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Abstract

The pervasive nature of multimedia recording devices enables
novel pervasive multimedia applications with automatic, inex-
pensive, and ubiquitous identification and locationing abilities.
We present the design and implementation of Ferret, a scal-
able system for locating nomadic objects augmented with RFID
tags and displaying them to a user in real-time. We present
two alternative algorithms for refining a postulation of an ob-
jects location using a stream of noisy readings from an RFID
reader: an online algorithm for real-time use on a mobile de-
vice, and an offline algorithm for use in post-processing appli-
cations. We also present methods for detecting when nomadic
objects move and how to reset the algorithms to restart the re-
finement process. An experimental evaluation of the Ferret pro-
totype shows that (i) Ferret can refine object locations to only
1% of the reader’s coverage region in less than 2 minutes with
small error rate (2.22%); (ii) Ferret can detect nomadic objects
with 100% accuracy when the moving distances exceed 20cm;
and (iii) Ferret is robust against different movement patterns of
user’s mobility.

1 Introduction

Advances in digital imaging technologies have led to a
proliferation of consumer devices with video capture ca-
pabilities. The pervasive nature of multimedia recording
devices such as cellphones, digital camcorders, PDAs
and laptops, has made it relatively simple to capture,
transform, and share large volumes of personal video and
image content. A concurrent trend is the emergence of
low-cost identification technologies such as RFID tags,
designed to replace bar-codes [20]. Each tag contains a
numeric code that uniquely identifies the object and can
be queried by a wireless reader. It is likely that in the near
future many personal objects (e.g., books, clothing, food
items, furniture) will be equipped with self-identifying
RFID tags.

The confluence of these trends—the ubiquity of RFID
tags and the pervasive nature of multimedia recording

devices—enables novel pervasive multimedia applica-
tions with automatic, inexpensive, and ubiquitous iden-
tification and location abilities. By equipping cameras
with RFID readers, it is possible to record images as well
as the identities and locations of all RFID-tagged objects
contained within each image. The captured video can
then be queried in real-time to display the location of a
particular object. The ability to pinpoint objects by their
RFID identities within video streams enables many new
applications. For instance, users can use them to locate a
misplaced book on a bookshelf. Robots can use such
devices to conduct real-time identification and search
operations. Vision-based applications can use them to
quickly learn the structure or organization of a space.
Inventory tracking applications can proactively generate
missing object alerts upon detecting the absence of an
object.

While the inexpensive nature of RFID tags eases large-
scale deployment issues, their passive nature raises a
number of hurdles. A key limitation is that passive RFID
tags are self-identifying but not self-locating (i.e., upon
being queried, a tag can report its identify but not its
location). Consequently, if multiple objects are present
in a captured image, it is not possible to distinguish be-
tween these objects or pinpoint their individual locations.
Some of the above scenarios (e.g., pinpointing a mis-
placed book on a bookshelf) require location information
in addition to object identities. While numerous location-
ing technologies such as GPS and ultrasound [17, 21, 22]
are available, it is not possible to equip passive RFID tags
with these capabilities due to reasons of cost, form-factor
and limited battery life. Instead, we require a locationing
technology that does not depend on modifications to tags,
is easily maintained, and scales to hundreds or thousands
of tagged objects.

To address the above challenges, we have designed a
system called Ferret. Ferret combines locationing tech-
nologies with pervasive multimedia applications. Ferret
can locate objects using their RFID tags and display their



locations in real-time to a mobile user. As the positions
of objects are uncertain, the system overlays the video
display with an outline of where the object probably is.
For instance, a user with a portable camera can ask the
system to display the location of every new object in the
room, and the display will show an outline of all of those
locations. The display is constantly updated as the user
moves using the continuous stream of tag readings to up-
date the location.

Ferret uses the location and directionality of RFID
readers to infer the locations of nearby tags. Ferret lever-
ages the user’s inherent mobility to produce readings of
the tag from multiple vantage points. It does this through
two novel algorithms that refine the locations of objects
using a stream of noisy readings from RFID tags. One
algorithm is designed for offline use, given a a large
amount of computational power, while the other is de-
signed to operate in real-time on a mobile system. In the
case of the offline algorithm, we also incorporate nega-
tive readings — when the reader does not see the object—
this greatly reduces the object’s possible locations.

We have implemented a prototype of Ferret and have
used it to conduct a detailed performance evaluation. Our
experiments pay specific attention to how fast Ferret can
refine object locations, the error rate in locating objects,
and how well it handles nomadic objects. Our results
show that (i) Ferret can refine object locations to only
1% of the reader’s coverage region in less than 2 minutes
with small error rate (2.22%); (ii) The offline algorithm
incorporates information about when it does not see the
object, outperforming the online algorithm by a factor of
13 or more; (iii) Ferret can detect nomadic objects with
100% accuracy when the moving distances exceed 20cm;
and (iv) Ferret works with a wide variety of user mobility
patterns.

The rest of this paper is structured as follows. Sec-
tion 2 presents the problem formulation and a high-level
design of Ferret, while Section 3 presents the details of
our RFID locationing system. Section 4 presents our im-
plementation and Section 5 experimental results. Finally,
Section 6 and 7 present related work and our conclusions.

2 Ferret Design

Ferret is designed to operate on a handheld video camera
with a display. To use Ferret, the user selects some set of
objects she would like to locate in the room and moves
around the room with the camera. Using an RFID reader
embedded in the video camera, Ferret samples for nearby
tags, and in real-time updates the camera’s display with
an outline of the probable location of the objects she is
searching for. Ferret’s knowledge of object location can
be imprecise, so rather than showing a single centroid
point, Ferret displays the outline, leaving the interpreta-

tion of the precise location to the user’s cognition. For
instance, if Ferret can narrow the location of a book to a
small region on a shelf, a user can quickly find the pre-
cise location. Figure 1 provides a pictorial representation
of how the system would work. In this scenario the user
is looking for a soup can in a messy office. After scan-
ning the room using a Ferret-based camera, the system
highlights a small region that contains the soup can.

2.1 Nomadic Location with RFID

Many pervasive systems that rely on location are pred-
icated on the assumption that the number of objects re-
quiring location information is small and mobile. In con-
trast, we designed Ferret to support a massive number of
mostly static, or nomadic objects—objects that change
locations infrequently. As a fraction of all objects, no-
madic ones are in the vast majority—in any given room
it is likely that there are hundreds, or possibly thousands
of nomadic or static objects, while there are only a few
mobile ones.

The primary barrier to providing locationing informa-
tion for such a large number of objects is the reliance on
batteries—making objects self-locating requires the use
of a battery-powered locationing hardware. Even though
locationing systems such as ultrasound [17, 21, 22] and
Ultra-Wide Band (UWB) are becoming more energy effi-
cient, equipping hundreds of objects in a room with self-
locating capabilities simply does not scale, since it will
require changing an unmanageable number of batteries.
In contrast, passive RFID provides a battery-free, inex-
pensive, distributed, and easily maintained method for
identifying objects; Ferret adds locationing capabilities
to such objects. Ferret leverages the fact that an increas-
ing number of objects will be equipped with RFID tags as
a replacement to barcodes. Further, RFID tags continue
to drop in price, and one can imagine attaching tags to a
large number of household or office objects.

As RFID tags are passive devices and have no notion
of their own location, Ferret must continuously calculate
and improve its own notion of the object locations. The
system fuses a stream of noisy, and imprecise readings
from an RFID reader to formulate a proposition of the
object’s location. The key insight in Ferret is to exploit
the location of a camera/reader to infer the location of ob-
jects in its vicinity. In essence, any tag that can be read
by a reader must be contained within its sensing range;
by maintaining a history of tags read by the system, Fer-
ret can progressively narrow the region containing the
object. This is a simple yet elegant technique for infer-
ring the location of passive RFID tags without expensive,
battery-powered locationing capabilities.
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Figure 1: Use of Ferret to dynamically discover the location of a soup can in an office room.

2.2 Infrastructure Requirements

Strictly speaking, calculating and displaying object loca-
tions does not require any infrastructural support. Dis-
playing a location on the video, as well as combining
multiple readings of the object location, only requires
relative locations, such as those from inertial naviga-
tion systems [1]. However, it is likely that knowledge
of object locations in relation to a known coordinate sys-
tem, such as GPS or a building map, will be useful for
many applications. We assume that the camera/reader
uses such a locationing system, such as Ultrasound or
UWRB, to determine its own location and then uses it to
infer the location of objects in its vicinity.

As Ferret uses a directional video camera and RFID
reader, it also requires an orientation system that can
measure the pan (also known as heading and yaw), tilt
(also known as pitch), and roll of the system. While
research has proposed orientation systems for Ultra-
sound [18], we have chosen to use commercially avail-
able digital compass [2] to determine the directionality
of the reader and the camera at any instant. Similar to the
locationing system, Ferret benefits from having absolute
orientation, although it can operate with only a relative
orientation.

2.3 Location Storage

For each object, Ferret must store a description of the
object’s location. Considering that some RFID tags are
remotely rewritable, Ferret can store the location for an
object directly on the tag itself. Other options are to store
the locations locally in each Ferret reader, or in an on-
line, external database. Each option provides different
privacy, performance, and management tradeoffs. Stor-
ing locations locally on each reader means that each in-
dependent Ferret device must start finding objects with
zero initial knowledge. As the devices moves and senses
the same object from different vantage points, it can use
a sequence of readings to infer and refine the object lo-

cation. The advantage of this method is that it works
with read-only RFID tags and does not require any in-
formation sharing across devices. However, it prevents
the device from exploiting history available from other
readers that have seen the object in the recent past. In
contrast, if location information can be remotely writ-
ten to the RFID tags then other Ferret devices can start
with better initial estimates of object location. However,
this option requires writable tags and the small storage
available on a tag limits the amount of history that can
be maintained. In both of the above options, any device
that has an RFID reader can determine object locations
without needing the full complexity of the Ferret system.

A third option is to store the location information in a
central database. This has the advantages of allowing of-
fline querying and providing initial location estimates to
mobile readers; further, since database storage is plenti-
ful, the system can store long histories as well as past lo-
cations of nomadic objects. However, it requires readers
to have connectivity to the database, the burden of man-
agement, and privacy controls on the database. Storing
data on the tags also has implications for privacy con-
trol, however one must at least be proximate to the tag to
query its location. Other systems have shown the value in
using proximity as a clue for authorization [16]. We rec-
ognize that the privacy issue is much broader than this
brief summary and we leave this as an issue for future
work.

At the heart of Ferret is an RFID localization system
that can infer the locations of individual passive RFID
tagged objects. Ferret then uses this localization system
to dynamically discover, update, store, and display object
locations. The following section presents the design of
our RFID localization technique.

3 RFID Locationing

Consider an RFID reader that queries all tags in its
vicinity —the reader emits a signal and tags respond with



their unique identifier. Given all responses to a query,
the reader can produce positive or negative assertions
whether a particular tag is present within its reading
range. The reader can not directly determine the exact
location of the tag in relation to the reader, or even a
distance measurement. However, just one positive read-
ing of a tag greatly reduces the possible locations for
that particular object—a positive reading indicates that
the object is contained in the volume defined by the read
range of the reader (see Figure 2). Ferret leverages the
user’s mobility to produce a series of readings; the cov-
erage region from each reading is intersected with all
readings from the recent past, further reducing the pos-
sible locations for the object (see Figure 3). Using this
method, Ferret can continually improve its postulation of
the object location.

In addition to positive readings of an object’s RFID
tag, the reader implicitly indicates a negative reading
whenever it fails to get a reading for a particular tag
that it is looking for. Using a similar method to posi-
tive readings, Ferret subtracts the reader’s coverage re-
gion from the postulation of the object’s location. This
also improves the postulation of the object’s location. A
third method to reduce the likely positions for the ob-
ject is to modulate the power output of the reader. If a
particular power output produces a positive reading, and
a lower power produces a negative reading, the system
has gained additional knowledge about the location of
the object.

In general, whenever a tag is present in the read
range, the reader is assumed to detect it with a certain
probability —objects closer to the centroid of its read
range are detected with higher probabilities, while ob-
jects at the boundary are detected with lower probabili-
ties. Thus, each positive reading not only gives us a re-
gion that is likely to contain the object, it also associates
probability values for each point within that region. This
coverage map of a reader is shown in Figure 2. The
map can be determined from the antenna data sheet, or
by manually mapping the probability of detecting tags at
different (x,y,z) offsets from the reader.

Given a three dimensional grid of the environment and
assuming no prior history, Ferret starts with an initial
postulate that associates an unknown probability of find-
ing the object at each coordinate within the grid. For each
positive reading, the probability values of each grid point
contained within the coverage range are refined (by inter-
secting the range with past history as shown in Figure 3).
Similarly, for each negative reading, the the probability
values of each grid point contained within the coverage
range is decreased. This results in a three-dimensional
map, M (z,y, z), that contains the probability of seeing
a tag at each data point in relation to the reader. Using
multiple power outputs requires building a map for each

Reader has a 95% chance of
detecting a tag here

I

Reader has a 5% chance
of detecting a tag here

Reader has a 0% chance
of detecting a tag here

Figure 2: Coverage region of an RFID reader and tag
detection probabilities in two dimensions.

power output level. Due to several constraints in our cur-
rent prototype, Ferret currently does not use power mod-
ulation; however, adding this to the system will be trivial.

The amount of computation that the system can do
drastically effects the location algorithm that performs
intersections, the compensation for false negatives, and
how it reflects the map to the user. Next we describe two
alternative methods, one that is computationally intense
and cannot be done in realtime on current mobile hard-
ware. Such an offline technique is useful for describing
an eventual goal for the system, or how to use the sys-
tem for analyzing the data after it is collected. However,
our goal is to implement Ferret on a mobile device so
we also describe an online algorithm with drastically re-
duced computational cost.

3.1 Offline Locationing Algorithm

Formally, if we consider Ferret’s readings as a series of
readings, both positive and negative, as a series D =
{D1, Dy, D3, ...D,}, and we want to derive the proba-
bility of the object being at position X, given the read-
ings from the RFID, or P(X |D). If we assume that each
reading of the RFID reader is an independent trial, we
can compute the likelihood as:

where Z is a normalization factor. We omit the proof
as it is a straight-forward application of conditional prob-
ability.
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Figure 3: Refining location estimates using multiple readings.

If we first assume that the Ferret device (camera) is
completely stationary, it operates as follows: i) once Fer-
ret receives the first positive reading of a tag it initializes
a three dimensional map, L, with the coverage map M,
to track the probability that the object is at each of the
coordinates in the map. ii) each successive reading mul-
tiplies each coordinate in L by M (x, y, z) if the reading
was positive, or 1 — M (z, y, z) if the reading was nega-
tive.

3.2 Translation, Rotation and Projection

The basic algorithm described above assumes a station-
ary camera/reader; Ferret’s notion of object location does
not improve beyond a point, even with a large num-
ber of readings—most points in the reader’s range (i.e.,
within the coverage map) will continue to have a high,
and equally likely probability of detecting the tag. Sub-
sequently, multiple readings produce a large map with
equally likely probabilities of the object’s location. In-
stead, Ferret depends on the user’s motion to reduce the
possibilities for the object location—as the user moves
in the environment, the same object is observed by the
camera from multiple vantage points and intersecting
these ranges allows Ferret to narrow the region contain-
ing the object. Incorporating motion is straightforward,;
however, the coordinates system of the coverage map M
must be reconciled with that of the map L before this can
be done.

The coverage map shown in Figure 3 is described in
a three-dimensional coordinate system with the origin at
the center of the reader’s RFID antenna, which we refer
to as the reader coordinate system. The camera, although
attached to the RFID reader, is offset from the reader, and
has a slightly different coordinate system. We refer to
this as the camera coordinate system which has its origin
at the center of the camera’s CCD sensor. To combine
multiple readings from the reader, and subsequently dis-

play them to the user, each map M must be transformed
into a common coordinate system. We refer to this as the
world coordinate system. The world can have it’s ori-
gin at any point in the space —with a locationing system
we can use its origin, or with an inertial location system
we can use the first location of the reader. Without loss
of generality, we assume the reader, camera, and world
coordinate systems are left hand coordinate systems (see
Figure 4).

Pan a degrees

<

Roll y degrees

Y-Axis

@
A

Y X-Axis
Tilt B degrees

Figure 4: Left Handed Coordinate System

Performing this transformation is possible using tech-
niques from linear algebra and computer graphics [7].
For each reading, the reader has a location and orienta-
tion with respect to the world coordinates. This is de-
scribed as a location (o, Yo, 20) and an orientation with
a pan of « degrees (the rotation along the y axis, range
[—180, 180])), a tilt of 3 degrees (the rotation along the
x axis, range [—90, 90]), a roll of v degrees (the rotation
along the z axis, range [—180, 180]). The direction of the
rotation is given by the left hand rule where the thumb
is in the positive direction of the rotation axis and the
fingers show the positive direction of rotation (see Fig-



ure 4). This transformation is formulated as a rotation
matrix:

[ cos(y) —sin(y) O
R = sin(7y) cos(7y) 0 | x
| o 0 1]
M1 0 0 ]
0 cos(B) —sin(B) | x
L 0 sin(B) cos(fB)
cos(a) 0 sin(a) ]
1 0 ()]
| —sin(a) 0 cos(a) |

where R is a 3 x 3 orthonormal matrix which has
columns that are mutually orthogonal unit vectors, so
that R~ = RT.

So, if a point is located at (24, Yoy, 24 ) in the world co-
ordinates, the object’s location in the reader coordinates
(zr, yr, z») can be computed via:

Ty Tw — X0 Lw
yr | =R X | Yw—190 =RX | yu |+T 3
Zp Zw — 20 Zw

where the composite rotation matrix R is given by
Zo
Equation 2,and T'= —R x | o
20

Therefore, the reverse transformation from reader co-

ordinate system to world coordinate system is given by:

Lw Ty
yo | = RT7Ux(| y | =T)
Zw Zr
Ty Zo
= R |y [+ w “)
Zr z0

where (g, yo, 20) 18 the reader’s position in world coor-
dinate system and R~! = RT.

When computing the intersection of coverage maps,
Ferret first transforms the coverage map, M into the
world coordinate systems using Equations 2 and 4, and
computes the intersection according to the methods pre-
sented in Section 3.1 to produce a new map L containing
the likelihood of object locations.

Once Ferret produces a three dimensional map that it
believes contains a particular object, it must overlay this
region onto the video screen of the camera; doing so in-
volves projecting a 3D map onto a two dimensional dis-
play. This is done in two steps: thresholding and projec-
tion. The threshold step places a minimum value for the
likelihood on the map L — by using a small, but non-zero
value for the threshold, Ferret reduces the volume that
encompasses the likely position of the object. However,
using a larger threshold may cause Ferret to shrink the

volume excessively, thus missing the object. Currently
this is a tunable parameter in Ferret—in the evaluation
section we demonstrate how to chose s reasonable value.

Finally, Ferret projects the intersection map onto the
image plane of the video display. Ferret must trans-
form the intersection map from the world coordinate sys-
tem into camera coordinate system. Ferret performs this
transformation using Equation 2 and 3, along with the
camera’s current position and orientation. As stated pre-
viously, the camera coordinate system follows the left-
hand convention, and the z-axis of the camera coordinate
system is co-linear with the camera’s optical axis. As-
suming the camera has focal length f, and a point is po-
sitioned at (z., Y., z.) in camera coordinate system. The
projection is given by:

u f e
sl

where u and v is the projection at the CCD sensor [4].

For each reading the RFID reader produces, the lo-
cation algorithm must perform O(n?) operations, for a
three dimensional space that is n X n X n, in addition to
translating and rotating the coverage map, and projecting
the location map onto the display.

If Ferret is searching for multiple objects, it must per-
form these operations for each individual object. In prac-
tice, we have found that each RFID reading consumes 0.7
seconds on a modern processor, while our RFID reader
produces 4 readings per second. Given the speed at
which a human may move the camera, this is not feasi-
ble to do in realtime, however it works well for an offline
system that has less stringent latency requirements.

An offline algorithm also has the opportunity to per-
form these operations for the whole video, and then use
the smallest region that it computed to annotate the entire
video stream with that region.

3.3 Online Locationing Algorithm

Given that the offline algorithm is too computationally
intensive for a mobile device to operate in real-time, we
describe a greatly simplified version of the locationing
algorithm. The primary goal is to reduce the represen-
tation of the probability of where the object is. Instead
of a full representation that describes the probability at
each location, we reduce it to describing just the convex
region where the object is with very high probability. De-
scribing such a region is very compact, as we only need
to track the points that describe the perimeter of the con-
vex region. Intersecting two maps is very fast, as it is a
series of line intersections.

Figure 5 shows this in detail for two dimensions, ex-
tending it to three dimensions is straightforward. The



first half of the diagram shows sample points that de-
scribe the outside of the coverage map. Ferret rotates and
translates the coverage map M as described in the previ-
ous section, and intersects it with the current map L. For
each constant y value, the system finds the intersection
of the two line segments and uses that as the description
of the new map L. For instance in Figure 5, we choose
a constant y value y1. After rotating and translating the
map M to match to the reader’s current position, the sys-
tem intersects the two line segments, (x1,y1) — (x3,y1)
from the current map L, with (z2,yl) — (x4, y1) from
the new map M. The resulting intersection is the seg-
ment (22,y1) — (23, y1), which describes the perimeter
of the new location map L. Ferret repeats this process
for all y values. Extending this to three dimensions is
straightforward: intersect two line segments for each pair
of constant y and z value. This means the complexity of
the intersection is O(n?) rather than O(n?) as in the of-
fline algorithm.

Also, instead of using a map of probabilities for the
coverage map, we reduce it to the convex shape that de-
scribes the coverage region of the RFID reader than can
read tags with some probability greater than 0. This vir-
tually eliminates the possibility of false positives. Ad-
ditionally, describing the perimeter only requires two x
points for each pair of y and z values, thus the repre-
sentation of the region is greatly reduced in size from
O(n?®) to O(n?). Using our prototype as an example,
this reduces the storage requirement from 43.5M bytes
to 178K bytes—each of these are highly compressible.
This greatly aids Ferret’s ability to store the regions di-
rectly on the storage-poor tags. The line segment repre-
sentation does mean that the system cannot incorporate
negative regions, as intersecting with a negative region
can create a concave, rather than convex, region. A con-
cave region would return the complexity of the represen-
tation and the intersection to O(n?). False negatives do
not affect the system, as negative readings are not used
at all.

(x2,y1)

(1, 1) (x4, y1)

(x1,y1) 3, y1)

Figure 5: Online location estimation in Ferret.

3.4 Dealing with Nomadic Objects

We designed Ferret to deal with objects that move
infrequently —commonly referred to as nomadic as op-
posed to mobile objects that move frequently. When ob-
jects do move, Ferret should adjust to deal with this. In
the online algorithm, this is straightforward. When the
location algorithm performs an intersection of two maps,
it may produce a region of zero volume. This indicates
that the maps were disjoint, and th object could not possi-
bly be within the previously postulated region. The sys-
tem then reinitializes the location map, L, to the most
current reading, which is M rotated and translated to the
reader’s current position.

However, the offline algorithm is more complicated
as it produces a likelihood location map. One solu-
tion is only using the intersection of positive readings to
deal with nomadic objects like what the online algorithm
does, while this approach doesn’t utilize any useful in-
formation given by the negative readings. Therefore, an-
other practical solution is applying a likelihood threshold
to the likelihood location map and removing any location
with a probability less than the threshold. If the resulting
location map is empty, we will consider the object has
moved and reinitialize the location map, L, to the most
current reading. Choosing an appropriate threshold is a
critical factor in this approach. Using a larger thresh-
old will increase the likelihood that the resulting location
map is empty when the object actually does not move.
In Section 5, we will show the experiments on how to
choose an appropriate threshold.

4 Implementation Considerations

We have implemented a prototype Ferret system as
shown in Figure 6. Although the prototype is quite large,
this is due to the combination of many separate pieces of
hardware —there is nothing that would preclude a much
smaller commercial version. Our prototype is based on
the following hardware:

e A ThingMagic Mercury4 RFID reader which has
a SensorMagic monostatic circular antenna con-
nected to it. The output power of the reader is set
to 30dBm (1Watt). This reader operates at the fre-
quency range 909 — 928MHz, and supports RFID
tags of EPC Class 0, EPC Class 1, and ISO 18000-
6B. The reader is paired with a ThingMagic mono-
static circular antenna that has a balloon shaped ra-
diation pattern. An alternative is to a use a linear
antenna that has a more focused radiation pattern
and longer range; however, the narrower beam will
produce fewer positive readings for each tag. The
tradeoff in antenna choice and the possibility of fu-



ture antennas with variable radiation patterns are in-
teresting questions for future research. We used an
orientation-insensitive, EPC Class 1, Alien Tech-
nology “M” RFID tag operating at 915MHz.

e A Sony Motion Eye web-camera connected to a
Sony Vaio laptop. This CMOS-based camera is
set to a fixed focal length of 2.75mm, and uses a
sensor size of 2.4mm by 1.8mm. The camera pro-
vides uncompressed 320x240 video at 12 frames-
per-second.

o Cricket [17] ultrasound 3D locationing system to es-
timate the location of the camera and RFID reader.
We deployed Cricket beacons (served as references)
on the ceiling, and attached a Cricket sensor to our
prototype system. The Cricket sensor is offset from
the camera and RFID reader and we correct for this
translation in software.

e A Sparton SP3003D digital compass to obtain the
3D orientations (pan, tilt, and roll) of the camera’s
lens and the reader’s antenna. We mounted the com-
pass, the camera’s lens, and the reader’s antenna in
a way that they all have same 3D orientations.

(a) Front

(b) Back

Figure 6: Ferret Prototype System

Our prototype system consists of the following soft-
ware modules:

e Video Module: This module records the video
stream from the web camera, and transcodes the
video stream into MPEG-2 video clip. In addition to
this functionality, the video module will project and
highlight the estimated region containing the tar-
get object when displaying video stream. We mod-
ify the FFmpeg video suite [5] to implement this
module. We implement the projection function ac-
cording to Equation 5 to compute the projection of

the location estimation, and then intercept the dis-
play function of FFmpeg video suite to display the
boundary of the projection area.

o RFID Module: This module controls the RFID
reader, and records the readings from the RFID
reader. The RFID reader provides functions of re-
mote control and query via TCP connection using
SQL-like query and control messages. The RFID
module submits a query request with interval value
of 250ms to the reader, and then the RFID reader
periodically responds with configurable plaint text
message including the tag ID, the ID of the antenna
reading the tag, and so on.

Cricket and Compass Module: This module com-
municates with the Cricket sensor and digital com-
pass to obtain the location and orientation of camera
and RFID reader. The Cricket module communi-
cates with the Cricket sensor via a serial port, and
the output of the Cricket sensor is its distances to
beacons. Our module records these distances, and
uses them to triangulate the location of the Cricket
sensor. After adding some constant offset (mea-
sured manually), we then have the location of the
camera and RFID reader. The Compass module also
communicates with the compass via a serial port.

Locationing Module: This module implements the
locationing algorithms which are discussed in Sec-
tion 3. This implementation includes: (i) coordi-
nate transformation functions between world coor-
dinate system and the coordinate systems of camera
and RFID reader according to Equation 2, 4 , and
3, (ii) intersection functions to compute intersection
for positive readings and negative readings, and (iii)
a central database to store the location information.

S Experimental Evaluation

In this section, we evaluate Ferret by focusing on the per-
formance of locationing and projection. In particular, we
concentrate on how quickly Ferret can refine the location
of an object for a user. We show how to tune the offline
algorithm to trade the size of the location region and the
overall error rate. We then show a comparison of the on-
line and offline systems. We demonstrate that Ferret can
detect objects that move within a room and we show the
computation and storage costs of our system.

We measure Ferret’s performance using two metrics:
the size of the postulated location and the error rate. Fer-
ret automatically provides the size, either the volume
of the three-dimensional region, or the area of the two-
dimensional projection on the video screen. The three-
dimensional region is not a sphere, but to interpret the
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Figure 7: Online refinement of location estimation.

results, a sphere with a volume of 0.01m? has a diame-
ter of 26.7cm and a volume of 0.1m? has a diameter of
57.6cm. Ferret’s error rate is the number of objects that
do not appear in the area projected on to the display. The
error rate is determined through manual inspection of a
video recording.

All of our experiments are conducted in a 4m x 10m
x 3m room equipped with a Cricket ultrasound system.
We used five beacons mounted on the ceiling which we
manually calibrated. The origin of our world-coordinate
system is a corner of the room. The camera records all
video at 12 frames/second, and the RFID reader produces
4 readings per second. For the online system, we use a
coverage map that includes all places where the tag has
a non-zero probability of reading a tag. That region is
an irregular shape that is 2.56m x 1.74m x 2.56m at the
maximum and has a volume of approximately 2m3.

5.1 Online Refinement Performance

The primary goal of Ferret is to quickly locate, refine,
and display an outline on the video display that contains
a particular object. As this happens online, Ferret contin-
uously collects readings and improves its postulation of
the object’s location—this is reflected as the volume of
the region shrinking over time. To demonstrate this, we
placed one tag in the room, and then walked around “ran-
domly” the room with the prototype. We plot the volume
of the location estimation versus time in Figure 7. The
absolute volume tracks the total volume of the region,
while the relative volume tracks the size of the region
relative to the starting coverage region of the reader. In
this case Ferret does not make any errors in locating the
object. The time starts from the first positive reading of
the tag and Ferret begins with no previous knowledge
about object locations.

The results show that the volume size of the loca-
tion estimation drops from 2m? to 0.02m? which is only
1% of the reader’s coverage region in less than 2 min-
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Figure 8: Online refinement on the projection display.

utes. The volume monotonically decreases, as intersect-
ing positive readings only shrinks the area, while neg-
ative readings are ignored. Also, this is a pessimistic
view of the refinement time —with prior knowledge, the
process occurs much more rapidly. For instance, if the
user switches to searching for another object in the same
room, Ferret can take advantage of all of the previous
readings. If a previous user has stored location informa-
tion on the tag, this reader can also take advantage of that
from the time of the first reading. Additionally, if some
location information is stored in a centralized database,
Ferret can immediately project an area onto the video
without any positive readings.

In addition to the volume size of the location estima-
tion, we also plot the projection area versus time in Fig-
ure 8 in which the projection areas are shown as a per-
centage of the image plane area. Our results show that
the final projection area is only 3% of the whole image,
or approximately a 54 pixel diameter circle on a 320 x
240 frame. However, the projection area does not mono-
tonically decrease as the volume does. This is because
the camera is constantly moving, thus the point-view
constantly changes, and the same volume can project dif-
ferent areas from different orientations.



5.2 Offline Algorithm Performance

While the online algorithm is useful for current mobile
devices, the offline algorithm uses more information,
and a more precise representation of the object’s loca-
tion likelihood. To evaluate Ferret’s precision in locating
objects, we placed 30 tags in a 2.5m x 2.5m x 2m re-
gion, and we move the prototype around the room for 20
minutes. We repeat the experiment 3 times and record
the volume of the postulated region, and manually verify
how many objects are truly contained in the area pro-
jected onto the video plane. With 30 tags and 3 experi-
ments, Ferret can make between 0 and 90 location errors.

Before evaluating the offline algorithm, we must set a
threshold for the minimum likelihood for the object as
described in Section 3. Recall that a larger threshold can
reduce the volume encompassing the likely position of
the object. However, a larger threshold will also increase
the error rate of Ferret (the volume doesn’t contain the
object). In order to test the sensitivity of offline Ferret to
the change of likelihood threshold, we varied the likeli-
hood threshold from 0.00001 to 0.4, and ran the offline
Ferret algorithm on the data we collected in the experi-
ment. We show the results in Figure 9.

Threshold Errors | Mean Volume
0.00001 5/90 0.0117m3
0.0001 5/90 0.0117m3

0.001 5/90 0.0116m>
0.01 5/90 0.0112m°
0.1 6/90 0.0108m3
0.2 7/90 0.0104m>
0.3 8/90 0.0102m3
0.4 9/90 0.0100m3

Figure 9: Performance of offline Ferret under different
likelihood thresholds.

The results show that: (i) the number of errors almost
doubles from 5 to 9 as threshold increase from 0.00001
to 0.4 (ii) the mean volume of the location estimation
is essentially constant; and (iii) for a threshold < 0.01,
the number of errors doesn’t change. When using too
high of a threshold Ferret incorrectly shrinks the volume,
leaving out possible locations for the object. Considering
the balance of error rate and mean volume, we choose a
likelihood threshold of 0.01. Using this threshold, we run
the offline algorithm and compare it to the performance
of the online algorithm. In Figure 10, we plot the CDF
of Ferret’s location accuracy for both algorithms.

The results show that (i) The online algorithm can
localize an object in 0.15m3 and 0.05m? regions with
80% and 50% probability, respectively. The 0.15m?3 and
0.05m? regions are only 7.5% and 2.5% of the reader’s
coverage region which is 2m?; (ii) The offline algorithm
outperforms the online algorithm by localizing an object

0.8f

Probability
o
—2

o
~

0.2f

— Online
- - - Offline
% 0.05 0.1 015 0.2 025 03 0.35

Volume (m®)

Figure 10: Empirical CDF of Ferret’s locationing accu-
racy

in a 0.05m? region with more then 90% probability and
in a 0.1m3 region with 100% probability.

However, when we verify the online algorithm’s error
rate, it only makes 2 errors, as compared to the offline
algorithm’s 5 errors. We believe that the slightly greater
number of errors in the offline algorithm is due to our in-
corporation of negative readings in the algorithm. In this
experimental setup, the prototype system is constantly
moving and the tags are in the coverage region of the
RFID reader for a small portion of the total time (less
than 5%). This scenario will generate 19 times the num-
ber of negative readings than positive readings, and neg-
ative readings are weighted as heavily as positive read-
ings. Considering that we measured the performance of
the reader under ideal conditions, we have overestimated
the performance of the RFID reader. The online algo-
rithm does not exhibit the same behavior as it does not
ever use negative readings. As negative readings are cor-
related by orientation, and location, we believe that more
accurate modeling of reader performance is an important
direction for future research.

5.3 Mobility Effects

Ferret exploits the user’s mobility to produce a series of
readings from multiple positions, and further refine its
location estimation via intersecting the coverage regions
at these positions. The previous experiment showed the
results of a human, yet uncontrolled, mobility pattern.
In reality users move erratically; however, their motions
are composed of smaller, discrete motion patterns. To
study how individual patterns affect the performance of
Ferret we placed a single tag in the room and evaluated
Ferret with a small set of semi-repeatable motion pat-
terns shown in Figure 11: (a) straight line, the proto-
type system moves in a straight line, tangential to the
object, without changing the orientation of the camera
lens and RFID reader; (b) head-on, the prototype moves



straight at the object and stops when the reader reaches
the object; (c) z-Line, the prototype system moves in a
z-shaped line without changing its orientation; (d) rota-
tion, the prototype system moves in an arc, while keep-
ing the lens orientation radial to the path; (e) circle, the
prototype system moves in a circle, while keeping the
reader facing the object. Intuitively, the circular pattern
may be the least likely of the mobility patterns, whereas
the head-on is probably the most likely —once the user
gets one positive reading, she will tend to head towards
the object in a head-on pattern. We evaluated Ferret’s
performance using the volume of the resulting region.
For each movement pattern we ran three experiments,
averaged the results, and compared the smallest volume
size of both online and offline Ferret. Our results are
shown in Figure 12.

X % X
(a) Straight line b) Head-on ) z-Line

—— RFID Tag

—— Ferret Moving
Direction

%&si@]

d) Rotation e) Circle — Ferret System

Figure 11: Path of the Ferret device

The results show that Ferret performs similarly for
each of the movement patterns; however the circular pat-
tern performs the worst. The circular pattern always
keeps the object in view and generally in the center of
the reader’s coverage region. This produces a set of read-
ings that generally cover very similar regions. In each of
the other cases, the mobility of the reader covers more
disjoint spaces, and thus produces smaller volumes. This
is true even of the head-on pattern as the first reading
and the last reading have very little volume in common.
Another result is that the offline algorithm widely out-
performs the online algorithm, except in the case of the
circular and head-on patterns, where the performance is
similar. Much of the offline algorithm’s performance ad-
vantage comes from incorporating negative readings to
reduce the possible locations for the object. In the case
of the circular and head-on patterns, the object is always
in view, producing few negative readings, yielding simi-
lar performance to the online algorithm. Although non-
intuitive, this means that not seeing the object is as im-
portant as seeing it to narrow its location.

5.4 Object Motion Detection

Ferret is designed to deal with objects that move infre-
quently, but when the object does move, Ferret should
detect this and start its refinement process over. As
discussed in Section 3, whenever Ferret encounters an
empty location estimation, Ferret assumes that the corre-
sponding object has moved. To evaluate Ferret’s perfor-
mance in detecting these nomadic objects we place a tag
in the room and use Ferret to estimate its location. We
then move the tag a distance between 5cm and 200cm
and again use Ferret to estimate its location. We repeat
the experiment ten times for each distance, and record the
number of times that Ferret didn’t detect a moved object.
The results are shown in Figure 13.

The figure shows that the online and offline Ferret can
detect 100% object movements when the moving dis-
tance exceeds 25cm and 20cm, respectively. This is con-
sistent with our previous results that show that Ferret can
localize an object to within an region with a volume of
hundredths of a m?3 —this gives a radius on the order of
20cm, exactly how well Ferret can detect movement. As
the object has not actually left the postulated area, Ferret
is still correct about the object’s location.

5.5 Spatial Requirements

The prototype has a non-zero probability of detecting
tags in balloon-shaped region, with maximum dimen-
sions of 2.56m x 2.56m x 1.74m—this shape has a vol-
ume of approximately 2m?>. For the offline algorithm
we sample this coverage region every centimeter. As
discussed in Section 3, the offline algorithm requires
every point in this space, while the online algorithm
only requires a set of points that describe the exterior of
the region. This reduced representation results in much
smaller spatial requirements as compared to offline spa-
tial requirements: (i) the offline algorithm uses a float of
four bytes to describe the probability of a sample point,
and the total space is 256 * 256 x 174 x 4 = 43.5M bytes
using a three dimensional array to store the probabilities
of all sample points, and (ii) the online algorithm uses
a two dimensional array (the dimensions correspond to
y and z) to represent the coverage region, and conse-
quently, it only needs two bytes to track the x value of
every outside sample point, thus the total space required
is 256 * 174 x 2 = 178K bytes. Both the offline and on-
line representations are highly compressible: the offline
can be reduced to 250K bytes and the online representa-
tion to 5K bytes using the commonly available compres-
sion tool gzip. For the foreseeable future, RFID tags will
not contain enough storage for the offline representation,
while the online version is not unreasonable. If tags have
more or less storage the number of sample points can



Straight line | Head-on | z-Line | Rotate | Circle

online Volume (m?>) 0.020 0.0042 0.023 0.026 0.032
offline Volume (m>) 0.0015 0.0030 | 0.0017 | 0.0011 | 0.026
offline : online 13.33 1.40 13.52 23.63 1.23

Figure 12: Performance of Ferret under various mobility patterns.
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Figure 13: Fraction of object movements detected

be adjusted, although this will affect the precision of the
system.

5.6 Computational Requirements

The computational requirements of offline and online
have similar relationship. We measured the computa-
tional and spatial requirements of Ferret’s locationing al-
gorithm on an IBM X40 laptop equipped with a 1.5GHz
Pentium-M processor: (i) the offline algorithm costs
749.32ms per reading for each object, and (ii) the online
algorithm only costs 6ms per positive reading for each
object, which is only 1/125 of the offline computational
requirements. Our results show that the online algorithm
incurs small overhead and will run online to track mul-
tiple tags simultaneously on relatively inexpensive hard-
ware, while the offline algorithm incurs large overhead
and can only run offline.

6 Related Work

The pervasive multimedia application envisioned in this
work has similarities with the recently-proposed SEVA
system [13]. SEVA assumes WiFi-based tags that are
both self-identifying and self-locating—each tag has a
unique identity and uses a Cricket [17] ultrasound re-
ceiver to continuously determine its location. A digi-
tal camera records video as well as object locations and
identities, which can be subsequently queried by the user.
There are several key differences between SEVA and our

system. SEVA is based on active 802.11-based tags,
while we rely on passive RFID tags. Object tags in
SEVA are assumed to have locationing capabilities. Our
environment does not make this assumption. SEVA is
inherently designed for offline use, where users query
their video collections post-facto; consequently, SEVA
depends on post-processing capabilities. In contrast, we
require the capability to capture and query video in real-
time. Finally, SEVA scales to around a dozen moving
objects, whereas we require the ability to scale to hun-
dreds or thousands of nomadic RFID-tagged objects.

Similarly, a human-centric search system (MAX) of
the physical world was proposed in [23]. The MAX sys-
tem uses battery-powered Crossbow motes [12] to pro-
vide location information of objects with reference to
identifiable landmarks (e.g., on the dining table) rather
than precise coordinates.

In the FindIT Flashlight Project [14], researchers have
designed a battery-powered optical sensor system to
identify objects. The sensors are stimulated by a coded
optical beam, and the sensor then flashes an LED once
the code in the optical beam matches the code pro-
grammed in the sensor. The flashlight is then used to
identify the object. While these sensors are highly en-
ergy efficient they still require a battery, and the system
requires line-of-sight to operate.

Researchers have developed RFID-based indoor loca-
tioning systems [11, 15] using active, battery powered,
RFID tags. In SpotON [11], Hightower, et. al, use
the radio signal attenuation to estimate tag’s distance
to the base stations, and triangulate the position of the
tagged objects with the distance measurements to several
base stations. LANDMARC [15] deploys multiple fixed
RFID readers and reference tags as infrastructure, and
measures the tracking tag’s nearness to reference tags by
the similarity of their signal received in multiple read-
ers. LANDMARC uses the weighted sum (the weight
is proportional to the nearness) of the positions of refer-
ence tags to determine the 2D position of the tag being
tracked.

All the above work [11, 13, 15, 23] use battery-
powered sensors to identify and locate objects. These
sensors are expensive (at least tens of dollars per sensor)
and have limited lifetime (from several days to several
years). These limitations have prevented them from scal-
ing to applications dealing with hundreds and thousands
of objects. In contrast, passive RFID tags are inexpensive



(less than a dollar per tag and falling) and do not require
battery power source. These features make passive RFID
technology ideal for such applications.

Fishkin, et.al, proposed a technique to detect hu-
man interactions with passive RFID tagged objects us-
ing static RFID readers in [6]. The proposed technique
used the change of response rate of RFID tags to unob-
trusively detect human activities on RFID tagged objects
such as, rotating objects, moving objects, waving a hand
in front of objects, and walking in front of objects. How-
ever, this doesn’t consider the problem of estimating the
locations of RFID tagged objects. Their experimental re-
sults show that their system could nearly always detect
rotations, while the system performed poorly in detect-
ing translation-only movement.

In [9], Héhnel, et.al, proposed a mapping and local-
ization approach using the combination of a laser-range
scanner and RFID technology. Their approach employed
laser-based FastSLAM [10] and Monte Carlo localiza-
tion [3, 8] to generate maps of static RFID tags using mo-
bile robots equipped with RFID readers and laser-range
scanner. Through practical experiments, they demon-
strated that their system can build accurate 2D maps
of RFID tags, and they further illustrated that resulting
maps can be used to accurately localize the robot and
moving tags.

Another system is the 3D RFID tag [19]. The 3D
RFID system is equipped with a robot-controlled uni-
directional antenna, and the 3D tag consists of several
combined tags. Two kinds of 3D tags are developed:
union tag and cubic tag. The proposed system can not
only detect the existence of the 3D tag but also esti-
mate the orientation and position of the object. How-
ever, they require usages of specific orientation-sensitive
3D tags custom-built from multiple tags. Furthermore,
the system uses highly expensive robot system to control
the antenna’s movement and then estimate the orienta-
tion and position of the object. In contrast, Ferret only
needs one standard orientation-insensitive tag per object
and the user’s inherent mobility to estimate the object’s
location.

7 Conclusions

This paper presents the design and implementation of
Ferret, a scalable system for locating nomadic objects
augmented with RFID tags and displaying them to a
user in real-time. We present two alternative algorithms
for refining a postulation of an objects location using a
stream of noisy readings from an RFID reader: an online
algorithm for real-time use on a mobile device, and an
offline algorithm for use in post-processing applications.
We also present methods for detecting when nomadic ob-
jects move and how to reset the algorithms to restart the

refinement process.

We present the results of experiments conducted using
a fully working prototype. Our results show that (i) Fer-
ret can refine object locations to only 1% of the reader’s
coverage region in less than 2 minutes with small error
rate (2.22%); (ii) Ferret can detect nomadic objects with
100% accuracy when the moving distances exceed 20cm;
and (iii) Ferret is robust against different movement pat-
terns of user’s mobility.

Ferret represents one possible modality in using a
combination of inexpensive and ubiquitous RFID tags
with real-time multimedia systems. We expect that many
future systems can build on the techniques presented in
this paper, and make further improvements to the loca-
tioning algorithms. While a great number of hurdles ex-
ist in privacy and deployment, we contend that systems
that leverage this ubiquity will provide untold utility to
users.
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