Utility-Guided Random Trees

Technical Report 06-29

Brendan Burns Oliver Brock
Laboratory for Perceptual Robotics
Department of Computer Science
University of Massachusetts Amherst

June 2006

Abstract

Random trees planning has been used to solve connectivity problems in a variety of problem domains.
In particular, these approaches are some of the most successful approaches to robotic motion planning. In
this work we examine the broad array of random-tree that have been proposed for motion planning. From
this survey we distill a general algorithmic framework for random-tree planning that abstracts the shared
functionality used by all planners. Examination of this algorithm shows the parts of random-tree planning
that have been explored in depth and those that have received little attention. Using this analysis, we show
that two functions: exploration length and connecting growth have been largely unexplored. To address
this, we propose utility-guided implementations of these functions. These functions are incorporated
into a complete utility-guided random-tree motion planner. Experimental results with this planner in
challenging artificial and real world planning problems indicate that this approach is significantly more
efficient and reliable.

1 Introduction

The instantaneous state of an evolving system can be conveniently represented as a point in the associated
state space. In such a representation, one commonly encountered problem is determining if a system can
transition from its current state to a desired goal state. Expressed in state space: Is it possible to connect the
current state to a desired state by a sequence of allowable state transitions?

Problems of this kind occur in a variety of domains, such as robot motion planning. Given two config-
urations of a robot and a geometric description of its environment, we would like to determine if the robot
can move between the two configurations without colliding with objects in the environment. We can cast
this problem as a connectivity problem in state space. In this case, the configuration space of the robot is
considered is the state space in which we determine a sequence of collision-free transitions that connect the
robot’s current configuration to the desired goal configuration.

The introduction of sampling-based motion planners [12] has lead to the development of a large number
of algorithmic techniques to solve this type of state space connectivity problem. These techniques are
collectively referred to as single-query motion planners. Such planners can solve state space connectivity
problems for many problems encountered in robotics. For example, they are able to generate collision-
free motion of humanoid robots [6, 14], to determine disassembly motions for manufacturing [8], to plan
behaviors for modular robots [23], or to simulate the motion of flexible molecules [5]. These planners can
also solve problems in state spaces that incorporate kinodynamic constraints of the system [16], such as the

docking of space vessels [4, 19]. They are also able to address state spaces with second-order nonlinear
dynamic constraints, such as drift and under-actuation [15].

Single-query planning methods have also proven effective for solving general connectivity problems in
state spaces. The techniques used to generate the motion for robots and molecules can easily be adapted
for the generation of hybrid control systems [2] and to validate the correctness of such systems [7], even
in the context of composite state space, representing a multitude of independently evolving, interacting
systems [13].

In this paper, we propose an abstract framework for the tree-based exploration of state spaces and ar-
gue that existing approaches can be viewed as specific instantiations. The framework exposes a number of
parameters that influence the effectiveness of state space exploration. We introduce utility-guided rapidly-
exploring random trees (RRTs) as a novel method of solving connectivity problems in state spaces. Our
method differs from existing approaches in that the exploration “strategy” is adapted in response to in-
formation obtained during the exploration. Adaptation is performed by adjusting the parameters exposed
by the abstract framework. We present experimental evidence in the context of robot motion planning to
demonstrate that utility-guided RRTs increase the effectiveness of exploration significantly.

2 Exploration With Random Trees

Tree-based single-query motion planners are well suited to solving connectivity problems in high-dimensional
spaces. These planners grow trees of valid state transitions to determine if two states can be connected. One
tree is rooted at the initial state, the other at the goal state. The two trees are grown towards each other by
adding branches obtained with sampling techniques. A path in these trees represents a valid sequence of
state transitions through state space. If the two trees can be connected, the planner has determined a solution
to the connectivity problem.

Though random-tree algorithms are capable of exploring arbitrary spaces, in the following we restrict
our examination of these algorithms to robot motion planning, and more specifically to bi-directional single-
query planning in configuration spaces. This restriction serves to focus the analysis, but the results extend
to general state spaces and tree-based algorithms that only grow a single tree.

To facilitate the analysis of random-tree planning we distill the common elements of the many existing
random tree planners into a general algorithmic framework for random-tree state space exploration. This
generalized algorithm exposes the individual modular components that compose a tree-based planning al-
gorithm. First, we present this generalized algorithm and identify among the modular components those
that have been explored in some depth by previous work. We also identify those components that have
largely remained unexplored. In subsequent sections we propose specific implementations for these under-
examined components and empirically show that these novel implementations significantly improve planner
performance.

2.1 Generalized bi-directional random-tree planning

Bi-directional tree-based planners solve the single-query problem by growing two configuration space trees,
one rooted at the start configuration and one rooted at the goal. The trees are alternately grown until they
are connected to each other. Tree growth occurs in one of two different modes: connecting growth or
exploratory growth. Connecting growth attempts to connect the two trees together. Exploratory growth
attempts to expand a tree’s representation of configuration space connectivity. In the following we describe
how these two types of growth are coordinated to implement a complete planning algorithm.

The generalized tree-based algorithm begins with an attempt to connect the trees together. While this
greedy initial growth only succeeds in extremely simple configuration spaces, it often directs the exploratory

BiDirectionalRandomTreePlanner(q;.q,)
To =T(gs), Ty = T(Qg)
Connect(Ty, Tj)
while (no path is found)
qn = SelectNode(T,)
¥ = SelectDirection(Ty, q,,)
d = SelectLength(T, g, ¥)
Extend(T, ¢n, U, d)
Connect(Ty, Tp)
SW&p(Ta, Tb)

R A G A

Figure 1: The generalized bi-directional random tree motion planning algorithm

growth toward the region of configuration space most relevant to the particular query. Several different al-
gorithms for connecting growth have been proposed [17, 21]. Regardless of the implementation, connecting
growth attempts to use the available representation of configuration space connectivity to identify a success-
ful path.

When a connecting growth fails, exploratory growth is necessary to expand a random-tree’s approxima-
tion of configuration space connectivity. Exploratory growth initially selects a node in the random tree as
the root of the new tree branch. Once a node has been selected, the planner uses its location in configura-
tion space to select an exploratory direction for the expansion. This direction may be a simple linear path
through configuration space or it may be a more complex movement through state space. Once a node and
direction have been selected the final step is to select the length of the growth. When all parameters are
selected, the planner attempts the expansion. If the state transition is valid, the tree is expanded to include
the transition. The planner can now attempt additional connecting growth to find a path. The process of
alternating connecting and exploratory growth continues for both trees until they can be connected and a
valid path or sequence of state transitions is identified. This general algorithm is given in pseudo code in
Figure 1.

2.2 Related work in random-tree planning

The performance of a single-query planner is defined by the speed with which it can discover a collision-free
path connecting two specified configurations. Achieving maximal efficiency requires careful implementa-
tions of each function in the generalized planning algorithm given in Figure 1. There has been considerable
research into tree-based planning that provide implementations for some or all of these functions. A sum-
mary of these implementations is shown in Table 1. In the following, we discuss these approaches in detail.

The most widely used tree-based planners are the rapidly-growing random tree (RRT) family. The orig-
inal RRT-Connect [17] algorithm simultaneously selects a node for expansion and a direction of expansion
using the Voronoi bias that directs expansion toward large unexplored regions of configuration space. More
recent research has refined this Voronoi bias using the dynamic domain [22] and the adaptive dynamic do-
main [10]. Once a node and an expansion direction have been selected, all of these methods use a static
length for the expansion. OBRRT [20] uses the Voronoi bias to select nodes for expansion, but uses a hybrid
approach for expansion direction and distance. OBRRT uses weighted random selection to choose between
six different methods of selecting an expansion method. Once an exploratory expansion has occurred all
four approaches attempt to connect the newly added node to the closest node in the other configuration

Algorithm Node Selection | Expl. Trajectory | Expl. Length | Connection
RRT-Connect Voronoi bias Voronoi bias constant nearest node
DD-RRT DD V. bias DD-V. bias constant nearest node
ADD-RRT ADD V. bias ADD-V. bias constant nearest node
OBRRT Voronoi bias hybrid hybrid nearest node
Exp. Spaces tree density tree density < constant < constant
Guided Exp. Spaces heuristic heuristic < constant < constant
Adapt. Single-Query none none none heuristic

Table 1: A table summarizing different tree-based planners in the context of the generalized framework for
tree-based motion planning. In the table, DD refers to the Dynamic Domain [22] and ADD refers to the
Adaptive Dynamic Domain [10]. In the context of motion planning, a state transition corresponds to

space tree.

The expansive space approach to tree-based planning [9] selects nodes for expansion based upon the
density of nodes in the configuration space. Nodes that are in sparsely sampled areas are more likely to
be selected. Rather than a single expansion, the selected node is expanded in multiple directions. These
directions are selected with a bias toward directions that lead to areas of the configuration space sparsely
covered by the tree. The distance of expansion must be less than a neighborhood threshold. After each
expansion, connection is attempted between every pair of nodes in the two trees whose distance is less than
a threshold. The expansive space approach has also been extended [19] to use a node selection function
that incorporates a heuristic cost function and the degree of the node in addition to tree density to bias node
selection.

The adaptive framework for single-query planning [21] is a hybrid approach to tree-based planning. It
focuses solely on connecting trees together. Only connecting growth is used to expand the trees. In each
iteration, a pair of nodes, one in each tree, and a path planning algorithm for connecting them is selected.
These nodes and algorithm are selected using a heuristic scoring function that weighs local configuration
space properties of the start and goal nodes, global properties of the space between the configurations and
planner characteristics.

It can be seen that these previous research in tree-based planning can be viewed as concrete implemen-
tations of the same generalized algorithm. When viewed through this generalization, comparisons between
existing tree-based methods are simplified. Through this comparison it can be seen that the largest amount
of research has explored the selection of the node to expand and to a lesser extent, the direction of this
expansion. Relatively little research has examined the role of the exploration length or the algorithm for
connecting growth. Interestingly, the one approach that examines connecting growth [21] does not use ex-
ploratory expansion. The following section explores an application of the general utility-guided framework
for selecting the exploration length and directing connecting growth.

3 Utility-Guided RRTs

The generalized algorithm for random-tree planning identifies a set of modular components that make up
a random-tree planner. Though the implementation of all of these modules affects the performance of the
planner, two of these components, exploration length and connecting growth, are largely unexplored in pre-
vious research. In the following we adapt the utility-guided framework [3] to develop novel implementations
of these components.

3.1 Utility-guided planning

Fundamentally, motion planning is search in the configuration space for a successful path. Utility-guided
planning is a general framework for structuring this search toward expansions with maximal expected utility.
The utility of an expansion step is estimated based on a probability distribution over possible outcomes of
the expansion, such as immediately discovering it to be obstructed, or some portion of the state space that
provides a partial solution to the connectivity problem.

Let the set E' contain a set of possible outcomes resulting from some expansion of a random tree. The
expected utility [11] of that expansion is given by:

ExpectedUtility(E) = » | P(e)Utility(e)
eckE

This formulation of expected utility exploits two sources of structure in the planning problem to guide
exploration. P(e), the probability of a successful expansion, is estimated by an approximate model built
from past experience. This model will be described in Section 3.4. The utility Utility(e) of that outcome
is a task-specific function that captures the “goodness” of the outcome with respect to the specific planning
problem. Selecting exploratory expansions with maximal expected utility, produces expansions that provide
maximal progress toward the planner’s goals. The following presents an application of the utility-guided
framework to generalized random-tree planning.

3.2 Utility of exploration length

The task of exploration is to improve the random tree’s approximate representation of the configuration
space. Because of this, small movements through configuration space are of limited value to the planner.
They are unlikely to significantly improve the representation of the connectivity. We model this heuristi-
cally in the utility function by a constant: 7,;,. Explorations shorter than this distance have no utility to our
planner. At first examination this might seem to limit the planner’s ability to solve problems with passages
that are narrower than 7,,;,, however this is not the case. 7, restricts the length of any particular explo-
ration but does not limit the granularity of the resulting plan. In fact, %,;, often improves planning through
narrow passages because it eliminates repeated “zig-zagging” in favor of longer connections aligned with
the narrow passage.

Long configuration space expansions also have little utility. The purpose of any exploration is to expand
the tree’s coverage of configuration space to new connectivity regions. When an trajectory has moved a
sufficient distance in configuration space it has expanded the visibility of the tree sufficiently to enable a
novel attempt at connecting the two trees. Further exploration requires significant computation for little or
no improvement likelihood that the subsequent connection attempt will be successful. Because the ultimate
goal of the planner is efficiency, the utility of wasted computation is negative. A graphical example of this
is given in Figure 2. Once the exploration proceeds beyond the “shadow” of the obstacle and has a direct
connection to the other tree, further exploration (shown as the dotted portion of the line) does not provide
further improvement. This maximum distance is modeled in the utility function by the upper threshold ,4.

When the length of an exploration is between these thresholds, its utility is proportional to its length.
All else being equal, this biases exploration toward quicker coverage of the configuration space. The formal
definition of this utility function for some trajectory ¢ is:

Utility, (£, M) = { P(t = free|M)|t| if maz > |t] > Tomin
Tmaz — |t| if |t| > Tmaz

Low
High!

Low

Figure 2: An illustration of
the utility function for expan-
sion distance. Expansion be-
yond the shadow of the obsta-
cle does not increase the utility
of the expansion.

High Expected Utility

Figure 3: An illustration of the
utility function for connection
attempts. Expected utility of a
connection is a function of the
probability that the connection
is obstructed.

3.3 Utility of connection attempt

Following each exploration, the connection step attempts to use the new information provided by exploratory
expansion to discover a direct connection between the two trees. Even when these connection attempts fail,
connecting growth often shortens the distance between the two trees and reduces subsequent exploration
required to compute a path.

This is illustrated graphically in Figure 3. Though the bottom nodes in the two trees are quite close,
connection is not attempted since the probability of a successful connection is low, due to the obstacle in
between the nodes. The presence of this obstacle has been discovered in previous steps of the planner and
the resulting information is stored in a configuration space model, which will be described in Section 3.4.
This model also contains some indication that the direct connection between the two top nodes will fail, but
this failure is less likely, given the information in the model. Hence, a connection attempt is made to connect
the top two nodes. Though it does not succeed, it expands the coverage of the are between the two trees into
parts of the configuration space likely to be free of obstructions, thus making progress towards connecting
the two trees. The newly discovered information about obstacles in the configuration space will be added to
the model and is available to guide future steps of the algorithm.

The utility of expanding configuration space coverage has previously been noted in the context of other
single-query planners [3, 15]. We define connection utility as a linear function of distance and define the
expected utility of some trajectory ¢ as:

Utility, (¢, M) = P(t = free| M)|t|.

Connecting growth increases planner efficiency by minimizing the exploration required to solve a plan-
ning problem, while exploratory expansion adds new knowledge to the planner. Connecting growth is a
greedy attempt to solve the problem with the information at hand.

Greedy search often leads to pathological behavior when the greedy path diverges significantly from
the true solution path. In motion planning this causes planners to repeatedly attempt the expansion of
trees into obstructed regions. This problem has been identified as a hazard for several single-query plan-
ners [1, 17]. Fortunately, a planner that is greedy with respect to expected utility generally avoids such
pathologic behavior. The expected utility calculation considers not only the utility of the expansion but also
the probability that the expansion is obstructed. Since obstructed expansions have no utility, pathological

expansions through obstructed configuration space regions are not chosen. If an obstructed expansion is
chosen, information from that obstructed expansion is incorporated into the predictive model improve its
predictions of future expansions.

3.4 Modeling configuration space

Estimating the expected utility of tree growth requires predicting the probability of each possible outcome
of the exploration. This is the P(e) term in the expected utility equation in Section 3.1. This prediction
enables the selection of useful explorations prior to expending significant computational resources. These
predictions are provided to the utility-guided motion planner by an approximate configuration space model,
which is built incrementally from the information obtained during the explorations.

Modeling configuration space can be viewed as a machine learning problem [3]. The learner is trained
on a number of configurations and their label (obstructed or free) and is asked to construct a model that can
predict the label of unobserved configurations. For utility-guided RRT we use a simple nearest neighbor
model. This model has several attractive features. Because it does not attempt to fit a global model to the
data it is quite capable of capturing the complex shapes of an arbitrary configuration space. Additionally,
inserting data into the model is a constant time operation, only querying the model requires any real com-
putation. When using a nearest neighbor model, the key to the model’s performance is the distance metric
chosen. The distance metric is particular to different classes of configuration spaces. For some configuration
spaces, such as the bugtrap worlds described in Section 4.1, a simple Euclidean distance metric is sufficient.
For configuration spaces involving articulated robots we reference point distance a metric first suggested
for motion planning by Leven, et al. [18]. The reference point metric is defined in terms of a number of
reference points located on the body of the articulated robot. The actual location of these reference points
depends on the kinematics of the robot. The Cartesian location of these points when the robot is in a par-
ticular configuration g are given by the functions p(q) . .. pn(q). Given this set of functions P, we use the
maximum reference point distance:

D(q1,92) = Maxpe pEuclideanDistance (p(q1), p(g2))

3.5 Utility-guided RRT planning

The estimates of utility presented previously are used to instantiate a utility-guided implementation of the
general algorithm presented in Section 2. We choose to use the traditional Voronoi bias for selecting nodes
and expansion direction. We anticipate in the future developing utility-guided implementations of these
functions as well, however estimating the utility of a direction is still an open question. For the imple-
mentations of exploration length and connecting growth we use an incremental algorithm for utility-guided
expansion (Figure 4). This algorithm explores along a trajectory through configuration space by extending
the exploration in increments of length o until the expected utility of an extension is less than or equal
to some threshold p. In practice, incremental stepping improves the ability of the model to estimate the
probability that an edge is obstructed or free. Long edges are more likely to be partially free and partially
obstructed which makes the model’s prediction significantly less accurate. While the expected utility is
greater than the threshold, each incremental step is interpolated along the trajectory to ensure that it is free
to some resolution e. If the incremental step is free, it is added to the expansion of the tree. In the following,
the edge between two configurations is denoted by ¢ — ¢.

In the context of the Table 1, the utility-guided random-tree algorithm for single-query motion planning
is summarized as:

Algorithm | Node Selection | Exp. Trajectory | Exp. Length | Connection
Util-RRT | Voronoi Bias Voronoi Bias Util. Exp. Util. Exp.

UtilityExtend(T, ¢,, ., M)
qi = (qs
do
% =¢+a
if(Utility(¢; — ¢;) < p)
break
if (Free(q; — g;))
AddToTree(T, ¢})
9 = g
while (¢; !=qe)

R R A G e

Figure 4: The utility-guided extension algorithm used for both exploration and connection

Note that this algorithm does not make any assumptions specific to motion planning. It can be applied to
arbitrary state spaces. The notion of a state space model can incorporate hard constraints, such as forbidden
regions, as well as soft constraints that express optimality criteria for a desired solution. Such soft constraints
can be expressed as preferred regions of state space.

4 Experiments

The goal of bi-directional random-tree planning is to quickly identify a sequence of state transtitions, reach-
ing from the intial to the final state. In the context of motion planning, this corresponds to a collision free
path connecting a pair of configurations. Depending on how state transitions are chosen, this path will
satisfy the kinodynamic constraints of the robot. Through the generalization of the random-tree algorithm
we have identified several components in this planning process that affect the efficiency and reliability of
the planner that have previously been unexplored. We have also proposed utility-guided implementations
of these functions. In the following we present planning experiments that compare the performance of the
utility-guided random-tree planner with adaptive dynamic-domain RRT a state of the art planner.

4.1 Bugtrap experiments

Researchers [22, 10] have identified so-called “bugtraps” as a challenging configuration space feature for
traditional RRT methods. Previously, researchers have only considered bugtraps in two-dimensional config-
uration spaces. Because challenging motion planning problems occur in higher dimensional configuration
spaces, we define bugtraps in configuration spaces of arbitrary dimensionality. Our bugtrap consists of a
single hyper-sphere obstacle; the wall of this hyper-sphere has some “thickness” associated with it. The
hyper-sphere is pierced by a hyper-cylinder oriented along the x axis and extending from the origin to the
edge of the hyper-sphere. If a configuration is within this walls of the hyper-sphere or hyper-cylinder it
is considered obstructed, otherwise it is free. Two-dimensional examples of such a bugtrap are shown in
Figure 7.

We performed planning experiments in bugtrap worlds with two, three, four and five dimensions. In each
world, each planner was asked to compute a path between a random point inside the bugtrap to a random
point outside the bugtrap. The length of time to compute this path was recorded. The average results for
one hundred random path queries are shown graphically in Figure 6. They are also shown numerically in
Table 2.

The results show that the utility-guided algorithm significantly reduces the average planning time re-
quired by the planner for all dimensions when compared to adaptive dynamic-domain RRT. The standard

(5 €

Figure 5: Large, medium, and small bugtrap; sizes are relative to the size of the considered configuration
space.

O Util. Guided RRT
w40 7 @ AD-RRT L

0C 150 |

[0}

100 |

o

@ 50

>

Z o =N %‘ ‘
() < [T)

Dimension

Figure 6: Results comparing planning algorithms for bugtrap worlds of varying dimensionality

DOF | AD. RRT Util. RRT

2 1.28 (2.88) 0.37 (0.53)

3 3508 (67.04) | 4.11 (8.81)

4 87.83 (121.08) | 11.49 (20.20)
5 393.71 (555.47) | 73.95 (80.64)

Table 2: The average runtime, with standard deviations in parenthesis, for adaptive domain RRT and utility
guided RRT for bugtrap worlds of varying dimension

deviation of utility-guided runtimes is also smaller, indicating that the performance of the planner is more
predictable as well.

In the previous experiments, the configuration was only slightly larger than the radius of the hyper-sphere
defining the exterior of the bugtrap. We also investigated the performance of random-tree planners when
the size of the configuration space relative to the bugtrap varied. This experiment evaluates performance
variations that may occur when the amount of tree-refinement has to be balanced with configuration space
exploration. To perform this evaluation, we reduced the size of the bugtrap relative to the size of configura-
tion space. The two-dimensional environments for a large, medium, and small bugtrap are shown in Figure 5.
Results showing the performance of the utility-guided RRT planner and teh adaptive dynamic-domain RRT
for different sized bugtraps of varying dimensionality are shown in Figure 7. In these experiments, all plan-
ners were allowed to run for a maximum of five minutes. If the planner failed to provide a motion plan after
five minutes, the particular run was recorded as a failure. The graphs in the left column in Figure 7 report
the average runtime of successful motion plans. The graphs in the right column show the fraction of path
planning attempts that succeeded for different sizes and dimensions. All graphs represent the average of one
hundred path queries.

As before, utility-guided random-tree planning is more efficient and more reliable. Both planners suffer
decreased performance as the relative size of the configuration space increases. However, this degradation
is significantly more severe for adaptive dynamic-domain RRT. It is important to note that in some cases,
the average runtime of both planners is equal. However in these cases, adaptive dynamic-domain RRT
fails much more often. Thus the expected runtime of a successful query is significantly higher. The failure
rate also increases with configuration space size for both planners, however it is also much less drastic for
utility-guided RRT.

Jaillet et al. [10] report that the performance of adaptive dynamic-domain RRT performance is invariant
to the size of the bugtrap. The experiments reported in [10] refer to the expansion of a single tree, rooted
inside teh bugtrap. Our experiments indicate that for bi-directional tree-based planners the performance
does vary with the relative size of the bugtrap.

4.2 Real-world experiments

The experiments in bugtrap worlds demonstrate that utility-guided random-tree planning can improve per-
formance in challenging configuration spaces. However, from a practical perspective it is important that the
algorithm improve the performance of real-world planning as well. Thus we examined planner performance
in the context of two related real-world tasks for a 14-dof humanoid torso (Figure 8). Both tasks examine the
assembly of pipes in an obstructed environment. These experiments correspond with the overall goal of this
humanoid platform performing assembly and service tasks on the exterior of the international space station.
The motion planning problems consist of a start position with the arms extended on the outside of the box
where the assembly will take place. The goal position is inside the box with the pipes oriented and ready
for a lower-level force-controller to orchestrate the final assembly. To experiment with our motion planner
on problems of varying difficulty, we performed experiments with and without a lid on the frame that serves
as the obstacle. Images of the start and goal for both of these experiments are shown in Figure 8. For each
of these experiments we performed 10 different requests for the same path query to planners seeded with
different random seeds. The average runtime for each planner for each task are given in Table 4.2.

In both cases, the results show that utility-guided RRT is at least twice as fast as adaptive-domain RRT
motion planning. Without the lid on the frame in which the assembly occurs, the motion planning problem
is relatively simple. Even though both planners are fast at solving the problem, the two-times speed-up that
utility-guided RRT provides is significant. At six seconds, the run time is fast enough to enable the robot
to motion plan in dynamic worlds that change at a slow to moderate pace. Thus the development of the

10

o Utility Guided
Adaptive Domain

-
o
o

Utility Guided
Adaptive Domain

@ | -
80 208
8 3
360 §o.6
~ (2]
40 W 0.4
E £
€20 &0.2
= 1 L &
0 = ‘ ; 0 : ‘ ‘
.2 . 3 . 4, . .2 . 3 . 4, .
Configuration Space Dimensionality Configuration Space Dimensionality
(a) Large bugtrap
O Utility Guided Utility Guided
Adaptive Domain Adaptive Domain
1
100 5
2 808
8% 8
& 60 %0'6
£40 504
S2 l §0.2
o w
0 ’_T_“ T T 0 T T T
.2 3 . 4, . .2 3 . 4, .
Configuration Space Dimensionality Configuration Space Dimensionality
(b) Medium bugtrap

O Utility Guided
Adaptive Domain

n
o
[s]

o
®

o
o

o
o

o
IS

o
o

o

Runtime (Seconds)
8
n

Fraction Successful

1

o
o

Utility Guided
Adaptive Domain

1

2 3 4
Configuration Space Dimensionality

(c) Large bugtrap

T T ;
2 3 4
Configuration Space Dimensionality

Figure 7: Average planner runtime for different ratios of configuration to bugtrap size in configuration spaces

of varying dimensionality.

World Adaptive Domain RRT | Utility Guided RRT
Box w/o Lid 12.10 (6.50) 6.77 (4.00)
Box w/ Lid 66.67 (41.74) 24.62 (17.96)

Table 3: The average runtime, with standard deviations in parenthesis, for adaptive domain RRT and utility

guided RRT for two related real-world environments.

11

Figure 8: The humanoid robot Dexter in its start and goal configuration (left) and while enacting a successful
motion plan (right).

utility-guided RRT algorithm is an important step toward dynamic motion planning. With the lid on the
frame (the world shown in Figure 8) the problem is significantly harder. While it takes the adaptive-domain
planner more than five times longer to solve the problem compared with the experiment without the lid,
utility-guided RRT is only four times slower. This result are consistent with the slower growth in runtimes
observed in the bug trap worlds. Additionally, the standard deviation of utility-guided RRT is significantly
smaller than that of adaptive-domain RRT, indicating that the utility-guided planner is more robust as well.
Combined with the results from the bugtrap worlds, these results demonstrate that utility-guided RRT’s
performance degrades more gracefully than adaptive-domain RRT as motion planning problems become
increasingly more challenging.

5 Conclusions

State space exploration based on random trees has been applied successfully in a variety of problem do-
mains. In the context of motion planning, random-tree planners have emerged as an an important class
of sampling-based, single-query motion planners. In the preceding we have examined a comprehensive
suite of existing random-tree planners and formulated a generalized algorithm that abstracts the character-
istics shared by them all. This general algorithm identifies different functions in the planner that have an
impact performance. Two of these functions—exploration length and connecting growth—have received
little attention in previous research. We have proposed utility-guided implementations for these functions
that result in an application of the utility-guided framework to random-tree motion planning. Empirical
experiments with this utility-guided RRT planner demonstrate that it is capable of improving performance
over existing state-of-the-art planners in challenging artificial and real-world environments. We believe the
abstract algorithmic framework for random-tree planning presented herein enables advances in reasoning
about random-tree planning and consequently further improvements in planner performance.

Acknowledgment

This work is supported in part by the National Science Foundation (NSF) under grants CNS-0454074, IIS-
0545934, and MIT/NASA cooperative agreement NNJOSHB61A.

References

[1] R.Bohlin and L. E. Kavraki. Path planning using lazy PRM. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 521-528, San Francisco, USA,
2000.

12

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan. RRTs for nonlinear, discrete, and hybrid
planning and control. In Proceedings of the IEEE Conference on Decision and Control, Maui, USA,
December 2003.

B. Burns and O. Brock. Toward optimal configuration space sampling. In Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2005.

P. Cheng, Z. Shen, and S. M. LaValle. RRT-based trajectory design for autonomous automobiles and
spacecraft. Archives of Control Science, 11(304):167-194, 2001.

J. Cortés, T. Siméon, V. Ruiz de Angulo, D. Guieysse, M. Remaud-Siméon, and V. Tran. A path
planning approach for computing large-amplitude motions of flexible molecules. In Proceedings of the
International Conference on Intelligent Systems for Molecular Biology (ISMB), Detroit, USA, 2005.

E. Drumwright, M. Kallmann, and M. Matari¢. Towards single-arm reaching for humanoids in dy-
namic environments. In Proceedings of the IEEE International Conference on Humanoid Robots,
Santa Monica, USA, 2004.

J. Esposito, J. Kim, and V. Kumar. Adaptive RRTs for validating hybrid robotic control systems. In
Proceedings of the Workshop on the Algorithmic Foundations of Robotics (WAFR), Utrecht/Zeist, The
Netherlands, 2004.

E. Ferré and J.-P. Laumond. An iterative diffusion algorithm for part disassembly. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages 3149-3154, New
Orleans, USA, April 2004.

D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Interna-
tional Journal of Computational Geometry and Applications, 9(4):495-512, 1999.

L. Jaillet, A. Yershova, S. M. LaVallen, and T. Siméon. Adaptive tuning of the sampling domain
for dynamic-domain RRTs. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Edmonton, Canada, 2005.

N. E. Jensen. Introdution to Bernoullian utility theory. Swedish Journal of Economics, 69(4):163—183,
1967.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566-580, 1996.

J. Kim, J. M. Esposito, and V. Kumar. An RRT-based algorithm for testing and validating multi-robot
controllers. In Proceedings of Robotics: Science and Systems, Cambridge, USA, 2005.

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots.
In Proceedings of the International Symposium of Robotics Research, Siena, Italy, 2003.

A. M. Ladd and L. E. Kavraki. Motion planning in the presence of drift, underactuation and discrete
system changes. In Proceedings of Robotics: Science and Systems, Cambridge, USA, 2005.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Detroit, USA, 1999.

13

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In Proceed-
ings of the Workshop on the Algorithmic Foundations of Robotics (WAFR), pages 293-308, 2000.

P. Leven and S. Hutchinson. Toward real-time path planning in changing environments. In Proceedings
of the Workshop on the Algorithmic Foundations of Robotics (WAFR), 2000.

J. M. Phillips, N. Bedrossian, and L. E. Kavraki. Guided expansive spaces: A search strategy for
motion- and cost-constrained state spaces. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3968-3973, New Orleans, USA, April 2004.

S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato. An obstacle-based rapidly-exploring random
tree. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Or-
lando, USA, May 2006.

D. R. Vallejo, C. Jones, and N. M. Amato. An adaptive framework for single shot motion planning.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1722-1727, Takamatsu, Japan, 2000.

A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle. Dynamic-domain RRTs: Efficient exploration
by controlling the sampling domain. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Barcelona, Spain, 2005.

E. Yoshida, H. Kurokawa, A. Kamimura, K. Tomita, S. Kokaji, and S. Murata. Planning behaviors of
a modular robot: an approach applying a randomized planner to coherent structure. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan,
2004.

14

