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Abstract

Self-managing storage systems automate the tasks of detect-
ing hotspots and triggering data migration to alleviate them.
This paper argues that existing data migration techniques do
not minimize data copying overhead incurred during reconfig-
uration, which in turn impacts application performance. We
propose a novel technique that automatically detects hotspots
and uses the bandwidth-to-space ratio metric to greedily recon-
figure the system while minimizing the resulting data copying
overhead. We implement our techniques into the Linux kernel
and conduct a detailed evaluation using simulations and our
prototype. Our results show a factor of two reduction in data
copying overhead when compared to other approaches for a
variety of system configurations. Our prototype successfully
identifies system hotspots and eliminates them by incrementally
computing a new configuration and without causing any notice-
able degradation in application performance.

1 Introduction

Recent trends in storage indicate that the cost per
megabyte of hard drives continues to drop, while the ap-
petite for storage capacity in enterprises continues to spi-
ral. As information is increasingly created, processed,
and manipulated in digital form, the role of large-scale
enterprise storage systems becomes increasingly impor-
tant. Enterprise storage systems are complex entities that
comprise a large number of RAID arrays with one or
more data partitions mapped to each array. As storage
needs and I/O workloads evolve over time, managing,
configuring, and continual tuning of such systems be-
comes a complex task [3, 4]. Consequently, design of
self-managing storage systems is an appealing option;
such a system performs automated mapping of data parti-
tions to RAID arrays, monitors the workload on each ar-
ray, and transparently triggers data migration if hotspots
or imbalances are detected in the system.

Until recently, these tasks were performed manually
by administrators using sophisticated tools to analyze the
load on the system [1]. Such tools collect performance
data, summarize loads on arrays, and predict the perfor-

mance impact of moving a data partition from one array
to another. Despite their sophistication, the decision pro-
cess is manual and prone to human error. To address this
drawback, recent efforts have focused on automating the
task of detecting hotspots and triggering data migration
to alleviate them [6, 8, 10]. Such a remapping of data
partitions to RAID arrays involves a system reconfigu-
ration that either results in downtime or reduced perfor-
mance during the migration. Consequently, it is essential
to minimize the reconfiguration overhead by minimizing
the volume of data moved, and thus, the time needed to
do so. Unfortunately, recently proposed approaches do
not focus on minimizing data copying, resulting in po-
tentially larger overhead than is necessary.

This paper focuses on the design of automated data
migration algorithms that minimize the total data copy-
ing overhead incurred during reconfiguration in self-
managing storage systems. We also propose automated
techniques to detect hotspots and trigger our data migra-
tion algorithm. Our work has resulted in several contri-
butions.

First, we propose a novel technique to minimize data
copying overhead incurred during a system reconfigura-
tion to alleviate hotspots. Our technique uses bandwidth-
to-space (BSR) ratio as a guiding metric to maximize the
load reduction per unit of data moved. The technique
greedily displaces excess load from overloaded to un-
derloaded disk arrays using two different strategies: (i)
displace, which moves a data partition from one array to
another, and (ii) swap, which swaps data partitions be-
tween underloaded and overloaded arrays.

Second, we describe a measurement-based approach
that automatically detects hotspots in the storage system
and invokes the above algorithm to alleviate them. Third,
we implement our techniques into the Linux kernel and
evaluate their efficacy using both simulation and proto-
type evaluation. Our results show a factor of two reduc-
tion in the data copying overhead for a variety of sys-
tem configurations when compared to other approaches.
Our prototype evaluation also shows the efficacy of our
technique in correctly identifying hotspots and triggering
data migration.
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The figure shows two disk arrays with four RAID devices each. Each RAID
device has five disks. Logical volumes are striped across all RAID devices on the
first array, while each volume is striped across two RAID devices in the second
array.

Figure 1: An enterprise storage system.

2 Problem Formulation

Consider an enterprise storage system as shown in Figure
1. Such a system comprises multiple disk arrays; arrays
may be heterogeneous in terms of their storage capaci-
ties and bandwidth. Each array consists of one or more
RAID devices; a RAID device is constructed by combin-
ing a set of disks from the array using RAID techniques
[13]. For instance, a disk array of 16 disks may be parti-
tioned into two RAID-5 devices, each comprising 8 disks
of the array. Data partitions—also referred to as logi-
cal volumes—are then mapped on these RAID devices.
Each RAID device can contain one or more data parti-
tions. Interestingly, it is possible for a partition to span
multiple RAID devices as well; when a partition spans
multiple RAID devices, the set of underlying disks form
a logical RAID (comprising multiple physical RAID de-
vices). In this paper, we use the term logical array (or
array for short) to collectively refer to the set of disks
across which a data partition is striped. The terms data
partitions and logical volumes are used interchangeably.

Assuming such a model, the data migration problem
is defined as follows. Let the enterprise storage system
consist of n arrays, A1, A2, . . . An, and let m logical vol-
umes L1, L2, . . . Lm be mapped onto these arrays. Each
array Aj is assumed to have a certain storage capacity Sj

and a certain bandwidth capacityBj . Similarly, each data
partition/volume Li has a certain storage requirement si

and bandwidth need bi. Clearly, the total storage needs
of all partitions mapped onto an array can not exceed its
storage capacity:

Σisi · cij ≤ Sj (1)

where cij is a binary variable that takes value 1 if volume
i is mapped onto array j and 0 otherwise. An array is said
to be load-balanced if the total bandwidth utilization of

the array is smaller than a threshold τj :
∑

i bi · cij

Bj
≤ τj (2)

While the above storage constraint is hard and can not be
violated, the bandwidth constraint can see occasional vi-
olations if the cumulative bandwidth needs of partitions
increase. In such an event, the array is said to be over-
loaded. Thus, a hotspot is said to be present in the sys-
tem if Equation 2 is violated for one or more arrays. The
magnitude of the hotspot is defined to be the cumulative
overload

∑
j∈O(Σibicij/Bj − τj) where O is the set of

overloaded arrays.
Alleviating the hotspot requires some logical volumes

to be moved from overloaded arrays to underloaded ones.
The cost of such a system reconfiguration is defined to be
the total amount of data moved.

Cost = ΣiΣj |cnew
ij − cold

ij | ∗ si/2 (3)

where cnew
ij and cold

ij denote the new and old set of map-
pings of volumes to arrays, respectively. Observe that
if a volume is unchanged, it does not contribute to the
cost, whereas any moved volume L i causes

∑
j |cnew

ij −
cold
ij | = 2 and contributes a cost that equals its storage

capacity. Thus, the above equation captures the total
amount of data moved for all remapped volumes. 1

The goal of our work is to (i) automatically detect
hotspots when they occur in the system (i.e., whenever
Equation 2 is violated), (ii) determine a new configu-
ration of the system, which involves moving or swap-
ping volumes, so that the data copying cost as defined in
Equation 3 is minimized. As argued earlier, minimizing
data copying cost reduces the time needed for a recon-
figuration and reduces the overall performance impact
on running applications. We assume that such reconfig-
urations in self-managing storage systems occur in the
background without incurring any system downtime—
the system remains fully operational during the recon-
figuration.

3 Cost-aware Object Remapping

This section first provides a brief overview of techniques
to reconfigure a system upon formation of a hotspot.
We then present our technique to minimize data copying
overhead during reconfiguration.

3.1 Background
Consider a self-managing storage system that detects a
hotspot. The system must then determine a new map-

1An optimization is to only move the used storage space within a
volume rather than the entire volume, in which case the cost as defined
in Equation 3 is adjusted accordingly.
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ping of data partitions to arrays to alleviate the hotspot.
Several techniques can be employed for this purpose:

Bin Packing: One possible approach is to consider
the new storage and bandwidth requirement of each log-
ical volume and determine a new mapping of volumes
to arrays from scratch using bin packing heuristics [3].
Bin packing can be randomized, where a random permu-
tation of volumes is generated and objects are assigned
randomly to arrays in permutation order. The process is
repeated until a valid assignment is obtained (a valid as-
signment satisfies both Equations 1 and 2). An alternate
bin packing heuristic is to use best-fit, where a random
permutation is generated and volumes are assigned to an
array using best-fit. Observe that both heuristics com-
pute a new mapping from scratch and are oblivious of
the current mapping of volumes to arrays; consequently,
they may result in significantly larger data copying over-
head than is necessary to alleviate the hotspot.

BSR-based Approach: Bandwidth-to-space ratio
(BSR) has been used as a metric for video placement
[5, 7]. It is based on knapsack heuristics where objects
are chosen based on value per unit weight. In our case,
volumes are ordered in decreasing order of their band-
width to storage ratio. Underloaded arrays are ordered
by spareBSR, which is the ratio of spare bandwidth to
spare storage space. Volumes are chosen in BSR or-
der and assigned to arrays with the highest spareBSR.
Choosing volumes in BSR order ensure better utilization
of the system bandwidth per unit storage space and leads
to a tighter packing. Like before, the heuristic determines
a mapping from scratch and is oblivious of the current
mapping.

Randomized reassignment: While the previous two
approaches are cost-oblivious, we can modify the bin
packing approach to take the current mapping into ac-
count; the approach incrementally modifies the current
configuration until the hotspot is eliminated. The current
configuration is assumed to be the initial configuration; a
random permutation of volumes on only overloaded ar-
rays is considered and these objects are assigned to un-
derloaded arrays in permutation order. The process con-
tinues until sufficient load “shifts” from overloaded to
underloaded arrays to remove the hotspot. A limitation
of the approach is that it picks volumes based on a ran-
dom permutation and does not explicitly attempt to re-
duce data copying overhead. A second limitation is that
it only moves volumes from overloaded arrays to un-
derloaded ones and does not consider the possibility of
swaps, where two volumes are swapped. Thus, an entire
set of possible solutions is ignored by the approach.

Next, we present a new approach that addresses this
drawback.

3.2 Displace and Swap
Displace and Swap (Dswap) is a greedy data migration
technique that alleviates hotspots by (i) using the current
configuration to incrementally determine a new load-
balanced configuration, (ii) using bandwidth-to-space ra-
tio as a guiding metric to determine which volumes
to move and where, and (iii) considering both volume
moves and swaps as possible solutions for determining
the new configuration. The key idea is to move one or
more volumes from overloaded to underloaded arrays or
swap heavily loaded volumes from overloaded/ arrays
with less loaded volumes on underloaded arrays. BSR
is used to guide the selection of volumes and maximize
the reduction in overload per unit data moved (which in
turn reduces data copying overhead).

Our approach involves two key steps: (i) displace
where volumes from overloaded arrays are simply moved
to free space on underloaded ones, and (ii) swap, where
volumes between overloaded and underloaded arrays are
swapped. The displace step is always considered before
considering swaps, since one-way moves (displace) typ-
ically involves less data copying than two-way swaps of
volumes. 2 Next we present the details of the displace
and swap steps.

3.2.1 Displace

The displace step attempts to move volumes from over-
loaded arrays to unused storage space on underloaded
ones. All arrays that see a hotspot (i.e., violation of Equa-
tion 2) are considered. Any underloaded array with non-
zero unused storage space is a potential destination for
overloaded volumes. Overloaded arrays are considered,
one at a time, in decreasing order of overload—the mag-
nitude of the overload is given by (Σ ibicij − τj ∗ Bj).
Within each overloaded array, volumes are considered
for possible relocation in decreasing order of their BSR.
Finally, the set of possible destination arrays are consid-
ered in decreasing order of spare BSR (spare bandwidth
to spare storage space ratio).

The displace step works as follows. It picks the array
with highest overload. Since the goal is to remove the ex-
cess load from the array while moving the least amount
of data, it considers volumes with the highest BSR values
for possible relocation. To do so, it first constructs a set
R which comprises the k highest BSR volumes, such that
relocating these volumes from the array eliminates the
hotspot. The set is constructed by incrementally adding
volumes to R in BSR order until the total load reduction
causes the hotspot to disappear. The set of logical vol-
umes in R are precisely the ones that must be moved to

2One way volume moves are also preferable to two way swaps since
they do not require any scratch space. Swapping volumes between ar-
rays may require use of temporary scratch storage space.
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underloaded arrays. To determine a new mapping, vol-
umes in R are considered in BSR order, and each vol-
ume is mapped to an underloaded array with the highest
spareBSR, so long as neither the storage constraint nor
the bandwidth constraint—Equations 1 and 2 —are vio-
lated on the underloaded array. Once a new mapping is
determined for all volumes in R, the algorithm moves on
to the next most overloaded array and repeats the process.
The actual data migration is triggered only once a new
mapping is determined for volumes on all overloaded ar-
rays (i.e., only after a complete solution is found).

In some cases, it may not be feasible to map all
volumes in R to underloaded arrays (since sufficient
spare storage space or bandwidth may be unavailable).
Our technique also implement two optimizations where
it considers additional volumes that were not initially
present in the set R for possible relocation. A detailed
discussion of these optimizations is omitted due to space
constraints [16].

3.3 Swap
Displace succeeds only if underloaded arrays have suf-
ficient unused storage to accommodate additional vol-
umes. In the event that sufficient storage space is un-
available, our techniques must resort to volume swaps to
alleviate the remaining hotspots. Swaps can be two-way
involving only two arrays or can be multi-way involving
a k-way swap between arrays. Due to the computational
complexity of searching for multi-ways swaps, we only
consider two ways swaps in our current work.

As in displace, BSR is used as the metric to guide the
selection of volumes. The key idea is to choose the high-
est BSR volumes from the most overloaded array and at-
tempt to swap them with the lowest BSR volumes on the
most underloaded array. Doing so yields the maximum
reduction in load per unit data moved and reduces data
copying overheads. Choosing the most underloaded ar-
ray as a destination increases the probability of finding
valid swaps.

The swap step works as follows. Consider the most
overloaded array and the most underloaded array in the
system. First, volumes on the overloaded array are sorted
in decreasing BSR order, while volumes on the under-
loaded array are sorted in increasing BSR order. The
process then constructs two sets O and U for a possi-
ble swap. These sets are constructed by incrementally
adding volumes from the two arrays, one at a time, in
sorted order until the following constraints are satisfied:
Constraint C1: There is at least a certain minimum
amount of load reduction on the overloaded array. Swaps
that yield less than a threshold reduction in overload are
not useful.

bO − bU ≥ γ · BO (4)
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Figure 2: Illustration of Displace and Swap.

where bO and bU denote the total bandwidth needs of
volumes in the two sets, and the difference represents the
load reduction on the overloaded array. BO is the load on
the overloaded array and γ is a pre-defined threshold.
Constraint C2: The swap should not violate the stor-
age and bandwidth constraint on the underloaded array
(Equation 1 and 2).
Constraint C3 : The swap should not violate the storage
constraint on the overloaded array.

If sets O and U satisfying the above three constraints
are successfully found, then the corresponding volumes
are marked for a possible swap. The swap step repeats
the above process until the hotspot is completely re-
moved from the overloaded array. The swap step then
moves onto the next overloaded array and repeats the
process.

Additional optimizations that increase the probability
of finding valid swaps by skipping certain high storage
volumes in the sorted BSR order are described in [16].
Example The figure 2 illustrates how displace and

swap works. Figure (a) shows two arrays with band-
width utilizations of 100% and 40%, respectively. Each
box with a number indicates a volume and an empty box
indicates unallocated space. The number in a box in-
dicates the bandwidth requirement of the volume. For
simplicity, all volumes are assumed to be of unit size; so
the bandwidth requirement of a volume is also its BSR.
The bandwidth overload threshold τ is assumed to be
75% for both the arrays. As Array 1 is overloaded the
displace and swap algorithm proceeds as follows.
The displace step is invoked first as the underloaded

array has one unit spare space.
Displace: Figures (b) and (c) illustrate a volume being
moved from Array 1 to Array 2. The volume selected is
one with the maximum BSR.
Since Array 1 is still overloaded after the displace

step, the swap step is invoked.
Swap: Figures (d) and (e) illustrate a volume with BSR
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10 being swapped with a volume with BSR 0. This, a high
BSR volume gets swapped with a low BSR volume.
At this point, the hotspot is eliminated and the algo-

rithm terminates.

4 Automated Hotspot Detection

In this section, we present an automated measurement
technique to detect hotspots when they occur in the sys-
tem; the technique automatically invokes our displace
and swap algorithm upon hotspot detection. Our tech-
nique continually monitors the bandwidth utilization on
each array and flags a hotspot if the bandwidth constraint
is consistently violated on an array.
Loadmonitoring: Our technique uses bandwidth uti-

lization on an array as an indicator of its load. The band-
width utilization is computed as the average utilization of
disks in the array. Since multiple volumes are typically
mapped onto an array, each contributes a certain fraction
of the total utilization, and the workload seen by each
individual volume must be monitored to derive the total
array utilization.

Consider a logical array with d disks. Let v vol-
umes be mapped onto the array. Each volume is as-
sumed to be striped across all disks of the array, and it
is assumed that the RAID level of the array is known a
priori. Let ri denote the mean request rate seen at vol-
ume i over some measurement interval T . Let s i de-
note the mean request size observed during the measure-
ment interval. Further, let Si denote the stripe unit size
(or the block size) for volume i. Since each volume is
striped, a request of size si will typically access δ = % si

Si
&

disks.3 Then the array utilization due to a single request
is δ∗(tseek+trot+Si∗txfr)

D∗T , where tseek , trot and txfr de-
note the seek, rotational latency and transfer time per
byte of an underlying disk.

Given a request arrival rate of ri, volume i will see
ri ∗ T requests over the measurement interval T . Hence,
the total array utilization is simply the summation of the
utilization due to each volume and is given as

∑

i∈v

ri ∗ δ ∗ (tseek + trot + Si ∗ txfr)
d

(5)

Our monitoring module computes the utilization of each
array during each measurement interval T . It maintains a
history of utilizations observed on each array over a long
period (e.g., a day or a week).

Observe that the load monitoring modules requires
hooks in the OS kernel to measure the mean request rate

3In practice, the number of disks accessed by a request δ can not
exceed d due to wrap-around and the actual RAID-level of the device
will constrain it further (e.g., RAID-5 implies a wrap-around in d − 1
disks due to the presence of parity; RAID-1 or mirroring uses only d/2
disks and so on).

and request size for each volume in the storage system,
which we discuss further in Section 5.
Hotspot detection: Given a time series (history) of

utilizations seen at each array, a hotspot is said to be
present if the bandwidth constraint in Equation 2 is vi-
olated for a certain percentage of the observations. For
instance, when the bandwidth constrain is violated for
more than 75% of the observations. The threshold used
to flag a hotspot is a configurable parameter; small val-
ues aggressively alleviate hotspots, while larger values
require an overload to persist over a longer period before
data migration is triggered. Upon hotspot detection, our
displace and swap technique is invoked to determine a
new mapping of volumes to arrays and data migration is
triggered to actually move or swap volumes.

5 Implementation Considerations

We have implemented our techniques in the Linux ker-
nel version 2.6.11. Our prototype consists of two com-
ponents: (i) kernel hooks to monitor request sizes and
request rates seen by each logical volume, and (ii) a re-
configuration daemon which uses statistics collected in
the kernel to estimate bandwidth requirements, computes
a new configuration if a hotspot is detected, and triggers
volume migration.

Our prototype was implemented on a Dell PowerEdge
server with two 933 MHz Pentium III processors and 1
GB memory that runs Fedora Core 2.0. The server con-
tains an Adaptec 3410S U160 SCSI Raid Controller Card
that is connected to two Dell PowerVault disk packs
which comprised 20 disks altogether; each disk is a
10,025 rpm Ultra-160 SCSI Fujitsu MAN3184MC drive
with 18 GB storage.

Our kernel implementation involves adding appropri-
ate code and data structures to enable collecting statistics
for each volume. The Linux 2.6 kernel uses bio as the
basic descriptor for I/Os to a block device. Upon I/O
completion, the bio endio routine is invoked by the
device interrupt handler; request-level statistics are gath-
ered by modifying this routine. Since the Linux logical
volume manager (lvm) creates a separate device identi-
fier for each logical volume, our statistics routines use the
device identifier to gather volume-specific statistics. Our
implementation does not currently distinguish between
hits in the array controller cache and requests that actu-
ally trigger disk I/Os; it is possible to infer cache hits by
monitoring request completion times—hits see low com-
pletion times and can be intelligently filtered out when
computing array utilizations.

Our reconfiguration daemon periodically makes a sys-
tem call to query per-volume statistics from the kernel.
These statistics are then used to compute per-array uti-
lizations. We also provide two additional system calls
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to selectively enable and disable statistics collection for
each volume.

If the daemon detects a hotspot, it invokes our dis-
place and swap algorithm to determine a new configura-
tion. Migration of volumes is then triggered using the
pvmove tool of the Linux volume manager. This tool en-
ables a volume to be migrated online, while being used.
Thus, applications continue to work uninterrupted while
migration is in progress, barring some minimal impact
due to the ongoing data copying.

6 Experimental Evaluation

This section evaluates the efficacy of our techniques us-
ing simulations and prototype evaluation. Since our pro-
totype is limited by the hardware configuration, we use
simulations to evaluate the performance for a variety of
system configurations.

6.1 Simulation Results

We constructed a simulator that implements all of the al-
gorithms discussed in Section 3.1, in addition to our dis-
place and swap technique. For each strategy, the simula-
tor computes the cost of eliminating hotspots in terms of
the data copying overhead.

The default storage configuration used in our simula-
tions comprised four logical arrays, each with twenty 18
GB disks. Each logical array in the system is configured
with an initial storage space and bandwidth utilization of
60% and 50%, respectively. To achieve a particular stor-
age space utilization, volumes are assigned to an array
until the desired utilization is reached. Volume sizes are
chosen uniformly in the range [1 GB,16 GB] and are a
multiple of 0.25GB. To achieve a particular bandwidth
utilization, volumes are initially assigned bandwidth us-
age in proportion to their sizes. A random permutation
of these bandwidth usage is then generated and mapped
onto the volumes, yielding different BSR values for dif-
ferent volumes. The default system parameters result in
an average of 25 volumes per array, and around 100 vol-
umes in the system.

To create hotspots, the simulator increases the band-
width utilization on half of the volumes on an array—this
is done by randomly picking an array from the chosen
half and increasing its utilization by a certain amount un-
til the desired magnitude of overload is reached. For our
experiments, the default bandwidth violation threshold τ
was chosen to be 80%. Each experiment consists of 100
runs and the normalized data displaced over these runs
is reported as the total data moved as a percentage of the
total data in the system.
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Figure 3: Impact of system size.

6.1.1 Impact of System Size

Our first experiment studies the impact of system size
on reconfiguration overhead. We vary the system size—
the number of arrays—from two to ten (i.e., 40 to 200
disks) and determine the normalized cost of eliminat-
ing hotspots over 100 runs. Figures 3(a) depicts the
data copying overheads for the Random Reassignment
and our Dswap approach, both of which are cost-aware,
while Figure 3(b) depicts the cost for Randomized bin
packing and BSR, both of which are cost-oblivious and
reconfigure the system from scratch.

Figure 3(a) shows that DSwap outperforms Random
Reassignment by factors of two to three. Moreover,
the normalized reconfiguration costs for Dswap remains
constant over a range of system sizes, while it increases
for the latter. Since Dswap chooses volumes from over-
loaded arrays carefully based on BSR values, the normal-
ized cost is not sensitive to system size (the data copying
overheads increase in proportion to system size, resulting
in constant normalized cost). In Random reassignment,
however, increasing the system size increases the num-
ber of volumes to choose from, which also increases the
likelihood of making sub-optimal decisions.

Figure 3(b) shows the cost of the reconfiguration for
the cost-oblivious approaches. Since both approaches re-
configure the system from scratch, the cost of reconfigu-
ration is higher by more than an order of magnitude when
compared to that of the cost-aware approaches. Since the
probability of a volume being moved to a new array in-
creases with system size, the normalized data copying
overheads increase with system size.

6.1.2 Impact of System Bandwidth Utilization

Next, we study the impact of the bandwidth utilization on
the cost of reconfiguration. Figure 4(a) and 4(b) show the
impacts of the initial array utilization and the magnitude
of overload, respectively, on reconfiguration cost.

Figure 4(a) shows that as the initial array utilization
is increased from 50% to 65%, the normalized cost re-
mains unchanged for both approaches. This is because
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Figure 4: Impact of bandwidth utilization.
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Figure 5: Impact of storage space utilization.

increasing the initial array utilization merely increases
the initial bandwidth requirement of all the volumes pro-
portionately. This reduces the fraction of volumes that
can be reassigned to the underloaded array without any
constraint violations. The normalized cost of reconfig-
uration, however, does not change significantly, as each
object reassignment, on the average, now displaces more
bandwidth. DSwap results in a lower cost as compared
to the Random Reassign approach due to its careful BSR-
based selection of volumes.

Figure 4(b) shows that an increase in the magnitude
of overload from 2% to 10% increases the cost of re-
configuration for both approaches. This is because, on
an average, more data needs to be displaced for higher
overloads. Again Dswap performs better due to its BSR-
based selection, which dissipates more load per unit data
moved.

6.1.3 Impact of Storage Utilization

Next we study the impact of varying the storage uti-
lization on the cost of reconfiguration. Figure 5(a)
shows that the normalized cost of reconfiguration re-
mains roughly unchanged for both Random Reassign-
ment and Dswap even as the storage utilization is in-
creased from 60% to 90%. A large storage utilization
implies a larger number of volumes per array. Since the
bandwidth utilization is fixed, this results in a smaller
load per volume. While this may require more volumes

to be relocated to eliminate the same overload, the corre-
sponding increase in space utilization causes the normal-
ized data copying cost to remain largely unchanged.

Figure 5(b) shows the success rates of various strate-
gies in eliminating a hotspot with increasing storage uti-
lization (and decreasing unused storage space). The BSR
approach begins to fail when space utilization is around
85%, the Random reassignment begings failing at around
90% utilization. The latter assigns volumes from over-
loaded to underloaded arrays and a decrease in unused
space reduces the likelihood of relocating volumes. Ran-
domized bin packing and bin-packing based on worst-fit
begin failing at around 97% utilization. Only Dswap and
best-fit-based bin packing continue to be successful even
at near 100% utilization (i.e., no free storage space in the
system). Best-fit succeeds by mapping volumes to arrays
based on their fit, while Dswap can resorts to swaps in
the absence of free space; recall that prior results have
already shown the lower cost of Dswap when compared
to best-fit, which reconfigures the system from scratch.

6.2 Prototype Evaluation
This section demonstrates the effectiveness of our ap-
proach using our Linux prototype. Our goal is two-fold
(i) to demonstrate the efficacy of our kernel measurement
techniques in identifying hotspots, and (ii) to demon-
strate the effectiveness of the reconfiguration daemon in
determining a new configuration, while minimizing data
copying cost and performance impact on applications.

The characteristics of the host and the storage system
used by our prototype were described in Section 5. We
partition the twenty disks in the system into five logical
arrays, each comprising four disks. The stripe unit size is
chosen to be 16KB. We construct 14 partitions on each
array, each of size 4GB. Logical volumes can then be
constructed using one or more partitions on an array; the
volume size is thus a multiple of 4GB. We configure four
arrays in this fashion, and leave the fifth array unused as
scratch space for swapping volumes.

We use a synthetic workload to control the load seen
on each volume. The workload on a volume is defined
using two parameters: the concurrency factor N and the
mean think time IA. The concurrency factor defines
the number of concurrent clients issuing requests to the
volume, while the think-time determines the mean inter-
arrival time between successive requests from a client;
think times of requests are assumed to be exponentially
distributed. Each request is assumed to access a ran-
dom block on the volume and the request size is fixed at
16KB. Using such a synthetic workload allows us careful
control over the load seen by each volume.

Our experiments use a utilization threshold τ of 50%
to denote overload. The measurement interval for our
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(a) Spare storage space.
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(b) No spare storage space.

Figure 6: Uniform object size

statistics collection was defined to be 10s. A hotspot is
flagged if more than 70% of the measurements over some
window show array utilizations exceeding τ . A hotspot
invokes our Dswap routine, which in turn triggers vol-
ume migration. The performance impact during volume
migration can be minimized by controlling the rate of
data copying as explained in [11].

We conducted two sets of experiments, one where
volume sizes are identical, and another where heteroge-
neous volumes are present in the system.

6.2.1 Homogeneous Volumes

We begin by considering homogeneous volumes sized
4GB each. We first consider a system with unused stor-
age space and then consider one with no unused stor-
age space; the former scenario triggers the displace step,
while the latter requires volume swaps. For simplicity
of experimentation, we assume the reconfiguration dae-
mon checks for hotspots every 100s; in practice, hotspots
would need to persist for significantly longer periods of
hours or days before a reconfiguration is triggered.

Our first experiment configures the first three arrays
with fourteen volumes each and the fourth array with
only seven volumes (leaving half of its storage space un-
used). For the first 100s, all volumes are accessed by
a workload with concurrency 2; interarrival time of re-
quests was 400ms, 1s, 1s and 500ms on the four arrays,
respectively. The initial bandwidth utilization of each ar-
ray and the cumulative average I/O per second (IOPs)
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Figure 7: Variable volume size; no spare storage space

are shown in Figure 6(a). As can be seen, the interarrival
times govern the array utilizations. The figure shows that
the utilization measured by our kernel implementation
matches the trend in the average I/Os per second issued
by the workload generator, indicating that our kernel im-
plementation correctly tracks the array workload.

At t = 100s, a hotspot is introduced on array 0 by
increasing the concurrency factor of seven volumes to
nine. Workload of other arrays is kept unchanged. At
t = 200s, our reconfiguration daemon correctly identi-
fies a hotspot on array 0 and migrates two highest BSR
volumes from array 0 to the free space on array 3, which
helps eliminate the hotspot. As can be seen, once the
migration is complete, the array utilization drops below
the threshold level of 50%. We note that the Dswap al-
gorithm makes the optimal choice by migrating the least
number of volumes and minimizes the copying overhead.

Next we configure the system with no free space—
all arrays are configured with 14 volumes each of size
4GB. The same scenario is repeated, where all arrays are
initially underloaded and a hotspot is created on array
0 at t = 100s (see Figure 6(b)). Like before, the re-
configuration daemon successfully detects the hotspot at
t = 200s and invokes the Dswap algorithm. The algo-
rithm now triggers swaps and chooses to swap the high-
est BSR volumes on array 0 with those on the most un-
derloaded array, namely array 3. Once the swap is com-
plete, as shown in Figure 6(b), the array utilization drops
below 50% and the hotspot is dissipated.

6.2.2 Heterogeneous Volume Sizes

Next we consider systems with heterogeneous volume
sizes. Like in the previous experiment, we consider two
scenarios, one where unused storage space is present and
another where all arrays are full. The results for the for-
mer case are similar to that for homogeneous volume
sizes and are omitted due to space constraints. For the
scenario where no free space is available, we configure
the first two arrays with six volumes each—two volumes
each of size 4GB, 8GB and 16GB. The other two arrays
are configured with 14 volumes, all of size 4GB each.
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Initially the concurrency factor is set to two for all vol-
ume workloads. The request interarrival times are set
to 300ms, 1s, 1s and 500ms, respectively, for the four
arrays. As shown in Figure 7, all arrays are initially un-
derloaded. Further, the utilization estimated by our mea-
surement technique closely tracks the imposed workload
measured in IOPs.

At t = 100s, we impose an overload on array 0 by
increasing the concurrency factor to seven. The work-
load on array 1 is also increased slightly but not enough
to cause a hotspot. At t = 200s, our prototype correctly
identifies a hotspot on array 0 and invokes Dswap. The
algorithm swaps two 4GB volumes from array 0 with two
similar sized volumes on array 3, which is underloaded.
As can be seem, the technique swaps the smallest size
volumes from array 0, minimizing the copying overhead.
Further, doing so successfully dissipates the hotspot, as
indicated by the array utilization at t = 300s. The load
on array 3 increases due to the swap but the array still
remains underloaded.

6.2.3 Implementation Overheads

Our final experiment quantifies the overheads imposed
by our kernel enhancements on application performance.
As the number of volumes in the system increase, so do
the number of statistics maintained by our in-kernel mea-
surement module. To quantify the overhead of statistics
collection, we varied the number of 4GB volumes on
each of the four arrays from two to fourteen (i.e., from
8 to 56 volumes system-wide). The workload imposed
on each volume had a concurrency factor of two and a
think-time of zero (a zero think-time indicates that the
next request is issued immediately after the previous one
finishes).

Figure 8 plots the cumulative average IOPs seen at
each array for varying number of volumes. We run the
system with our statistics collection module enabled and
repeat the experiment with statistics collection disabled.
As can be seen, the mean I/Os per second seen for the
two cases are nearly identical, indicating that our kernel
implementation has negligible impact on application per-
formance. Further, since the storage system is saturated
due to the zero think-times, varying the number of vol-
umes does not significantly impact the I/O completions
per second. The slight drop in performance is due to the
larger number of volumes, which increases the disk seek
overheads (since the disk head needs to seek from one
volume to another).

6.3 Summary of Experimental Results
Our results shows that for a variety of overload con-
figurations the Dswap approach outperforms other ap-
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Figure 8: Impact on application performance.

proaches by a factor of two in terms of data copying over-
head. Moreover, the larger the system size or the larger
the overload, the greater the performance gap. Results
from our prototype implementation show that our tech-
niques correctly measures array utilizations and are ef-
fective at detecting hotspots and dissipating them, while
imposing negligible overheads on the system.

7 Related Work

Algorithms for moving volumes from one configuration
to another in the fewest time steps have been presented in
[6, 8, 10]. It is assumed that the new final configuration
is known a priori. In our work, we seek to identify a new
final configuration with minimal data movement.

Techniques for initial storage system configuration
have been presented in [2, 3]. Our work assumes that the
storage system remains online, and presents techniques
to reconfigure the system when workload hotspots occur
with minimum data movement.

Load balancing at the granularity of files has been
considered in [14]. The work assumes contiguous stor-
age space is available on lightly loaded disks to migrate
file extents from heavily loaded disks. Our work seeks to
achieve load balancing at the granularity of logical vol-
umes and makes no assumptions about the distribution of
spare space in the storage system.

Techniques for moving data chunks between mirrored
and RAID5 configurations within an array based on their
load for improving storage system performance have
been proposed in [17]. Our work seeks to achieve im-
proved performance across the storage system by mov-
ing logical volumes between arrays.

Disk load balancing schemes for video objects have
been presented in [18]. Video objects are assumed to
be replicated and load balancing is achieved by chang-
ing the mapping of video clients to replicas. In our
work, logical volumes are assumed to have no replicas
across arrays and load balancing requires identifying a
new mapping of data objects to arrays.
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Request throttling techniques to isolate performance
of applications accessing volumes on shared storage have
been studied in [9, 12, 15]. These are complementary to
our present work. Finally, techniques for controlling the
rate of data migration to prevent any performance impact
on foreground application are presented in [11]; how-
ever, unlike Dswap, this effort does not consider the issue
of reducing the total copying overhead.

8 Concluding Remarks

In this paper, we argued that manual hotspot detection
and storage system reconfiguration is tedious and error-
prone and advocated the design of a self-managing sys-
tem to automate these tasks. We argued that existing data
migration techniques do not minimize data copying over-
head incurred during a reconfiguration, which impacts
application performance. We proposed a novel tech-
nique that automatically detects hotspots and uses the
bandwidth-to-space ratio metric to reconfigure the sys-
tem while minimizing the resulting data copying over-
head. We implemented our techniques into the Linux
kernel and conduct a detailed evaluation using simula-
tions and our prototype. Our results showed a factor
of two reduction in data copying overhead when com-
pared to other approaches for a variety of system con-
figurations. Our prototype successfully identified sys-
tem hotspots and eliminated them by incrementally com-
puting a new configuration and without causing any no-
ticeable degradation in application performance. As fu-
ture work, we plan to extend our techniques to volumes
striped across heterogeneous arrays and to devise sophis-
ticated swap techniques that consider multi-way swaps.
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