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Abstract—Existing DTN routing protocols use a variety of mechanisms,
including discovering the meeting probabilities among peers, packet repli-
cation, or network coding. The primary focus of these mechanisms is to
increase the likelihood of finding a path with limited information. So, these
approaches have only an incidental effect on various routing metrics.

In this paper, we approach DTN routing as a resource allocation prob-
lem. Our protocol, RAPID, is designed to intentionally optimize a routing
metric specified by the network administrator, which RAPID translates to
a utility maximization objective. Unlike previous work, RAPID replicates a
packet at a transfer opportunity only when the marginal utility of replica-
tion outweighs the corresponding resource cost. By tracking the number of
packets replicas that already exist in the network, RAPID more efficiently
uses constrained resources. We evaluate three metrics: minimizing average
delay, minimizing worse case delay, and maximizing the number of packets
that are delivered before a deadline. Our evaluations are based on traces
of real mobility and data transfer between vehicular nodes in the DieselNet
DTN, as well as synthetic exponential and powerlaw mobility models. For
all metrics and scenarios, RAPID outperforms three other current protocols
by significant margins.

I. INTRODUCTION

Delay tolerant networks (DTNs) allow routing when mo-
bile nodes are sparsely populated and connect only intermit-
tently. These include networks that attempt to survive large-
scale natural disasters, sensor deployments for ecological mon-
itoring [1, 2], ocean sensor networks [3, 4], and vehicular net-
works [5].

Existing DTN routing protocols use a variety of mechanisms,
including discovering the meeting probabilities among peers,
packet replication, network coding, adding stationary waypoint
stores to the network, or using prior knowledge of mobility pat-
terns to route data. The primary focus of these mechanisms is
to increase the likelihood of finding a path with limited infor-
mation. As a result, these approaches have an incidental effect
on routing metrics such as worst-case delivery latency, average
throughput, or percentage of packets delivered. This disconnect
between application needs and routing protocols hinders deploy-
ment of DTN applications. Currently, it is difficult to drive the
routing layer of a DTN by specifying priorities, deadlines, or
cost constraints.

In this paper, we present an intentional DTN routing proto-
col, Resource Allocation Protocol for Intentional DTN routing
(RAPID), that is explicitly designed to optimize a routing metric
specified by the network administrator. RAPID works by trans-
lating the objective to a utility maximization objective. Unlike
previous work, RAPID replicates a packet at a transfer opportu-
nity only when the marginal utility of replication outweighs the
corresponding resource cost. We evaluate three metrics in the
context of RAPID: minimizing average delay, minimizing worse
case delay, and maximizing the number of packets that are de-
livered before a deadline.

This work was supported in part by NSF award CNS-0519881.

Previous work [5], including our own, has shown that flood-
ing acknowledgments of packet delivery is an effective method
of improving delivery rates by removing useless packets from
the system. RAPID extends this notion by reporting on the status
of all packets in a node’s buffer — by loosely keeping track of
the number of replicas that already exist in the network, RAPID
more efficiently uses transmission bandwidth and node storage.
Our experiments show that the large increase in performance
RAPID achieves easily justifies the small increase in bandwidth
used to exchange this data.

To show the broad appeal of our RAPID approach, we eval-
uate our protocol quantitatively against a broad range of DTN
scenarios that vary in the choice of mobility models and routing
metrics. In particular, one of the mobility models is based on
traces from our real DTN, called DieselNet, deployed among 40
buses in Amherst, MA. The buses transfer data when they pass
one another and therefore provide traces of real node mobility
and 802.11 transfers. We compare RAPID against MaxProp [5],
Spray and Wait [6], and PROPHET [7] protocols, in addition to
comparisons against Random and Optimal routing schemes.

Our evaluations show that RAPID performs better than pre-
vious protocols for different scenarios. For example, in trace-
driven evaluations, delivered packets in RAPID have an average
delay of 112 minutes, compared to 151 minutes using MaxProp
and 230 minutes with Spray and Wait; RAPID delivers a greater
percentage of packets as well. Similarly, RAPID delivers 15%
more packets than MaxProp ahead of a scheduled deadline, and
it has a 14% lower maximum delay compared to MaxProp. We
also are able to compare RAPID to an ILP optimal solution for
low packets loads and show empirically that RAPID is between
14–29% greater than optimal performance for average delay,
compared to 28–51% for MaxProp.

II. RELATED WORK

Epidemic routing protocols replicate packets at transfer op-
portunities hoping to find a path to a destination. However,
naive flooding wastes resources and can severely degrade per-
formance. Proposed protocols attempt to limit replication or
otherwise clear useless packets in various ways: using historic
meeting information to avoid replication along paths with lit-
tle chance of reaching the destination [10, 2, 12, 5, 8, 7]; re-
moving useless packets using acknowledgments of delivered
data [5]; using probabilistic mobility information to infer deliv-
ery [11]; replicating packets with a small probability [14]; using
network coding [15]; and limiting the number of replicas of a
packet [6, 11, 16, 3].

In contrast, forwarding routing protocols maintain at most
one copy of a packet in the network [9, 13, 17, 18]. The con-
sensus [9, 19, 3] appears to be that replicating packets can po-
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Problem Storage Bandwidth Routing Previous work (and mobility model)
P1 Unlimited Unlimited Replication MobiSpace [8] (AP traces)
P2 Unlimited Unlimited Forwarding Modified Djikstra’s algorithm Jain et al. [9] (Any)
P3 Finite Unlimited Replication Davis et al. [10] (Simple partitioning synthetic), SWIM [11] (Exponential), Spray and

Wait [6] (Exponential), MV [12] (Community-based synthetic), Prophet [7] (Community-
based synthetic )

P4 Finite Finite Forwarding Jones et al. [13] (AP traces), Jain et al. [9] (Synthetic DTN topology)
P5 Finite Finite Replication This paper (Vehicular DTN traces, exponential, and powerlaw meeting probabilities), Max-

Prop [5] (Vehicular DTN traces, community-based synthetic)

Table I. A classification of some related work into DTN routing scenarios.

tentially improve performance over forwarding, but at a greater
risk of degrading performance.

We see several major differences with the approach we pro-
pose in this paper and related work in DTN routing.

Most importantly, past work proposes different schemes that
have only an incidental effect on desired performance metrics,
including commonly evaluated metrics like average delay or
delivery probability. Their theoretical intractability in general
makes the effect of a particular mechanism or a protocol de-
sign decision on a given performance metric unclear. The dis-
tinguishing feature of RAPID is that the routing is intentional
with respect to a given performance metric. Our approach sys-
tematically improves a given metric by explicitly calculating the
effect of replication on available resources and the metric.

Jain et al. [9] propose an algorithm to optimize a specific rout-
ing metric using oracles with varying degrees of global system
information and use only forwarding to route packets. Their
work provide interesting insights but relying on global knowl-
edge (details in Section III) makes a decentralized implementa-
tion impractical. Moreover,

RAPID also differs from most previous work in its assump-
tions regarding resource constraints, routing policy, and mobil-
ity patterns. Table I shows a taxonomy of several (but not all)
existing DTN routing protocols. Bandwidth restrictions limit the
size of transfer opportunities and storage restrictions the buffer
size at nodes; both are either finite or unlimited.

In this paper, we focus on a replication-based algorithm with
constraints on both storage and bandwidth (P5) as it is the most
challenging and typical problem space for several reasons.

Problems P1 and P2 are interesting to examine for their the-
oretical tractability, but protocols that are to be deployed on
testbeds or in real scenarios need to address resource constraints
directly.

A series of works [6, 7, 10, 12, 11] have analyzed the case
where storage at nodes is limited, but bandwidth is unlimited
(P3). This scenario may happen when the radios used and the
duration of contacts allow transmission of more data than can
be stored by the node. However, we expect this scenario to be
uncommon — typically storage is inexpensive and energy effi-
cient. Trends suggest that high bitrate radios will remain more
expensive and consumes more energy than storage [20]. More-
over, for mobile DTNs, and especially vehicular DTNs, transfer
opportunities will remain short-lived.

Our related work [21] suggests that replication in DTNs is
more effective than forwarding and also more robust to attack;
hence we focus on replication over forwarding. Our past work
MaxProp also makes this assumption. However, MaxProp is an

incidental routing protocol unlike RAPID, and we show in Sec-
tion VI that RAPID performs significantly better than MaxProp.

Finally, we note that some DTN routing schemes use fer-
ries [22], stationary [23], or mobile agents [12, 24] that assist
nodes in delivering packets but do not generate packets them-
selves. Our model (Section III) naturally incorporates stationary
access points or ferries whose mobility schedule does not de-
pend on the state of the network, but we leave for future work the
discussion of ferries that move to relieve congestion hotspots.

III. SYSTEM MODEL

We model a DTN as a set of mobile nodes. Two nodes can
exchange data when within communication range. A node can
deliver data to a destination node directly or via intermediate
nodes. We place constraints on both the amount of data that a
node can store and the bandwidth available between two nodes.
As we discuss in Section II, this assumption is in contrast to
several previous works (e.g., [10, 11, 6, 12, 7]) that assume
that nodes can exchange an unlimited amount of data during a
meeting with storage being only resource constraint.

We focus on settings where node meetings last for a short in-
terval with a fixed bandwidth during that interval. We represent
meetings involving node ni as a sequence of transfer opportu-
nities {(n1, X1, t1), (n2, X2, t2), . . .} where the jth element is a
tuple consisting of the identity of the other node, the size of the
transfer opportunity in bytes, and the time at which the meeting
occurred, in that order.

We assume that destination nodes have sufficient capacity to
store delivered data and that only storage for in-transit data is
limited. We assume that nodes may replicate packets resulting in
multiple in-transit copies of a packet in the system. We show in
Section VI how RAPID protocol accomodates storage constraints
for in-transit data.

In RAPID, we model the solution as a resource allocation
problem, where a replicated packet represents an allocated re-
source. RAPID attempts to optimize a particular performance
metric by intentionally allocating resources to packets within
the constraints of the network. More specifically, a packet is al-
located resource only when its benefit or expected performance
improvement for the packet outweighs the cost or expected per-
formance degradation to other packets. When the mobility pat-
tern is unknown, nodes must learn the mobility from history of
meetings and adjust the level of packet replication using a local
view of system resources using limited high-delay feedback.
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B(i): Benefit Difference in value
of i due to replication ∆V (i)

C(i): Cost Difference in value of
others due to replication ∆ (Σj∈SV (j))

U(i): Utility Marginal benefit
of replication B(i) − C(i)

Table II. Definitions to calculate utility

IV. THE RAPID PROTOCOL

In this section, we present RAPID in detail. RAPID makes
routing decisions to optimize a utility function associated with a
specific routing metric. We define three routing metrics to ex-
emplify the use of RAPID, namely: (i) minimizing the number
of packets that miss delivery deadlines; (ii) minimizing the max-
imum delay across all packets; and (iii) minimizing the average
delay of packets in the system.

For all metrics, the crucial question is — how can we balance
the benefit of replication against the cost of overloading the sys-
tem in an environment with limited high-delay feedback? More-
over, given limited bandwidth, which packets should we repli-
cate during a transfer opportunity? RAPID replicates a packet
only when it estimates an improvement in the performance met-
ric for that packet and when this benefit outweighs the cost to
other packets.

A. Definitions

We define the value V (i) of a packet i as the contribution
of the packet to the routing metric. Let S denote the set of all
packets in a remote node’s buffer and let i be the packet to be
copied to the remote node. Table II describes the definition of
the utility of replicating packet i.

For example, when the objective is to minimize average de-
lay of packets, the value V (i) of packet i is defined to be the
negative of the total time the packet is expected to reside in the
system or its expected delay, as that is its contribution to the
system objective. Intuitively, replicating a packet decreases the
expected delay of the packet and increases its value. (Note that
it is more natural to speak of larger values as more desirable than
smaller values, hence the definition as negative expected delay.)

We define the cost C(i) as the sum change in value to other
packets in the remote buffer This definition of cost ensures that
it is beneficial to replicate a packet only when the replication in-
creases the value of that packet more than the aggregate decrease
in the value of all other packets. i.e., RAPID attempts to improve
the value of packets by replicating packets with low value first,
but only when the utility of replication is positive.

RAPID has two core components: a selection algorithm and
an inference algorithm. The selection algorithm is used to deter-
mine which packets to replicate at a transfer opportunity, given
the value of a packet and the cost of replication. The inference
algorithm is used to estimate the value and the cost given the
routing metric.

B. The Selection Algorithm: Canonical RAPID

The key steps of RAPID take place when two nodes are within
radio range and have discovered one another. The protocol is

D(i) Expected delay = T (i) + A(i)
T (i) Time since creation of i
A(i) Expected delivery time by at least one of the

replicas of i = E[a(i)]
k Estimated number of replicas of i existing in

network
n1, . . . , nk Nodes known to have a copy of i
mnj (i) Inter-meeting time between nj and the

destination of i
fnj (i) Random variable representing the time taken

for delivering i by node nj

Fnj (i) Expected delivery time by nj , E[fnj (i)]
a(i) Random variable representing the time taken

for delivering i by at least one of the k repli-
cas

Table III. Variables used by routing metric descriptions and by derivation of
estimated delivery delay of packet i.

symmetric; without loss of generality, we describe how node Y
determines which packets to transfer to node X .

Algorithm 1.
1. Initialization: Nodes X and Y exchange meta-data in-

cluding the list of packets in their buffer and the current
values of the packets. (Detailed in Section V-E.)

2. Per-packet Operation: For each packet i in node Y ’s
buffer, sorted in order of increasing values:
(a) Y estimates the benefit of replication B(i) locally and
the cost C(i) to the packets in X’s buffer.
(b) Y computes the utility U(i) = B(i) − C(i) and trans-
mits i to X if U(i) > 0

3. Termination: Transfer ends when the other node is out of
radio range or all eligible packets are transmitted.

RAPID also adapts to storage restrictions for in-transit data.
If a node exhausts all available storage, packets with the high-
est value are deleted first. RAPID removes packets with high
value to make room for new packets that have not been allocated
enough resources.

C. Inference algorithm

Next, we describe how this canonical version can support spe-
cific metrics using an inference algorithm. All metrics defined
here use a variation of the expected delay as value. In Section V,
we detail an algorithm to calculate both the expected delay D(i)
of a packet i and the change in delay due to replication. Table III
summarizes all variables used in these two sections.

C.1 Example 1: Minimizing average delay
To minimize the average delay of packets in the network we

set the value of a packet as

V (i) = −D(i) (1)

since the packet’s expected delay is its contribution to the per-
formance metric. Essentially, the protocol attempts to greedily
replicate the packet with the largest delay, but only if the de-
crease in its delay due to replication outweighs the increase in
delay to other packets.
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C.2 Example 2: Minimizing missed deadlines
RAPID can also be set to minimize the number of packets that

miss delivery deadlines. Let L(i) be the deadline of packet i
and T (i) be the time since the packet was created. Then value
is defined as

V (i) =
{

−(L(i) − D(i)), L(i) < T (i)
0, otherwise (2)

A packet that has missed its deadline can no longer improve
performance and is thus assigned a value of 0. The protocol
replicates packets that are closest to missing their deadline first
if cost does not outweigh benefit.

C.3 Example 3: Minimizing maximum delay
To minimize the maximum delay of packets in the network,

we define the value V (i) as follows.

V (i) =
{

−D(i), D(i) ≥ D(j) ∀j ∈ SY

0, otherwise (3)

where SY denote the the set of packets in the buffer of Y . Thus,
V (i) as defined above is the negative expected delay if i is a
packet with the maximum expected delay among all packets
held by Y . By this definition, the cost is the change in maxi-
mum delay of packets in the buffer. The utility of a replication
is negative if a packet is replicated to a buffer and the replica-
tion increases the delay of another packet in the buffer beyond
the maximum delay.

Unlike the previous example, the value V (i) is not exactly
the contribution of packet i to the performance metric. The rea-
son is that the packet with the maximum expected delay in the
system may not be in either X or Y ’s buffer. The above def-
inition of V (i) makes the exchange protocol work conserving,
i.e., if there is a transfer opportunity, then a node will replicate
a packet to improve local performance even if the improvement
to the system performance metric is zero.

V. ESTIMATING UTILITIES

In the routing metrics described in the previous section, a
node estimates the value of packets and the utility of replication
using an estimate of the delivery delay of the packet. Recall that
the variables used in this section are summarized in Table III.

To estimate D(i), a node calculates T (i), the time since
packet creation, and A(i), the expected delivery time by one
of the replicas of i. T (i) is calculated simply as the difference
between the current time and the creation timestamp carried in
the packet. (Given the delays of real DTNs, we require minimal
clock synchronization.) Estimating A(i) is more challenging.
The exact answer requires knowledge of the minimum expected
time until any node with the replica of the packet delivers the
packet. Thus, a node must know which other nodes carry repli-
cas of the packet as well as nodes that may come to possess a
replica of the packet in the future.

RAPID estimates A(i) using control information passed be-
tween nodes (Step 1 in Section IV-B), which includes infor-
mation about the estimated number of replicas that exist for a
specific packet, and by making a simplifying assumption about
node mobility as follows: RAPID omits higher-order terms in

calculating expected delay by considering only direct deliv-
ery, ignoring routing via intermediaries, for extant replicas of a
packet in the system. In Section VI, we show quantitatively that
this assumption (and possibly incorrect information about the
number of replicas) provides excellent performance even against
traces of our real DTN.

In this section, we first present an algorithm to estimate A(i)
that uses all control information for a packet, including the
number of replications k and the nodes that carry the replica
n1, n2...nk. Secondly, we describe the sequence of meta-data
exchanges between nodes to obtain the control information nec-
essary to estimate A(i).

A. Estimating delivery time

In this section, we present a canonical algorithm for calculat-
ing the expected delivery time, A(i). Subsequently, we show
how the algorithm can be used under three different scenarios:
exponentially distributed meeting times, powerlaw distributed
meeting times, and traces of UMass DieselNet.

Algorithm 2. Node nj storing a set of packets S to desti-
nation nx performs the following steps to estimate the time
until packet i ∈ S is delivered
1. nj sorts all packets s ∈ S in the descending order of

mnj (s) + T (s).
2. Let bj(i) be the sum size of packets that precede i in the

sorted list of nj . Figure 1 illustrates a sorted buffer con-
taining packet i.

3. Let Bj be the expected transfer opportunity in bytes be-
tween nj and i’s destination. (For the sake of readabil-
ity, we drop the subscript i.) Nodes locally compute the
expected transfer opportunity with every other node as a
moving average of the past transfers.

4. If nj could deliver the packet only directly to the desti-
nation nx, it would require %bj(i)/Bj& meetings with that
node.
Let r be a distribution that models the inter-meeting times
between nodes, and let rjx be the random variable that rep-
resents the time taken for nj and nx to meet. We transform
rjx to random variable r′jx that represents the time until nj

and nx meet %bj(i)/Bj& times. Then, by definition and the
direct delivery assumption

fnj (i) = r′jx (4)

5. The probability of delivering the packet within time t
given k replicas is the minimum of the k random variables
fny , y ∈ [1, k]

P(a(i) < t) = 1 −
k∏

y=1

(1 − P(fny (i) < t) (5)

6. Accordingly: A(i) = E[a(i)] (6)
The algorithm above quantitatively defines the relationship

between the number of replicas and the expected delivery time in
the presence of bandwidth constraints. Prior DTN analyses [11]
present a relationship between replication and delay but only for
the case of a uniform mobility distribution and in the absence of
bandwidth constraints.
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Fig. 1. A sample sorted list

B. Known Exponential and Powerlaw Distributions

In this section, we specify the values of Algorithm 2 for a
scenario where nodes meet with a known exponentially or pow-
erlaw distributed meeting times. Few scenarios will have such
exact characteristics, but examining these situations gives us in-
sight for cases like UMass DieselNet, discussed subsequently.

Let the meeting time between nodes is described by a uni-
form exponential distribution with mean 1/λ. From Algorithm
2, if there were no bandwidth restrictions, Bj the transfer oppor-
tunity is infinity and limBj→∞ r′jx = rjx,. We calculate A(i)
from Eqs. 4–6 as

P(fnj (i) < t) = 1 − e
− 1

λ t

P(a(i) < t) = 1 − e
− k

λ t

A(i) =
λ

k
(7)

In the absence of bandwidth restrictions, the expected delivery
time is the mean meeting time factored by the number of copies
of the packet. However, when transfer opportunities are lim-
ited, the expected delivery time depends on the contents of nj’s
buffer. From Step 4 of Algorithm 2, let bj(i) be the size of
packets ahead of a packet i in a node’s buffer and let the size
of the transfer opportunity available be Bj . Then the distribu-
tion for meeting the destination %bj(i)/Bj& times is described
by a gamma distribution, or more specifically, the Erlang distri-
bution. The mean of the Erlang distribution is 1

λ
· %bj(i)/Bj&.

Then, the random variable a(i) is described by the minimum of
k Erlang distributions.

Calculating an accurate estimate of the expected delivery time
becomes complex when such bandwidth restrictions are intro-
duced. Accordingly, we estimate the delay by making the fol-
lowing approximations and ignoring second order terms in our
calculations. We assume that the time taken for a node to
meet the destination bj(i)/Bj times is exponential with mean
1
λ
· %bj(i)/Bj&. Let

sy(i) = %by(i)/By&, ∀y ∈ [1, k] (8)

Then A(i) is calculated from Eqns. 4 and 5 as

P(a(i) < t) = 1 − (e
−s1(i)

λ +
−s2(i)

λ +...+
−sk(i)

λ )

A(i) =
1

s1(i)
λ

+ s2(i)
λ

+ . . . + sk(i)
λ

(9)

When the meeting time between nodes is described by a pow-
erlaw distribution, the result is similar. The meetings times are

drawn from an exponential distribution, but the mean meeting
times between each pair of nodes is drawn from a powerlaw dis-
tribution. Assume that there are k nodes with the copy of the
packet and the mean meeting time between the k nodes and the
destination is µ1, µ2 . . . µk. Then A(i) is calculated as

P(a(i) < t) = 1 − (e
−s1(i)

µ1
+

−s2(i)
µ2

+...+
−sk(i)

µk )

A(i) =
1

s1(i)
µ1

+ s2(i)
µ2

+ . . . + sk(i)
µk

(10)

C. When mobility distribution is unknown: Using Traces

For meeting times obtained from traces of our vehicular net-
work, the inter-node meetings times are not described by a well-
defined distribution (see [5]). To estimate inter-node meeting
times, every node tabulates the average time to meet every other
node using history. Nodes exchange this table as part of meta-
data exchanges (Step 1 in Section IV-B) . A node combines
the meta-data into a meeting-time matrix and the information is
updated after each transfer opportunity. The (x, y) entry of the
meeting-time matrix Mx,y is the expected time for x to meet y

directly, calculated as the average of past meetings.
Node nj calculates mnj (i), the expected time for nj to meet

i’s destination, using the meeting-time matrix. mnj (i) is the
minimum time taken for nj to meet the destination of i in at
most h hops. (Unlike exponential mobility models, some nodes
in the trace never meet directly.) For example, if a node A meets
another node C via an intermediary B, the expected meeting
time is MA,B + MB,C for h = 2. When two nodes never meet,
the inter-meeting time is infinity. In our implementation we re-
strict h = 3. To calculate A(i), we let nj approximate the trace
meeting times as an exponential distribution. A(i) is calculated
using Eq. 9 as

m
′
nj

(i) = %bj(i)/Bj& · mnj (i) (11)

A(i) = (
k∑

y=1

1
m′

ny
(i)

)−1 (12)

By making certain assumptions, the expected delivery time re-
duces to the harmonic mean of the expected meeting time be-
tween nodes ny, y ∈ [1, k] and the destination of the packet,
taking into account bandwidth restrictions.

D. Estimating change in value due to replication

Recall that RAPID assigns a utility U(i) = B(i)−C(i). Repli-
cation increases the value of the packet and may decrease the
value of the other packets in the buffer. A node quantitatively
estimates the increase in the value of a replicated packet using
the change in expected delivery time; For example, from Eq. 7,
in the absence of bandwidth restrictions, the value of the packet
(for the average delay metric) reduces from λ

k
to λ

k+1 due to
replication.

RAPID estimates C(i) the cost of replicating packet i to
other packets by examining the displacement of other packets
in sorted list computed by Algorithm 2 (Step 1). For example,
let i be replicated to a buffer S of node nj that, as a result, shifts
several other packets towards the bottom of the list. For some
subset S′ ⊂ S of packets in the list, replicating i will increase
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Parameter Exponential Powerlaw Trace
Number of nodes 20 20 40
Buffer size 10 MB 10 MB 40 GB
Average transfer opp.
size (variance 30%) 2000 KB 2000 KB N/A
Duration 10 min 20 min 19 hours
Size of a packet 10 KB 10 KB 10 KB
Packet generation
rate (exponential) 20 sec 1 min 15 min

Table IV. Experiment parameters

%bj(x)/Bj& for x ∈ S′ . From Eqns. 8, 9, 10, and 12, we see that
an increase in bj(x) may increase the expected delivery time.

E. Control channels to exchange meta-data

RAPID estimates the value of a packet by exchanging meta-
data, which we distinguish as a control channel. In our previous
work [5], we show that flooding of delivery acknowledgments
during transfer opportunities is an effective method of removing
already-delivered packets from the system. This approach can
be generalized to propagate both acknowledgments and other
control information. The control information needed to estimate
the expected delay as described in Section V are the number of
replicas of a packet, nodes that have a copy of the packet, con-
tents of the nodes’ buffers. We discuss two methods of prop-
agating the control information: a global channel and causal
channel. The choice of channel depends on the infrastructure
and resource constraints of the DTN.
• A global channel is an idealized system that broadcasts ac-

knowledgments for delivered packets as well as all meta-data
instantaneously. More realistically, this information could be
broadcast with negligible delay using a low bit-rate, long-
range channel such as WiMax or cell phone networks.

• A causal channel exchanges during transfer opportunities ac-
knowledgments for delivered packets as well as all control in-
formation learnt from past exchanges.
In the absence of a global channel, it is difficult to have ac-

curate values for all the control information needed to estimate
the expected delay. Nodes exchange the following information
during a transfer opportunity: the aggregate number of replicas
of a packet, nodes that have a copy of the packet and (hashes
of) the contents of nodes’ buffers as gathered from all the nodes
met in the past.

Although causal information may not be current, RAPID uses
it to estimate the expected delay. We have found in practice that
the causal channel is sufficient for good performance as shown
in the next section. Moreover, in our evaluations, we did not dis-
count the costs of this data during transfer opportunities. Despite
the increased meta-data exchanged, RAPID significantly outper-
forms other protocols.

VI. EVALUATION

The goal of our evaluations is to show that, unlike existing
work, RAPID can improve performance for customizable met-
rics. We evaluate using RAPID to minimize maximum delay,
minimize average delay, and minimize missed deadlines. We
also compare the performance of RAPID to an optimal solution.

A. Assumptions

Our evaluations are based on a custom event-driven simula-
tor. The simulator takes as input a schedule of node meetings,
the bandwidth available at each meeting, and a routing algo-
rithm. We compare RAPID (using only the causal channel for
exchanging control information) to five other routing protocols:
MaxProp [5], PROPHET [7], Spray and Wait [6], Random, and
Optimal. In all evaluations, we account for the cost of exchang-
ing meta-data in RAPID.

MaxProp operates in a storage- and bandwidth-constrained
environments, allows for packet replication, and leverages de-
livery notifications to purge old replicas; of recent related work,
it is closest to RAPID’s objectives. Random replicates ran-
domly chosen packets for the duration of the transfer oppor-
tunity. Spray and Wait restricts the number of replications of
a packets to L, where L is calculated based on the number of
nodes in the network. For our simulations, we implement the
binary Spray and Wait and set L to 10. PROPHET uses histor-
ical information to calculate meeting probabilities. We imple-
mented PROPHET with parameters Pinit = 0.75, β = 0.25
and γ = 0.98.

We also compare RAPID to Optimal, the optimal routing pro-
tocol that provides an upper bound on performance. Optimal is
computed using an ILP formulation stated in our Appendix and
solved using the CPLEX solver [25].

We took traces from UMass DieselNet, a real network of 40
buses equipped to take measurements of mobility and transfers.
Each bus carries a small computer, two 802.11 wireless radios,
40GB of storage, and a GPS device. The buses are designed
to search for one another 100 times a second; once found, they
exchange random data with each other using TCP until they are
out of wireless range. They send logs of these transfer back to
a central server. We used 60 days of logs in our experiments
that contain the schedule of bus meetings and the transfer op-
portunity size at each meeting. Note these traces were recorded
in Spring 2006 (and are not the Spring 2005 traces of a slightly
smaller network used in our previous work [5]).

To model stochastic mobility patterns, we use uniform expo-
nential and the powerlaw distributions. Song et al. [26] suggests
that meeting times between people in a busy public place fol-
low a uniform exponential model, i.e., pairs of nodes meet each
other once every t seconds where t is exponentially distributed
with a mean that is common for all pairs of nodes. We evalu-
ated the protocols over a power-law distribution as well since it
is common in previous work (e.g., [8]).

The default parameters used for the experiments are tabulated
in Table IV. Destinations are randomly chosen uniformly from
all other nodes. Packets are generated with an exponential inter-
arrival time.

B. Results from DieselNet traces

In all experiments, MaxProp, RAPID and Spray and Wait per-
formed significantly better than PROPHET (which is not shown
in the graphs for clarity). We assumed that nodes have until the
end of each day only to deliver packets, and we plot the average
performance over 60 days of trace data.

Figure 2 shows the average delay of delivered packets using
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Fig. 2. Trace data: Load vs Avg delivery delay
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Fig. 3. Trace data: Load vs Delivery rate
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Fig. 4. Trace data: Load vs Max delay
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Fig. 5. Trace data: Load vs % missed delivery deadline
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Fig. 6. Exponential: Load vs Avg delay
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Fig. 7. Powerlaw: Load vs Avg delay
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Fig. 8. Powerlaw: Buffer space vs Avg delay (similar
results for exponential)
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Fig. 9. Exponential: Load vs Max delay
(similar results for powerlaw)
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Fig. 10. Powerlaw: Buffer space vs Max delay (simi-
lar results for exponential)
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the four protocols under varied load when RAPID’s routing met-
ric is minimizing average delay. On average, when using RAPID
packets are delivered 40 minutes (20%) earlier than MaxProp,
60 minutes (30%) earlier than Random, and 90 minutes (40%)
earlier than Spray and Wait. Moreover, the fraction of packets

delivered by RAPID is consistently greater than these protocols
(shown in Figure 3) even though RAPID does not intentionally
improve delivery rate.

Figure 4 shows that RAPID reduces the maximum delay of
packets by an average of 80 minutes compared to MaxProp and
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Random and about 190 minutes compared to Spray and Wait.
Figure 5 shows the results when RAPID is set to minimize the
percentage packets that missed a deadline. RAPID reduces the
number of nodes that miss deadline by up to 15% compared
to MaxProp, 18% compared to Random and 28% compared to
Spray and Wait.

Because each bus takes a different route, standard deviation
and similar measures of variance are not appropriate for compar-
ing the means. Accordingly, we performed a paired t-test [27] to
compare the average delay of every source/destination pair us-
ing RAPID to the average delay of the same source-destination
pair using MaxProp. In our tests, we found P -values always
less than 0.0005, indicating the differences between the means
reported in these figures are statistically significant.

C. Results from synthetic mobility models

In this section, we show results comparing RAPID to Max-
Prop, Random, and Spray and Wait using synthetic mobility
models. We set the mean of exponentially distributed meeting
times to 30 seconds, and we set the exponent of power law meet-
ing times to 0.3 seconds. Each point on the graphs represents
the average of 10 trial runs, each with a different random num-
ber generator seeds. The delivery rate for all protocols is nearly
100% since all nodes meet all other nodes relatively frequently.

Figure 9 shows the maximum delay of packets using the four
routing protocols when the meeting times are exponential and
the load is varied. RAPID reduces average delay by up to 30%
compared to MaxProp, which is the next-best performing proto-
col. The reason MaxProp performs worse is that it prioritizes
new packets; older, undelivered packets won’t see service as
load increases, which increases maximum delay in the system.
This experiment shows that an intentional routing protocol can
achieve a better allocation of resources even in a completely de-
centralized setting. In Figure 6, we see similar results when
RAPID’s metric is set to average delay.

We see the same benefits of RAPID over the other protocols
for powerlaw meeting distributions in Fig. 7. Because of space
limitations, for the remainder of our experiments, we show re-
sults for only one of exponential or powerlaw distributions —
just as in Figs. 6 and 7, the results are similar in that the relative
performance of the protocols is the same.

Figure 8 shows how constrained buffers varied from 1MB to
10MB affect the max delay metric (for powerlaw meeting times
and fixed load of 1000 packets). RAPID is able to best man-
age limited buffers, though all protocols need very little buffer
before delay is relatively constant. Figure 10 shows how con-
strained buffers affect the maximum delay of packets. We see
RAPID reduces delay by an average of 30% compared to Max-
Prop and by greater than 50% compared to Spray and Wait and
Random when the buffer is less than 5MB. We note that Spray
and Wait and Random perform very poorly when the buffer
space is less than 2MB while RAPID and MaxProp are stable
even when the available buffer space is low, suggesting that
propagating acknowledgements and removing delivered pack-
ets from the buffer is effective especially when resources are
limited.

Fig. 11 show the performance of the different routing pro-
tocols with respect to minimizing the number of packets that
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missed deadline. RAPID performs significantly better than other
protocols because, fundamentally, the latter protocols focus only
on finding a path rather than efficiently allocating resources.

C.1 Comparison with Optimal

In this section, we compare RAPID to Optimal which is an up-
per bound on the performance. Additionally, we show the per-
formance of RAPID for both global and causal channels. These
results show us how inaccuracies in meta-data reduce the per-
formance of RAPID.

To obtain the optimal delay, we formulate the DTN routing
problem as an Integer Linear Program (ILP) optimization prob-
lem when the meeting times between nodes are precisely know.
The optimal solution does not use replication when there are no
failures in the system, propagation delay of all links are equal,
and when node meetings are known in advance. We present a
formulation of this problem in the Appendix. Our evaluations
use CPLEX solver [25] to show specific results for the Opti-
mal algorithm. Because the solver grows in complexity with
the number of packets, these simulations are limited to only 350
packets and are presented separately. Jain et al. [9] solve a sim-
ilar DTN routing problem but allow packets to be fragmented
across links and assigned non-zero propagation delays on the
links. This severely limited the size of the network and the num-
ber of packets they could evaluate.

Figs. 13 and 12 present the comparisons in average delay per-
formance between Optimal, RAPID, and MaxProp when the mo-
bility model is powerlaw and trace-driven respectively. In the
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trace-driven experiments, when computing average delay, the
delay of an undelivered packet is taken as the delay since packet
creation to the end of the bus day. (Due to space limitations we
omit results for exponential distributions.)

The experiments show that RAPID with a global channel per-
forms fairly close to optimal. This observation suggests that
much of the performance improvements to RAPID with a causal
channel can come from allowing control information to propa-
gate more easily. Since control information is small compared
to data, RAPID can make efficient use of a low-bandwidth, long-
range radio to propagate control information, such as WiMax or
XTend.

VII. CONCLUSIONS

Previous work in DTN routing protocols has seen only in-
cidental performance effects from various routing mechanisms
and protocol design choices. In contrast, we have proposed a
routing protocol for DTNs that intentionally maximizes the per-
formance of a specific routing objective. Our protocol, RAPID,
treats DTN routing as a resource allocation problem, and makes
use of causal information that is passed between nodes as a con-
trol channel. We have shown that RAPID yields significant per-
formance gains over incidental routing protocols.

The intentional routing approach opens up several research
questions. The resource allocation formulation was inspired
by the utility-theoretic framework [28] for Internet-like low-
feedback-delay networks pioneered by Kelly. However, we have
not shown the ability of RAPID’s local utility maximization ap-
proach to achieve the global optima for different routing perfor-
mance objectives; unlike [28], our benefit (cost) function is not
always strictly concave (convex) and smooth. In future work, we
will also investigate encoding other application-specific metrics,
including consistency requirements and monetary costs of rout-
ing in heterogeneously priced networks as resource constraints
in RAPID. To this end, we are encouraged by the feasibility of
an intentional routing approach.
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APPENDIX

LP Formulation. We divide time into discrete intervals so every node
meets at most one other node in an interval. This idea is similar to the formula-
tion presented in [9]. The inputs to the problem are
• The set of time intervals I, = 1, 2...h . The function b() returns the

beginning of the interval. e() returns the end of an interval and variable h
represents the last interval

• The set of nodes in the network N
• The set of edges E. An edge is defined when two nodes meeting in an inter-

val. We define functions f() and s() to return the first and the second node
that meet respectively, d() returns the interval in which the edge is defined.

• The set of packets P . Function src() return the source of the packet, dest()
return the destination of the packet, c() returns the interval in which the packet
was created, t() returns time the packet was created and size() returns the size
of the packet.

• The bandwidth for each meeting is a constant and is B.
When two nodes i and j meet, they are represented by two edges, e where

the function f(e) is i and s(e) is j and e′ where f(e′) is j and s(e′) is i.
The variables are

• X(p ∈ P, e ∈ E) = 1 if j is forwarded over the edge e and is 0 otherwise
• N(p ∈ P, n ∈ N, i ∈ I) = 1 if node n has packet p in the interval i and is

0 otherwise
• D(p ∈ P, i ∈ I) = 1 if packet p is before interval i and is 0 otherwise
X can be used to construct the optimal path taken by a packet. The value to X
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is constrained by the N and D variables. The objective function is

min
X

p∈P

X

i∈I

X

e∈E :d(e)=i,s(e)=dest(p)

(s(i) − t(i)) · X(p, e)

+
X

p∈P

(1 − D(p, e(h)) · (s(h) − c(p))

All constraints use notations ∀p, n, i, e to mean ∀p ∈ P, ∀n ∈ N, ∀i ∈
I and ∀e ∈ E. The constraints are

Initialization constraints
N(p, n, i) = 0 if i < c(p) ∀p, n, i

N(p, n, i) = 1 if src(p) = n and c(p) = i ∀p

Bandwidth constraint
X

p∈P

(X(p, e) ∗ size(p) ≤ B ∀e

Transfer constraints

N(p, n, i − 1) −
X

e∈E:f(e)=n,d(e)=i

X(p, e)+

X

e∈E:s(e)=n,d(e)=i

X(p, e) − N(p, n, i) = 0 ∀p, n, i

N(p, f(e), d(e) − 1) − X(p, e) >= 0 ∀p, e

Conservation constraint

1 −
X

n∈N

N(p, n, i) = 0 if i > c(p) ∀p, e


