
CRAMM: Virtual Memory Support for Garbage-Collected Applications

Ting Yang Emery D. Berger Scott F. Kaplan† J. Eliot B. Moss
tingy@cs.umass.edu emery@cs.umass.edu sfkaplan@cs.amherst.edu moss@cs.umass.edu

Dept. of Computer Science †Dept. of Mathematics and Computer Science
University of Massachusetts Amherst Amherst College

Amherst, MA 01003-9264 Amherst, MA 01002-5000

Abstract
Existing virtual memory systems were designed to sup-
port applications written in C and C++, but do not pro-
vide adequate support for garbage-collected applications.
The performance of garbage-collected applications is ex-
tremely sensitive to heap size. Larger heaps reduce the
frequency of garbage collections, making them run several
times faster. However, if the heap is too large to fit in avail-
able RAM, garbage collection activity can trigger thrash-
ing. Existing Java virtual machines attempt to adjust their
application heap sizes adaptively to fit in RAM, but suffer
performance degradations of up to 94% when subjected to
bursts of memory pressure.
We present CRAMM (Cooperative Robust Automatic

Memory Management), a system that solves these prob-
lems. CRAMM consists of two parts: (1) a new virtual
memory system that collects detailed reference informa-
tion for (2) an analytical model tailored to the underly-
ing garbage collection algorithm. The CRAMM virtual
memory manager tracks recent reference behavior with low
overhead. The CRAMM heap sizing model uses this infor-
mation to compute a heap size that maximizes throughput
while minimizing paging. We present extensive empirical
results demonstrating CRAMM’s ability to maintain high
performance in the face of changing application and sys-
tem load.

1 Introduction
The virtual memory (VM) systems in today’s operating
systems were designed to support applications written in
the widely-used programming languages of the 80’s and
90’s, C and C++. To maximize the performance of these
applications, it is enough to fit their working sets in physi-
cal memory [16]. VM systems typically manage available
memory with an approximation of LRU [12, 13, 15, 16, 22],
which works reasonably well for legacy applications.
However, garbage-collected languages are now increas-

ingly prevalent. These languages range from general-
purpose languages like Java and C# to scripting languages

like Python and Ruby. Garbage collection’s popularity de-
rives from its many software engineering advantages over
manual memory management, including eliminating dan-
gling pointer errors and drastically reducing memory leaks.
Garbage-collection application performance is highly

sensitive to heap size. A smaller heap reduces the amount
of memory referenced, but requires frequent garbage col-
lections that hurt performance. A larger heap reduces the
frequency of collections, thus improving performance by
up to 10x. However, if the heap cannot fit in available
RAM, performance drops off suddenly and sharply. This
is because garbage collection has a large working set (it
touches the entire heap) and thus can trigger catastrophic
page swapping that degrades performance and increases
collection pauses by orders of magnitude [18]. Hence, heap
size and main memory allocation need to be coordinated
to achieve good performance. Unfortunately, current VM
systems do not provide sufficient support for this coordina-
tion, and thus do not support garbage-collected applications
well.
Choosing the appropriate heap size for a garbage-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

Normalized Elapsed Time

JRockit -- pseudojbb

13.055 trans/ms

0.777 trans/ms 0.722 trans/ms

No Memory Pressure
Dynamic Memory Pressure

Figure 1: Impact of bursts of memory pressure on the per-
formance on the JRockit Java virtual machine, which de-
grades throughput by as much as 94%.

collected application—one that is large enough to maxi-
mize throughput but small enough to avoid paging—is a
key performance challenge. The ideal heap size is one
that makes the working set of garbage collection just fit
within the process’s main memory allocation. However, an
a priori best choice is impossible in multiprogrammed en-
vironments where the amount of main memory allocated
to each process constantly changes. Existing garbage-
collected languages either ignore this problem, allowing
only static heap sizes, or adapt the heap size dynamically
using mechanisms that are only moderately effective. For
example, Figure 1 shows the effect of dynamic memory
pressure on an industrial-strength Java virtual machine,
BEA’s JRockit [7], running a variant of the SPECjbb2000
benchmark. The solid lines depict program execution when
the process fits in available RAM, while the dashed lines
show execution under periodic bursts of memory pressure.
This memory pressure dilates overall execution time by a
factor of 220%, and degrades performance by up to 94%.
The problem with these adaptive approaches is not that

their adaptivity mechanism is broken, but rather that they
are reactive. The only way these systems can detect
whether the heap size is too large is to grow the heap un-
til paging occurs, which leads to unacceptable performance
degradation.
Contributions: This paper makes the following con-

tributions. It presents CRAMM (Cooperative Robust Au-
tomatic Memory Management), a system that enables
garbage-collected applications to predict an appropriate
heap size, allowing the system to maintain high perfor-
mance while adjusting dynamically to changing memory
pressure.
CRAMM consists of two parts; Figure 2 presents an

overview. The first part is the CRAMM VM system that
dynamically gathers theworking set size (WSS) of each pro-
cess, where we define the WSS as the main memory allo-
cation that yields a trivial amount of page swapping. To
accomplish this, the VM system maintains separate page
lists for each process and computes an LRU reference his-
togram [25, 27] that captures detailed reference informa-
tion while incurring little overhead (around 1%). The sec-
ond part of CRAMM is its heap sizing model, which con-
trols application heap size and is independent of any par-
ticular garbage collection algorithm. The CRAMM model
correlates the WSS measured by the CRAMM VM to the
current heap size. It then uses this correlation to select a
new heap size that is as large as possible (thus maximizing
throughput) while yielding little or no page faulting behav-
ior. We apply the CRAMM model to five different garbage
collection algorithms, demonstrating its generality.
We have implemented the CRAMM VM system in

the Linux kernel and the CRAMM heap sizing model in
the Jikes RVM research Java virtual machine [3]. We
present the results of an extensive empirical evaluation of

W SS Estim ator

Histogram
Page Fault
Handler

In
ac
tiv
e
Li
st
S
iz
e

C
on
tr
ol

M ajorFault
CostM onitor

M inorFault
CostM onitor

VirtualM em oryM anager(VM)

M inorfault
overhead target

Allowable M ajor
Faultoverhead

Heap Size
M anager

W orking Set
Size M odel

Java VirtualM achine (JVM)

Garbage Collector

W
S
S

A
va
ila
bl
e

M
em

or
y

H
ea
p

ch
an
ge

Figure 2: The CRAMM system. The CRAMMVM system
efficiently gathers detailed per-process reference informa-
tion, allowing the CRAMM heap size model to choose an
optimal heap size dynamically.

CRAMM, including experimental measurements across 20
benchmarks and 5 garbage collectors, as well as compari-
son to two industrial Java implementations. These results
demonstrate CRAMM’s effectiveness in maintaining high
performance in the face of changes in application behavior
and system load.
In addition to serving the needs of garbage-collected

applications, the CRAMM VM system is the first sys-
tem to our knowledge to provide per-process and per-file
page management while efficiently gathering detailed ref-
erence histograms. This information can be used to im-
plement a wide range of recently-proposed memory man-
agement systems, including compressed page caches [27],
adaptive LRUmechanisms like EELRU [25], and informed
prefetchers [20, 24].
The remainder of this paper is organized as follows. Sec-

tion 2 presents an overview of garbage collection algo-
rithms and terminology used in this paper. Section 3 de-
rives the CRAMM heap sizing model, which relates appli-
cation working set size to heap size. Section 4 describes
the CRAMM VM system, which gathers detailed statistics
allowing it to compute the precise current process work-
ing set size. Section 5 presents empirical results, compar-
ing static and previous adaptive approaches to CRAMM.
Section 6 presents work most closely related to ours, and
Section 7 concludes.

2 GC Behavior and Terminology
A garbage collector (GC) periodically and automatically
finds and reclaims heap-allocated objects that a program
can no longer possibly use. We now sketch how, and

2

when, a GC may do this work, and along the way intro-
duce GC terminology and concepts critical to understand-
ing CRAMM.
Garbage collectors operate on the principle that if an

object is unreachable via any chain of pointers starting
from roots—pointers found in global/static variables and
on thread stacks—then the program cannot possibly use
the object in the future, and the collector can reclaim and
reuse the object’s space. Through a slight abuse of termi-
nology, reachable objects are often called live and unreach-
able ones dead. Reference counting collectors determine
(conservatively) that an object is unreachable when there
are no longer any pointers to it. Here, we focus primarily
on tracing collectors, which actually trace through pointer
chains from roots, visiting reachable objects.
The frequency of collection is indirectly determined by

the heap size: the maximum virtual memory space that may
be consumed by heap-allocated objects. When allocations
have consumed more than some portion of the heap size
(determined by the collection algorithm), collection is in-
voked. Thus, the smaller the heap size, the more frequently
GC occurs, and the more CPU time is spent on collection.
GC algorithms divide the heap into one or more regions.

A non-generational GC collects all regions during every
collection, triggering collection when some percentage of
the entire heap space is filled with allocated objects. A non-
generational GC may have only one region. In contrast,
generational GCs partition the regions into groups, where
each group of regions, called a generation, contains objects
of a similar age. Most commonly, each group consists of
a single region. When some percentage of the space set
aside for a generation has been filled, that generation, and
all younger ones, are collected. Additionally, live objects
that survive the collection are generally promoted to the
next older generation. New objects are typically allocated
into a nursery region. This region is usually small, and thus
is collected frequently, but quickly (because it is small).
The generational configurations that we consider here have
two generations, a nursery and a mature space. Because
nursery collection generally filters out a large volume of
objects that die young, mature space grows more slowly—
but when it fills, that triggers a full heap collection.
Orthogonal to whether a collector is generational is how

it reclaims space. Mark-sweep (MS) collection marks the
reachable objects, and then sweeps across the allocation
region to reclaim the unmarked ones. MS collection is
non-copying in that it does not move allocated objects. In
contrast, copying collectors proceed by copying reachable
objects to an empty copy space, updating pointers to re-
fer to the new copies. When done, it reclaims the previous
copy space. We do not consider here collectors that com-
pact in place rather than copying to a new region, but our
techniques would work just as well for them. Notice that
collectors that have a number of regions may handle each

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250
 0

 50

 100

 150

 200

 250

 300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

W
or

kin
g

Se
t S

ize
 (M

B)

Heap Size (MB)

MarkSweep -- SPEC _213_javac

Execution Time
Working Set Size (95%)

Figure 3: The effect of heap size on performance and work-
ing set size (the number of pages needed to run with 5%
slowdown from paging).

region differently. For example, a given GC may collect
one region by copying, another by MS, and others it may
never collect (so-called immortal spaces).
Finally, allocation and collection are intertwined. When

allocating into an MS-managed region, the allocator uses
free lists to find available chunks of space. When allocat-
ing into a copying region, it simply increments a free space
pointer through the initially empty space. For generational
collection, the nursery is usually a copy-collected space,
thus allowing fast allocation. The mature space, however,
may be a copying- or a non-copying-collected region, de-
pending on the particular collector.

3 CRAMM Heap Sizing Model
The goal of the CRAMM heap sizing model is to relate
heap size and working set size, so that, given a current real
memory allocation, we can determine a heap size whose
working set size just fits in the allocation. The working
set size (WSS) for a GCed application is determined al-
most entirely by what happens during full collections, be-
cause full collections touch every reachable heap object.
Since live and dead objects are generally mixed together,
the working set includes all heap pages used for allocated
objects. It also includes the space needed for copied sur-
vivors of copying regions. Thus, each non-copying region
contributes its size to the working set, while each copying
region adds its size plus the volume of copied survivors,
which can be as much as the size of the copying region in
the worst case.
Several properties of GCed applications are impor-

tant here. First, given adequate real memory, perfor-
mance varies with heap size. For example, Figure 3
depicts the effect of different amounts of memory (the
size of the garbage-collected heap) on performance. This
graph is for a particular benchmark and garbage collector

3

(the SPECjvm98 benchmark javac with a mark-sweep
garbage collector), but it is typical. On the left-hand side,
where the heap is barely large enough to fit the applica-
tion, execution time is high. As the heap size increases,
execution time sharply drops, finally running almost 250%
faster. This speedup occurs because a larger heap reduces
the number of collections, thus reducing GC overhead. The
execution time graph has a 1 x shape, with vertical and hor-
izontal asymptotes.
However, the working set size—here given as the amount

of memory required to run with at most 5% elapsed time
added for paging—has a linear shape. The heap size deter-
mines the working set size, as previously described. Our
earlier work explores this in more detail [28]. The key ob-
servation is that working set size is very nearly linear in
terms of heap size.

3.1 GCWorking Set Size and Heap Sizing Model
We define heap size, H , as the maximum amount of space
allowed to contain heap objects (and allocation structures
such as free lists) at one time. If non-copy-collected re-
gions use N pages and copy-collected regions allocate ob-
jects into C pages, then H N 2 C. (We must reserve
up to C pages into which to copy survivors from the origi-
nal C space, and the collector needs both copies until it is
done.) The total WSS for the heap during full collection
is determined by the pages used for copied survivors, CS:
WSS N C CS. Thus heap WSS varies from N C to
N 2 C.
As a program runs, its usage of non-copying and copy-

ing space may vary, but it is reasonable to assume that the
balance usually does not change rapidly from one full col-
lection to the next. We call the ratio of allocable space
(N C) to heap size (N 2 C) the heap utilization, u.
It varies from 50% for N 0 to 100% for C 0. Given
an estimate of u, we can determine N C from H , but to
determine WSS we also need to estimate CS. Fortunately,
CS is a property of the application (volume of live objects
in copy-collected regions), not of the heap size. As with
u, we can reasonably assume that CS does not change too
rapidly from one full collection to the next.
When adjusting the heap size, we use this equation as

our model:

!H !WSS !CS u

Notice that !WSS is just our target WSS (i.e., the real mem-
ory allocation the OS is willing to give us) minus our cur-
rent WSS. The CRAMM VM provides both of these facts
to the heap size manager.
Starting out: Once the JVM reaches the point where it

needs to calculate an initial heap size, it has touched an ini-
tial working set of code and data. Thus, the space available
for the heap is exactly the volume of free pages the VM is
willing to grant us (call that Free). We wish to set our heap

size so that our worst case heap WSS during the first full
collection will not exceed Free. But the worst heap WSS is
exactly the heap size, so we set H to the minimum of Free
and the user-requested initial heap size.
Tracking the parameters: To determine the heap uti-

lization u, we simply calculate it at the end of each collec-
tion, and assume that the near future will be similar. Es-
timating !CS is more involved. We track the maximum
value for CS that we have seen so far, maxCS, and we also
track the maximum increment we have seen to CS, maxC-
SInc. If, after a full collection, CS exceeds maxCS, we as-
sume CS is increasing and estimate !CS maxCSInc 2,
i.e., that it will grow by 1/2 of the largest increment. Oth-
erwise we estimate !CS as maxCS CS, i.e., that CS for
the next full collection will equal maxCS. After calculating
!CS, we decay maxCS, multiplying it by 0.98 (a conserva-
tive policy), and maxCSInc, multiplying it by 0.5 (a more
rapidly adjusting policy).
Handling nursery collections: Because nursery collec-

tions do not process the whole heap, their CS value under-
estimates survival from future full collections. So, if the
nursery size is less than 50% of allocable space, we do not
update H . For larger nurseries, we estimate !CS by mul-
tiplying the size of uncollected copying space times 1 ",
where " is the survival rate of the nursery collection, i.e.,
CS #, where # is the size of the nursery.
This model is a straightforward generalization of our

previous one [28], taking into account copying and non-
copying regions and modeling startup effects. Our tracking
of maxCS and maxCSInc also helps avoid paging. We pe-
riodically request the current Free value, so that we can re-
duce the heap size between full collections if our allocation
shrinks suddenly. If Free is less than maxCS, we trigger an
immediate collection.

4 VM Design and Implementation
We now present the CRAMM VM system. We first de-
scribe why standard VM systems are insufficient for pre-
dictively adaptive heap sizing. We then describe the struc-
ture of the CRAMM VM, followed by detailed discussions
of how the VM calculates working set sizes and how it con-
trols histogram collection overhead.
Given the heap sizing model presented in Section 3.1, the

underlying VM system must provide to a GC-based pro-
cess both its working set size (WSS) and its main memory
allocation,1 thus allowing the GC to choose a proper heap
size. Unfortunately, we cannot easily obtain this informa-
tion from standard VM systems, including the Linux VM.
Linux uses a global page replacement policy that man-

ages each physical page within a single data structure for all

1The main memory allocation is not the same as the resident set size.
The latter is the amount of main memory currently consumed by a process,
while the former is the amount of main memory that the VM is willing to
let the process consume before evicting its pages.

4

processes and files. Linux thus has only ordinal informa-
tion about all pages, giving each page a ranking among the
total pool of pages. It has no cardinal information about the
reference rates, nor any separation of pages according to
process or file. Consequently, it cannot track the LRU ref-
erence histogram—the distribution of memory references
to pages managed by an LRU queue—which is needed to
determine the WSS for each process. Furthermore, it can-
not predict howmuch it could reduce the allocations of files
and other processes without inducing heavy page faulting.
It therefore cannot wisely choose a main memory alloca-
tion to offer to a GC-based process. Finally, even if it chose
to reduce the allocations for some files or other processes,
global page replacement cannot guarantee that it will re-
place the pages of those processes first.

The CRAMM VM system addresses these limitations.
Figure 2 gives an overview of the CRAMM VM structure
and interface. For each file and process, the VM keeps sep-
arate page lists and an LRU reference histogram. It also
tracks the mean cost of a major page fault (one that requires
disk I/O) so that, along with the histogram and a desired
maximum fault rate, it can compute the WSS of a process.

Its ability to compute the WSS of each file and process
allows the CRAMM VM to calculate new allocations to
each without causing thrashing by assigning too small an
allocation. When an allocation is reduced, the separate
page lists allow the VM to prefer reclaiming pages from
those files and processes that are consuming more than their
allocation.

A garbage collector communicates with the CRAMM
VM through system calls. First, the collector registers it-
self as a cooperative process with the CRAMM VM at ini-
tialization time. The VM responds with the current amount
of free memory, allowing the collector to pick a reason-
able initial heap size. Second, after each heap collection,
the collector requests a WSS estimate and a main memory
allocation from the VM. The collector then uses this infor-
mation to select a new heap size. If it changes its heap size,
it calls on the VM to clear its old histogram, since the new
heap size will exhibit a substantially different reference pat-
tern.

Last, the collector periodically polls the VM for an es-
timate of the free memory—the main memory space that
could be allocated to the process without causing others
to thrash. If this value is unexpectedly low, then memory
pressure has suddenly increased. Either some other sys-
tem activity is aggressively consuming memory (e.g. the
startup of a new process), or this process has more live data
(increased heap utilization), and thus is using more mem-
ory than expected. The collector responds by pre-emptively
collecting the heap and selecting a new heap size.

4.1 CRAMMVM Structure
The CRAMM VM allocates a data structure, called a
mem info, for each address space (an inode for files or
an mm struct for processes). This structure comprises a
list of pages, an LRU reference histogram, and some addi-
tional control fields.
Figure 4 shows the page list structure of a process. The

CRAMM VM manages each address space (the space of
a file or a process) much like the Linux VM manages its
global queue. For the in-memory pages of each address
space, it maintains a segmented queue (SEGQ) structure
[5], where the active list contains the more recently used
pages and the inactive list contains those less recently used.
When a new page is faulted into memory, the VM places it
at the head of the active list. If the addition of this page
causes the active list to be too large, it moves pages from
the tail of the active list to the head of the inactive list.
When the process exceeds its main memory allocation, the
VM removes a page from the tail of the inactive list and
evicts it to disk. This page is then inserted at the head of
a third segment, the evicted list. When an address space’s
WSS exceeds its main memory allocation, the evicted list’s
histogram data allows the VM to project how large the al-
location must be to capture the working set.
The active list is managed using a CLOCK algorithm.

The inactive list is ordered by each page’s time of removal
from the active list. The relative sizes of these two lists
is controlled by an adaptive mechanism described in Sec-
tion 4.3. Like a traditional SEGQ, all inactive pages have
their access permissions removed, forcing any reference to
an inactive page to cause a minor page fault. When such a
page fault occurs, the VM restores the page’s permissions
and promotes it into the active list, and then updates the ad-
dress space’s histogram. The insertion of a new page into
the active list may force other pages out of the active list.
The VM manages the evicted list similarly; the only dif-
ference is that a reference to an evicted page triggers disk
activity.
Replacement algorithm: The CRAMM VM places

each mem info structure into one of two lists: the un-
used list for the address spaces of files for which there are
no open file descriptors, and the normal list for all other ad-
dress spaces. When the VM must replace a page, it prefer-
entially selects a mem info from the unused list and then
reclaims a page from the tail of that inactive list. If the un-
used list is empty, the VM selects a mem info in a round
robin manner from the normal list, and then selects a page
from the tail of its inactive list.
As Section 5.2 shows, this eviction algorithm is less ef-

fective than the standard Linux VM replacement algorithm.
However, the CRAMM VM structure can support standard
replacement policies and algorithms while also present-
ing the possibility of new policies that control per-address-
space main memory allocation explicitly.

5

Buffer

Active (CLOCK) Inactive (LRU) Evicted (LRU)

M ajor fault

Evicted

Refill& Adjustm ent

M inor fault

Pagesprotected byturning off
perm issions.Referencing a page
triggersa m inor fault.

Pagesevicted to disk.Referencing a
page triggersa m ajor fault.

Header

Page Des

AVL node

Recentlyused pages.
Referencesignored

bin0

Level_1

Level_2

Histogram
Hitcountersupdated after
everym inororm ajor fault

Figure 4: Segmented queue page lists for one address space (file or process).

Available Memory: A garbage collector will periodi-
cally request that the CRAMM VM report the available
memory—the total main memory space that could be allo-
cated to the process. Specifically, the CRAMMVM reports
the available memory (available) as the sum of the pro-
cess’s resident set size (rss), the free main memory (free),
and the total number of pages found in the unused list (un-
used). There is also space reserved by the VM (reserved)
to maintain a minimal pool of free pages that must be sub-
tracted from this sum:

available rss free unused reserved

This value is useful to the collector because the CRAMM
VM’s per-address-space structure allows it to allocate this
much space to a process without causing any page swap-
ping. Standard VM systems that use global memory man-
agement (e.g., Linux) cannot identify the unused file space
or preclude the possibility of page swapping as memory is
re-allocated to a process.
4.2 Working Set Size Calculation
The CRAMM VM tracks the current working set size of
each process. Recall that the WSS is the smallest main
memory allocation for which page faulting degrades pro-
cess throughput by less than t%. If t 0, space may
be wasted by caching pages that receive very little use.
When t is small but non-zero, the WSS may be substan-
tially smaller than for t 0, yet still yield only trivial page
swapping. In our experiments, we chose t 5%.
In order to calculate the WSS, the VMmaintains an LRU

reference histogram h [25, 27] for each process. For each
reference to a page at position i of the process’s page lists,
the VM increments h i .2 This histogram allows the VM
to calculate the number of page faults that would occur
for each possible memory allocation. The VM also mon-
itors the mean cost of a major fault (majfc) and the time

2Notice that we refer to the histogram as an LRU reference histogram,
but that our page lists are not in true LRU order, and so the histogram
is really a SegQ reference histogram. Also, note that only references to
the inactive and evicted lists are applicable here, since references to active
pages occur without kernel intervention.

T that each process has spent on the CPU. To calculate
the WSS, it scans the histogram backward to find the al-
location at which the number of page faults is just below
T t majfc.

Page list position: When a page fault occurs, the refer-
enced page is found within the page lists using a hash map.
In order to maintain the histograms, the CRAMMVMmust
determine the position of that page within the page lists.
Because a linear traversal of the lists is inefficient, the VM
attaches an AVL tree to each page list. Figure 4 shown this
structure that the VM uses to calculate page list positions in
logarithmic time. Specifically, every leaf node in the AVL
tree contains up to k pointers to pages, where k depends on
the list into which the node points. Every non-leaf node
is annotated with the total number of pages in its subtree;
additionally, each non-leaf node is assigned a capacity that
is the k-values of its children. The VM puts newly added
pages into a buffer, and inserts this buffer into the AVL tree
as a leaf node when that buffer points to k pages. When-
ever a non-leaf node drops to half full, the VM merges its
children and adjusts the tree shape accordingly.

When a page is referenced, the VM first searches lin-
early to find the page’s position in the containing leaf node.
It then walks up the AVL tree, summing the pages in leaf
nodes that point to earlier portions of the page list. Thus,
given that k is constant and small, determining a page’s list
position is performed in time proportional to the height of
the AVL tree.

Because the CRAMM VM does not track references to
pages in the active list, one leaf node contains pointers to
all pages in the active list, and for this leaf node, k $. For
leaf nodes that point to inactive and evicted pages, k 64—
a value chosen to balance the work of linear search and
tree traversal. The AVL trees have low space overhead.
Suppose an application has N 4KB pages, and our AVL
node structure is 24 bytes long. Here, the worst case space
overhead (all nodes half full, total number of nodes double
the number of leaf node) is:

6

N
64 2 2 24

N 212
0 037%

On average, we observe that the active list contains a
large portion (more than half) of the pages used by a pro-
cess, and thus the overhead is even lower.
LRUhistogram: Keeping one histogram entry for every

page list position would incur a large space overhead. In-
stead, the CRAMM VM groups positions into bins. In our
implementation, every bin corresponds to 64 pages (256
KB given the page size of 4 KB). This granularity is fine
enough to provide a sufficiently accurate WSS measure-
ment while reducing the space overhead substantially.
Furthermore, CRAMM dynamically allocates space for

the histogram in chunks of 512 bytes. Given that a his-
togram entry is 8 bytes in size, one chunk corresponds to
histogram entries for 16 MB of pages. Figure 4 shows the
data structure for a histogram. We see that, when a process
or file uses less than 64 pages (256 KB), it uses only bin0,
requiring no extra. This approach is designed to handle the
frequent occurrence of small processes and files. Any pro-
cess or file that requires more than 256 KB but less than
16MB memory uses the level 1 histogram. Larger ones
use the level 2 histogram. The worst-case histogram space
overhead occurs when a process uses exactly 65 pages.
Here, the histogram will need about 0.2% of the memory
consumed by the process. In common cases, it is about 8
bytes per 64 pages, which is less than 0.004%.
Major fault cost: Calculating WSS requires tracking

the mean cost of a major page fault. The CRAMM VM
keeps a single, system-wide estimate majfc of this cost.
When the VM initiates a swap-in operation, it marks the
page with a time-stamp. After the read completes, the VM
calculates the time used to load the page. This new time is
then used to update majfc.

4.3 Controlling Histogram Collection Overhead
Because the CRAMMVM updates a histogram entry at ev-
ery reference to an inactive page, the size of the inactive list
determines the overhead of histogram collection. If the in-
active list is too large, then too much time will be spent
handling minor page faults and updating histogram entries.
If the inactive list is too small, then the histogram will pro-
vide too little information to calculate an accurate WSS.
Thus, we want the inactive list to be as large as possible
without inducing too much overhead.
The VM sets a target forminor fault overhead, expressed

as a percentage increase in running time for processes, and
dynamically adjusts the inactive list size according to this
target. For each process, the VM tracks its CPU time T
and a count of its minor page faults n. It also maintains
a system-wide minor fault cost minfc using the same ap-
proach as with majfc. It uses these values to calculate the
minor fault overhead as: n minfc T . It performs this

calculation periodically, after which it resets both T and n.
Given a target of 1% and a constant threshold for deviation
from that target of 0 5%, one of three cases may apply:

If the overhead exceeds 1 5%, the VM decreases the
inactive list size.

If the overhead is less than 0 5%, it increases the in-
active list size.

If there are no minor faults during this period, and if
the inactive list is not full, then it moves pages from
the active to the inactive list (refilling the inactive list).

This simple adaptive mechanism, set to a 1% overhead
target and a 0 5% deviation threshold, successfully keeps
the overhead low while yielding sufficient histogram infor-
mation for WSS calculations.
Size adjustment calculations: CRAMM assigns each

process a target inactive size, initially 0. When CRAMM
adjusts the inactive list size, it is really setting this target
size. Assume that a process has PA pages in the active list
and PI in the inactive list. Depending on the overhead’s
relationship to its threshold, the new target will be:

Increase: PI max min PA PI 32 8

Decrease: PI max min PA PI 8 8

Refill: PI max min min PA PI 16 256 8

By choosing the smaller of PA and PI in these equations,
we make the adjustments small if either list is small, thus
not changing the target too drastically. These formulas also
ensure that at least some constant change is applied to the
target, ensuring a change that will have some effect. We
also put an upper bound on the refilling adjustment to pre-
vent flushing too many pages into the inactive list at a time.
Finally, we decrease the target inactive list size more ag-
gressively than we increase it because low overhead is a
more critical and sensitive goal than accurate histogram in-
formation. We also refill more aggressively than we in-
crease because zero minor faults is a strong indication of
an inadequate inactive list size.
Whenever a page is added to the active list, the VM

checks the current inactive list size. If it is less than its tar-
get, then the VM moves several pages from the active list
to the inactive list (8 pages in our implementation). When
an adjustment triggers refilling, the VM immediately forces
pages into the inactive list to match its new target.
Adaptivity triggers: In the CRAMMVM, there are two

events that can trigger an inactive list size adjustment. The
first, adjust interval, is based on running time, and the sec-
ond, adjust count, is based on the number of minor faults.
For every new process, its adjust interval is initialized

to a default value (116 sec). Whenever a process is sched-
uled, if its running time since the last adjustment exceeds

7

its adjust interval value, then the VM adjusts the inactive
list size.
The adjust count variable is initialized to be

adjust interval 2% minfc. If a process suffers this
number of minor faults before adjust interval CPU time
has passed, then its overhead is well beyond the acceptable
level. At each minor fault, the VM checks whether the
number of minor faults since the last adjustment exceeds
adjust count. If so, it forces an adjustment.

5 Experimental Evaluation
We now evaluate our VM implementation and heap size
manager. We first compare the performance of the
CRAMM VM with the original Linux VM. We then add
the heap size manager to several collectors in Jikes RVM,
and evaluate their performance under both static and dy-
namic real memory allocations. We also compare them
with the JRockit [7] and HotSpot [19] JVMs under simi-
lar conditions. Finally, we run two concurrent instances of
our adaptive collectors under memory pressure to see how
they interact with each other.

5.1 Methodology Overview
We performed all measurements on a 1.70GHz Pentium 4
Linux machine with 512MB of RAM and 512MB of lo-
cal swap space. The processor has 12KB I and 8KB D L1
caches and a 256KB unified L2 cache. We installed both
the “stock” Linux kernel (version 2.4.20) and our CRAMM
kernel. We ran each of our experiments six times in single-
user mode, and always report the mean of the last five runs.
In order to simulate memory pressure, we used a back-
ground process to pin a certain volume of pages in memory
using mlock.
Application platform: We used Jikes RVM v2.4.1 [3]

built for Linux x86 as our Java platform. We optimized the
system images to the highest optimization level to avoid
run-time compilation of those components. Jikes RVM
uses an adaptive compilation system, which invokes op-
timization based on time-driven sampling. This makes ex-
ecutions non-deterministic. In order to get comparable de-
terministic executions, we took compilation logs from 7
runs of each benchmark using the adaptive system, and di-
rected the system to compile methods according to the log
from the run with the best performance. This is called the
replay system. It is deterministic and highly similar to typ-
ical adaptive system runs.
Collectors: We evaluate five collectors from the MMTk

memory management toolkit [9] in Jikes RVM: MS (mark-
sweep), GenMS (generational mark-sweep), CopyMS
(copying mark-sweep), SS (semi-space), and GenCopy
(generational copying). All of these collectors have a sep-
arate non-copying region for large objects (2KB or more),
collected with the Treadmill algorithm [6]. They also use
separate non-copying regions for meta-data and immortal

objects. We now describe the other regions each collec-
tor uses for ordinary small objects. MS is non-generational
with a single MS region. GenMS is generational with a
copying nursery and MS mature space. CopyMS is non-
generational with two regions, both collected at every GC.
New objects go into a copy region, while copy survivors
go into an MS region. SS is non-generational with a sin-
gle copying region. GenCopy is generational with copy-
ing nursery and mature space. Both generational collectors
(GenMS and GenCopy) use Appel-style nursery sizing [4]
(starts large and shrinks as mature space grows).
Benchmarks: For evaluating JVM performance, we

ran all benchmarks from the SPECjvm98 suite (standard
and widely used), plus those benchmarks from the Da-
Capo suite [10] (an emerging standard for JVMGC evalua-
tion) that run under Jikes RVM, plus ipsixql (a publicly
available XML database program) and pseudojbb (a
variant of the standard, often-used SPECjbb server bench-
mark with a fixed workload (140,000 transactions) instead
of fixed time limit). For evaluating general VM perfor-
mance, we used the standard SPEC2000 suite.
Presented: Many results are similar, so to save space

we present results only from some representative collec-
tors and benchmarks. For collectors, we chose SS, MS,
and GenMS to cover copying, non-copying, and genera-
tional variants. For benchmarks, we chose javac, jack,
pseudojbb, ipsixql, jython, and pmd.

5.2 VM Performance
For the CRAMM VM to be practical, its baseline perfor-
mance (i.e., while collecting useful histogram/working set
size information) must be competitive when physical RAM
is plentiful. We compare the performance of the CRAMM
VM to that of the stock Linux kernel across our entire
benchmark suite.3 For each benchmark, we use the input
that makes it runs longer than 60 seconds.
Figure 5 summarizes the results, which are geometric

means across all benchmarks: SPEC2000int, SPEC2000fp,
and all the Java benchmarks (SPECjvm98, DaCapo, pseu-
dojbb, and ipsixql) with five different garbage collectors.
While the inactive list size adjustment mechanism effec-
tively keeps the cost of collecting histogram data in the
desired range (e.g., 0.59% for SPEC2Kint and 1.02% for
SPEC2Kfp), the slowdown is generally about 1–2.5%. We
believe this overhead is caused by CRAMM polluting the
cache when handling minor faults as it processes page lists
and AVL trees. This, in turn, leads to extra cache misses
for the application. We verified that at the target minor fault
overhead, CRAMM incurs enough minor faults to calculate
the working set size accurately with respect to our 5% page
fault threshold.
CRAMM’s performance is generally somewhat poorer

3We could not compile and run some SPEC2000 Fortran programs, so
we omit some of the FP benchmarks.

8

Figure 5: Virtual memory overhead (% increase in execu-
tion time) without paging, across all benchmark suites and
garbage collectors.

on the Java benchmarks, where it must spend more time
handling minor faults caused by the dramatic working set
changes between the mutator and collector phases of GCed
applications. However, the fault handling overhead remains
in our target range. Overall, CRAMM collects the neces-
sary information at very low overhead in most cases, and
its performance is competitive to that of the stock kernel.

5.3 Static Memory Allocation
To test our adaptive mechanism, we run the benchmarks
over a range of requested heap sizes with a fixed memory
allocation. We select memory allocations that reveal the
effects of large heaps in small allocations and small heaps
in large allocations. In particular, we try to evaluate the
ability of our mechanism to grow and shrink the heap. We
run the non-adaptive collectors (which simply use the re-
quested heap size) on both the stock and CRAMM ker-
nels, and the adaptive collectors on the CRAMM kernel,
and compare performance.
Figure 6 shows execution time for benchmarks using the

MS collector with a static memory allocation. For almost
every combination of benchmark and requested heap size,
our adaptive collector chooses a heap size that is nearly op-
timal. It reduces total execution time dramatically, or per-
forms at least as well as the non-adaptive collector. At the
leftmost side of each curve, the non-adaptive collector runs
at a heap size that does not consume the entire allocation,
thus under-utilizing available memory, collecting too fre-
quently and inducing high GC overhead. The adaptive col-
lector grows the heap size to reduce the number of collec-
tions without incurring paging. At the smallest requested
heap sizes, this adjustment reduces execution time by as
much as 85%.
At slightly larger requested heap sizes, the non-adaptive

collector performs fewer collections, better utilizing avail-
able memory. One can see that there is an ideal heap size
for the given benchmark and allocation. At that heap size,

the non-adaptive collector performs well—but the adaptive
collector often matches it, and is never very much worse.
The maximum slowdown we observed is 11% across all
the benchmarks. (Our working set size calculation uses a
page fault threshold of t 5%, so we are allowing a triv-
ial amount of paging—while reducing the working set size
substantially.)
Once the requested heap size goes slightly beyond the

ideal, non-adaptive collector performance drops dramati-
cally. The working set size is just slightly too large for
the allocation, which induces enough paging to slow exe-
cution by as much as a factor of 5 to 10. In contrast, our
adaptive collector shrinks the heap so that the allocation
completely captures the working set size. By performing
slightly more frequent collections, the adaptive collector
consumes a modest amount of CPU time to avoid a lot of
paging, thus reducing elapsed time by as much as 90%.
When the requested heap size becomes even larger, the
performance of our adaptive collector remains the same.
However, the execution time of the non-adaptive collector
decreases gradually. This is because it does fewer collec-
tions, and it is collections that cause most of the paging.
Interestingly, when we disable adaptivity, the CRAMM

VM exhibits worse paging performance than the stock
Linux VM. LRU-based eviction algorithm turns out to be a
poor fit for garbage collection’s memory reference behav-
ior. Collectors typically exhibit loop-like behavior when
tracing live objects, and LRU is notoriously bad in han-
dling large loops. The Linux VM instead uses an eviction
algorithm based on a combination of CLOCK and a linear
scan over the program’s address space, which happens to
work better in this case.
Figure 7 shows results of the same experiments for the

GenMS collector, which are qualitatively similar to those
for MS.

5.4 Dynamic Memory Allocation
The results given so far show that our adaptive mechanism
selects a good heap size when presented with an unchang-
ing memory allocation. We now examine how CRAMM
performs when the memory allocation changes dynami-
cally. To simulate dynamic memory pressure, we use a
background process that repeatedly consumes and releases
memory. Specifically, it consists of an infinite loop, in
which it sleeps for 25 seconds, mmap’s 50MB memory,
mlock’s it for 50 seconds, and then unlocks and unmaps
the memory. We also modify how we invoke benchmarks
so that they run long enough (we give pseudojbb a large
transaction number, and iterate javac 20 times).
Table 1 summarizes the performance of both non-

adaptive and adaptive collectors under this dynamic mem-
ory pressure. The first column gives the benchmarks and
their initial memory allocation. The second column gives
the collectors and their requested heap sizes respectively.

9

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- SPEC _213_javac (95MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- SPEC _228_jack (80MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- ipsixql (85MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- pseudojbb (115MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- Dacapo jython (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

MarkSweep -- Dacapo pmd (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 6: Static Memory Allocation: MarkSweep

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- SPEC _213_javac (95MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- SPEC _228_jack (80MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- ipsixql (85MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- pseudojbb (115MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- Dacapo jython (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

El
ap

se
d

Ti
m

e
(s

)

Heap Size (MB)

GenMS -- Dacapo pmd (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 7: Static Memory Allocation: GenMS

We set the requested heap size so that the benchmark will
run gracefully in the initial memory allocation. We present
the total elapsed time (T), CPU utilization (cpu), and num-
ber of major faults (MF) for each collector. We compare
them against the base case, i.e., running the benchmark
at the requested heap size with sufficient memory. The
last column shows adaptive execution time relative to non-
adaptive. We see that for each collector the adaptive mech-
anism adjusts the heap size in response to memory pres-
sure, nearly eliminating paging. The adaptive collectors
show very high CPU utilization and dramatically reduced
execution time.

Figure 8 illustrates how our adaptive collectors change
the heap size while running pseudojbb under dynamic
memory pressure. The graphs in the first row demonstrate
how available memory changes over time, and the corre-
sponding heap size chosen by each adaptive collector. We
see that as available memory drops, the adaptive collec-
tors quickly shrink the heap to avoid paging. Likewise,
they grow the heap responsively when there is more avail-
able memory. One can also see that the difference between
the maximum and minimum heap size is approximately the
amount of memory change divided by heap utilization u,
consistent with our working set size model presented in

10

Benchmark Collector Enough Memory Adaptive Collector Non-Adaptive Collector
(Memory) (Heap Size) T(sec) MF T(sec) cpu MF T(sec) cpu MF A/S
pseudojbb SS (160M) 297.35 1136 339.91 99% 1451 501.62 65% 24382 0.678
(160M) MS (120M) 336.17 1136 386.88 98% 1179 928.49 36% 47941 0.417

GenMS (120M) 296.67 1136 302.53 98% 1613 720.11 48% 39944 0.420
javac SS (150M) 237.51 1129 259.35 94% 1596 455.38 68% 24047 0.569
(140M) MS (90M) 261.63 1129 288.09 95% 1789 555.92 47% 25954 0.518

GenMS (90M) 249.02 1129 263.69 95% 2073 541.87 50% 33712 0.487

Table 1: Dynamic Memory Allocation: Performance of Adaptive vs. Non-Adaptive Collectors

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350

M
em

or
y

||
He

ap
 (M

B)

Elapsed Time (second)

SemiSpace -- pseudojbb (160M)

Heap
Avail

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400

M
em

or
y

||
He

ap
 (M

B)

Elapsed Time (second)

MarkSweep -- pseudojbb (160M)

Heap
Avail

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350

M
em

or
y

||
He

ap
 (M

B)

Elapsed Time (second)

GenMS -- pseudojbb (160M)

Heap
Avail

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450 500

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (t
ho

us
an

ds
)

Elapsed Time (second)

SemiSpace -- pseudojbb (160M)

base-160
adaptive-160

static-160
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (t
ho

us
an

ds
)

Elapsed Time (second)

MarkSweep -- pseudojbb (160M)

base-120
adaptive-120

static-120
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (t
ho

us
an

ds
)

Elapsed Time (second)

GenMS -- pseudojbb (160M)

base-120
adaptive-120

static-120

Figure 8: Dynamic Memory Allocation (pseudojbb): Heap Adjustment and Throughput

 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700 800

He
ap

 S
ize

 (M
B)

Elapsed Time (second)

MS+pseudojbb:Heap-1
MS+pseudojbb:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B)

MS + pseudojbb vs MS + pseudojbb (220MB)

MS+pseudojbb:Avail-1
MS+pseudojbb:Avail-2

 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700

He
ap

 S
ize

 (M
B)

Elapsed Time (second)

MS+pseudojbb:Heap-1
MS+javac:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B)

MS + pseudojbb vs MS + javac (220MB)

MS+pseudojbb:Avail-1
MS+javac:Avail-2

 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700

He
ap

 S
ize

 (M
B)

Elapsed Time (second)

GenMS+pseudojbb:Heap-1
MS+javac:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B)

GenMS + pseudojbb vs MS + javac (220MB)

GenMS+pseudojbb:Avail-1
MS+javac:Avail-2

Figure 9: Running Two Instances of Adaptive Collectors.

Section 3.1.

We also compare the throughput of the adaptive and non-
adaptive collectors (the second row in Figure 8), by printing
out the number of transactions finished as time elapses for
pseudojbb. These curves show that memory pressure
has much less impact on throughput when running under
our adaptive collectors. It causes only a small disturbance
and only for a short period of time. The total execution
time of our adaptive collectors is a little longer than that of
the base case, simply because they run at a much smaller

heap size (and thus collect more often) when there is less
memory. The non-adaptive collectors experience signifi-
cant paging slowdown when under memory pressure.

As previously mentioned, JRockit and HotSpot do not
adjust heap size well in response to changing memory al-
location. Figure 10 compares the throughput of our adap-
tive collectors with that of JRockit and HotSpot. We care-
fully choose the initial memory allocation so that the back-
ground process imposes the same amount of relative mem-
ory pressure as for our adaptive collectors. However, being

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (t
ho

us
an

ds
)

Elapsed Time (second)

adaptive-GenMS
adaptive-MS
adaptive-SS

HotSpot
JRockit

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (t
ho

us
an

ds
)

Normalized Elapsed Time

adaptive-GenMS
adaptive-MS
adaptive-SS

HotSpot
JRockit

Figure 10: Throughput under dynamic memory pressure,
versus JRockit and HotSpot.

an experimental platform, Jikes RVM’s compiler does not
produce as efficient code as these commercial JVMs. We
thus normalize the time for each of them to the total ex-
ecution time that each JVM takes to run when given am-
ple physical memory. The results show that both JRockit
and HotSpot experience a large relative performance loss.
The flat regions on their throughput curves indicate that
they make barely any progress when available memory sud-
denly shrinks to less than their working set. Meanwhile,
our adaptive collector changes the heap size to fit in avail-
able memory, maintaining high performance.
Finally, we examine how our adaptive collectors inter-

act with each other. We started two instances using adap-
tive collectors with a certain memory allocation (220MB),
and let them adjust their heap sizes independently. We ex-
plored several combinations of collector and benchmark:
the same collector and benchmark, the same collector and
different benchmarks, and different collectors with differ-
ent benchmarks. The experiments show that, for all these
combinations, our adaptive collectors keep CPU utilization
at least 91%. Figure 9 shows the amount of available mem-
ory observed by each collector and their adapted heap size
over time. We see that, after bouncing around a little, our
adaptive collectors tend to converge to heap sizes that give

each job a fair share of available memory, even though each
works independently. More importantly, they incur only
trivial amounts of paging. The curves of GenMS in the
third graph show how filtering out small nursery collections
helps to stabilize heap size.

6 Related Work
We now discuss the work most closely related to CRAMM,
first discussing work related to the CRAMM VM and then
addressing GC-based approaches to sizing the heap.

6.1 Virtual Memory
The CRAMM VM computes stack distances, which were
originally designed for trace analysis. Mattson et al. intro-
duced a one-pass algorithm, based on stack distances, that
analyzes a reference trace and produces cache misses for
caches of any size [22]. This algorithm was later adapted
by Kim and Hsu to handle highly-associative caches [21].
However, these algorithms compute a stack distance in lin-
ear time, making them too slow to use inside a kernel. Sub-
sequent work on analyzing reference traces used more ad-
vanced dictionary data structures [1, 8, 17, 23, 26]. These
algorithms calculate a stack distance in logarithmic time,
but do not maintain underlying referenced blocks in order.
This order is unnecessary for trace processing but crucial
for page eviction decisions. The CRAMM VM maintains
pages in a list that preserves potential eviction order, and
uses a separate AVL tree to calculate a stack distance in
logarithmic time.
Zhou et al. present a VM system that also tracks LRU

reference curves inside the kernel [29]. They use Kim and
Hsu’s linear-time algorithm to maintain LRU order and cal-
culate stack distances. To achieve reasonable efficiency,
this algorithm requires the use of large group sizes (e.g.,
1024 pages) that significantly degrade accuracy. They also
use a static division between the active and inactive lists,
yielding an overhead of 7 to 10%. The CRAMM VM not
only computes the stack distance in logarithmic time, but
also can track reference histograms at arbitrary granulari-
ties. Furthermore, its inactive list size adjustment algorithm
allows it to collect information accurately from the tail of
miss curves while limiting reference histogram overhead to
1%.

6.2 Garbage Collection
Researchers have proposed a number of heap sizing ap-
proaches for garbage collection; Table 2 provides a sum-
mary. The closest work to CRAMM is by Alonso and Ap-
pel, who also exploit VM system information to adjust the
heap size [2]. Their collector periodically queries the VM
for the current amount of available memory and adjusts the
heap size in response. CRAMM differs from this work
in several key respects. While their approach shrinks the
heap when memory pressure is high, it does not expand
and thus reduce GC frequency when pressure is low. It also

12

Grows Shrinks Static Dynamic Collector Needs OS
Heap Heap Allocation Allocation Neutral Support Responds to

Alonso et al.[2] memory allocation
Brecht et al.[11] pre-defined rules
Cooper et al.[14] user supplied target
BC [18] page swapping
JRockit [7] throughput or pause time
HotSpot [19] throughput and pause time
MMTk [9] live ratio and GC load
CRAMM memory allocation

Table 2: A comparison of approaches to dynamic heap sizing.

relies on standard interfaces to the VM system that provide
a coarse and often inaccurate estimate of memory pressure.
The CRAMM VM captures detailed reference information
and provides reliable values.

Brecht et al. adapt Alonso and Appel’s approach to con-
trol heap growth via ad hoc rules for two given static
memory sizes [11]. Cooper et al. dynamically adjust the
heap size of an Appel-style collector according to a user-
supplied memory usage target [14]. If the target matches
the amount of free memory, their approach adjusts the heap
to make full use of it. However, none of these approaches
can adjust to dynamic memory allocations. CRAMM au-
tomatically identifies an optimal heap size using data from
the VM. Furthermore, the CRAMMmodel captures the re-
lationship between working set size and heap size, making
its approach more general and robust.

Our research group previously presented the bookmark-
ing collector (BC), a garbage-collection algorithm that
guides a lightly modified VM system to evict pages that do
not contain live objects and installs “bookmarks” in pages
in response to eviction notifications [18]. These book-
marks allow BC to collect the heap without touching al-
ready evicted pages, which CRAMMmust. One shortcom-
ing of BC is that it currently cannot grow the heap because
it responds only to page eviction notifications. CRAMM
both shrinks and grows the heap to fit, and can be applied
to a wide range of existing garbage collection algorithms.

Finally, this work builds on our previous study that in-
troduced an early version of the CRAMM heap sizing
model [28]. That study presented a model that was evalu-
ated only in the context of trace-driven simulations. This
paper builds on the previous study significantly. It re-
fines the heap sizing model to take into account copy-
ing and non-copying regions (required to handle gener-
ational collectors), is implemented in a fully functional
modified Linux kernel, introduces implementation strate-
gies that make it practical (the AVL-based approach versus
our earlier linear-time algorithm), and presents extensive
empirical results.

7 Conclusion
We present CRAMM, a new system designed to sup-
port garbage-collected applications. CRAMM combines
a new virtual memory system with a garbage-collector-
neutral, analytic heap sizing model to dynamically adjust
heap sizes. In exchange for modest overhead (around 1-
2.5% on average), CRAMM improves performance dra-
matically by making full use of memory without incurring
paging. CRAMM allows garbage-collected applications to
run with a nearly-optimal heap size in the absence of mem-
ory pressure, and adapts quickly to dynamic memory pres-
sure changes, avoiding paging while providing high CPU
utilization.

References
[1] G. Almasi, C. Cascaval, and D. A. Padua. Calculating stack

distances efficiently. In ACM SIGPLAN Workshop on
Memory System Performance, pages 37–43, Berlin,
Germany, Oct. 2002.

[2] R. Alonso and A. W. Appel. An advisor for flexible
working sets. In Proceedings of the 1990 SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, pages 153–162, Boulder, CO, May 1990.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalepeño virtual machine. IBM Systems Journal,
39(1):211–238, Feb. 2000.

[4] A. Appel. Simple generational garbage collection and fast
allocation. Software: Practice and Experience,
19(2):171–183, Feb. 1989.

[5] O. Babaoglu and D. Ferrari. Two-level replacement
decisions in paging stores. IEEE Transactions on
Computers, C-32(12):1151–1159, Dec. 1983.

[6] H. G. Baker. The Treadmill: Real-time garbage collection
without motion sickness. ACM SIGPLAN Notices,
27(3):66–70, March 1992.

[7] BEA WebLogic. Technical white paper JRockit: Java for
the enterprise. http://www.bea.com/content/news events
/white papers/BEA JRockit wp.pdf.

13

[8] B. T. Bennett and V. J. Kruskal. LRU stack processing.
IBM Journal of R & D, 19(4):353–357, 1975.

[9] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with
MMTk. In 26th International Conference on Software
Engineering, pages 137–146, May 2004.

[10] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan,
K. S. McKinley, R. Bentzure, A. Diwan, D. Feinberg, S. Z.
Guyer, A. Hosking, M. Jump, J. E. B. Moss, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and
analysis. Submitted for publication, 2006.

[11] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of Java applications. In Proceedings of the 2001 ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications, pages 353–366,
Tampa, FL, June 2001.

[12] R. W. Carr and J. L. Henessey. WSClock – a simple and
effective algorithm for virtual memory management. In
Proceedings of the Eighth ACM Symposium on Operating
Systems Principles (SOSP), pages 87–95, Dec. 1981.

[13] W. W. Chu and H. Opderbeck. The page fault frequency
replacement algorithm. In AFIPS Conference Proceedings,
volume 41(1), pages 597–609, Montvale, NJ, 1972. AFIPS
Press.

[14] E. Cooper, S. Nettles, and I. Subramanian. Improving the
performance of SML garbage collection using
application-specific virtual memory management. In
Conference Record of the 1992 ACM Symposium on Lisp
and Functional Programming, pages 43–52, San Francisco,
CA, June 1992.

[15] P. J. Denning. The working set model for program
behavior. In Proceedings of the ACM Symposium on
Operating System Principles, pages 15.1–15.12, Jan. 1967.

[16] P. J. Denning. Working sets past and present. IEEE
Transactions on Software Engineering, SE-6(1):64–84, Jan.
1980.

[17] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation, pages 245–257, San Diego, CA, June
2003.

[18] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementaton, pages 143–153, Chicago, IL, June 2005.

[19] JavaSoft. J2SE 1.5.0 documentation: Garbage collector
ergonomics. http://java.sun.com/j2se/1.5.0/docs/guide/vm/
gc-ergonomics.html.

[20] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
caching for demand prepaging. In Proceedings of the 2002
International Symposium on Memory Management, pages
114–126, June 2002.

[21] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing
stack simulation for highly-associative memories. In
Proceedings of the 1991 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages
212–213, San Diego, CA, 1991.

[22] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Systems
Journal, 9(2):78–117, 1970.

[23] F. Olken. Efficient methods for calculating the success
function of fixed space replacement policies. Technical
Report LBL-12370, Lawrence Berkeley Laboratory, 1981.

[24] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages 79–95, New York,
NY, USA, 1995. ACM Press.

[25] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. The
EELRU adaptive replacement algorithm. Performance
Evaluation, 53(2):93–123, July 2003.

[26] R. A. Sugumar and S. G. Abraham. Efficient simulation of
caches under optimal replacement with applications to miss
characterization. InMeasurement and Modeling of
Computer Systems, pages 24–35, Santa Clara, CA, 1993.

[27] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case
for compressed caching in virtual memory systems. In
Proceedings of The 1999 USENIX Annual Technical
Conference, pages 101–116, Monterey, California, June
1999. USENIX Association.

[28] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Automatic heap sizing: Taking real memory into
account. In Proceedings of the ACM SIGPLAN
International Symposium on Memory Management, pages
61–72, Vancouver, Canada, Oct. 2004.

[29] P. Zhou, V. Pandy, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curves
for memory management. In Proceedings of the 11th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
177–188, Boston, MA, Oct. 2004.

14

