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Abstract

Packet sampling is widely used in network monitoring. Sampled packet streams are often used to
determine flow-level statistics of network traffic. To date there is conflicting evidence on the quality
of the resulting estimates. We take a systematic approach, using the Fisher information metric and the
Cramér-Rao bound, to understand the contributions of different types of information within sampled
packets on the quality of flow-level estimates. We apply this approach to the estimation of TCP flow
size distributions, and the benefits of including SYN flag and TCP sequence number information on
estimation error. Our approach predicts that sequence number information substantially reduces errors
in estimating flow size distributions. Furthermore, additional SYN flag information significantly reduces
estimation error for short flows. We present a Maximum Likelihood Estimator (MLE) that relies on all
of this information and show that it is efficient, even when applied to a small sample set. We validate our
results with Tier-1 Internet backbone traces and evaluate the benefits of sampling from multiple monitors.
Our results show that combining estimates from several monitors is 50% less accurate than an estimate

based on all samples.

1 Introduction

Data reduction is an indispensable component of today’s Internet measurement and monitoring. With the
increase in network utilization, it is very difficult for monitoring applications to process every packet in
the aggregated backbone links at OC48" levels. Recently, many data streaming algorithms have focused
on summarizing network traffic with a very small memory footprint [18], [12], often beneficial to inline
monitoring at the router. While lightweight, this aggregation requires prior knowledge of interested statistics
before it can be implemented at the monitoring point. On the other hand, sampling methods require very
little inline computation, but transmit a subset of traffic to a powerful backend server for analysis. This
allows users both flexibility and extensibility in deploying measurement and monitoring applications at the

server. Sampling also helps reduce the processing load, and memory and storage demands of monitoring
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systems. However, some information content is inherently lost with sampling. This work presents a theo-
retical framework within which to assess how much information of a given flow level metric remains after
sampling. While we primarily focus on the estimation of the flow size distribution, our framework applies to
other metrics as well. Moreover, we quantify the value of TCP header fields for the estimation of flow size
distributions.

Many sampling schemes have been proposed, from general purpose packet sampling and flow sampling,
to methods aimed at identifying traffic elephants such as smart sampling ] and sample-and-hold [6]. Two
standardization efforts, PSAMP [21] and IPFIX [20], are current underway as well. Among these, random
or periodic (close to random) packet sampling, (sFlow [22]), flow summarization of packet level information
(Cisco NetFlow [19]), and a combination of both (Cisco sampled NetFlow) are popular methods deployed
in commercial networks. Random packet sampling consists of independently selecting each packet for pro-
cessing with probability p. Periodic sampling is shown to have similar characteristics as random sampling
[3]. While packet sampling generally provides detailed and accurate packet level characteristics, it is not
clear whether it can reveal detailed flow level characteristics.

The flow size distribution is an important metric that has received some attention in recent years. Flow
size is the number of packets in a flow. We are interested in estimating the flow size distribution, i.e. the
fraction of flows that contains 7 packets during a measurement interval, with ¢ typically small. This is
an important metric for many applications, such as traffic engineering, and denial of service attack and
worm/virus outbreak detections. It has been previously thought to be very difficult to estimate the flow size
distribution accurately from sampled traffic [9]. In the first work in the field, Duffield et al [3] provided
several estimators, but did not provide a proof of their accuracy.

In this work we use the Fisher information metric to address many open questions concerning flow size
distribution estimation from packet sampling. This is possible because of the tie between Fisher information
and estimation mean squared error through the Cramér Rao lower bound. Using the Fisher information, we
identify certain TCP fields that contain high informational value beneficial to flow size estimation. We also
explore the benefits of computing estimates at a central site when samples come from multiple monitors. We
will also observe that our framework simplifies the task of analyzing and developing estimation algorithms
for sampling at both a single monitor and at multiple monitors. Products of our study are estimators that
comes close to optimal, even when given a small number of samples. We validate our results using traces
taken from a Tier-1 backbone network. We focus on TCP flows as they account for 80-90% of packets in
the network [23]. However, our approach is quite general and can be applied to other network estimation
problems.

The rest of the paper is organized as follows: In Section2 we introduce the general model of obtain-
ing flow-level statistics under a random packet sampling scheme. Then we lay out the information theory
framework and compute the Fisher Information in Section 3. The development of an efficient estimator that
achieves the Cramér Rao bound, Maximum Likelihood Estimator (MLE), follows in Section4. We evaluate
using real traces in Section 5, and evaluate the benefit of multiple monitors in Section6. Finally we conclude

with Section 7.

2 A Model for Packet Sampled Flows

We introduce a model of flow sizes and sampled flows produced through packet sampling. We first define

the relevant entities and then enhance the model to include SYN and sequence number information.



The conventional IP flow definition is a set of packets that obey the following rules:

e Any two packets have the same 5-tuple, i.e., the same IP Source, IP Destination, source port number,

destination port number, and protocol number.

e Maximum inter-packet arrival time must be less than a threshold ¢, where ¢ is a value given by the

network operator, typically between 30 to 60 seconds.

In practice, some systems use other protocol information such as a FIN packet in TCP to terminate a
flow. Cisco NetFlow evicts flows that are active for more than time ¢, typically 30min, to free memory for
new flows. Here we choose the conventional definition to keep our model straightforward.

We monitor packets at a chosen point in the network. At this monitor, packets are sampled according
to a Bernoulli process with sampling probability p, 0 < p < 1. We refer to the flows prior to sampling as
original flows. A sampled (or thinned) flow is a flow that has at least one of its packets sampled. A flow of
size 7 is a flow that originally has ¢ packets. Likewise, a sampled flow of size m is a flow that has m packets
sampled, where m > 1. Some original flows are not sampled and therefore not observed. Some original

flows may split into multiple sampled flows. We do not account for flow splitting.

2.1 Basic Model

Assume the original flow size is upper bounded by W > 0. Let 6; be the fraction of original flows of size
i that crossed the monitor during some given time interval and let ¢ be the fraction of original flows of
size i that were sampled. Under the Bernoulli sampling process assumption: ¢ = (1 — (1 — p)")6;. Let
6 = (61,...,0w)T denote the original flow size distribution. Likewise, let§’ = (07,...,0;,)" denote the
distribution of the sampled flow sizes. 6 and @'are related as follows:

0i/(1 — (1 —p)")

0; = gi(0) = : 1
SO = Sl 0 — (- ) @

Our objective is to estimate 6 from the sampled flows. Note that g is constrained by Zzl 0; = 1 and
0 < 6; <1, Vi. These constraints also apply to g'.

Let £ be a set of label tuples. A label j € L can be, for instance, the number of packets obtained
in a sampled flow. Let j € L be a label given to a sampled flow and let d; be the fraction of sampled
flows with label j. For now consider j to be the number of packets obtained from a sampled flow and let

d= (di,...,dy) denote the sampled flow size distribution. Distributions d and 6 are related by
W
dj =D _bisbi @)
i=1

where b; ; is the binomial probability of sampling j packets out of 7 original packets given sampling rate p.

Equation (2) can be written in vector notation as

-

d =B, 3)

where B is a W x W matrix whose element (i, j) is b; ;. Matrix B is an upper triangular matrix and thus 3)

has a unique solution. A similar relationship also holds ford'.



Let ﬁj, J > 0, denote the total number of flows with j sampled packets and n =) ;. Dy, the number of
sampled flows. We can also further define d™ as
i(n) _ p(n)
d" = D . 4)

In what follows we omit the dependence of d on n for notational convenience.

In the next section we extend the model to account for SYN and sequence number information.

2.2 TCP SYN and sequence numbers

The basic model only accounts for the number of packets inside a sampled TCP flow. A sampled flow can
carry more information about its original IP flow size, through stateful upper layer protocols. TCP [15],
in particular, has two fields that provide further information regarding length: control flags and sequence
numbers.

Flow samples with SYN packets. As pointed out in [3], the TCP SYN flag provides valuable informa-
tion during the estimation phase. As in [3], we assume original flows include exactly one SYN packet, which
is the first packet of the flow. We denote a sampled flow starting with a SYN packet as a SYN sampled flow.
Because there is only one SYN packet per flow, the distribution ' conditioned on the SYN sampled flows is
the same as the original flow size distribution 0. We refer to a TCP sampled flow with a SYN sampled packet
as TCP SYN sampled flow. We use ci(& k) to denote the fraction of the sampled flows where a SYN packet
is sampled and there are k sampled packets. Likewise, we denote by c?(NJf) the fraction of sampled flows
where there was no SYN sampled packet and there are k sampled packets in total. For now we focus on TCP
SYN sampled flows, and ignore flows without a sampled SYN. In Section 4.3 we will see how to add flows
sampled without SYNs the estimation. Equation (3) holds for only TCP SYN sampled flows with B properly
redefined. The modification to B is found in [3]. We refer an estimator that uses ci(&k) as a “SYN-pktct”
estimator.

Next we turn our attention to sequence numbers.

Samples with TCP sequence numbers. TCP uses a 32-bit sequence number that counts bytes in a flow.
Assume that the TCP start sequence number, the starting byte count of the sampled packets, is available.
An estimator that measures flow sizes in number of bytes can clearly benefit from TCP sequence numbers.
The question is whether an estimator based on packet counts can also benefit from sequence numbers. We
assume that there is a function h(s,, sp) that takes two TCP sequence numbers s, and s, from two distinct
packets a and b form the same flow and returns the number of packets sent between a and b including a and
b. For now we will not worry over the fact that it is hard to find the exact packet count using TCP sequence
numbers. In Section 5 we will provide a reasonably good approximation to h.

Let 57(71;-)”, sgﬁ()m be the smallest/greatest sampled TCP sequence number values of flow u (wrap around
is easily treated). Let U be a set of sampled SYN flows and let d, be the fraction of sampled SYN flows
with r = h(sgﬁf)m, 57(7:2”), Vu € U. This new sample definition induces a new matrix B with b; 5,y =
p(1—p)" ", Vi <W,2 <k <iandb; 1) = (1 —p)"', and the rest of the matrix being zero. Denote an
estimator that uses ci(& k) as a “SYN-seq” estimator.

We have introduced several types of information. One question that remains is which type of information
can be considered valuable to our estimator. The next section is devoted to quantifying the impact of these

types of information on the estimation accuracy of g.



3 Fisher Information in flow size estimation

This section quantifies the improvement on estimation achieved by adding different types of information to
the sampled flow distribution d. Throughout this work we focus on unbiased estimators. Let 6, denote the
quantity to be estimated and 7'(6;) its estimate. An unbiased estimate guarantees E[7'(6;)] = 6;. In what
follows we consider only unbiased estimators, unless stated otherwise.

Let T (5) be an estimate of § obtained by an estimator 7. A good unbiased estimator of a flow size %
is characterized by a low mean squared error E[(6; — T'(6;))?]. This motivates the definition of an efficient

estimator.

Efficient estimator: An estimator T of 6; is said to be efficient if its mean squared error, E[(6; — T'(6;))?],

is the minimum among all estimators.

In what follows we provide way to compute a tight lower bound on the mean squared error for flow size

unbiased estimators.

3.1 Measuring information: Fisher information matrix

The Fisher information matrix of a single sampled flow can be thought of as the amount of information that
the observable random vector d carries about the unobservable parameters Gord upon which the probability
distribution of d depends. The results in this section derived ford are also valid for 0.

The Fisher information can be defined over a set of samples. If the samples in the set are all mutually
independent, then the Fisher information of the set of samples is the sum of the Fisher informations of each
of the samples [2].

Assume that flows take at least two sizesand 6, > 0,1 <7 < W.

Let naAlj denote the number of sampled flows with label j as defined in Section2.1. Assume n = 1 and
(1)

that our sole sampled flow has sample label 7. Note that in this scenario ch, = 1 and zero otherwise. Define

an operator (-); over a vector that retrieves its k-th element. Let
0.6 = S gD Bg), = S gm
a(dW;0) =) d (B =Y d, dy (5)
vk vk

be the conditional probability that our sole sampled flow has sample label f given flow size distribution g.
« is also known as the likelihood function. The likelihood function « can be extended to o™, the likelihood

of n independently sampled flows. The parameters g of the likelihood function (™ are constrained by:

> 0i=1 (6)

Vi

and
0<6; <1, Vi @)

The constraints (7) can be included in « by a simple change in variables

1

1+ exp(—7;)’ ®

0; = B(vi) =

with 7; € R. Function § maps ; with domain R to (0, 1), thus satisfying constraints (7). Furthermore,
define a function g(y) = >, B(7:) — 1. Then g(¥) = 0 iff constraint (6) is satisfied. Take ¥ € D, where



D = {7|g(7) = 0} and B3(¥), (87 (7)), a vector whose i-th element is 3(7;), (371 (7;)), then the likelihood

function f of one sampled flow is
FD37) = a(d s 571(9)).

Under the above conditions we find the Fisher information matrix of the flow size estimation problem.
Let V51In F(d™;7) be a vector whose i-th element is d1n f(d());7)/0v;. We use the main result of [8]
to find the pseudo-inverse of the Fisher information matrix with equality constraints on its parameters. Let
P(@U = 1) = d; be the probability that our sole sampled flow has sample label j and

3@ = Y (Vs (@A) (Vs g @V 7)" ¥
Vi

also with
G(7) = Vs9(7). (10)

From now on we omit the dependence of J and G on 7 for notational convenience. Let Z be the Fisher
information matrix of f (cf OF 7). We obtain Z from its pseudo-inverse Z~!. The pseudo-inverse of the

Fisher information matrix with §¥ € D, Z-1(¥),is a W x W matrix
7'®) =31 -J'éT(cgr e 'crt, (11)

where GT is the transpose of G. Note that the Fisher information depends on the original flow size distribu-
tion . For notational convenience we omit the dependence of Z ond.
The Fisher information can be used to compute a lower bound on the error of any unbiased estimator of

0 as seen next.

3.2 The Cramér-Rao bound

The Cramér-Rao theorem states that the mean squared error of any unbiased estimator is lower bounded by
the inverse (or pseudo-inverse) of the Fisher information matrix 8], provided some regularity conditions on

the log-likelihood function f are satisfied.

Lemma 3.1 Let T be the Fisher information matrix of one sampled flow. If packets are sampled indepen-
dently according to a Bernoulli process (as in Section2), the Fisher Information matrix of n sampled flows

isnZ.

Proof If packets are sampled independently and according to a Bernoulli process, then flows are also sam-

pled independently. The Fisher information of a set of n independently sampled flows is nZ R]. g

The regularity conditions required by the Cramér-Rao bound as given in [10] translates to Vi > j ad;/0vy; =
9/0; 3 ; dj on the flow size estimation problem, which clearly holds.

Let ; be an unbiased estimate of ;. Combining the Cramér-Rao theorem with Lemma 3.1 gives
El(yi —3)% = =T Haa/n,

or, more generally
)7 =) = ~T7"/n, (12)

2y

E[(Y -

(o)}



with Z~! from equation (11).

The mean squared error obtained from (12) is a function of parameters 7. We would like to find the mean
square error with respect to g.

The mean squared error of g follows by applying the delta method [16]: Let n be a large number of
sampled flows. Altough n is assumed to be a large number, it can still be considered small on the scale
of a Tier-1 Internet backbone. Let H = [h; ;] with h;; = ((v;)/0v; and likewise H' = [h] ;] where
hi ; = 09:(B(7))/0v;, with g;, i, j as defined by (1). Thus in the case where the original likelihood function

o is a function of §, the mean squared error of the estimate of gis
E[(—0)(0—6)") > H(-T " /n)HT (13)
and when « is a function of ¢,

Bl —6)(@ -0 > H (~2/n) BT (14)

3.3 Applying the Cramér-Rao bound

We illustrate the application of the Cramér-Rao bound with two examples. The first one in Section3.3.1
shows all of the necessary steps to obtain the Cramér-Rao bound. The second one in Section3.3.2 displays

the use of the Fisher Information through the Cramér-Rao bound, in designing better estimators.

3.3.1 Example with maximum flow size of two

Let W = 2 be the maximum flow size. Let §; = 0.88 and p = 0.01. From equation (10), we have (G); =
62/(6; —1). Equation (9) yields J(671(61)) = —&, & /di — & &) /da, where & = (b;1,bja)-(62/(6—1)).
Let j denote the number of sampled packets in a SYN sampled flow. Then by 1 = 1, b21 = 0, b1 2 = 0.99

and by o = 0.01. The pseudo-inverse of the Fisher information ! (equation (11)) of one sampled flow is

7-1_ —-1078 1078
1078 —1078

Now assume n flows are sampled. Thus the lower bound on the mean squared error of estimates 4 and
42 obtained using the Cramér-Rao bound will be E[(y1 — 71)?] > 1078/n and E[(y2 — 72)?] > 1078/n.

The Cramér-Rao bound of parameters 6 comes from the delta method. Matrix H is

1
H~ 0.105 0 '
0 0.105

Thus from (13), the mean squared error of any unbiased estimates 6, and 65 of 6; and 65 respectively are:
E[(61 — 61)%] > 1092/n and E[(6; — 62)] > 1092/n for n sampled flows given n sufficiently large.

3.3.2 Valuable information from TCP sequence numbers

Consider the problem of estimating flow size distribution using packet counts, and SYN and sequence num-
ber information as defined in Section 2.2. The elements of B are b1 = (1 —p)*~* and b; ; = p(1 — p)*~7

for 57 > 1. For our next example, assume a maximum flow size W = 4 and 0 = (0.56,0.08,0.18,0.18).



We compute the Cramér-Rao bound for a sampling rate of p = 1/10. Also consider the estimation using
packet counts and SYN information (SYN-pktct) as defined in Section2.2. Figure 1 shows the Cramér-Rao
bound under this scenario. Clearly the addition of TCP sequence numbers drastically increases the Fisher
information of the samples. This increase in the Fisher information is translated into a much smaller lower
bound on estimation error. As W increases, the difference in the errors of these two estimations increases
until the bars of the confidence interval of the SYN-pktct estimator becomes greater or equal to 1, while the

SYN-seq estimator increases its error slightly as we will see in Sections4.2 and 5.

Lower bound on the flow size distribution estimator error
with 10 million SYN sampled flows

0.08 T T T T

007 | 7 C ]

0.06 [ T

0.05 1
0.04 1
0.03 [ 4
0.02 4

6 0, 0; 0,

Estimation standard
deviation error for flow size 6;

SYN flow with packet counts estimator
SYN flow with TCP sequence numbers estimator

Figure 1: Cramér-Rao bounds of the examples on Section 3.3.2. This graph compares the estimation of
SYN-pktct to the SYN-seq. Notice that adding TCP sequence numbers to the estimation greatly improves
its quality.

We will shortly present MLEs for the SYN-pktct, SYN-seq estimators. Experimentally we will find
that these MLEs are efficient in that they approach the Cramér-Rao bound even for a small sample size,

n = 10,000. We show that it is also efficient even when sampled flows without SYN packets are included.

4 Finding a good estimator

The Maximum log-Likelihood Estimator (MLE), finds a set of parameters 5 that maximize the log-likelihood
of the sampled data. Under the same regularity conditions as required for the Cramér-Rao bound, the MLE
is an asymptotically efficient unbiased estimator of 7, i.e., its error achieves the Cramér-Rao lower bound as
the number of samples tends to infinity. As in practice we do not have a very large number of samples, we
would like it to be efficient using the number of samples typically collected at Tier-1 backbone routers. This
section presents a MLE for the SYN-seq model. That does not require a large number of samples to achieve
the Cramér-Rao error lower bound. In addition, we present a Conjugate Gradients algorithm for the MLE, a
faster convergence algorithm than the commonly used Expectation Maximization algorithm.

We estimate the MLE over function o™ through the use of penalty functions for the constraints in ¢) and

(7). Whenever a value of § violates one of the constraints, the likelihood function receives a penalty, which in



the end forces the search to remain within the constrained region. To simplify analysis, we generate synthetic
sampled flows for the traffic in an idealized fashion. In this section we estimate the flow size distribution
using only SYN sampled flows. This, of course, does not account for packet sampling introduced “noise”
such as flow-splitting, which counts one long original flow into two or more shorter ones. However [11]
describes how to treat that flow splitting. We will evaluate the complete model with “noise” in Section5 on

actual traces. Next we introduce the MLE for our model.

4.1 MLE with Conjugate Gradients

Let n be the number of sampled flows and ndy, the number of sampled flows with label k. The likelihood

function with respect to parameters g, as defined in Section 3.1, is (™) (cf, ). The MLE can be written as
- W -
f = argmax n H di, In(BO)y (15)
0 k=1

subjecttoziéi —land0<6; <1, Vie{l,..., W}

First we consider the SYN-pktct MLE as proposed in [3]. We analyze the Expectation Maximization
(EM) algorithm, used in [3] to find a solution of the log-likelihood equation (15). Let ZA)(S,T) denote the
number of SYN sampled flows with label r sampled packets. Let cz(sm) be the fraction of SYN sampled
flows with r sampled packets, as defined by @). R

We detail the approach in [3] for the sake of completeness. The EM algorithm finds the MLE ] by

successive refinement of previous estimates:

Gk _ Gk) 3 bi,rd(s,r)
i>r>1 Zk>r Hl(gk)bk,r

where 5(0) is an initial guess of g.

Although the EM algorithm is sound, needs no fine tuning, and is guaranteed to always improve the
estimate at each step, in practice it can suffer from slow convergence [14]. More specifically, Theorem 5.2
in [14] shows that if the parameters g are “poorly separable” then EM exhibits a slow convergence rate.
The term “poorly separable” can be quantified as the difficulty of distinguishing whether a sample j came
from flow sizes i or ¢/ with i # i/, i.e., if b; j0; ~ by ;0. Unfortunately, flow size estimation suffers from
this vileness. Although one expects that other maximum likelihood algorithms will also suffer with these
“poorly separable” parameters, it is believed that in practice the effect is be felt more by EM [14] (conjecture
strengthened by our practical experience with our EM and Conjugate Gradients method implementations
when applied to our problem).

We instead use the method of Conjugate Gradients [13] to compute a solution to (15). Our Conjugate
Gradients C routine was implemented with the help of the wnlib library'. .
For the above algorithm to work, we only need to provide the matrix B and the gradient Vezln ol (CZ 5)

conditioned on ZZl 0;=1and0 < 6; <1, Vic {1,...,W}. The i th component of our gradient is

5 - b d,
—lna(")(d; ) :Ziﬁﬂj — 1.
90; j=1 Zkgj O by

"http://www.willnaylor.com/wnlib.html




All constraints are introduced as penalty functions. Like EM, the Conjugate Gradient algorithm also requires

an initial guess (). The only requirement for any initial guess is that no flow size have zero probability.

4.2 SYN-seq MLE: the use of TCP sequence numbers

—

The MLE is an asymptotically unbiased estimator of 0,ie., E 0] = 6 as n — oo. From the application
of the data processing theorem on the Fisher information matrix [L7], the best estimator of flow sizes that
uses TCP sequence numbers will perform better, or at least no worse, than an estimator that does not take
sequence numbers into account. This is expected as one can always throw the sequence number information
away inside the estimator.

Let W = 50 be the maximum flow size and p = 1/10 be the packet sampling rate. In the following
experiments we use samples from a renormalized flow size distribution obtained from the Sprint backbone
network. The flow size distribution renormalization creates a distribution that is a re-scaled true Internet
flow size distribution but with maximum flow size W. The original distribution came from trace BB-East-1,

summarized at the beginning of Section 5 in Table 1.

SYN-pktét MLE mean with std. dev. error bars ———
Original flow size distribution -~

0.001 | T T &

Fraction of flows with size i

le-04 F I .

0 5 10 15 20 25 30 35 40 45 50

Flow size i

Figure 2: Flow size distribution obtained from SYN-pktct MLE from SYN sampled flows (no TCP sequence
number). Observe the large standard deviation errors of the estimates (from 150 independent trials with
100,000 SYN sampled flows each and packet sampling probability p = 1/10).

The following experiment uses 100,000 synthetically generated SYN sampled flows. The first estimation
is done using the SYN-pktct MLE. In order to assess the performance of this estimator, 950) = 1/W is used
as an initial value for the optimization.

Figure 2 shows a graph of the original flow size distribution and estimation using the SYN-pktct MLE.
Observe the large standard deviation errors. Large standard deviation errors of the estimates are not the worst
part, as the estimation is also biased, i.e., even averaging the results of 150 independent trials, E{gz] # 0; for
most flow sizes 7, but particularly bad for small flow sizes. This is due to the initial values chosen forg(©)
as shown in Section 4.4. It is also an indication that the estimator is not accurate with only 100,000 sampled
flows.

SYN-seq MLE, the estimator that includes TCP sequence number information, reduces estimation errors

10
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Figure 3: Flow size distribution obtained from SYN-seq MLE from 100,000 SYN sampled flows. Observer
the small standard deviation errors of the estimates (from 100 independent trials with 100,000 SYN sampled
flows each and packet sampling probability p = 1/10).

significantly, as shown in Figure 3. Observe the small standard deviation errors of the estimates when TCP
sequence numbers are added to the estimator. The mean of the estimator is the true mean as one expects from
a good unbiased estimator (E[éz] =0,, Vi € {1,..., N}). The additional information has a huge impact on
reducing the estimator variance.

In what follows we show that the MLE for SYN sampled flows with TCP sequence number of the
scenario described above is efficient even with small sample sets.

The MLE is guaranteed to achieve the Cramér-Rao lower error bound asymptotically.

Figure 4 shows the error of SYN-seq MLE in estimating flow sizes compared to its respective Cramér-
Rao bound. For a large number of samples (> 10°) the Cramér-Rao bound and the SYN-seq MLE mean
squared error are indistinguishable. Thus the Cramér-Rao bound is tight and the SYN-seq MLE appears to
be efficient even when there are at least 10, 000 samples. Increasing the maximum flow size W also increases
slightly the minimum required number of samples. Our experiments shows that when W = 200 100, 000
sampled flows are required to achieve the bound. For W = 300, the bound is still achieved with 100, 000,
which we conjecture remains true even for larger flow sizes.

In practice the Cramér-Rao bound has another use: One can define the desired values of the standard
deviation errors of the estimates and obtain the minimum number of samples necessary to achieve it.

Although SYN sampled flows have high information content, in practice packet sampling rates are com-
monly as low as p = 1/100 in the backbone network, significantly reducing the number of SYN sampled
flows. With such a low sampling rate one must use all sampled flows, not only those with SYN packets. In

what follows, sampled flows with missing SYN packet are taken into account in the estimation.

4.3 Adding all sampled flows to the estimator

In our traces, TCP flows account for a sizable fraction of the flows. About 20% of the TCP sampled flows

in our traces contain a SYN sampled packet. In [3] the authors conjecture that there are usually not enough

11
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SYN-seq Cramer-Rao bound for 100K samples —+—
SYN-seq MLE for 100K samples --—--—----
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Figure 4: This graph shows the standard deviation errors of the estimates. Here we compare the SYN-seq
MLE against the Cramér-Rao bound using 100,000 and 10,000 SYN sampled flows. We can see that the
SYN-seq MLE achieves the bound even for a small number of sampled flows.
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Figure 5: The graph of O',EA) / O'Z(S) shows that including all sampled flows with no sampled SYN packet on
the estimator is beneficial for the 6; estimate ;. It also shows that it has little impact on other flow sizes.
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SYN sampled flows for accurate flow size distribution estimation with their estimator.

The data processing theorem [17] states that adding information can only increase the Fisher information.
Therefore, it is possible to increase the precision of the SYN-seq estimator by incorporating all sampled flows
with no SYN packets. Incorporating these samples can be done seamlessly in the SYN-seq estimator and
even in the SYN-pktct estimator. This extension can potentially increase the accuracy of the maximum
likelihood estimators presented in [3]. However we will restrict our analysis to the TCP sequence number
estimator. Denote the estimator that uses TCP sequence numbers and SYN flags (SYNs and non SYN flows)
as “ALL-seq-sflag estimator”. Let B denote the sampling probability matrix as defined by @3). Let j denote
a tuple (SYNFLAG, r), where r = h(sﬁ,ﬁ‘(lx, 57(7:2”) with h as defined in Section 3.3.2. Let SYNFLAG = S
when there is a SYN packet in the sampled flow and SYNFLAG = N otherwise. Thus Uz <Sk> =D (1-—

p)Fand ¥ . = (i —k)p (1 — p)"~*. The element 4, j of matrix B is b; ; = b i/ > v Ui s
0.4 . T T T . T T T T T
Estimator mean (with std. dev. error bars) ——+—
L Original flow size distribution - ,
0.35
0.3 -
025 F .

02+ .

o et

0.05 } :

Fraction of flows with size i

1 1.5 2 2.5 3 3.5 4 45 5

Flow size i

Figure 6: SYN-seq MLE mean with standard deviation error bars.

Consider the impact of this new information on the Cramér-Rao bound. Once again we generate synthetic
samples from the rescaled flow size distribution of the BB-East-1 trace given W = 50 as the maximum flow
size and p = 1/200 as the packet sampling rate. In this scenario 19% of the TCP sampled flows have a
SYN sampled packet. Furthermore, assume 10° TCP flows were sampled in total. We compare the above
ALL-seq-sflag estimator with the SYN-seq estimator described in Section 4.2. In the above scenario, let
O'Z-(S) = VE[(6;—6;)?] for the SYN-seq estimator and O'Z-(A) = VE[(0;—0;)?] for the ALL-seq-sflag estimator
both given by the Cramér-Rao bound. Figure 5 shows the graph of O'Z(A) / O'Z(S). Note that 1 — O'Z(A) / JES) is
the percentage decrease in the standard deviation error obtained by the All-seq-sflag estimator with respect
to the SYN-seq estimator. The graph shows that including all sampled flows with no sampled SYN packet
on the estimator improves the estimate of 6y, 9~1. It also shows little impact on other flow sizes. The above
result given through the Fisher information is confirmed by the maximum likelihood estimates from Figures
6 and 7. Also, our experiments show that the ALL-seq-sflag estimator is an efficient estimator for the above
scenario.

In what follows, we compare the ALL-seq-sflag MLE to the packet count MLE without SYN flag in-

formation (using all sampled flows) found in [3] (estimator f 4) according to the nomenclature in [3]) when
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Figure 7: ALL-seq-sflag MLE mean with standard deviation error bars.
applied to TCP flows. We will denote the packet count MLE found in [3] by ALL-pktct MLE.

4.4 Comparison of TCP sequence number MLE to packet counts MLE

The ALL-pktct MLE, as described in [3], uses samples that bear little information about the original flow
sizes (as given by the Fisher Information, that for W > 50, is close to zero). Therefore the packet counts
MLE is unable to provide consistent results when the number of samples is extremely large (by extremely
large we mean on the order of billions of samples). The end result is an MLE that is very sensitive to the
initial guess of the flow size distribution, which precludes any meaningful comparisons. A good estimator
should be fairly robust to initial value of 6.

The following two sets of experiments were performed using synthetic samples drawn from the flow size
distribution of the BB-East-1 trace. Let p = 1/100 be the sampling rate and W' = 100 the maximum flow
size.

Figure 8 shows the packet count Maximum Likelihood estimates using two distinct initial original flow
distribution guesses. An initial guess where flows fractions are uniformly distributed, i.e.,égo) = (1/W), Vi,
yields curve “ALL-pktct (guess:uniform)” and an initial guess where half of the flows have size one and the
remaining flow sizes are uniformly distributed 671(0) = (1/W)/2, ¥i > 1 and 67§0) = 0.5, yields curve “ALL-
pktct (guess:notuniform)”. Figure 8 depicts both curves with their respective standard deviation error bars.
The ALL-pktct MLE is clearly very susceptible to the initial original flow distribution guess. When the initial
distribution estimates 6(®) are not uniform, according to the curve “ALL-pktct MLE (guess:notuniform)”,
flows of size one account for almost 90% of the original flows with high confidence, an obviously erro-
neous result. On the other hand, when the initial distribution estimates are uniform as in “ALL-pktct MLE
(guess:uniform)”, this same metric is 36%, which is fairly close to its true value: 32%. This phenomenon
was also observed for the estimator f(*) given in [3].

Under the same scenario, the TCP sequence number and SYN flag MLE yield curves “ALL-seq-sflag

(guess:uniform)” and “ALL-seq-sflag (guess:notuniform)”, both depicted with their standard deviation error
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Figure 8: The initial guess 6 has a huge impact on quality of the ALL-pktct MLE.
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Figure 9: The initial guess 6( has a little or no impact on quality of the ALL-seq-sflag MLE.
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bars in Figure 9. This result shows that this MLE is clearly more robust to misleading initial distribution
estimates 6(%).
The next section is concerned with improving and better evaluating the SYN-seq MLE and ALL-seq-

sflag MLE on an actual trace.

5 Evaluation on network traces

The focus of this section is to evaluate the flow size distribution estimators in an Internet backbone envi-
ronment. We evaluate our algorithms with packet traces from a Tier-1 ISP’s backbone network. They are
collected from the IPMON, a passive measurement system that captures the first 64 bytes IP packet header of
every packet on an optical link [7]. The BB-East-1 and BB-East-2 traces are from two OC-48 links between
backbone routers on the east coast. The Access-East trace is from an access link in the east coast. The
statistics of these traces are listed in Table 1.

Internet flows sizes can be on the order of millions of packets, i.e., MLE equation (15) with W > 1
is intractable. Next we will see how to estimate TCP flow size distributions over real traces for very large

maximum flow sizes W > 1.

Table 1: Trace Facts
‘ Trace ‘ Avg. Rate ‘ Active Flows ‘ Duration

Access-East | 373Mbps 61,000/sec 2 hours
BB-East-1 | 867Mbps | 140,000/sec | 2 hours
BB-East-2 25Mbps 5,000/sec 2 hours

5.1 Large maximum flow sizes

Unfortunately our model, as presented, requires one parameter for each flow size from 1 to . One could
model the tail of the flow size distribution as a Pareto model, which would replace most of the larger flow
sizes parameters by the two parameters of the Pareto distribution. But even in this case, the estimator still
needs to compute sample probabilities d; and this reduces to summing a large number of coefficients (up to
W) on equation (2), with its associated computational cost.

Fortunately, TCP sequence number MLEs are fairly robust to mismatches between the modeled max-
imum flow size W and the actual maximum flow of the set of flows that generated the samples. The es-
timations presented next were made over real Tier-1 Internet backbone traces. The robustness of the TCP

sequence number MLEs on a real sampled trace agrees with our observations made using synthetic traces.

5.2 An approximation to h

Before proceeding to the actual estimation of the flow size distribution we need to address one last issue.
Function A introduced in Section 3.3.2 takes as arguments two TCP sequence numbers of two packets in a
flow and returns the number of packets sent between these two packets. Before we can estimate flow sizes
from real Internet traces we need to approximate h using real Internet sampled flows. We describe this next.

The baseline for our approximation A(s1, s3) to h(s1,s) is to use |s; — so| divided by the maximum

data segment transmitted on the flow, where s; and sy are two TCP sequence numbers of packets belonging
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Figure 10: Number of sampled flows labeled with tuples obtained from A drawn synthetically and fromh
using the real sampled trace. Results obtained from the BB-East-2 trace. Packet sampling rate p = 0.01.
This graph shows ncz(syr), the number of sample tuples (S,r) (from flows with a SYN sampled packet).
Notice that the average is slightly underestimated.

to the same flow. The reasoning here is that while a TCP application has enough data to send, most TCP
protocol stacks will send packets with data up to the maximum payload size. Most TCP implementations use
maximum payload sizes of 1460, 1448 or 536. Notice that we are looking at only one direction of the flow,
i.e., we only have access to one side of the two-way TCP connection. Unfortunately a good approximation
to h requires some enhancements to the baseline approach.

Zero sized packets and modern web browsers present two difficult issues to resolve finding a good h.
Zero sized packets will not increase the TCP sequence number counter and, if not sampled, are almost
totally invisible to us. Modern web browsers use persistent HT'TP 1.1 connections: Suppose an Internet user
is reading a news website. A regular user is expected to follow many links on the same web server. Upon
requesting a page, the web server will send all packets with the same size except for the last one. Then
the user’s browser will keep the TCP open connection, and in the event of a new user requested page, the
browser will ask for more data on this same TCP connection. This creates a TCP flow with more distinct
payload sizes than one expects to see in a single TCP connection. One can argue that these are independent
TCP flows. The fact is that they share the same SYN packet, which defines a flow in our model.

We first deal with the multiple payload size problem. A sizable amount of the web-servers on the Internet
are Linux machines. Linux machines have an interesting behavior on their IPID field, they are all sequential
for a given a TCP flow (a reference to the many uses of the IPID field can be found on [1]). With distinct
payload sizes inside the same flow, most of them not sampled, |s; — so| will likely not give us number that is
a multiple of the maximum payload size per packet in the flow. If these small sized payloads are not a large
fraction of the total number of packets we can verify whether the number of packets obtained using the IPID
difference of the packets is close to the number obtained using Sequence Numbers. If so, we will use the
IPID difference.

In most TCP flows the majority of the data is sent in one direction, i.e., the TCP sequence number differ-
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Figure 11: Number of sampled flows labeled with tuples obtained from A drawn synthetically and fromh
using the real sampled trace. Results obtained from the BB-East-2 trace. Packet sampling rate p = 0.01.
This graph shows ncz(er), the number of sample tuples (N, 7) (from flows without a SYN sampled packet).
Notice that the average is slightly overestimated.

ence on one direction is much larger than on the other. If most of the data is being sent in the direction being
sampled, the maximum payload size is obtained from the sampled flow, by discarding FIN and SYN packets
(usually smaller), and assuming sampled packets are representative of the unsampled packets. Otherwise,
we denote the flow as a TCP ACK flow. TCP ACK flows usually have many zero sized packets. One can es-
timate the value of 2 on TCP ACK flows by looking at the TCP ACK sequence numbers, which are sequence
numbers of the data being sent on the opposite direction of the sampled packets. We keep statistics on the
distribution of some specific payload sizes (such as sizes 1460, 536) of non TCP ACK flows and assume that
the payload size distribution in both directions is the same. Using the TCP ACK sequence numbers and the
above mentioned distribution we obtain an estimate of the value of h.

The above function £ is rather simplistic using TCP protocol information; however it seems to work
reasonably well although the proposed estimator can certainly benefit from a more accurate model of h. We
leave the construction of a good model for h for future research.

The above observations were made from trace Access-East, and then tested on the BB-East-2 trace.
Sampling flows on the BB-East-2 trace at rate p = 1/100 generates, on average, approximately 125,000
sampled TCP flows to be used by the estimator. Figure 10 (Figure 11) shows how well we can approximate
the sample tuples nc?(s,,n) (ncZ(Nm)) obtained from & over real sampled data from BB-East-2. Recall that
nci(syr) (nci(er)) are the counts of the sampled SYN (NON-SYN) flows where r = h(sﬁﬁf{)n, 57(7:2”)

Note that the use of & results in a slight underestimate of the number of sampled SYN flows and a
slight overestimate of the number of sampled NON-SYN flows. This matter needs further investigation but
it might be an indicative that sampled flows are suffering from flow splitting [11]. A future research topic is
to account for flow splitting in the model.

In what follows we obtain flow size distribution estimates from the BB-East-2 trace.
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Figure 12: Estimated flow size distribution from the BB-East-2 trace with standard deviation error bars
versus the original flow size distribution. Packet sampling rate p = 0.01. Using the ALL-seq-sflag MLE.

5.3 Evaluation and performance

Using the sampled flow size distribution obtained usingﬁ (Figures 10 and 11), we find estimates for the flow
size distribution of the flows contained at the BB-East-2 trace. We use the MLE described in Section4.3
with maximum flow size W = 150. Figure 12 shows that the ALL-seq-sflag MLE can predict flow sizes
fairly well. Once again, we use (0 = 1 /W as our initial guess estimate.

Although W = 150 does not yield a large number of MLE parameters, one would like to be able to run
the MLE as fast as possible. Atthe end of Section5.1 we saw that it is likely that the ALL-seq-stlag estimator
is robust due to the low noise introduced by large flow sizes. In fact, the SYN-seq estimator should be even
more robust than the ALL-seq-sflag estimator. The above assumption holds true in practice. Figure13 show
the estimated flow sizes using the SYN-seq MLE over the SYN flow samples of Figure 10. In this model we
set the maximum flow size W = 50. The Conjugate Gradient algorithm took 85 seconds in average (on a
Mobile Pentium4 2.0GHz processor) to achieve the the MLE shown in Figure 13.

In what follows we assess the value of sampling at multiple monitors.

6 Flow Size Estimation on Multiple Monitors

So far we have considered samples from a single monitor. Flows crossing a backbone network will normally
cross multiple monitors in the network. In this section we study the value of the information obtained from
multiple monitors and how to best use the collected samples at multiple monitors.

The combination of sampled network measurements from multiple monitors was considered in B]. In

[4] the authors focus on estimating g, using local estimates of g, 5(1), e 7‘§(m)’ obtained at m monitors. It

assumes all monitors will sample independently. Their goal is to find a new estimate 8’ of § using a linear
combination of the local estimates 67(1), e 67(m) such that the variance of X is the smallest among all linear

combinations. [4] applies this method to obtain reasonable, although not optimal estimation on traffic matrix
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Figure 13: Estimated flow size distribution from the BB-East-2 trace with standard deviation error bars
versus the original flow size distribution. Packet sampling rate p = 0.01 using the SYN-seq MLE.

information from combined samples. In this section, we will focus on the flow size distribution. Our goal is
to determine the information loss from combining local estimates instead of combining all samples and then
estimating the desired quantity. This allows us to assess how close the method in §#] is to optimal. In this
section we focus on the SYN-seq estimator.

Assume there are © monitors sampling packets at rates py, . . . , p, respectively and that the same traffic is
seen by these u monitors, as in [4]. Let B be a matrix as defined in Section 2.2 for the TCP sequence number
case, with the only change being the sampling rate p = (1 —[],(1 — p.)). This models the case where
all packet samples are combined at a single central server and the estimation is performed on the combined
samples.

The alternative is to form an estimate at each monitor and then combine them into a single one. This ap-
proach was suggested in [4]. Let W = 200 be the maximum flow size and p = 1/64 be the packet sampling
rate when there is only one monitor or p; = po = 1/128 when there are two monitors. Figure 14 compares
the standard deviation of the estimation error of the following three approaches: (1) Estimation using one
monitor with sampling rate p, (2) estimation using the combined samples of two monitors at rates  and
p2 and (3) estimation using the combined estimates obtained at each monitor. The results are presented by
evaluation both (2) and (3) against (1). Let 6"V be the estimates obtained by the approach described in
[4]; 6™ be the estimates obtained by the single monitor with sampling rate p; and 6(™) be the estimates
obtained in a central server from the combined samples collected at the two monitors with sampling rates n
and po. Let o™ = VE[(6; — 07)2], o™ = VE[(6; — 0°™)2) and o™ = VE[(6; — 6™)?] obtained
by the Cramér-Rao bound. Figure 14 shows the graph of curve O'Z-(L) / O'Z-(SM) (“Combining independent esti-
mates”) against curve JZ(TM) / O'Z(SM) (“Combining samples”). The results show that combining the sample at
a central server is almost as good as sampling once with double the rate. On the other hand, combining the

two independent estimates increases the standard deviation error of the estimates in 50%.
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Figure 14: This graph uses the Cramér-Rao bound to show the advantage of making the estimation with the
combine samples taken at each monitor over the combination of the two independent estimations taken at
each monitor. The evaluation is done over distribution from trace BB-East-2.

7 Conclusions and Future Work

In this paper we have focused on a key issue that arises when conducting measurements for the purpose
of estimating network statistics such as the flow size distribution, namely, what are the values of different
types of information on the quality of the estimate? Using flow size distribution as an example and packet
sampling as the measurement technique, we studied the values of different informations, packet counts, SYN
information, and sequence number information. Using the Fisher information through its application via the
Cramer-Rao bound on mean squared error, we found that both SYN information and sequence number in-
formation each can generate a substantial reduction in the estimation error. Using this as a starting point, we
presented MLEs based on the conjugate gradients method, which achieve close to the Crdmer-Rao bound,
even for small sample sizes. We also explored the benefit of including packet counts for both flows with and
without SYN information, and determined that the former is useful in reducing the errors associated with
estimating the probability of flows of size one. Last, we applied the framework to determine the benefits of
combining observations from multiple monitoring sites. Our analysis shows substantial benefit in perform-
ing estimation on the combined set of observations as opposed to combining the estimates from made on
observations at individual monitoring sites.

This is a first step in an attempt to understand the value of different types of information for the purpose of
estimating network statistics. Our future work will focus both on applying our framework to other estimation
problems and more specifically to refining the application to flow size distribution estimation. For example,
there is a need for a parsimonious model of the flow size distribution with a small number of parameters.
Another research direction is to extend the work on multiple monitors. For example, can one use the Fisher
information to derive an adaptive mechanism for determining sampling rates at different monitors so as to

minimize error subject to a resource constraint.
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