Verification Support for Plug-and-Play Architectural Design

Shangzhu Wang, George S. Avrunin, Lori A. Clarke
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003

{shangzhu,avrunin,clarke}@cs.umass.edu

ABSTRACT

In software architecture, components are intended to rep-
resent the computational units of the system and connec-
tors are intended to represent the interactions between those
units. Choosing the semantics of these interactions is a key
part of the design process, but the wide range of alternatives
from which to choose and the complexity of the behavior af-
fected by the choices makes it difficult to get them right.

‘We propose an approach in which connectors with partic-
ular semantics are constructed from a library of pre-defined
building blocks. Changes in the semantics of a connector
can be accomplished by adding new building blocks to the
connector, or by removing or replacing some of its existing
building blocks. In our approach, a small set of standard in-
terfaces allows components to communicate with each other
through a wide variety of connectors, so the impact on com-
ponents for even substantial changes in the semantics of the
connectors is minimized.

In this paper, we focus on the way this approach supports
design-time verification to provide feedback about the cor-
rectness of the design. By enhancing the re-use of models
of both components and connectors, this approach has the
potential to significantly reduce the cost of verification as a
design evolves.

1. INTRODUCTION

In software architecture, connectors are intended to rep-
resent the specific semantics of how components interact
with each other. They capture some of the most important
yet subtle aspects of a system, such as non-determinism,
interleavings of computations, synchronization, and inter-
component communication. These are all concerns that can
be particularly difficult to fully comprehend in terms of their
impact on the overall system behavior.

The large design space of available interaction mechanisms
and their variations only adds to this difficulty. Choosing
appropriate interaction semantics for a connector often in-
volves not only a choice from commonly used interaction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

mechanisms, such as remote procedure call, message pass-
ing, and publish/subscribe, but also decisions about such
details as the particular type and size of a message buffer or
whether a communication should be synchronous or asyn-
chronous. Thus, during architectural design, it is important
that designers be able to select the specific interaction se-
mantics they think should be employed and then get feed-
back about the appropriateness of those choices based on
their impact on the overall system behavior.

In particular, one would like to be able to propose a
design, and then use design-time verification to determine
whether some important properties of the system are satis-
fied. Violations of these properties often reflect system be-
havior that was not anticipated by the designer due to the
complexity of the interactions between components. When
such a violation is found, changes have to be made to cor-
rect the specific interaction semantics that are causing the
violation, and verification needs to be re-applied to confirm
that the changes fix the problem. Given the wide variety
of interaction mechanisms and the complexity of their se-
mantics, it is expected that a system designer would have to
go through a number of iterations, modifying their decisions
and re-verifying the overall system before a satisfactory de-
sign is achieved.

One major obstacle to the realization of this vision of de-
sign and design-time verification is that the semantics of the
interactions are often intertwined with the semantics of the
components’ computations. For example, a change from an
asynchronous communication to a synchronous one often re-
quires making changes to the components so that a callback
can be placed to explicitly notify the sender of the receipt
of messages. Experimenting with alternative choices of in-
teraction semantics tends to be difficult and inefficient when
changes made in the interactions require nontrivial changes
in the components’ computations.

This problem also complicates design-time verification.
When using finite-state verification techniques, for instance,
it is necessary to build a model of the system that represents
the computation of each component and the interactions be-
tween them. With the semantics of interactions intertwined
with the semantics of computations, changes made to the in-
teractions will often result in not only the re-construction of
the connector models but also the component models. When
repeated changes and verification of a design are necessary,
the lack of reusability of the component and connector mod-
els could increase the cost of the design-time verification
significantly.

Our approach defines a small set of standard interfaces

between components and connectors that allows the inter-
action semantics represented by a connector to be changed
with no, or minimal, change to the components. Connec-
tors with specific interaction semantics can be specified by
selecting and composing a subset of pre-defined building
blocks from a library. The semantics of a connector can
be modified by adding new building blocks, or removing or
replacing some of its existing building blocks. This approach
allows system designers to experiment more easily with al-
ternative design choices in a plug-and-play manner. It also
facilitates design-time verification by saving on the cost of
re-constructing models for both connectors and components.

Section 2 gives an overview of this plug-and-play design
approach. In particular, we illustrate how it is realized for
message passing, one of the most commonly used interac-
tion mechanisms. In Section 3, we discuss how this plug-
and-play design approach facilitates design-time verification.
Section 4 describes related work, and Section 5 discusses the
status of our work and some future directions.

2. THE PLUG-AND-PLAY APPROACH

2.1 Overview

In the previous section, we have noted the difficulties with
choosing appropriate semantics for the connectors in a sys-
tem design. Qur approach tries to address these difficulties
by providing system designers with an efficient way to ex-
periment with alternative design choices for connectors and
to use finite-state verification to evaluate the correctness of
their designs.

To achieve this, we first introduce a small set of standard
interfaces that components can use to communicate with
each other through different connectors. This set of stan-
dard interfaces allows connectors to be modified or replaced
without causing significant changes in the components. To
support the standard interfaces, we decompose connectors
into ports and channels that capture different aspects of the
interaction semantics represented by connectors. Ports work
directly with the components’ standard interfaces and are
responsible for hiding the semantic differences between con-
nectors from the components. Ports capture such aspects
of interaction semantics as under what condition a compo-
nent should be blocked or whether a component should wait
for an acknowledgement after a communication with other
components. While such semantics can be easily embed-
ded in components’ computation, with our approach, they
can be captured in the ports, as part of the connectors.
This way, changes in the interaction semantics can be made
completely in the connectors and independently of the com-
ponents’ computation. Channels are used to represent the
other aspects of interaction semantics represented by a con-
nector. For example, a channel may represent a message
buffer for message passing communication or an event ser-
vice used in publish/subscribe systems.

The decomposition of connectors into ports and channels
not only makes it possible to support the standard com-
ponent interfaces, but also makes it easier to provide a li-
brary of reusable building blocks from which a wide variety
of connectors can be constructed. With our approach, de-
signers can easily experiment with alternative design choices
of interaction semantics in a plug-and-play manner. Con-
structing a connector with specific semantics is a matter of
combining a subset of the building blocks from the library.

Changes can be made to a connector by selecting a new sub-
set of building blocks for the connector. With the standard
component interfaces, such changes in the connectors often
require no or few changes in the components.

Our approach uses finite-state verification to provide de-
signers with feedback about the correctness of the overall
system design while they experiment with alternative de-
sign choices. The plug-and-play style of design facilitates
verification in a number of ways. First, since changes in
the connectors usually do not require changes in the com-
ponents, component models often do not have to be re-
constructed when verification needs to be re-applied because
of the changes. In addition, pre-defined formal models can
be constructed for the library of building blocks. These mod-
els can be reused in the model of any system that uses these
building blocks. Therefore, our approach can create signifi-
cant savings in model-construction time during design-time
verification.

The next section illustrates how the approach described
above can be used to support the plug-and-play design of a
family of message passing semantics. More details of this ap-
proach can be found in [21]. Section 3 discusses how design-
time verification is supported, and how the plug-and-play
approach facilitates verification.

2.2 Plug-and-play with Message Passing

Message passing is one of the most commonly used in-
teraction mechanisms for distributed systems. Many lan-
guages, such as CSP [11], Occam [5], and Linda [4] incor-
porate message passing facilities. There are also message
passing libraries such as MPI [17] and PVM [8]. Although
the fundamental message passing semantics come from two
basic operations, send and receive, there are a surprising
number of variations in their semantics. For example, a
message may be sent synchronously or asynchronously; a
component that receives messages may block or continue
when a requested message is not available. Other aspects of
message passing semantics such as how messages are stored
in a buffer, how they are delivered, and what kinds of infor-
mation regarding the status of message delivery are relayed
to the sender component and the receiver component may
also vary.

Based on a study of the most commonly used message
passing semantics, we have defined a set of building blocks
for the construction of message passing connectors. This set
of building blocks consists of different kinds of send ports,
recetve ports, and channels that together can be used to ex-
press a wide variety of message passing semantics. Figure 1
gives a few examples of the message passing building blocks
we have defined.

As we can see from the description of the building blocks
in the figure above, channels are essentially message buffers
that capture semantics such as the buffering and delivery
of messages. A send port is a mediator between a sender
component and a channel. It captures such semantics as
whether a message should be sent synchronously or asyn-
chronously or whether the sender should block when the
message buffer is full. Different send ports provide differ-
ent semantics by forwarding and interleaving the messages
between the sender component and the channel in different
ways. A similar notion applies to receive ports. To con-
struct a message passing connector with specific semantics,
we simply select the appropriate channel we are going to

nch Waits for a message from the sender and sends a confirmation
Asy b ronous| p oy immediately; the message may or may not be accepted
Nonblocking | 34 handled by the channel.

Asynchronous{ Waits for a message from the sender and sends a confirmation
Blocking back AFTER the ge has been accepted by the channel

Waits for a message from the sender and forwards it to the
Asynchronous| channcl If the message cannot be accepted by the channel,
Send Checking it returns and sends a notification to the sender. Otherwise,
Port it blocks until the message is accepted and sends a
confirmation back to the sender.

Synchronous | Waits for a message from the sender and sends a confirmation

Blocking back AFTER it is notified by the channel that the message
has been received by the receiver.
Similar to "asynchronous checking send” except that when
Synch the canbe pted by the channel, it blocks until
Checking the message is received by the receiver and then sends a

back to the sender.
‘Waits for a “receive request™ from the receiver and forwards
it to the channel. It blocks until a desired message is retrieved
Receive [(©0PY/remove) | from the channel 2nd sends a confirmation 10 the receiver.

Port Similar to “blocking receive™ except that it returns immediately
Nonblocking | if no desired message can be retrieved currently. It then sends

(copy/remove) { 5 porification along with an empty message to the receiver.
1-slot buffer | A buffer of siz¢ 1.

Ch) | FIFO queue | A FIFO queue of size N.

Priority queue | A priority queue of size N.

Figure 1: A set of message passing building blocks

Message m, SendStatus; Message m, RecvRequest, RecvStatus;

receive m;
.
.
.

}

1
Component{ : Component{
. ! .
. ' .
send m; ' send RecvRequest;
receive SendStatus; E receive RecvStatus;
'
1
1
1

}
(a) Component-send port protocol (b) Component—receive port protocol

Figure 2: Standard component interfaces

use to store and deliver messages, and then select the ap-
propriate ports that components may send messages to and
receive messages from.

Figure 2 shows the standard interfaces for components
to send and receive messages. As shown in Figure 2(a), a
sender component waits for a SendStatus message from the
connector after sending a message. This interface is designed
to work with connectors that implement different semantics
for sending messages.

For example, in the case of asynchronous message pass-
ing, the connector should immediately return the SendStatus
message to the sender component, allowing the component
to continue its execution. For synchronous message passing,
however, the connector returns the SendStatus message after
the sender’s message has been delivered, thereby blocking
the component until a message is received. Such a differ-
ence is captured in a send port between a component and
a channel. Using a notation similar to Message Sequence
Charts, Figure 3 illustrates how a send port controls the
interleaving of the messages between the component and
the channel to give different interaction semantics. Notice
that the same protocol is used between the sender compo-
nent and the send port, and between the send port and the
channel, for both synchronous and asynchronous message
passing. Switching between asynchronous message passing
and synchronous message passing can be achieved simply by
substituting one kind of send port for the other kind.

[sender | [sendport | [channel | [sender] [semdport] [channel]
send m _ send m o
- m
m P
SendStatus = ;"pcrln()k"
“sendOk"’
B SeﬁdStams,r':
“receiveOk" et sendOk
time time
(a) Asynchronous Send (b) Synchronous Send

Figure 3: Example scenarios of message passing in-
teractions (using send ports)

Similarly, in Figure 2(b), a component that wishes to re-
ceive a message first sends a receive request to the port and
waits for feedback (the RecvStetus message) on whether the
requested message has been successfully retrieved. It then
waits for a message from the receive port, either a real mes-
sage (when the receive is successful) or a null message (when
the receive has failed). By always having the receive port
send back an explicit status message to the receiver compo-
nent, the same interface can be used for both blocking and
nonblocking semantics. A blocking receive port does not
send the status back to the component until a message has
been successfully received from the channel and can be deliv-
ered to the component. A nonblocking receive port sends a
failure status message immediately to the component when
there is no message currently available in the channel, al-
lowing the receiver component to continue its execution.

This section has shown how our approach supports plug-
and-play design for a family of message passing semantics.
With the standard interfaces, changes in such design deci-
sions as the specific semantics for sending and receiving mes-
sages, or the behavior of the message buffers can be accom-
plished by simply replacing the send or receive ports, or the
channels that are employed in the connector. Our approach,
however, is not restricted to message passing. In [20], we de-
scribe how to extend this approach to support other kinds of
interaction mechanisms, such as the publish/subscribe and
RPC (remote procedure call).

3. VERIFICATION SUPPORT FOR THE PLUG-

AND-PLAY DESIGN APPROACH

Before showing how our plug-and-play approach facili-
tates design-time verification, we first briefly introduce the
modeling language and model checker we have chosen to
verify the designs. We then give a detailed discussion about
how reusable models for the message passing building blocks
are defined, how they can be composed to form different
connectors, and how the connector models are composed
with component models through components’ standard in-
terfaces. Finally, through a small example, we illustrate how
these pre-defined building blocks can be used in the design
and verification of a message passing system.

3.1 Creating and Composing Building Block
Models
For an initial evaluation of our approach, we have chosen

the SPIN [12] model checker to verify the system designs
created using our plug-and-play approach. We define the

formal models of the message passing building blocks in our
library using Promela, the input language of SPIN. These
models are defined in such a way that they can be readily
composed with other parts of the model of any system that
uses these building blocks.

In Promela, communicating components are defined as
processes using the keyword proctype. Communications
between processes take place through channels that provide
either buffered or synchronous (when the channel size is 0)
message passing. A Promela channel can be declared using
the keyword chan, along with the size of the buffer and the
data type for each field of the messages that can be accepted
by the channel. The following Promela code shows an exam-
ple of a typical channel declaration and the basic operations
for sending and receiving messages.

/* a channel of size 3 that takes messages of type short »/
chan myChannel = [3] of {short};

/* sends a message of value 3 to myChannel */
myChannel!3;

/* receives a from myCh 1
* and stores it in variable myMsg */
myChannel ?myMsg;

/* receives a message from myChannel with a value
* that matches the constant 3 »/
oyChannel?3;

With the send operation “!”, the message is appended at
the end of the channel when the channel is not full; oth-
erwise, the sending process is blocked. With the receive
operation “?”, the first message in the channel is retrieved.
When constants are used in one of the fields after “?”, only
messages with values that match the constants can be re-
trieved. The receiving process is blocked when the value
of the first message in the channel does not match the con-
stant specified. There are a number of variations on the send
and receive operations supported by Promela. For example,
with the receive operation “??”, the first matching message
in the channel will be retrieved. The receiving process does
not block as long as there is at least one matching message
in the channel.

It is important to notice the difference between the Promela
channels and the channels used as building blocks for con-
nectors in our approach. Promela channels are used for
sending and receiving messages between Promela processes.
Promela channels can support only a limited number of sim-
ple message buffers, such as FIFO queues. On the other
hand, our channels are architecture-level building blocks for
connectors that can capture essentially arbitrary interac-
tion semantics among components and therefore, are not
necessarily message buffers. For example, a channel in a
publish/subscribe connector may represent an event pool
where delivery of events is based on subscription. Even when
our channels are used as building blocks for message pass-
ing connectors, they can be much more complicated than
simple message buffers. Such a channel may be able to
handle messages based on their priorities, notify compo-
nents of the current buffer status, or deliver messages to a
group of interested components. In the following discussion,
we will always refer to the native channels in Promela as
Promela channels to distinguish them from the architecture-
level channels in our approach.

All the ports, channels, and components in a design are
modeled as communicating processes in Promela. We use

/+ internal communication signals »/
mtype = {SEND_SUCC, SEND_FAIL, IN_OK, IN_FAIL, OUT_OK,
OUT_FAIL, RECV_OK, RECV_SUCC, RECV_FAIL};

typedef InternalMsg{
mtype signal;
byte port_pid;

typedef SynChan{
chan signal = [0] of {InternalMsg};
chan data = [0] of {DataMsg}
}
proctype SynBlSendPort(SynChan componentChan;
SynChan channelChan){
DataMsg m;
do
:: componentChan.data?m;
m.sender_id = _pid;
do
:: channelChan.data!m;
if
: channelChan.signal?IN_OK,eval(_pid);
break;
: channelChan.signal?IN_FAIL,eval(_pid);
£i;
od;
channelChan.signal?RECV_OK,eval (_pid);
componentChan.signal ! SEND_SUCC,-1;
od;

Figure 4: Promela model for a synchronous blocking
send port

proctype AsynNbSendPort(SynChan componentChan;
SynChan channelChan){
DataMsg m;
do
:: channelChan.signal?_,eval(_pid);

:: componentChan.data?m;
componentChan.signal ! SEND_SUCC, ~-1;
m.sender_id = _pid;
channelChan.data!m

od

Figure 5: Promela model for an asynchronous non-
blocking send port

Promela channels to model the internal communications be-
tween components and ports and between ports and chan-
nels.

Figure 4 shows the Promela model for a synchronous block-
ing send port. We first define a set of signals that are used
to represent the status of sending and receiving a message.
These signals are defined as the enumerated type mtype in
Promela. The type SynChan defines two Promela channels
that are used for communications between components and
ports, and between ports and channels. The Promela chan-
nel signal is used to communicate message delivery status
signals, and the Promela channel data is used to commu-
nicate application-specific data messages. The port is mod-
eled as a Promela process (proctype) that takes two pa-
rameters of type SynChan, one of which represents the set
of Promela channels for the communication with the com-
ponent (component), and the other set of Promela channels
for the communication with the channel (channelChan).

The main part of the Promela code for the port is a loop
in which the port accepts a message from the component
and forwards it to the channel, and then, when the message

has been accepted by the channel, forwards the appropriate
status message back to the compoent. As we can see from
the model in Figure 4, in Promela, a block of repeating
statements is enclosed in a pair of do and od keywords. A
number of statement blocks can be selectively executed when
the loop is entered. The symbol :: is used to identify the
beginning of a selective block. A block is executable when
the first statement in the block is enabled. When more than
one block is executable, one of them is selected arbitrarily.
In our model for the send port, we only need one selective
block, since the send port only has one thing to do, that is,
to wait for a message m to be sent from the component and
then deliver it to the channel. When the component is ready
to send a message, the statement componentChan.data?m
is enabled and therefore the rest of the statements can be
executed.

As we can see from the model, after receiving a message
from the component, the send port attaches its own process
ID _pid to the message. Since one channel may be connected
to multiple send ports, this _pid will be sent along with the
data message to the channel so that the channel can use it
to notify the appropriate port of the delivery status of the
message. Any status signals that are addressed to this port
will be tagged with its process ID number.

The send port then tries to forward the message m to the
channel (channelChan.datal!m). After that, it waits for a
signal back from the channel that indicates whether the mes-
sage can be properly stored in its buffer. Such a signal could
either be IN_OK or IN_FAIL. To model this nondeterministic
choice, we use the selective statement if...fi in Promela
that allows a selective execution of one of its blocks. The se-
mantics of how blocks are selected are the same as as for the
do...od statement, as we have described above. The send
port makes sure that the signals from the channel are indeed
addressed to itself by matching its own process ID with the
tag attached to the signal that is sent back. This is done
by specifying its process ID as a constant matching criteria
in a receive statement. For example, the receive statement
channelChan.signal?IN_OK,eval(_pid) will only be exe-
cuted when both constants IN_OK (an enumerated type in
Promela) and eval(_pid) (eval(_pid) gives the constant
value of _pid) match the values in a message that can be
retrieved from the channel.

Since this is a synchronous blocking send, if the channel
sends back an IN_FAIL signal, the port has to send the mes-
sage to the channel again and keep trying until an IN_OK
signal is received indicating that the message has been suc-
cessfully stored in the channel. It then can break out of the
loop and wait for a RECV_OK signal from the channel which
indicates that a receiver has successful received the message.
Finally, after receiving both IN_0K and RECV_OK signals from
the channel, the synchronous blocking send port sends the
send status message (SEND_SUCC) back to the sender compo-
nent. Notice that since the component process does not care
about the ID of the port, we simply send an invalid process
ID number -1 along with the SEND_SUCC signal.

As one may have guessed, the definition of an asynchronous
blocking send port is similar to its synchronous counter-
part except that an asynchronous send port immediately
sends SEND_SUCC to the component after receiving IN_DK
from the channel. Similarly, for a nonblocking send port,
SEND_SUCC may be sent to the component before the mes-
sage has been stored in the buffer by the channel. Figure 5

proctype aSendComponent(SynChan sendPortChan){
DataMsg myMsg;

sendPortChan.data!myMsg;
/* sendStatus could be SEND_SUCC or SEND_FAIL =/
sendPortChan.signal?sendStatus,_;

Figure 6: A sender component

proctype aRecvComponent(SynChan recvPortChan){
DataMsg myMsg;

recvPortChan.data!recvRequest;

/* recvStatus could be RECV_SUCC or RECV_FAIL =/
recvPortChan.signal?recvStatus,_;

/* myMsg should not be used when recvStatus is RECV_FAIL =/
recvPortChan.data?myMsg;

Figure 7: A receiver component

shows the Promela model for an asynchronous nonblock-
ing send port. This port receives a message m from the
component and immediately returns a SEND_SUCC status sig-
nal to the sender component, regardless whether message m
will be successfully stored in the channel or eventually re-
ceived by the a receiver component. In fact, the port ignores
any signals sent from the channel using a wildcard receive
channelChan.signal?_,eval(_pid) (in Promela, _ can be
matched with any value).

Figure 6 shows the component interface for sending mes-
sages through a send port. The component sends its message
to the send port and immediately waits for a status signal
back. Depending on the specific semantics of the send port
the component is sending messages through, the status sig-
nal may be returned at different stages of message deliv-
ery and may indicate either a failure (SEND_FAIL) or success
(SEND_SUCC) . But no matter what kind of send ports the
component is communicating with, the same interface can
be used. As noted previously, this often allows the model of
the port to be changed or replaced without having to change
the model of the component.

Similarly, Figure 7 shows the component interface for re-
ceiving a message. In this model, a receiver component sends
a receive request to the receive port and then tries to receive
a status signal from the port, followed by a data message de-
livered by the channel. If recvStatus indicates RECV_SUCC,
the message myMsg is the actual requested message delivered
by the channel. If recvStatus indicates RECV_FAIL, the mes-
sage myMsg is an empty message sent by the receive port as
a stub and therefore, should not be used by the component.

Such an interface for receiving messages makes it possible
to support both blocking and nonblocking semantics. Fig-
ure 8 shows the Promela model for a blocking receive port.
The receive port starts by waiting for a recvRequest mes-
sage from the component. When it arrives, it tries to send
the request to the channel until the request is confirmed
by the channel (indicated by the OUT_OK signal). After the
port successfully retrieves a message m from the channel
(channelChan.data?m), it then sends a RECV_SUCC confir-
mation to the receiver component followed by the message
m delivered by the channel. A nonblocking receive port

proctype BlRecvPort(SynChan componentChan;
SynChan channelChan){
DataMsg recvRequest,m;
do
:: componentChan.data?recvRequest;
do
:: channelChan.datalrecvRequest;
if
:: channelChan.signal?0UT_OK,_;
channelChan.data?m;
break;
:: channelChan.signal 70UT_FAIL, _;
£fi;
od;
componentChan.signal !RECV_SUCC,~1;
componentChan.data!nm;
od;

Figure 8: Promela model for a blocking receive port

would send a RECV_FAIL signal immediately to the compo-
nent when the receive request is rejected by the channel
(indicated by signal OUT_FAIL). It then sends an empty mes-
sage to the receiver component as a stub to accommodate
the standard interface of the receiver component.

Note that other variations of receive ports can be defined
similarly. For example, a receive port (whether blocking
or nonblocking) may ask the channel to keep the message
(copy receive) that has been received in the buffer or to
remove it (remove receive). A receive port may also support
selective receive where a tag is used as the matching criteria
to retrieve messages from a channel.

For message passing, channels are essentially buffers that
store and deliver messages. There are a number of different
properties of a message buffer that may affect the overall
correctness of the system. For example, some channels may
notify the sender component when its buffer is full so that
the component may choose to send at a different moment;
other channels block the sender until space is available in the
buffer; a third kind of channel may simply drop messages
that are sent after its buffer becomes full without notifying
the sender. Of course channels may have buffers with dif-
ferent sizes and may implement different message delivery
policies. We have defined the Promela models for a num-
ber of message passing channels that implement a variety of
such semantics.

Figure 9 shows our model for a single-slot-buffer, a mes-
sage buffer that only holds one message. The process model
of a message passing channel takes two parameters of type
SynChan. senderChan is used for the communication with
the send ports that components are using to send messages
to the channel. receiverChan is used for the communica-
tion with the receive ports that components are using to
receive messages from the channel. The channel accepts a
receive request from a receive port or a message forwarded
by a send port, and handles them according to the cur-
rent status of its buffer. In this particular implementation,
the channel notifies the send port with an IN_FAIL signal
when its message buffer is full, and notifies the receive port
with an OUT_FAIL signal when no requested message is cur-
rently available in the buffer. This channel model can be
easily composed with a number of send and receive ports by
matching the Promela channels channelChan used by the
send ports and the channelChan used by the receive ports
with the senderChan and receiverChan used by the chan-

proctype single_slot_buffer (SynChan senderChan;
SynChan receiverChan){
DataMsg recvRequest, m, buffer;
bool buffer_empty = 1;
do
:: receiverChan.data?recvRequest;
if
:: (lbuffer_empty && !recvRequest.selective)
11 (Ybuffer_empty && recvRequest.selective
&& buffer.selectiveData
== recvRequest.selectiveData) ->
receiverChan.signal {OUT_OK,-1;
receiverChan.data!buffer;
senderChan.signal 'RECV_OK,buffer.sender_id;
if
:: recvRequest.remove ->
buffer_empty = 1
t: else
£i
:: else =>
receiverChan.signal !0UT_FAIL,-1
fi
: senderChan.data?m;
if
: buffer_empty ->
senderChan.signal!IN_OK,-1;
buffer.data = m.data;
buffer.sender_id = m.sender_id;
buffer.selectiveData = m.selectiveData;
buffer.selective = m.selective;
buffer.remove = m.remove;
buffer_empty = 0
: else ->
senderChan.signal ! IN_FAIL,-1
£i

Figure 9: Promela model for a single-slot buffer
channel

nel, respectively.

Figure 9 only gives an example of a fixed-sized message
buffer. It is possible to create a model for a channel that
has a message buffer of an arbitrary size. In this case, the
Promela process of the channel takes an additional param-
eter that specifies the size of the buffer. Semantics of how
messages are stored and delivered also need to be imple-
mented. For example, in addition to the single-slot buffer,
we have also defined the Promela models for a channel that
stores and delivers messages in a FIFO order and for one
that handles messages based on their priorities. The models
for both types of channels can be instantiated with the size
of the message buffer used in the channel. This allows a
range of similar message passing channels to be defined by
parameterizing the same model.

As we have described above, ports and channels are mod-
eled as communicating Promela processes and they can be
connected through specific Promela channels that handle the
communications between them. To construct the model for
a connector, we can simply compose the pre-defined Promela
processes for its building blocks by matching the specific
Promela channels associated with them. Component mod-
els and connector models can be composed in a similar way.
When design decisions about the semantics of a connector
are changed and the system design needs to be re-verified,
formal models of the system can be modified by replacing
the Promela processes of the existing building blocks of the
connector with those of the new ones. For example, when
different semantics for sending messages are needed for a
component, we can substitute a different send port for the

Blue Red

Controller Controller,
Red Car \ / Red Car

Blue Car ~

/

Figure 10: A single-lane bridge with two controllers

existing one, and pass in the same Promela channels that
allow the new send port process to communicate properly
with the Promela process for the component. In Section 3.2,
we give an example illustrating how system models can be
constructed from the building block models and how they
can be re-constructed when changes are made in the design
of connectors.

Note that the Promela models we have created for the
message passing building blocks are not necessarily the most
efficient ones and there may be a number of different ways
to model them in Promela. Instead of aiming for elegance
or efficiency, our models are coded to clearly reflect the pro-
tocols that are used by the building blocks. These models
can often be simplified and optimized for verification in a
number of ways. We briefly discuss some of the possible
optimizations in Section 5.

Also note that our approach is not tied to any particular
model checker or modeling language. By using Promela and
SpiIN, we are only showing one possible way of modeling our
building blocks and applying design-time verification. In
fact, we have defined the same set of building blocks in the
process algebra FSP and used LTSA (the Labeled Transition
System Analyzer) [13] to verify the system designs. Some-
what different strategies may be appropriate when modeling
the building blocks in a different modeling language.

3.2 The single-lane bridge example

In this section, we use an example to illustrate how design-
ers may use the building blocks and the techniques we have
described above in the design and verification of a small mes-
sage passing system. In particular, we show how design-time
verification may benefit from our plug-and-play approach by
saving on model construction time when repeated changes
are made to the connectors in a software architecture.

As an example, consider a bridge that is only wide enough
to let through a single lane of traffic at a time. An appropri-
ate traffic control mechanism is necessary to prevent crashes
on the bridge. For this example, we assume traffic control is
managed by two controllers, one at each end of the bridge.
Communication is allowed between two controllers as well as
between cars and controllers. To make the discussion eas-
ier to follow, we refer to cars entering the bridge from one
end as the blue cars and refer to that end’s controller as
the blue controller; similarly the cars and controller on the
other end are referred to as the red cars and the red con-
troller, respectively, as shown in Figure 10. Blue cars send
enter requests to the blue controller when they try to enter
the bridge and notify the red controller when they exit the
bridge. A similar situation applies to red cars.

There are a number of possible ways to control the traffic
on the bridge. For a simple version of the bridge example,
which we refer to as “exactly-N-cars-per-turn”, controllers
may take turns to allow some fixed number (V) of cars from

RedController

BlueController

D [e w

Component Channel Sendport Receive port

Figure 11: An initial design of the “exactly-N-cars-
per-turn” single-lane bridge example

their side to enter the bridge. A more efficient single-lane
bridge system, which we refer to as “at-most-N-cars-per-
turn”, may allow turns to be yielded immediately to the
other controller by the controller that is currently sending
cars to cross the bridge, when there are no cars waiting to
cross the bridge from its side. No matter what traffic control
mechanism is used, we want to make sure the bridge is safe,
that is, no cars traveling in the opposite directions can be
allowed on the bridge at the same time. Designing a bridge
system that ensures this safety property requires a careful
design of not only the components (cars and controllers) in
the system, but also the specific semantics of the connectors
used for the interactions between the components.

In particular, a designer may have to decide whether it is
more appropriate to use message passing or event-based no-
tification for the communication between components; whether
the communication between cars and controllers needs to be
synchronous or can be asynchronous; if message passing is
chosen, what types of buffers should be used to store mes-
sages; what happens if a message gets dropped by a buffer,
and so on. It is very easy to make mistakes on such matters
when designing appropriate interaction semantics. Design-
time verification can be very useful in evaluating the appro-
priateness of these design decisions.

For this example, message passing seems to be a natural
choice for the communications between components, but we
still have to make sure the appropriate message passing se-
mantics are chosen for each connector. With our approach,
this can be achieved by selecting and composing a subset
of the message passing building blocks from the library for
each connector, and using design-time verification to make
sure that our decisions do not yield a system that violates
the safety property of the bridge.

Figure 11 shows an initial design of the “exactly-N-cars-
per-turn” single-lane bridge example. In this design, asyn-
chronous message passing is chosen for both the communi-
cation between the car and the controller on its entering side
and the communication between the car and the controller
on the other side. In this case, asynchronous blocking send
ports are used for sending enter and exit request messages

from the cars to the controllers. A FIFO queue channel is
selected for buffering the enter request messages that are
sent from different car components to the same controller,
so that the requests are processed by the controller in a first-
in-first-out order. A single-slot buffer channel may be used
for exit request messages. Finally, blocking receive ports
are used by each controller component to process enter and
exit request messages. Notice that with this version of the
bridge example, no communication is necessary between the
two controllers.

To make sure that our bridge system does not cause cars
traveling from opposite directions to crash, we can use ver-
ification to check our design. In this case, not surprisingly,
verification reports a violation of the property. The cause of
this violation is obviously that we have selected a wrong type
of send port for sending enter request messages. Instead of
using an asynchronous blocking send port, we should have
used a synchronous blocking send port so that the car com-
ponent waits for an acknowledgement from the controller
before it tries to enter the bridge. With our approach, the
erroneous design can be easily corrected by replacing the
asynchronous blocking send ports for sending enter requests
with synchronous ones, and no changes in the components
are necessary. Verification needs to be applied again to con-
firm that the system now satisfies the property. With our
approach, re-applying verification does not require the com-
plete re-computation of the system model.

To apply design-time verification using SPIN, the Promela
model of the overall system design needs to be constructed.
With our approach, the system design is composed of com-
ponents and various message passing building blocks. There-
fore, a system model is simply a composition of all the
Promela models for the message passing building blocks and
components in the system. Specifically, models of the se-
lected message passing building blocks are pre-defined (as
described in Section 3.1) and can be simply included in the
system model at the verification time. In general, our ap-
proach expects designers to provide formal models for the
components in a system design and the component mod-
els should implement the standard interfaces defined in our
approach.

In principle, models of the components can be automati-
cally extracted from their designs in some suitable language.
For the purpose of this example, however, we constructed
Promela models of the car and controller components man-
ually. To allow the component models to be composed prop-
erly with the building block models, appropriate Promela
channels are used to set up the connections between compo-
nent processes and building block processes at the start of
the Promela system. Due to space limitations, the complete
Promela model for this version of the bridge example is not
given here, but it can be found in [20]. The safety property
of the bridge example is described in LTL (Linear Tempo-
ral Logic), which can then be checked by SPIN against the
Promela model of the system.

As we can see from this example, the pre-defined building
block models can be easily composed with component mod-
els to create a system model. These pluggable models also
make it easier to make changes in the model, especially when
such changes only involve the semantics of the connectors.
Suppose that, in order to improve traffic flow, the designer
wishes to change the “exactly-N-cars-per-turn” version of
the bridge system into the “at-most-N-cars-per-turn” ver-

RedToBlue

NbRecy Single-slot buffe; Syn)
BlueController RedController
BlueToRed
R
SynBlSend Single-slot buffe b ';'
bRecy Recy N5 NBR
BlueEnter || RedExit BlueExit[— | RedEnter|
FIFO glieue Singlp-sidt buffer Singla—slof buffer ~ FIRO e
SynBiSend SynBi
AsynBiSend AsynB
BlueCars RedCars

O] e v

Component Channel Send port Receive port

Figure 12: The architecture design of the “at-most-
N-cars-if-waiting” single-lane bridge example

sion. This requires the addition of new communication be-
tween the controllers and the modification of the controller
components. Since this version of the system has additional
functionality, it is not unreasonable to have to change the
components to support this functionality. Still, however, we
would like to limit the impact of these changes and reuse
models of the components and connectors as much as possi-
ble.

Figure 12 shows a possible design for the modified system,
with two new connectors between the controllers, one for the
blue controller to notify the red controller that no blue cars
are waiting and one for the red controller to notify the blue
controller that no red cars are waiting. In this case the de-
signer chose synchronous blocking send, nonblocking receive,
and a reliable single-slot buffer. Since the controllers will
poll for messages from cars and from the other controller,
we must also change the connectors between cars and con-
troller to have nonblocking receive semantics. To verify that
this new system still prevents crashes of cars traveling in op-
posite directions on the bridge, the component models need
to be modified to reflect the new communications. Models
of the new connectors, however, can be constructed from the
library models of the building blocks.

From this single-lane bridge example illustrated above,
we can see that our verification support works in the same
plug-and-play manner as the design approach we have pro-
posed. Having reusable models for building blocks of con-
nectors and the models of components stay relatively sta-
ble when only interactions are changed, we reduce the cost
of repeated verification in the iterative design process, and
therefore make it easier and more efficient to experiment
with alternative choices of design of interaction mechanisms,
and eventually help achieve a better system more efficiently.

4. RELATED WORK

Our approach differs from previous work on architectural
evolution (e.g., [14,19]) in our focus on supporting the explo-
ration of different interaction semantics at the design stage
and our emphasis on modeling and verification. A number
of approaches have also been proposed for assembling exist-
ing components into applications, including mediators (18],

active interfaces {10], and various techniques for wrapping
components. Our interest here is more in the alternative de-
sign choices of interaction semantics of connectors and less
on the adaptation of existing components to interact with
each other.

There are a number of approaches to specify complex con-
nectors and model them for verification. The Wright archi-
tecture description language (1}, for example, uses the CSP
process algebra to describe arbitrary connectors, and the Ar-
chitectural Interaction Diagrams (AIDs) of Ray and Cleave-
land [16] use process algebra methods to construct connec-
tors hierarchically. Constraint automata based approaches
have also been proposed to specify and analyze the seman-
tics of connectors composed from a set of primitive channels
[2,15). In approaches like these, the burden is on the designer
to construct a model of a connector with the right seman-
tics from powerful, but low-level, primitives. Our approach
is aimed more at providing a library of building blocks from
which connectors representing a variety of interaction se-
mantics can be easily constructed, offering “ready-to-use”
pieces that hide from the user most of the details of how
these pieces are actually constructed and modeled. As we
noted above, however, the actual formal models of our build-
ing blocks used for verification could be built using any suit-
able formalisms with verification support, including CSP or
AlDs.

In terms of applying verification to one particular inter-
action mechanism, as we did with message passing, there
has been extensive work on modeling and verifying pub-
lish/subscribe systems(e.g. [3,6,9,22]) However, this work
has not attempted to introduce explicit design-level building
blocks to allow the construction of connectors with different
semantics as we did.

5. CONCLUSION AND FUTURE WORK

Choosing appropriate interaction semantics for the con-
nectors in a software architecture is often very difficult. In
this paper, we present an approach that allows designers to
easily experiment with alternative design choices of interac-
tion semantics and to use design-time verification to evaluate
their decisions based on the correctness of the overall sys-
tem design. With our approach, components can interact
with each other through different connectors using only a
small set of standard interfaces. Because the interfaces usu-
ally do not need to change when changes are made to the
connectors, the impact of such changes on the components
is minimized. Our approach also provides a library of pre-
defined building blocks to support the construction of a wide
variety of different types of connectors. This plug-and-play
approach provides significant savings in model construction
time during design-time verification. With our approach,
pre-defined models can be constructed for the library of
building blocks, which can then be reused in the model-
ing of any system that uses these building blocks. In ad-
dition, since changes in the connectors do not often require
changes in the components, the component models can of-
ten be reused, reducing the modeling cost when verification
needs to be re-applied.

We are currently implementing a framework that supports
this approach using the AcmeStudio architecture design en-
vironment', developed at CMU. Our tool is going to use

Ihttp://uww.cs.cmu.edu/~acme/AcmeStudio/

the same notations for components, channels and ports as
in Acme [7] but with extensions to their semantics. We
also plan to integrate this architecture design environment
with finite-state verification, using the SPIN model checker
to provide support for applying verification directly on the
designs created in AcmeStudio. In addition to the imple-
mentation, we are also working on extending the current
approach to support other kinds of interaction mechanisms
such as publish/subscribe and remote procedure call. We
are also looking for larger, more compelling case studies to
evaluate our approach.

One important direction for future work is to study what
kind of techniques may be applied to simplify and optimize
the models created using our plug-and-play approach so that
finite-state verification can be applied efficiently. As we have
mentioned previously, our current models for the library of
building blocks are only intended for proof of concept and
may not be the most efficient. These models often have
unnecessary blocking statements or redundant data struc-
tures, which may unnecessarily increase the state space of
the model. As an extreme example, consider our Promela
model of a FIFO queue channel. Instead of implementing ex-
plicit data structures for buffering messages in FIFO order,
we could simply use the native FIFO channel in Promela to
handle the ordering of the messages.

We expect optimization to be extremely important since
decomposing connectors into ports and channels that are
modeled as separate processes introduces additional concur-
rency into the model, exacerbating the state explosion that
limits finite-state verification. Without effective optimiza-
tions, our approach may be restricted to only small sys-
tems. Therefore, techniques that can reduce the size of the
system model will be necessary to provide effective verifi-
cation support. As an example of such a technique, com-
monly used connectors could be recognized and specially
optimized models can be used for them instead of directly
composing from the building block models. Note that the
techniques that are used for optimization may largely de-
pend on the specific modeling language and verification tool
that are used.

Another concern with our approach is the ability to pro-
vide meaningful counterexample traces when the verification
fails. In finite-state verification, when a property violation
is found, a counterexample trace is often provided which
gives an example trace through the model that leads to the
violation of the property. With our approach, tracing an
error may require delving into the details of the models of
the building blocks, which requires a low-level understand-
ing of their semantics. It would be helpful if our approach
could provide a more meaningful representation of the cause
of a property violation. For example, it would be useful to
indicate that a deadlock in a system may be due to the use
of a message buffer that drops new messages when it is full.
In this way, designers can focus on the building blocks that
appear to be problematic in the system and experiment with
alternative choices using our plug-and-play approach. -

6. ACKNOWLEDGEMENTS

We are grateful to Prashant Shenoy for helpful conversa-
tions about this work.
This material is based upon work supported by the Na-

AcmeStudio.html

tional Science Foundation under awards CCF-0427071 and
CCR-0205575 and by the U.S. Department of Defense/ Army
Research Office under award DAA-D19-01-1-0564 and award
DAADI19-03-1-0133. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views
of the National Science Foundation or the U. S. Department
of Defense/Army Research Office.

- 7. REFERENCES

{1] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Trans. on Softw. Eng.
and Methodol., pages 140-165, 1997.

(2] F. Arbab, C. Baier, J. J. M. M. Rutten, and
M. Sirjani. Modeling component connectors in reo by
constraint automata: (extended abstract). Electr.
Notes Theor. Comput. Sci., 97:25-46, 2004.

[3] J. S. Bradbury and J. Dingel. Evaluating and
improving the automatic analysis of implicit
invocation systems. In Proc. 11th ACM Symp. on
Found. of Softw. Eng., Finland, Sept. 2003.

[4] Carriero, N., and D. Gelernter. Linda in context.
Comm. ACM, 32(4):444-58, Apr 1989.

[5] M. Day. Occam. SIGPLAN Notices, 18(4):69-79, Apr
1983.

(6] D. Garlan, S. Khersonsky, and J. S. Kim. Model
checking publish-subscribe systems. In Proc. 10th Intl.
SPIN Workshop on Model Checking of Softw., volume
2648, Portland, Oregon, 2003.

{7) D. Garlan, R. Monroe, and D. Wile. ACME: An
architecture description interchange language. In
Proceedings of CASCON’97, pages 169-183, Toronto,
Ontario, Nov. 1997.

[8] Geist, A., A. Beguelin, J. Dongarra, W. Wiang,

R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine, A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[9] D. Giannakopoulou and J. Magee. Fluent model
checking for event-based systems. In Proc. 9th
European Softw. Eng. Conf. / 11th ACM SIGSOFT
Intl. Symp. on Found. of Softw. Eng., pages 257-266,
Helsinki, Finland, 2003.

[10] G. Heineman. Adaption of software components. In
2nd Intl. Workshop on Component-Based Softw. Eng.
/ the 21st Intl. Conf. on Softw. Eng., Los Angeles,
CA, June 1999.

{11] Hoare and C.A.R. Communicating Sequential
Processes. Englewood Cliffs, NJ:Prentice-Hall Intl.,
1985.

[12] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, Boston, 2004.

[13] J. Magee and J. Kramer. Concurrency State Models
and Java Programs. John Wiley and Sons, 1999.

[14] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
language and environment for architecture-based
software development and evolution. In Proc. 21st
Intl. Conf. on Soft. Fng., pages 44-53, Los Angeles,
May 1999.

(15] N. R. Mehta, N. Medvidovic, M. Sirjani, and
F. Arbab. Modeling behavior in compositions of
software architectural primitives. In 19th IEEE Intl.
Conf. on Automated Softw. Eng., pages 371-374, 2004.

[16] A. Ray and R. Cleaveland. Architectural interaction
diagrams: AIDs for system modeling. In Proc. 25th
Intl. Conf. on Softw. Eng., pages 396-406, 2003.

[17] Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference. MIT
Press, 1996.

[18] K. J. Sullivan and D. Notkin. Reconciling environment
integration and software evolution. ACM Trans.
Softw. Eng. Methodol., 1(3):229-268, 1992.

[19] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. In
P. Inverardi, editor, Proc. 8th European Softw. Eng.
Conf./9th Symp. on the Found. of Softw. Eng., pages
1-10, Vienna, Sept. 2001.

[20] S. Wang, G. S. Avrunin, and L. A. Clarke.
Architectural building blocks for plug-and-play system
design. Technical Report UM-CS-2005-16, Dept. of
Comp. Sci., Univ. of Massachusetts, 2005.

[21] S. Wang, G. S. Avrunin, and L. A. Clarke.
Architectural building blocks for plug-and-play system
design. In Proc. 9th Intl. SIGSOFT Symp. on
Component-Based Software Engineering, Viasteras,
Sweden, June 2006. To appear.

[22] L. Zanolin, C. Ghezzi, and L. Baresi. An approach to
model and validate publish/subscribe architectures. In
Proc. Specification and Verification of
Component-Based Systems, pages 35-41, Helsinki,
Finland, 2003.

