cause a transition back to that same state si with
probability 0.5, and cause a transition to the other state sj %=i with the same 0.5 probability.

Observations: Only two possible observation combinations ever arise: whenever the state
transitions to s0, the pair (o1

1, o1
2) is observed, and whenever the state transitions to s1,

the pair (o1
1, o2

2) is observed, with certainty in either case. For purposes of this example,
we assume that agents also observe the system-wide reward.

26

Rewards: These are as shown in the diagram. For instance, following any action transition
originating in state s0, the action pairs (a1

1, a2
2) and (a2

1, a1
2) each yield positive reward of

+1 unit, whereas the other two action pairs yield negative reward of −1 unit. For action
transitions originating in s1, however, the situation is reversed, with (a1

1, a1
2) and (a2

1, a2
2)

yielding positive reward this time.

We can assume that the problem is freely and fully describable and that each agent knows the
full system description, with all relevant probabilities, ahead of time. On the one hand, if the
agents shared a common language, then an optimal joint policy for this problem is obvious,
and trivial: agents communicate their observations, and given a jointly observed transition into
either state, simply communicate again to choose one of the pairs of actions that give a positive
reward. Agents thus receive maximal reward at every time-step, for a total reward equal simply
to the time horizon of the problem, T . However, where agents begin with no shared language
a problem arises, namely that agent α1 will be unable to update its probability assignments
to messages in such a way that it can reliably choose appropriate actions, given what it can
observe at each time-step.

To see this, consider the translation update possible for α1 at initial time-step t0. At this
point, whatever state the system begins in, α1 observes the same thing, o1

1; thus, it must assign
whatever observation-message σo

2 it receives from α2 the same probability of meaning either
o1
2 or o2

2. Similarly, with no initial evidence, α1 must consider whatever action-message σa
2 it

receives to be equally likely to mean either a1
2 or a2

2. Based on these indifferent probabilities,
then, a decision-theoretic agent will be indifferent between either of its own actions a1

1 or a2
1,

since the expected value of each is the same. Without loss of generality, suppose that α1 chooses
its own first action a1

1. Then, a curious symmetry arises: no matter what happens following
the ensuing joint action, α1 will have no more reason to translate the action-messages it has
received, or any further observation-messages, in any different fashion. As an example, suppose
that following the joint action, the system receives a reward of −1, and agent α2 now sends
a different observation-message σo′

2 . Now, from agent α1’s perspective, the negative reward,
following its own action a1

1 is equally likely to have arisen because either (a) the system was in
state s0, and transitioned to state s1, when agent α2 took its own first action, a1

2; or (b) the
system was in state s1, and transitioned to state s0, when agent α2 took its second action, a2

2.
Thus, following the state transition, observation, reward, and communication, agent α1

will still be indifferent between all possible interpretations about how to translate any of the
messages it has received from α2. That is, from α1’s perspective, it is in exactly the same
condition as when it began, and its new choice of action is again dependent upon a completely
indifferent set of possible translations of the messages it has received. Furthermore, it is easy
to show that this condition of persisting indifference holds no matter what action α1 chooses,
and no matter what observations, rewards, and communications are received at each time-step.
Therefore, there is no point at which agent α1 will have any more reason to choose one of its
two possible actions over the other, and the expected reward of the resulting course of action is
only half that of the optimum, or 1

2T .

Of course, this counter-example does not establish the strict logical necessity of the suit-
ability property with respect to decision-theoretic solution techniques based upon probability
updates, since some slightly weaker property may yet suffice. However, it does show that there
are unsuitable problem instances for which meaningful probabilistic updates are impossible
(later we show that suitability, when combined with free communication and a specific pro-
tocol for action and belief update, is sufficient for language learning, and for optimal action).
In any case, interpreting this claim properly takes a little care. We are not claiming that in
the absence of suitability, it is generally not possible for agents to learn to act optimally in a

27

decentralized MDP. Rather, we simply mean that if agents are basing their actions upon the
probabilities assigned certain interpretations, in a straightforward utility-maximizing decision-
theoretic manner, they will need to be able to make well-directed updates to those probabilities.
This does not, then, militate against the application of completely different techniques to such
a problem. For instance, the sample problem shown in Figure 5 can obviously be easily solved
using reinforcement learning, ignoring the model of the environment entirely, and basing deci-
sions upon observed rewards given the various different (small number) of combined rewards
and observations. While we would argue that such simple and direct learning methods, which
do not focus on specific and structured interpretation of messages, are of limited applicability
to language learning in general, a full comparison of the advantages and possibilities of various
policy-generation and learning algorithms is beyond the scope of this paper.

6 Particular Protocols and Algorithms for Language Learning

Learning to communicate while acting requires not only an update rule (the τ -learning algo-
rithm), but also a protocol for coordinating communication, action and interpretation. Here,
we present such a protocol, allowing agents in suitable and freely describable Dec-MDP-Coms
to converge to optimal behavior. Following that, we describe the use of a Bayesian update
method for calculating belief updates in this context, and describe how we have implemented
that method in our tests and experiments (see Section 7).

Definition 23 (Elementary action protocol). Let s be a state of Dec-MDP-Com M , at
time t, where agent αi observes oi. Each αi follows the elementary action protocol:

(1) αi communicates oi to the others, using message σo
i .

(2) αi calculates the most likely observation sequence,

o# = 〈 σmax
i

(o1)t, . . . , oi, . . . ,
σmax
i

(on)t〉

and most likely state, s# = J(o#). (Where J is a function from observations to global
states, in accord with joint full observability, as in Definition 1.)

(3) Proceeding in turn, αi chooses an action by:

(a) Calculating the most likely action sub-sequence,

a# = 〈 σmax
i

(a1)t, . . . ,
σmax
i

(ai−1)t〉.

(b) Choosing action ai such that some joint action,

a+ = 〈a#, ai, ai+1, . . . , an〉

maximizes value for likely state s# at time t.
(c) Communicating ai to the others by message σa

i .

(4) αi takes action ai after all agents complete step (3).
(5) The state transition from s to s′ caused by joint action 〈a1, . . . , an〉 follows, generating

new observation sequence 〈o′1, . . . , o′n〉 and reward r′ at time t + 1. Agent αi then updates
its belief-state so that for any messages σo

j and σa
j received on the prior time step, and

any possible observation oj and action aj, both:

P σ
i (oj |σo

j , β
t+1
i) = P o

i (oj | o′i)t+1. (12)

P σ
i (aj |σa

j , βt+1
i) = P a

i (aj | o′i)t+1. (13)

28

It is important to note three features of this protocol. First, agents choose actions based
upon the observations of all others, but the actions of only those that precede them. The reader
can confirm that this allows agents that already understand each other to coordinate optimally,
avoiding the coordination problems Boutilier [6] sketches. Agents that are still learning the
language act in the way they believe most likely to be coordinated.

Secondly, in the agent’s new belief-state, the probability assigned in observation or action
given the most recently received messages—in other words, the meaning of the messages—is
identical to the probability that the other agent actually made that observation or took that
action. It is assumed that the translation of all other messages from each other agent is adjusted
only to account for normalization factors. Section 6.1 describes the use of a Bayesian Filtering
algorithm to actually accomplish these sorts of updates in practice.

Finally, in general multiagent coordination, such a straightforward procedure is not neces-
sarily optimal, nor even necessarily close to optimal. As Boutilier [6] points out, correct choice
of action in the presence of unreliable or inaccurate communication must consider how each
action may affect that communication, along with the other more immediate rewards to be
had. Thus, in our case, it might sometimes be better for agents to choose their actions based
not simply upon what they thought the most likely state might be, but also upon how certain
expected outcomes would affect their translations for future instances of the problem, perhaps
trading immediate reward for expected long-term information value.

Claim 2 showed that fully describable decentralized problems can be solved optimally when
the translation updates are performed with a complete algorithm. The next claim shows that
for fully describable problems which are also suitable, the elementary action protocol is sufficient
to obtain optimal behavior. Intuitively, this protocol causes the agents to choose their actions
in the right direction (because following the protocol, agents choose actions based on the most
likely ones) and since the problem is suitable this behavior will lead to optimal results.

Claim 6. Given an infinite time horizon, agents acting according to the elementary action
protocol in a suitable and freely describable Dec-MDP-Com will converge upon a joint policy
that is optimal for the states they encounter from then on.

Proof : As agents act at some time-step t, they choose actions based always on the observations
and actions of others that they consider most likely. That is,

1. Agent αi translates the observation- and action-messages, σo
j and σa

j , for other agents αj .

2. For each such message, αi chooses the most likely translation, maxσ
i (oj)t or maxσ

i (aj)t.

3. These interpretations are then used, along with αi’s own observation oi to generate the
most likely observation sequence

o# = 〈 σmax
i

(o1)t, . . . , oi, . . . ,
σmax
i

(on)t〉,

and action sub-sequence

a# = 〈 σmax
i

(a1)t, . . . ,
σmax
i

(ai−1)t〉.

Now suppose, without loss of generality, that one of these most likely observation-translations
maxσ

i (oj)t is incorrect; that is, the prior observation of agent αj is such that oj .= maxσ
i (oj)t.

Following the joint action a+, αi will receive its own observation o′i and system-wide reward r′.
Then, since the problem is suitable, we have that

P o
i (oj | o′i)t+1 > P o

i (σmax
i

(oj)t | o′i)t+1

29

(and similarly for all future time-steps). That is, the correct observation will be more likely,
given the observation, than that one previously thought most likely. Furthermore, updates
of messages proceed directly in accord with these probability assignments, since the protocol
simply assigns

P σ
i (oj |σo

j , β
t+1
i) = P o

i (oj | o′i)t+1,

and therefore we have that

P σ
i (oj |σo

j , β
t+1
i) > P σ

i (maxσ
i (oj)t |σo

j , β
t+1
i).

That is, at all future time-steps, αi will assign the correct translation of message σo
j a higher

probability than the prior, incorrect interpretation. Finally, once the correct translation of any
message is actually the most likely translation, it will remain so for all future time steps. Thus,
since the number of possible actions and observations for any agent in a Dec-MDP-Com is finite
by definition, agents will, when given enough time, choose the correct entries, since these will
eventually become most probable, by process of elimination. After this point, the most likely
observation and action sequences will in fact be the actual observation and action sequences
for other agents, and αi will implement a policy that is optimal from then on, since it is now
acting based upon the actual states and next actions of the problem. (Note that the problem is
freely describable, and so the utility of the policy from then on is not affected by the constant
communication required by the protocol.)

Usually, work on cooperation in decentralized environments has followed one of these ap-
proaches:

1. Agents can not communicate (e.g., social laws [22]).
2. Agents can communicate and understand each other correctly (e.g., SharedPlans [21],

Partial Global Plans [12, 13], KQML [16]).
3. Agents can communicate and learn a language until it is completely understood (e.g., [43,

23, 40]).

Our work here enables a different perspective on cooperative multiagent systems, since in some
cases decentralized systems can cooperate optimally even though the agents may not be able
to interpret all messages exchanged fully and with certainty. As stated in the next corollary,
cooperation may be achieved even though there may still be confusion and uncertainty about
the meanings of some of the messages.

It follows from Claim 6 that at some point in the learning process of a suitable Dec-MDP-
Com involving the Elementary Action Protocol, maxσ

i (oj)t will become equal to oj . This may
occur when P o

i (maxσ
i (oj)t|o′i)t′+1 = ε < 1. The corresponding interpretation of oj will be

picked by agent i so long as it is still the most likely, even though it is not completely certain.
Therefore, there exist cases when agents can completely understand each other even before their
translations became complete. We can conclude the following.

Corollary 1. Optimal cooperation can be viable with an ε-certain τ -learning algorithm, where
we have (0 < ε < 1).

Note that characteristics of the environment such as symmetries could also be exploited by
the agents when interpreting messages in order to behave optimally. In such cases, even though
the probability of interpreting a pair of messages is less than one, due to interactions between
these interpretations and the actual effects of the agents’ actions, their coordination can be
optimal. This is left for future research.

30

6.1 Bayesian Filters

In order to calculate the probability updates required for our linguistic domains, we adopt the
method of Bayesian filtering [14], used for example in robotics to handle localization [41]. As
this method is usually employed, agents possess a set of beliefs, in the form of a probability
distribution over possible states of the environment; the filtering algorithm updates this dis-
tribution over time. Updates occur under two basic circumstances. (1) An agent updates its
belief function based on new observations : such observations may determine the state exactly,
or may imply a probability distribution over the states, depending for instance on factors like
noise. (2) Agents make belief updates predictively : before taking any action, the agent updates
the probability distribution for each state in which it may end up.

In decentralized multiagent contexts without communication, however, these updates are
not generally feasible, as Bayesian updating cannot be performed correctly. Recall that in Dec-
MDPs, both observation and state-transition functions involve multiple distinct agents. That
is, the observation function O gives the probability

O(o1, . . . , on | s, a1, . . . , an, s′)

that each agent αi observes oi when actions a1, . . . , an jointly cause the state transition from s
to s′. Similarly, the transition function P gives the probability

P (s′ | s, a1, . . . , an)

of moving from state s to state s′, given joint action a1, . . . , an. On the other hand, an individual
agent αi, wanting to update its beliefs about the state of the system, needs to calculate both
of these probabilities dependent solely upon its own observations and actions: O(oi | s, ai, s′)
and P (s′ | s, ai). Of course, if other agents chose actions according to known, probabilistic (or
deterministic) strategies, these quantities could be derived using straightforward marginalization
techniques. In general, however, such a presumption is invalid, and αi can assign no meaningful
prior probabilities to other actions aj , especially in learning contexts where other agents are
also adjusting their behaviors over time.4 Therefore, unless special independence assumptions
are made about the Dec-MDP in question, Bayesian filtering is not suitable for updating beliefs
about system states (e.g., previous studies [25, 9] have looked at decentralized problems with
independent transitions and observations). We note also that our use of this method relies in
particular upon the ability to update beliefs based solely upon information from the current and
immediately prior time-step; as discussed in Section 4.2.1, this is an important if not universally
valid assumption.

In the context of communication, however, Bayesian filtering does in fact allow individual
agents to update their belief function appropriately. If a Dec-MDP is freely and fully describable
(Definitions 20, 21), then agents that already understand one another can simply share their
observations at all times; joint full observability (explained in Definition 1) then makes the
process of identifying global system states elementary, since each such state is determined by
the collected observations of each agent.

Furthermore, even where agents do not fully understand one another, Bayesian filtering pro-
vides a method of updating translations over time. Figure 6 gives the Bayes-Filter algorithm,
as used in our work on decentralized communication learning. The algorithm is presented for
a pair of agents; for n agents, the basic structure of the technique is the same, although it is
more complicated to present notationally and schematically. As shown in the pseudocode, the
algorithm is used to update agent αi’s belief-state distribution over translations, Pτ i(τ), given a

4For an approach in which agents can generate such priors by modelling other agents, see [19].

31

Bayes-Filter(Pτ i(τ), σj , d){
NormFactor = 0
If d is an observation oi then

For all translations τ do
P ′

τ i(τ) = P (oi | τ, σj)Pτ i(τ)
NormFactor = NormFactor + P ′

τ i(τ)
For all translations τ do

P ′
τ i(τ) = P ′

τ i(τ)NormFactor−1

Else if d is an action ai then
For all translations τ do

P ′
τ i(τ) =

∑
τ ′ P (τ | τ ′, σj , ai)Pτ i(τ ′)

Return P ′
τ i(τ) }

Figure 6: Bayes-Filter Algorithm

received message σj , and data d, consisting of one of αi’s own observations oi or own actions ai.
In the first case, where the algorithm receives a local observation oi, it updates the distribution
over translations based on the prior probability of that observation given each possible existing
translation, normalizing as appropriate. In the second case, when an agent is about to take
an action ai, it updates the belief distribution by projecting the probabilities of possible next
translations, based upon the existing ones, along with the message received and action to be
taken. For details of how the basic algorithm can be implemented to deal with actual problem
instances, see Section 6.3.

6.2 Bayesian Filtering and the Elementary Action Protocol

To perform the calculations described in the update algorithm, agents require two sets of prior
probabilities:

(1) A sensor model, giving P (oi | τ, σj), the probability of observation oi, given any translation
τ and message σj . This probability is used in the first, observation-update step of the
filter algorithm, when calculating the probability distribution over translations, based upon
observations and messages received.

(2) An action model, giving P (τ | τ ′, σj , ai), the probability of translation τ , following action
ai, and given translation τ ′ and message σj . This probability is used in the second update
step, when predicting the next translation distribution based upon what is known now, and
what action is intended.

The possibility of giving such models for a general Dec-MDP-Com clearly depends upon the
content of the messages σj that are sent between agents. In particular, agents will generally
need to share information about their own observations and actions in order to perform the
correct updates.

We can understand these requirements better by focussing upon the Elementary Action
Protocol (EAP), as given in Definition 23, concentrating upon the two-agent case for ease of
explication. We note that in the EAP, agents swap messages at each step about their cur-
rent observations and intended actions. Furthermore, an agent’s translation of these messages
induces probability distributions over those observations and actions of others. Thus, when
agents swap information about their own local observations in the first step of the EAP, they

32

can update their belief-states about translations using the first part of the Bayesian filtering
algorithm, based upon these observations, what is known about actions at the prior time-step,
and the (marginalized) prior probabilities given by the Dec-MDP-Com model. Following this
step, agent αi can perform the second step of the EAP, calculating the most likely observation
for αj given the updated new translation, and the most likely global state of the environment
based upon that information, in combination with its own local observation.

In the third step of the EAP, agents exchange their action-messages in order, using their
current translations to choose most likely interpretations of those messages, and choosing actions
that are optimal relative to those interpretations. Again, the current translation belief-state
induces a probability distribution over the actions of the other agent, and so αi can perform the
second part of the Bayesian filtering algorithm, making its predictive update given the action
it chooses. Following this update step, agents act jointly, a state transition occurs, and the
process repeats, with new observations shared, and new Bayesian updates are performed.

6.3 An Example

One possible representation of a translation τ is a two dimensional table where each row in
agent τi’s translation table corresponds to some atomic component of the agent’s own language
Σi. Columns correspond to atomic components identified in messages received in language Σj .
Entry (σi,σj) gives the probability that σj has the same meaning as σi. The overall structure
of the table corresponds to bounds on the presumed structure of messages received, based on
the assumption that cooperating agents communicate things related to the immediate task.
This radically constrains the range of possible interpretations, in order to make communication
generally feasible; such constraints correspond to the use of such considerations as relevance and
context in real-world communication, in order to make interpretation easier, or even possible.

Probabilities then play two important roles here. First, the filtering algorithm assigns prob-
abilities to various possible translation tables, taken as part of the local state of the agent.
Second, agents choose actions based upon the probable meaning of recent messages, calculated
based on the overall probability that some translation is correct, and the individual probabilities
contained in the corresponding table. Language learning interleaves interpretation with action,
in a joint process designed to narrow down possible translations, while still acting on current
ones, however uncertain they may be.

To cope with particular features of this task, the basic filtering algorithm must be modified
in two main ways. First, agents do not enumerate and update all possible beliefs: since belief-
states themselves contain combinations of continuous probability distributions, there will be
infinitely many available at any time. Instead, only those states necessary are generated and
updated at each step; for many applications, the procedure is straightforward, and is sound so
long as states not generated are properly taken to occur with zero probability. Second, the set
of possible belief-states changes over time: since agents do not generally know all the elements
of the language to be translated in advance, newly encountered components must be added to
the translation-tables along the way.

As an example, consider a simple gridworld problem and a language of communication given
by the agents’ observations (Σ = Ω): the environment is a 2×2 grid; to identify locations, agents
use unambiguous proper names, meaning (1) each square in the grid has exactly one name, and
(2) each name identifies exactly one square. Suppose agent α uses the integers {1, 2, 3, 4} to
name the four squares; the goal is to find a mapping between these names and those used by
another agent that uses as names the letters {A, B, C, D}. Agents communicate grid locations
using their own naming conventions; the other agent receives the message, attempts to interpret
it, and proceeds to the most likely square. An observation follows, indicating whether or not

33

"

?5,5+B5C D0D

8 4

;

1E$

1E$

1E$

#

1

$

F

;

1

;

;

#$

8 4 0

;

1E$

1E$

1E$

#

1

$

F

;

1

;

;

;

1E$

1E$

1E$

#

Figure 7: A new message is added.

the agent has successfully identified the correct location.
Figure 7 shows how α adds newly received messages into its translation table. We assume

that α begins in the sole belief-state τ0 (i.e., α assigns translation τ0 unit probability). We see
that α has previously received two messages, “A” and “B”; further, α has successfully translated
the first of these, since τ0(A, 2) = P (A means 2) = 1. Two more features of the table stand
out. First, each column sums to 1; α knows the components of its own language, and knows
that the distribution for any message must sum properly. Second, rows do not sum to 1; before
α has seen all of the words in the other language, it cannot know how to fill out each row of its
translation table. (Of course, in a simple example like this, α might be able to reason out that
there were only four possible messages, and fill out the table with four entries per row, but we
do not generally presume this to be the case.)

Suppose α now receives a new message, “C”; the belief-state is then updated from τ0 to
τ1. A new column is added to the table: since α already knows that the name “2” corresponds
to message “A”, “C” receives a zero probability for this entry, and all remaining entries are
uniformly distributed, reflecting the proper-name model of the language. Since “2” is translated
as “A”, it will not be translated as any other name, and so the 0 is inserted in the table;
further, α has no reason to think “C” any more likely to name one remaining square in the
grid than another, and so the remaining probability mass is distributed uniformly. Of course,
for ambiguous languages, or ones in which locations can have more than one name, the first
assumption would not hold. As well, in some cases an agent may have reason to favor one
translation over another in advance, and probabilities need not be uniformly distributed.

Having expanded the table, α now chooses an action. Since the probability that “C” means
“1”, “3”, or “4” is the same, it is indifferent which location it visits next. Of course, this need
not be true; in general, the choice of an action is computed based on the most likely translation
for the current message, weighted by the probability assigned to each possible translation table.
Assume that α chooses “1” as the most likely translation: Figure 8 shows the action model
update of α’s belief function (the “else” clause of the filtering algorithm in Figure 6) before
going to the square named by “1”. We assume action outcomes are deterministic: after taking
action Go(1), α is sure to end up at the desired square. Furthermore, the observation sensed
at the end of the action determines precisely whether or not α is correct in its translation (i.e.,
α perceives a particular observation if and only if it has correctly identified the chosen square).
Thus, the update process replaces τ1 with two new possible translations, τ2 and τ3.

Belief-state τ2 reflects the outcome that the translation (C means 1) is correct. In this case,
the entry (1, C) in the table is set to unit probability, and all other entries in the row and
column are set to 0. Again, this is a reflection of the unambiguous nature of the name language;
more complex update scenarios are possible. Note also that the table in τ2 also updates the
probabilities contained in column “B”; since we normalize all columns, the probability mass for
entry (1, B) is distributed over the remaining possibilities. Belief-state τ3, for its part, reflects

34

#

GHIH 1 9J2,,5!!:
9)K%L @ 1E$:

GHIH 1 9&'+*:
9)K%L @ #E$:

8 4 0

;

1E$

1E$

1E$

#

1

$

F

;

1

;

;

;

1E$

1E$

1E$

#"

8 4 0

#

1

$

F

;

1

;

;

;

;

;1E#

;

;

1E#

1

#!

8 4 0

;

1E$

1E$

1E$

#

1

$

F

;

1

;

; 1E#

;

;

1E#

#

Figure 8: The two translations believed possible after Go(1).

the outcome that the translation (C means 1) is incorrect. Here, the only column affected is
“C”; the entry (1, C) is set to 0, and its probability mass distributed over the remaining entries
in that column. Lastly, α assigns predictive probabilities to these two new belief-states before
it takes action Go(1), based on what the outcome of that action can tell us about the chosen
translation. In this case, P (τ2|τ1, Go(1)) is simply the original probability, 1/3, taken from
table τ1, that translation (C means 1) is correct. Similarly, the probability of the incorrect
translation is P (τ3|τ1, Go(1))=(1−1/3)=2/3.

For this environment, the sensor model is also simple: α either senses appropriate obser-
vation for successfully translating “C” or not. We will use the notation OR when we refer to
such an observation to distinguish from the usual observation of the environment. If α does
receive OR, belief-state τ2 is clearly correct and post-observation probability P (τ2|OR) = 1,
while P (τ3|OR) = 0 and the latter belief-state can be discarded. If α does not receive OR,
then the opposite holds. In either case, α is left with a single belief-state on which to base its
next actions. If that message is one of “A”, “B”, or “C”, then an action chosen based upon
the existing probabilities, and the procedure shown in Figure 8 is repeated. If it is some new
message, “D”, then that message is added to the table of translations as in Figure 7, and the
entire procedure repeats itself. Again, we stress that for more complex cases, the relevant up-
dates can be more complicated. In particular, it need not be the case that α is left with but
one translation at the end of the process of action and observation, since observed rewards may
not determine single states, and actions may not have determinate outcomes. Still, the basic
principles remain the same.

7 Experimental Results

We first present results from running experiments on two different scenarios with increasing
complexity. Then, we discuss the possibility of extensions involving non-deterministic actions
and multiple contexts of interpretation. The first scenario (first described in [18]) deals with
some relatively simple examples of suitable problems, where agents do not need to communi-
cate their actions, only their observations. In that domain, two agents work to meet at points
in a gridworld environment, following a relatively simple procedure, with each acting in turn,
according to the best estimate of the location of the other. Messages describing each agent’s

35

location are exchanged, and translations of those messages are updated after each step, depend-
ing upon whether or not the agents do in fact meet one another. Since agents are certain after
checking some location whether or not the other agent was in fact there, the probability that the
other observed that location is either 0 or 1, and the suitability of the Dec-MDP-Com follows
immediately. Messages are chosen from the agents’ observations, and were tested with different
levels of structure. The local policies of action were assigned based on a locally goal-oriented
mechanism [26]. That is, each agent acted towards a local goal that was computed as a function
of the agent’s own local observation and the interpretation of the message received.

In the second domain (first described in [1]), we test a network of pumps where agents can
control the flow through different ducts. The objective is to maximize the outgoing flow while
minimizing the usage of ducts. In this case the messages can be about both observations and
actions. The local policies of actions are given to the agents based on a prior computation of
the centralized solution assuming one mutual language. Translations are again updated based
on the Bayes filtering algorithm (the agents collect all their messages, both observations and
actions, and then do the same steps as in the algorithm). In both cases, the process is Markovian
and therefore belief updates are based only on the last translation and last belief-state.

We note one important fact about these examples, before considering the details. In both
sets of experiments, agents worked on updating translations until such a time as they had
completely translated one another’s languages. However, in neither case is the agent directly
rewarded for a correct or complete interpretation. That is to say, while learning language
facilitated the optimal solution of the relevant tasks, it was not in and of itself the main motive
force. In the grid-location task, for instance, our agents happened to visit all squares of the
grid with equal frequency, and so deriving a reward involved learning the vocabulary covering
the entire grid. Nothing would have been changed, however, if one or both of the agents
simply did not visit certain parts of the grid at all. In such a case, agents would work only on
translating messages they actually received; portions of the vocabulary that covered unvisited
grid-regions would not have been translated effectively, but this would make no difference to
overall reward earned. Furthermore, as we show in consideration of the pumps-world domain,
the average rate of accumulated reward is very nearly maximized long before the entire language
of each agent is entirely translated, suggesting a role for approximate methods that forego
complete translation where it no longer brings appreciably greater reward (see the discussion
centered around Figure 14). In each case, then, agents are driven directly by the rewards in
their environment, not by some special class of rewards specifically tied to the form of their
translations—so far as language learning allows them to accumulate more such reward, they
update their translations, and otherwise, they do not.

7.1 Gathering example

We consider a simple observation structure that can be interpreted as the values the agents
perceive after reaching a location assumed to be their local goal. Each agent knows its optimal
local policy composed of deterministic actions: for every possible local goal, each agent knows
with certainty the observation it should receive if it correctly interpreted the message.

Our initial experimental results demonstrate the basic feasibility of the given approach to
the language-learning problem, and illustrate how performance is affected by various features,
such as the structure of the observations or of the language itself. We ran a number of tests
involving the basic cooperative task for two agents in a simple gridworld environment, averaging
results over one hundred runs with random starting locations. Work proceeds in turns; on even-
numbered rounds:
(1) Agent 1 is the actor, randomly choosing a square and sending a message to agent 2 to that

36

M21L5K %/ (2K3! /%K 3'15!*'3N2'N5

 >;;

 1;;;

 1>;;

 #;;;

 #>;;

 $;;;

 $>;;

 F;;;

 F>;;

 >;;;

 >>;;

 F; O; 8; 1;; 1#; 1F;

8
BN

= 3
%=

 %
/ (

2K
3!

E'
N5

3(

GK+7 J+Q5

 ;

Figure 9: Results for simple-name language.

effect.5

(2) Agent 2 is the translator, choosing a square based on its current translation of agent 1’s
language.

(3) Agent 2 receives an observation, OR, depending upon its choice, and updates its beliefs
accordingly.

On odd numbered-rounds, agents 1 and 2 switch roles; the task continues until one agent has
successfully translated the other’s language. Currently, this involves one agent assigning unit
probability to a complete translation table, i.e., every row contains exactly one entry with
probability 1 (and the rest 0). Obviously, this could be modified to involve other, perhaps more
tolerant, criteria of success.

In step (2) of the process, the choice of a square is based on the current message and belief-
state of the translator. This belief-state is a probability distribution over translation tables; for
each such table τi, let Pτi be the probability that τi is the correct translation. Each table τi
maps components of received messages to possible meanings; for any complete received message
σj (in the actor’s language) and meaning σk (in the translator’s own language), let τi(σk,σj)
be the probability computed from table τi that (σj means σk). The most likely meaning of
the message σj is thus calculated as that σk satisfying: maxk

∑
i Pτi · τi(σk,σj). The various

possible tables τi are chosen based on the presumed structure of the two given languages; the
probabilities Pτi are updated using the Bayes-Filter algorithm.

Our first study involves a simple language of unambiguous names (as in Section 6.3). That
is, each agent assigns to each square in the grid a fixed, unambiguous name, meaning that each
square has but one name, and each name corresponds to but one square. Each agent attempts
to learn the other’s mapping from names to squares. Observations are simple: translators sense
0 as the value of OR for correctly identifying the square chosen, and otherwise the observation’s
value is 1; translations are updated in either case. Figure 9 charts the average number of turns
as translator an agent must take to arrive at a complete translation for this language. The ratio
of grid size to number of turns is relatively stable: for grid size G × G, the number of turns is
roughly G2/4. We can see that agents pursue a decision-theoretically optimal course of action
here. Translators initially assign novel messages a uniformly distributed probability of naming

5Our ongoing research investigates cases in which agents can choose particular messages non-randomly, to guide
the learning process. In particular, if the agents already learned some part of the language, then it is reasonable
that they will choose locations corresponding to the remaining messages instead of choosing uniformly.

37

Language Turns Time (s) Max. Beliefs
Names 156 0.5 1

Coordinates 27 119.3 13812

Table 1: Two languages on a 25 × 25 grid.

squares for which the name is not already known; further, after visiting any square, the translator
knows the exact (0/1) probability that the latest message names it, based on the observation
sensed. Once some message σi is known to correspond to the name of square x, the translator
always visits x upon receiving σi. Conversely, the translator never visits x once it knows that
current message σj cannot name it. Finally, for messages not yet translated with certainty,
the most probable translation is chosen (breaking ties randomly). Since the translation-action
strategy is thus optimal with respect to expected reward, it will not in general be possible to do
better in terms of average number of attempts before achieving a complete translation. That
the algorithm does not converge a little faster is explained by the fact that the observation
information gained by the translating agent is not shared with the acting agent; the actor may
thus randomly select a square multiple times, even after the translator already knows how to
translate the name given that square.

Such a simple example shows the elementary feasibility of the filtering approach, but we are
also interested in testing more complicated languages and observation structures. Within the
same gridworld context, we also investigate messages in a language of (x, y)-coordinate pairs.
Due to this structure, translation updates carry more information than when simple names
are concerned. However, the number of possible translations may increase drastically after
each update. In the name-language, the observation perceived after any action determined a
single possible belief-state for the translator: either the translation of some name is known with
certainty, or it is absolutely certain that one particular translation is incorrect. In a language
of coordinate pairs, with a basic success/failure observation structure, things are not so simple.
If selection of some square is successful, of course, the translation of some message (σx,σy)
is known with certainty, and any other possibilities for that pair are eliminated. If selection
is unsuccessful, however, there are three options: either both translations of σx and σy are
incorrect, or only one of them is. In the worst case, then, the essentially uninformative (0/1)
observation structure can cause a large increase in the number of belief-states an agent has
to entertain, affecting overall performance. Indeed, this increase may be so great that while
translation uses a smaller number of turns to achieve certainty, overall time spent is much worse,
as agents have to update many more beliefs in any given turn (see Table 1). In general the
problem becomes potentially intractable for the combination of the coordinate-language and an
essentially uninformative observation function.

To improve the situation, we consider other possible observation structures, which give the
translator more information about what may have gone wrong. These are: OR 0/1/2: agents
observe a 0 if translation is correct, 1 if translation fails but one coordinate is translated correctly,
and 2 if failure results because both coordinates are translated incorrectly; OR 0/1/2/3: agents
receive 0 if translation is correct, 1 if it fails but σx is translated correctly, 2 if it fails but σy

is translated correctly, and 3 if failure results because both are translated incorrectly. The
more informative observations greatly improve performance in terms of all problem dimensions:
number of turns before translation is successful, maximum number of beliefs that an agent must
entertain at any time, and overall time of completion.

Figure 10 compares results for the name-language and for the different variations of the
coordinate-language, in the context of a 25 × 25 grid. Scale here is logarithmic, with values

38

RST H? ;E1E#E$
RST H? ;E1E#
RST H? ;E1

U%
N!

,'
*5

 B
'*

25
!

 1;;

 1;;;

 1;;;;

 1;;;;;

I2K3!E8N53(

V'W= 45*+5/!

I+15E8N53(

)K%65K M'15!

 1

 ;=1

 1;

Figure 10: Different languages on a 25 × 25 grid.

RST H? ;E1E#
RST H? ;E1E#E$

M21L5K %/ (2K3! /%K ,%%K7+3'(5!*'3N2'N5 X+(Y 7+//5K53(%L!5KB'(+%3!

 ;

 1;;

 1>;

 #;;

 #>;

 $;;

 $>;

 F;;

 F>;

 >;;

 1;; #;; $;; F;; >;; O;; Z;;

8
BN

= 3
%=

 %
/ (

2K
3!

E'
N5

3(

GK+7 J+Q5

 >;

Figure 11: Comparing observation functions.

normalized to the OR 0/1/2/3 case; results average over 100 random runs. In general, the extra
information provided by the coordinate-language as opposed to the name-language significantly
reduces the number of turns taken. Further, with respect to the coordinate-language alone, the
more informative observation functions lead to significantly better results in terms of maximum
number of belief-states ever updated in one pass of the filtering algorithm, and thus in terms
of overall time taken. Such relations are not absolute, however. For instance, although the
maximum number of beliefs is somewhat larger for the OR 0/1/2 case than for the name-
language, the increase in information gained by using coordinates still decreases the number
of turns enough to lead to a decrease in overall time taken in the former case. In the single
case shown, and in general, the performance of the two cases with more structured observations
was essentially the same; while the 0/1/2/3 structure led to slightly improved performance,
the differences were not significant (see Figure 11). Finally, Figure 12 shows the increase in
the number of turns taken as the grid grows in size for both the name-language and for the
coordinate-language with 0/1/2 observation structure. We did not test the name-language for
very large grids, since the time taken quickly became unmanageable; in any case, the difference
is evident for the limited range considered.

39

RST H? ;E1E#

GK+7 J+Q5

 ;

M'15!

 1;;;

 #;;;

 $;;;

 F;;;

 >;;;

 1;; #;; $;; F;; >;; O;; Z;;

8
BN

= 3
%=

 %
/ (

2K
3!

E'
N5

3(

M21L5K %/ (2K3! /%K 3'15!*'3N2'N5 B5K!2! ,%%K7+3'(5!*'3N2'N5

Figure 12: Names vs. coordinates.

7.2 A Network of Pumps Example

To explore the viability of our approach in more realistic settings, we implemented our language-
learning protocol for a reasonably complex Dec-MDP-Com. Each instance of the domain in-
volves two (2) agents, each in control of a set of n pumps and m flow-valves in a factory setting,
with parameters n and m varied to generate problem instances of different sizes. At each time
step, each agent separately observes fluid entering the system from one of two different inflow
ducts, along with the pumps and valves under its own control.

The task is then to maximize flow out of the system through one of several outflow ducts,
subject to the constraint that the number of ducts be minimized. Accordingly, reward is directly
proportional to outflow amount, minus the number of ducts used. Probabilistic effects arise
because each of the pumps and valves is susceptible to variations in throughput, dependent
upon whether the particular component was used to route flow in the prior time step. Any
excess flow not routed through the system on a given time step is considered wasted, and is
dropped from consideration.

Formally, we specify the problem as a Dec-MDP-Com:

M = 〈S, A, P, R, Σ, CΣ,Ω, O, T 〉,

with elements as follows:

(a) S: the state set is described by flow through the two inflow ducts, in1 and in2, two sets
of pumps, p1

1, . . . , p
1
n and p2

1, . . . , p
2
n, and two sets of valves, v1

1, . . . , v
1
m and v2

1, . . . , v
2
m.

Initially, all such flows are set to zero (0).
(b) A: at each time-step each agent αi chooses one action to control the pumps pi

r (on, off,
forward, back) or the valves vi

s (open, shut).
(c) P : the transition function directs flow according to actions taken; however, pumps and

valves fail to respond to commands probabilistically, based on whether or not they were
used in the prior time-step.

(d) R: the total reward is given by (in/out) − d, where in is the total units of inflow, out is
the total units of outflow, and d is the number of outflow ducts used.

(e) Σ: each agent αi possesses messages corresponding to each of its possible actions, identi-
fying labels for every pump or valve in the system, as well as the observed units of inflow
through duct ini.

40

(f) CΣ : the cost of all messages is zero (0).
(g) Ω: each agent αi can observe its own inflow duct ini, along with all pumps pi

r and valves
vi
s that it controls; further, agents observe the system-wide reward.

(h) O: the observation function takes any state of the system and returns the observable
portions for each agent.

(i) T : the problem has an infinite time horizon.

While the state space of such a problem can be quite large, given the number of variables
governing inflow and system settings, it is still efficiently solvable from a single-agent, centralized
perspective. By taking the point of view of one agent observing all states globally, and acting
in place of both agents simultaneously, the problem is solved offline, using typical dynamic-
programming methods.

Further, the environment is in fact an example of a suitable Dec-MDP-Com. The problem is
both freely describable, by the cost function CΣ, and (for the purposes of solving the problem)
fully describable, as given by the set of messages Σ. Furthermore, agents are aware of the
overall structure of the pumping system, and can observe certain basic effects of each other’s
actions, by observing how many units of flow are routed through their own observable pumps
and valves. These observations, combined with the observed total reward, allow them to reason
backwards to what those actions may have been, as well as to the total number of units of flow
entering the system through the other agent’s inflow duct. While certain actions may fail to have
the desired effect, given pump or valve failure, actions never affect the wrong pump or valve;
furthermore, no pump or valve fails permanently. Thus, the observed effect of any action taken
by the other agent will either completely confirm which action was taken, or give the agent no
evidence to update its translation of the last message. Taken together, these conditions ensure
that incorrect interpretations are eventually eliminated in favor of correct translations. While
this solution requires that agents know the overall structure of the domain, this is simply the
same assumption required for usual optimal offline methods of solving such problems, and so
we consider it no real defect in our method.

In line with the elementary action protocol, agents swap messages, choose and communicate
actions based on their current beliefs, and then act, repeating the process to converge towards
mutual understanding and optimal action. Thus, these experiments expand upon those of
the previous section, both by including the language of actions where before agents could only
speak about state observations, and by extending the method to a appreciably more complicated
domain. Using their model of the environment, agents update belief-states using the two-step
Bayesian Filtering algorithm as before, first projecting possible belief-states before acting, then
updating those beliefs given the results of their actions (see Section 6.1). Note that there is no
update between the two sets of observation- and action-messages. Rather, the agents collect all
their messages, then do the steps of the algorithm as before. That is, they first do the predictive
update, generating possible next belief-states before taking the action; then they act, and do
the retroactive update after the next observation comes in. Actions are chosen based on the
translation as it exists following the observation on the prior action step.

Agents interact until each learns the language of the other with certainty—achieved when
each agent αi reaches a belief-state βi with distribution Pτ i, and for any message σj received
from the other agent, there exists exactly one message σi such that Pτ i(σi, σj) = 1. In this
work, certainty provides a useful stopping condition, since the domain is one in which agents
do in fact learn all of each other’s messages in the course of optimizing action. We are now
investigating cases in which complete certainty is not necessary, as when agents do not need to
learn every part of another’s language in order to achieve optimal performance, and convergence
actually happens more quickly than where the entire set of messages is learned.

41

[%/ U'3N2'N5 U5'K357

 #;

 F;

 O;

 8;

 1;;

 ; #;;; F;;; O;;; 8;;; 1;;;; 1#;;;

),
(=

U5
'K

3+
3N

)
K%

NK
5!

!

I+15!J(56! +3 U5'K3+3N)K%,5!!

[%/ ?5X'K7 \'K357

 ;

Figure 13: Reward accumulated as language is learned.

Our results show that the elementary protocol converges to optimal policies in each prob-
lem instance. Time of convergence depends upon the basic size of the problem, and thus the
vocabulary of the agents necessary to describe all actions and observations, and also upon the
frequency of certain rare states or actions. As conditions vary probabilistically, some states in
the environment are encountered very infrequently, and agents do not learn related terms in the
other’s language. By design, we insured that all states and actions are eventually encountered;
current work also investigates cases where agents do not ever visit some parts of the state space,
and so whole parts of the language are unnecessary to optimal action.

The most interesting and suggestive results have to do with the rates at which agents
accumulate reward, relative to how much of the language they have learned. Figure 13 gives
one example, for a problem featuring 100 vocabulary items for each agent. The graph shows the
percentage of total accumulated reward, and total shared vocabulary, at each time step in the
process of learning and acting in the Dec-MDP-Com. In a problem of this size, agents converge
upon a complete understanding of one another, and are able to act entirely optimally from then
on, in approximately 12, 000 time steps, involving only a few minutes of computing time.

As can be seen, the language-learning process (top, dotted line) proceeds generally quite
steadily. The rate of reward accumulation, on the other hand, grows with time. Initially,
language learning outpaces reward gain given that knowledge, as agents still find many of the
actions and observations of others hard to determine. After about 2, 900 time steps, fully
25% of the language has been learned, but only just over 6% of the eventually accumulated
reward. By the time 50% of the language has been learned, nearly 6, 200 steps in, things have
improved somewhat, and some 27% of the reward has been earned. As time goes on, the rate of
accumulation of reward actually increases to the point that it narrows the gap considerably, as
agents now know much of what they need to communicate, and spend more time accumulating
reward in already familiar circumstances, without learning anything new about the language of
the other agent. Essentially the same curves, although differing in their time of convergence,
are exhibited by problem instances of all sizes.

Figure 14 plots normalized average rate of reward accumulation as a function of time. As can
be clearly seen, by far the largest proportion of the overall reward is accumulated relatively early
in the learning process. Such performance profiles reveal the possibility of employing approx-
imate methods, in which we may decide to stop the learning process early without sacrificing
much in overall value. Such approximations are open topics for future research.

42

I+15!(56!

;=#

;=F

;=O

;=8

1

; #;;; F;;; O;;; 8;;; 1;;;; 1#;;;

8
BN

= ?
5X

'K
7E

I+
1

5!
(5

6

;

Figure 14: Normalized average rate of accumulated reward.

It is to be stressed that these results are first steps in the process of dealing with the
problem of learning to communicate in decentralized settings. In particular, there are presently
no ready candidates for comparison between different algorithms, since the communication-
learning problem is somewhat new. Note also, that giving upper and lower baselines for these
results is straightforward, but uninteresting. The lower bound on performance is given by agents
who do not communicate at all. In such cases, since we are not working on solving the problem
of learning how to act at the same time as learning how to translate, there is nothing more for
the agents to learn. Given their model of initial starting conditions, they will simply choose
actions maximizing expected value, and performance will be constant. (For instance, in the
gridworld problems, agents will simply pick a square at random, guessing where the other agent
is; for a grid of n squares in total, the expected average reward over time is then the constant
function n−2.) While it would be interesting to extend our work to cases in which agents still
had learning to do even in the absence of learning about language, this would generally make
the problem of translation updates prohibitively difficult; therefore, we leave that aside in the
current work. Similar considerations apply to the case of upper bounds, given by agents who
already share a language of communication. In such cases, as we have shown, the fully and
freely describable nature of the problems makes generating optimal solutions straightforward,
and agents will simply accumulate maximum expected average reward at all times. Again the
plot of this reward will be a simple constant function. (For instance, the reward plotted for
the pump-world case as shown in Figure 14 would simply be the unit line, which the learning
case already shown would converge towards.) Again, if we added learning how to act into our
problems, this would be more interesting, but for now it is not.

7.3 Learning to Communicate With Non-deterministic Actions

Here we note that the assumption that actions are deterministic, as in the gridworld problems,
is of little consequence to the language-learning problem, and is simply for convenience. So long
as agents can fully observe their local states following any action, the presence of stochastic
actions does not fundamentally influence the applicability of the given methods. Suppose, for
instance, that in the gathering example just described the action Go(1) might in fact lead the
agent to either squares 1 (with 70% probability) or 2 (30%). Then, the action model update step
would simply produce two distinct sets of belief-states, {τ1

2 , τ1
3 } and {τ2

2 , τ2
3 }, corresponding

to the possible outcomes for the translations (C means 1) and (C means 2) respectively, with

43

each set weighted by the corresponding probability. In a fully observable environment, however,
once the agent took the action Go(1), and observed whether or not it was in either square 1
or 2, one of these sets would simply be discarded (i.e., its probability set to 0), and all else
would proceed as usual. In the context of our empirical studies in the pump-world domain, the
addition of stochastic actions therefore added nothing of import. Runs involving such actions
suffered no notable effects under any of our measures. Of course, in environments in which an
agent’s state is only partially observable, the presence of stochastic actions can lead to quite
different results; however, such environments generally make both online learning and offline
solution techniques intractable even in the presence of deterministic actions [4], and lie outside
the scope of our present research.

7.4 Switching Between Contexts

So far, we have assumed that agents share a single context. That is, agents each begin with a
single model of the probabilistic structure of the other’s language, based upon the fixed shared
task at hand, and have been able to learn how to interpret messages within that model. A
possible extension to our approach is to assume that there may be several contexts, reflecting
different models of what the other agent is attempting to communicate. One way such a case
could be handled would be to run the filtering algorithm in a sequential manner. That is, agents
begin using one model of the relevant probabilities, and switch to the next context if the previous
one is recognized to be invalid. Finding the conditions upon which a context switch must occur
depends on the knowledge we have on the characteristics of the languages implemented by
the agent. For example, assuming that the agents’ languages are non-ambiguous and of the
same size, a context switch must occur if either of the following two conditions becomes true.
Assuming that σj ∈ Σj are the messages sent by the actor, and σi ∈ Σi are the messages in the
translator’s own language, we switch contexts if:

1. ∃σj1 ,σj2 ,σi s.t. τi(σi,σj1) = τi(σi,σj2) = 1. That is, two different messages in the actor’s
language are translated to the same message in i’s language. This invalidates the fact
that the languages are non-ambiguous.

2. ∃σj ∀σi, τi(σi,σj) = 0. That is, there is a message in the actor’s language that cannot
be translated to any message in i’s language. When languages have the same number of
messages and these are non-ambiguous, this condition necessarily invalidates the current
context being tested.

Further exploration is needed of the possibilities for this sort of multiple-context learning.

8 Related Work

Our approach to the problem of learning to communicate is to integrate this learning process
into the decentralized control process which contains it. In such a framework, agents learn to
interpret messages while acting towards some global objective. We are interested in a learning
process that will improve the agents’ interpretations of each other’s messages, leading con-
sequently to optimal choices of action. This is a different approach from the reinforcement
learning approach taken by Yanco [45, 46], where a reinforcement signal is given explicitly for
the interpretation of the messages. Moreover, her communication learning occurs in a stateless
environment. We reinforce the agents only for their actions, which implicitly are chosen accord-
ing to the agents’ interpretation of the messages received. Our approach is thus more general
and it can handle more complex language structures. We have also shown necessary and suffi-
cient conditions under which learning to communicate can lead to optimal behavior. Yanco’s

44

work does not provide any finite convergence proof. Her tests, based on the interval-estimation
algorithm [27] consider the frequency of the positive reinforcement obtained for messages and
the actions taken as a consequence.

Robotic communication is also studied by Balch and Arkin [3]. Their approach is inspired
by biological models and refers to specific tasks such as foraging, consumption and grazing. The
agents are assumed to share the meanings of the messages exchanged. Their empirical study
was performed in the context of reactive systems and communication was free. Their aim was
not to study the language learning problem as we do here.

Studies on the evolution of human language [5] have been recently pursued using computa-
tional models.6 Komarova and Niyogi [28] study in particular how one language can be affected
by other languages evolving in the same population. They also consider languages as proba-
bilistic associations between form (the message structure) and meaning (i.e., the mapping from
a message to an observation that expresses some feature of the environment). Although agents
are embedded in some world, the process of learning to communicate is not related directly
to the agents’ actions. In our work, on the contrary, this is fundamental, as agents learn to
interpret each others’ messages with respect to goals or some other coordinated behavior they
aim at achieving. Our approach is an engineering-based approach. Its purpose is to enable sys-
tems, composed of agents programmed to speak in different languages, to achieve coordination
considering the context of their planning.

At the intersection between cognitive science and computational simulations, research has
studied the evolution of lexicons and the problem of learning a language from positive exam-
ples [42, 17]. Here, we study how agents can learn to interpret each other’s messages in order
to improve global performance. Adaptive language games [40] and the anchoring problem ([10]
and the cites therein) are also relevant areas of study. In particular, the latter work raises
questions concerning formal models for the study of the language-learning problem. We present
such a formal framework and a solution to the problem, formalizing the communication-learning
problem as one of decentralized control. Our previous research has focused on the computation
of optimal joint policies when a shared language of communication is assumed (in particular,
when and what agents should communicate) [25]. Here, agents need to learn such a language in
order to optimize their joint behavior.

The distributed artificial intelligence community has studied how autonomous agents can
coordinate their actions while acting in the same environment (e.g., see work by [15, 21, 38]).
A known and fixed language of communication was assumed when communication was allowed.
KQML [16] is an example of one standard designed to pre-set the possible communication
between the agents. We believe that robust decentralized systems require that agents adapt their
communication language when new situations arise or when miscoordination occurs possibly due
to misunderstandings. Such miscoordination can either be revealed in practice, or in simulation,
and serves as a signal for reinterpretation of messages received.

Other work has proposed that rational and self-interested agents can negotiate to evolve a
shared communication language [23]. In such a context, conflicts between these agents arise
because each one prefers a distinct communication language, based on the cost of employing
that language and the local utility it may yield. We are interested instead in communication
that enables efficient coordination of agents towards a mutual goal. Communication serves to
increase the overall utility of the system as a whole; the particular language learned will thus
be directly related to this system-wide utility, rather than to the individual cost of using that
language.

Importantly, our work relies on the idea that agents treat communicated messages as having
some sort of meaningful structure. Initially, agents presume that others involved in a shared

6Evolution of communication among machines was also studied with an ALife approach, see for example [30]

45

cooperative task are communicating information relevant to that task. This has the effect of
reducing the number of possible interpretations an agent has to consider, making the learning
process more manageable. As well, treating messages as having meaningful structure speeds
learning and allows for generalizations between various environments. Our empirical results
confirm the advantages and complications of this approach. Treating messages as having some
semantic structure can allow agents to learn their meanings more quickly; at the same time,
the specification of this structure and the learning updates related to it can become more
difficult. The concentration on semantics further distinguishes our approach from such prior
work as [43], in which a generalization of the perceptron algorithm was proposed to allow a
multiagent system to collectively learn a single shared concept. They show the convergence of a
perceptron algorithm adapted to mutual learning of a concept by multiple agents. This process
lacks any semantics, which we do consider to optimize the joint planning of the agents. We
study the language-learning problem as part of the control process the agents are involved in.
The agents can improve their utilities if they learn to communicate in a way that the messages
are understood appropriately.

Game theorists [29, 2] have also looked at communication between players, although the
focus is not usually on learning the communication language. For example, Wärneryd [44], and
Blume and Sobel [7] study how the receiver of a message may alter its actions in games where
only one agent can send a single message at no cost.

Finally, philosophically, this work stems from thought originating with the American philoso-
phers Quine, Davidson, and Putnam. Quine [35] argues that interpreting speakers of foreign
languages is essentially the same as interpreting speakers of our own. On this view, we are al-
ways constructing “translation manuals” between one another’s utterances, and we understand
others by relating what they say and do to what we ourselves would say and do in the con-
text of our shared environment. Further, translation is always under-determined by available
evidence, and there are often multiple competing possible translations of another’s language.
Davidson [11] and Putnam [34] extend these ideas. Davidson has written on what he calls
“radical interpretation,” exploring the idea that all understanding of others is a fundamentally
indeterminate procedure of making and adjusting predictions about their behavior, based on
very basic assumptions about the structure of their beliefs and intentions. Again, this process is
essentially the same whether or not we share a common language with the one being interpreted.
We update our interpretation of other agents constantly, based upon our success or failure in
predicting how they will behave, hoping at best to converge on some generally successful set of
expectations regarding that behavior. Putnam’s famous essay, “The Meaning of Meaning” [34],
examines, among other things, how changing context can alter the meaning of even apparently
well-understood terms in a language. Together, these ideas suggest that designers of commu-
nicative agents must allow that even well-defined protocols and languages can lead to cases in
which the interpretation of messages become ambiguous or error-laden, and must be adjusted
in order to make coordination possible.

9 Conclusions and Future Work

The design of genuinely autonomous agents requires that those agents have the ability to learn
how to interpret each other’s messages, and consequently act adaptively. Multiagent systems
can be made more robust if they can autonomously overcome problems of miscoordination, aris-
ing when they encounter new situations or receive messages that are not completely understood.
This paper presents and analyzes a formal framework in which agents learn to communicate
while they are acting to maximize some global objective. Specifically, we have combined the
problem of learning to communicate with that of maximizing overall system utility in a de-

46

centralized decision problem. We have explained how agents can, in general, improve their
coordination while improving their interpretation of messages exchanged in languages that they
do not initially share. This model involves the notion of a translation between languages, and
solves the problem of learning to communicate by adjusting these translations using proba-
bilistic updating schemes. We lay the groundwork for further investigation by presenting and
analyzing a formal decision-theoretic model of the problem, and by initiating empirical studies
into algorithmic methods for solving it.

As shown, agents employing such update schemes can achieve value-maximizing policies so
long as the decision problems they are working with have other important features. Prior work
on decentralized Markov decision processes and communication has focused on messages that
are composed simply of basic elements of the model, such as observations and actions. We have
shown that even for such simple languages elements, the process of learning to interpret these
messages in a desirable manner can become very difficult if our problem instances do not have
the right structural properties. These features, such as free and full describability, along with
our defined notion of suitability, are both necessary to, and sufficient for, the feasibility and
success of the updates and learning methods we present, at least for the purposes of learning
to communicate in languages composed of agents’ observations and actions. We are interested
in further research into more complex languages, allowing agents to convey other forms of
information about the problems they are attempting to solve. While such richer languages
may allow optimal policies to be enacted in a more efficient manner, they present additional
difficulties for the learning process. We would like to investigate the possible benefits arising
from more complex languages, and look at what new features of problem instances may be
necessary if communication in such languages is to be learned.

Finally, our work so far has involved translation updates which converge to certainty, and
lead to action policies that are optimal for all points encountered from the point of convergence
onwards. This raises interesting questions. In particular, we are interested in the possibility
of optimal behavior even in the absence of certainty about translation. Similarly, we are in-
terested in the possibility of near-optimal behavior, and the trade-offs between optimality and
certainty in the translation process. Our experimental results suggest that in many problems
it will be possible to achieve very nearly optimal results without certainty about large portions
of the language of communication. We are therefore interested in investigating approximate
approaches to the problem of learning to communicate.

References

[1] M. Allen, C. V. Goldman, and S. Zilberstein, “Learning to communicate in decentralized
systems,” in Proc. Workshop on Multiagent Learning, Twentieth Natl. Conf. on Artificial
Intelligence (AAAI Tech. Report WS-05-09), Pittsburgh, PA, 2005, pp. 1–8.

[2] R. J. Aumann and S. Hart, editors, Handbook of Game Theory with Economic Applications,
vol. 2, Elsevier: North Holland, 1994.

[3] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic systems,” Au-
tonomous Robots, vol. 1 pp. 1—25, 1994.

[4] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of decentral-
ized control of Markov decision processes,” Mathematics of Operations Research, vol. 27(4)
pp. 819—840, 2002.

[5] Y. Bhattacharjee, “From heofonum to heavens,” Science, vol. 303 pp. 1326–1328, 2004.

47

[6] C. Boutilier, “Sequential optimality and coordination in multiagent systems,” in Proc. Six-
teenth Intl. Joint Conf. on Artificial Intelligence, Stockholm, Sweden, 1999, pp. 478–485.

[7] A. Blume and J. Sobel, “Communication-proof equilibria in cheap-talk games,” Journal of
Economic Theory, vol. 65 pp. 359—382, 1995.

[8] A. Bonarini and P. Sassaroli, “Opportunistic multimodel diagnosis with imperfect models,”
Information Sciences, vol. 103(1–4) pp. 161–185, 1997.

[9] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman, “Solving transition independent
decentralized MDPs,” Journal of Artificial Intelligence Research, vol. 22 pp. 423–455, 2004.

[10] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring problem,” Robotics and
Autonomous Systems, vol. 43(2-3) pp. 85–96, 2003.

[11] D. Davidson, Inquiries into Truth and Interpretation, Oxford University Press: Oxford,
England, 1984.

[12] E. H. Durfee and V. R. Lesser, “Using partial global plans to coordinate distributed problem
solvers,” in A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc.: San Mateo, California, 1988, pp. 285–293.

[13] K. S. Decker and V. R. Lesser, “Generalizing the partial global planning algorithm,” Intl.
Journal of Intelligent Cooperative Information Systems, vol. 1(2) pp. 319–346, 1992.

[14] A. Doucet, “On sequential simulation-based methods for bayesian filtering,” Department of
Engineering, University of Cambridge, Technical Report CUED/F-INFENG/TR.310, 1998.

[15] E. H. Durfee, Coordination of Distributed Problem Solvers. Kluwer Academic Publishers:
Boston, MA, 1988.

[16] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication language,” in
J. Bradshaw, editor, Software Agents, MIT Press: Cambridge, MA, 1997.

[17] L. Firoiu, T. Oates, and P. Cohen, “Learning regular languages from positive evidence,”
in Proc. 20th Annual Meeting of the Cognitive Science Society, Madison, WI, 1998, pp.
350–355.

[18] C. V. Goldman, M. Allen, and S. Zilberstein, “Decentralized language learning through
acting,” in Proc. Third Intl. Joint Conf. on Autonomous Agents and Multiagent Systems,
New York, NY, July 2004, pp. 1006–1013.

[19] P. Gmytrasiewicz and P. Doshi, “A framework for sequential planning in multiagent set-
tings,” Journal of AI Research, vol. 24 pp. 1–31, 2005.

[20] C. Ghidini and F. Giunchiglia, “Local models semantics, or contextual reasoning = locality
+ compatibility,” Artificial Intelligence, vol. 127 pp. 221–259, 2001.

[21] B. J. Grosz and S. Kraus, “Collaborative plans for complex group action,” Artificial Intel-
ligence, vol. 86(2) pp. 269—357, 1996.

[22] C. V. Goldman and J. S. Rosenschein, “Emergent coordination through the use of cooper-
ative state-changing rules,” in Proc. Twelfth Natl. Conf. on Artificial Intelligence, Seattle,
WA, 1994, pp. 408–413.

48

[23] P. J. Gmytrasiewicz, M. Summers, and D. Gopal, “Toward automated evolution of agent
communication languages,” in Proc. 35th Hawaii Intl. Conf. on System Sciences, Hawaii,
2002, p. 79.

[24] C. V. Goldman and S. Zilberstein, “Optimizing information exchange in cooperative multi-
agent systems,” in Proc. Second Intl. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, Melbourne, Australia, 2003, pp. 137—144.

[25] C. V. Goldman and S. Zilberstein, “Decentralized control of cooperative systems: Cate-
gorization and complexity analysis,” Journal of Artificial Intelligence Research, vol. 22 pp.
143–174, 2004.

[26] C. V. Goldman and S. Zilberstein, “Goal-oriented Dec-MDPs with direct communication,”
Computer Science Dept., University of Massachusetts at Amherst, Technical Report 04–44,
2004.

[27] L. P. Kaelbling, Learning in Embedded Systems, MIT Press: Cambridge, MA, 1993.

[28] N. Komarova and P. Niyogi, “Optimizing the mutual intelligibility of linguistic agents in a
shared world,” Artificial Intelligence, vol. 154 pp. 1–42, 2004.

[29] R. D. Luce and H. Raiffa, Games and Decisions, John Wiley and Sons, Inc.: New York,
NY, 1957.

[30] B. MacLennan, “Evolution of communication in a population of simple machines,” Depart-
ment of Computer Science, University of Tennessee, Knoxville, Technical Report CS90-99,
1990.

[31] NASA, “Mars climate orbiter failure board report,” available at : ftp://ftp.hq.nasa.
gov/pub/pao/reports/1999/MCO_report.pdf, 1999.

[32] C. H. Papadimitriou and J. Tsitsiklis, “The complexity of Markov decision processes,”
Mathematics of Operations Research, vol. 12(3) pp. 441–450, 1987.

[33] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming,
Wiley: New York, NY, 1994.

[34] H. Putnam, “The meaning of ‘meaning’,” in Mind, Language and Reality: Philosophical
Papers Volume 2, Cambridge University Press: Cambridge, England, 1975, pp. 215–271.

[35] W. V. O. Quine, Word and Object, MIT Press: Cambridge, MA, 1960.

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 2000.

[37] L. Serafini and P. Bouquet, “Comparing formal theories of context in AI,” Artificial Intel-
ligence, vol. 155 pp. 41–67, 2004.

[38] R. G. Smith, “The contract net protocol: High level communication and control in a
distributed problem solver,” in A. H. Bond and L. Gasser, editors, Readings in Distributed
Artificial Intelligence, Morgan Kaufmann Publishers, Inc.: San Mateo, California, 1988, pp.
357–366.

[39] N. Sharygina and D. Peled, “A combined testing and verification approach for software
reliability,” Formal Methods for Increasing Software Productivity, LNCS, vol. 2021 pp. 611–
628, 2001.

49

[40] L. Steels and P. Vogt, “Grounding adaptive language games in robotic agents,” in Proc.
Fourth European Conf. on Artificial Life, Brighton, UK, 1997, pp. 474–482.

[41] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo localization for
mobile robots,” Artificial Intelligence, vol. 128 pp. 99–141, 2001.

[42] P. Vogt and H. Coumans, “Investigating social interaction strategies for bootstrapping
lexicon development,” Journal of Artificial Societies and Social Simulation, vol. 6(1), 2003.

[43] J. Wang and L. Gasser, “Mutual online concept learning for multiple agents,” in Proc. First
Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002, pp.
362–369.

[44] K. Wärneryd, “Cheap talk, coordination, and evolutionary stability,” Games and Economic
Behavior, vol. 5 pp. 532—546, 1993.

[45] H. A. Yanco, Robot communication: Issues and implementation, Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy, 1994.

[46] H. Yanco and L. A. Stein. “An adaptive communication protocol for cooperating mobile
robots,” in J. A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From Animals to Animats:
Proc. Second Intl. Conf. on the simulation of adaptive behavior, MIT Press: Cambridge, MA,
1993, pp. 478—485.

50

