
1

A Multipath Background Network Architecture
Ravi Kokku† Aniruddha Bohra† Samrat Ganguly† Arun Venkataramani‡

NEC Laboratories America Inc.†, Princeton, NJ University of Massachusetts‡, Amherst, MA

Abstract—
Background transfers, or transfers that humans do not actively wait on,

dominate the Internet today. In today’s best-effort Internet, background
transfers can interfere with foreground transfers causing long wait times
that hurt human productivity. In this paper, we present the design, im-
plementation, and analysis of a background network, Harp, that addresses
this problem. Harp has three significant advantages over recent end-host
based background transport protocols; Harp (i) uses multiple paths to ex-
ploit path diversity and load imbalance in the Internet to tailor network re-
source allocation to human needs, (ii) has provably better fairness and uti-
lization compared to unipath end-host protocols, and (iii) can be deployed
at either end-hosts or enterprise gateways, thereby aligning the incentive
for deployment with the goals of network customers. Our evaluation using
simulations and a deployed prototype suggests that Harp can improve fore-
ground TCP transfer time by a factor of five and background transfer time
by a factor of two using just two extra paths per connection.

I. INTRODUCTION
Background transfers, or transfers that humans do not ac-

tivelywait on, dominate Internet traffic today. Examples include
peer-to-peer file swarming [1, 2], content distribution [3, 4, 5],
Web [6, 7] and media [8] prefetching, remote backup [9, 10],
software updates [11] etc. A recent study [12] suggests that
up to 90% of Internet traffic may be background. However,
today’s best-effort Internet does not distinguish between back-
ground and foreground, or interactive, transfers. As a result,
background transfers interfere with foreground transfers and in-
convenience humans, e.g., online purchases or important mails
can get delayed when an enterprise network is bogged down by
large software updates; the quality of video-conferencing can
get hurt by concurrent file swarming or file system backup traf-
fic.
Two approaches exist to address interference: (i) priority

queueing at routers [13], and (ii) end-host based transport pro-
tocols [14, 15, 16] that provide lower-than-best-effort service
without support from routers. Both approaches suffer from two
fundamental problems.
• Arbitrary delay to background transfers: Prioritization us-
ing either approach can arbitrarily delay background transfers.
Furthermore, end-host based protocols are imperfect due to
feedback delay and suffer from a marked drop in utilization
to achieve near-zero interference. So, users have to plan their
daily activities around longer download times for such trans-
fers. For example, even though users do not actively wait on
a movie download, a download that takes two hours instead of
one will leave users unhappy.

• Deployability:While priority queueing at routers appears im-
practical due to the lack of architectural consensus today [17],
modifying the applications and/or operating systems at end-
hosts (although easier than modifying routers) is still a signif-
icant barrier to widespread adoption, and is worsened by the
reluctance of users to install software that makes them “good

Relay

Relay

Relay

Gateway

GatewayEnd Host

End HostGateway

End Host

End Host

Gateway

Internet

Fig. 1. Harp’s basic architecture with gateways and in-network relays.

In this paper, we present the design, implementation, and analy-
sis of a network architecture, Harp, for a background-dominated
Internet, which addresses the above problems using two ideas.
• Wait-time as a first-class metric: Harp prioritizes foreground
over background transfers to reduce active wait-time. More
importantly, Harp uses multipath routing to dissipate back-
ground transfers to less-utilized regions of the network. Thus,
Harp exploits the path diversity, load imbalance, and spare ca-
pacity in the Internet to ensure timely completion of both fore-
ground and background transfers.
Our algorithmic contribution is a background multipath con-
gestion controller that jointly optimizes rate control as well as
routing to improve utilization and fairness of network-wide
spare resources. The algorithm is based upon recent theo-
retical works in multipath congestion control for foreground
transport [18, 19, 20]. More importantly, our effort to build a
practical system revealed a shortcoming of the fluid model as-
sumed in these works, namely, the utilization is significantly
below that predicted by theory when the number of flows is
small. Our algorithm addresses this problem by smoothly tran-
sitioning between joint and independent control of rate and
routing depending on the number of other extant flows on the
path. Harp’s controller is applicable to foreground transport as
well with similar utilization benefits.

• Deployment as an edge service: Harp supports background
transfers as an edge-service. Harp is implemented as an over-
lay network consisting of two types of transit nodes: relays
and gateways. In the envisioned deployment scenario (Fig-
ure 1), an edge-service provider supports relays distributed
across the Internet to enable path diversity, and organizations
install gateways at their network exits—a popular edge-service
business model [21, 22] today. Harp can also be deployed
directly at end-hosts and use peer nodes as relays, obviating
transit nodes. However, our position is that a practical archi-
tecture must align the incentive for deployment with the goals
of network customers that are often physically disjoint from
end-users as in the case of enterprises, public access points,
overlay network services etc. Thus, a gateway is a sweet spot

2

verse end-hosts of unwilling users.
Our systems contribution is a prototype of Harp built using
Click [23] and deployed on Planetlab [24]. We address non-
trivial engineering challenges to enable background multipath
congestion control as an edge-service without support from
end-hosts or routers. Our extensive evaluation using this pro-
totype as well as ns simulations demonstrate that Harp can
significantly improve transfer completion times. For exam-
ple, our simulations show that Harp improves foreground TCP
transfer completion time by a factor of five. Our prototype
experiments show that background completion time can be re-
duced by a factor of two using just two extra paths per connec-
tion.

The rest of the paper is organized as follows. Sections II and III
present the design and implementation of Harp. Section IV
presents the results of ns and prototype-based experiments. Sec-
tion V presents related work and Section VI concludes.

II. SOLUTION OVERVIEW

Harp uses a multipath network for background transfers de-
ployed as an edge-service and leaves foreground transfers un-
changed. Foreground transfers are those that humans actively
wait on, while during background transfers, humans typically
engage themselves in other activities. We note that categoriz-
ing all transfers into two classes is a simplifying assumption,
but is appropriate for a background-dominated Internet. Harp
does not employ multipath routing for foreground transfers as
they are typically too short-lived to get steady-state utilization
or fairness benefits.
The design and implementation of Harp is guided by the fol-

lowing principles.
1. Wait-time first: Noninterference of background transfers
must be treated as a safety property to reduce active wait-time.
For example, a loss of a foreground SYN or data packet in
slow start can severely hurt its completion time. Neverthe-
less, a short foreground transfer should minimally disrupt a
backgroundflow in steady-state. Harp’s multipath background
congestion control accomplishes both objectives.

2. Evolvability: An evolvable solution must not embed
into routers mechanisms to optimize today’s background-
dominated Internet. Harp is implemented as an edge-service
without support from routers.

3. Incentive compatibility: Unlike broadband users who might
use Harp to reduce wait-time across their own transfers, users
at public access points, enterprises, and overlay network ser-
vices do not have an incentive to slow down their background
transfers. Harp’s gateway obviates any modification to or co-
operation from end-hosts.

4. Fairness: An architecture must preserve fairness of resource
allocation. Harp provides TCP-fairness using a multipath
controller that uses several paths but provides an aggregate
throughput equivalent to a TCP flow along the best path.

5. End-to-end semantics: An edge-service should be seam-
less to legacy applications and operating systems that are in
charge of end-to-end reliability. Harp’s transit nodes unreli-
ably buffer, congestion control, and forward data packets. Ac-
knowledgments and retransmissions are handled by the end-

ReorderingPath Selection

RELAY
NODE

RELAY
NODE

EXIT NODEENTRY NODE

SE
ND

ER

RE
CE

IV
ER

Congestion Signals

Window Ctrl

Congestion Detection
Congestion Control

Fig. 2. Harp Architecture

Figure 2 illustrates the basic sequence of steps for packet de-
livery in Harp. Packets from the end-host enter the entry gate-
way and go to the exit gateway either directly or through one of
the relay nodes. The exit gateway delivers packets to the receiv-
ing end-host. The acknowledgments generated by the receiver
for all packets are sent back directly from the exit to the entry
gateway. The multipath background congestion controller re-
sides at the entry and exit gateways.

III. DESIGN

Harp uses a multipath controller to dissipate background traf-
fic to less-utilized parts of the network, out of the way of
foreground transfers. Harp’s controller builds upon Kelly and
Voice’s (KV) multipath routing and congestion controller [19]
and our previous work on TCP Nice [14], a unipath background
congestion controller. Similar to KV, Harp shares congestion
information across multiple paths in a connection to ensure a
fair and stable allocation of network-wide resources. Similar to
Nice, Harp uses delay-based signals to proactively detect con-
gestion and aggressively backs off in response. The rest of this
section presents the congestion control algorithm, and the chal-
lenges and design alternatives in realizing it without end-host
support.

A. Multipath Congestion Control

The congestion control algorithm executes on the entry gate-
way. Given a set of paths on which packets can be sent, the
algorithm estimates the size of the congestion window on each
path that indicates a stable sending rate on the path. Our algo-
rithm uses the following multiplicative increase multiplicative
decrease (MIMD) scheme—(1) MI: on each positive acknowl-
edgment on a path, increment the congestion window of the path
by an MI parameter α, and (2) MD: on a congestion signal on
a path, decrement the window of the path by an MD parameter
β times the weighted sum of congestion window on the current
path (wi) and the total congestion window on all paths (W).
Algorithm 1 shows the pseudo code of the above congestion

control behavior. Line 6 represents the MI part and Lines 9
and 12 represent the MD part. We use both increased packet
delays and packet losses as signals of congestion. To prevent
the algorithm from over-reacting to congestion indications and
thus ensure stability, we let the congestion window be decre-
mented only once per round-trip time on a path after observing
a threshold number of congestion indications. Further, the win-
dow is not incremented within one round-trip time of the previ-

3

Algorithm 1 Multipath Congestion Control Algorithm for
Background Transfers
1: Definitions: i: path (numbered from 1 to n)
2: wi: congestion window (in bytes) on path i
3: W : total congestion window=

∑n
1 wi

4:
5: On ack for path i
6: wi ← wi + α
7:
8: On delay signal for path i
9: wi ← max(1, wi − β × (wi × ξ + W × (1 − ξ))
10:
11: On loss signal for path i
12: wi ← max(1, wi − W/2)

8MbpsS2

S1

R2

R110Mbps

Fig. 3. Example of two senders sharing one path

Setting the value of ξ to different values allows us to instanti-
ate several variants of multipath congestion control.
• Independent: ξ = 1 makes the multiplicative decrease on a
path proportional to the sending rate on that path. This is same
as independent congestion control on each path, i.e., each path
operates as an individual TCP flow [25]. Hence, a multipath
connection using such independent control with n paths oper-
ates as n TCP flows.

• Joint: ξ = 0 makes the multiplicative decrease part same
as that of joint routing and congestion control proposed by
Han et al. [20] and Kelly et al. [19]. With such control, each
multipath connection behaves as a single TCP flow on its best
set of paths (one or more).
Following either of the above two approaches for background

transfers have both advantages and disadvantages. When mul-
tiple background transfers share a set of paths, Independent can
be unfair to transfers that have fewer paths at their disposal. For
instance, consider Figure 3. The sender-receiver pair S1R1 has
access to two paths, whereas S2R2 only has one path. When us-
ing independent, S1R1 gets an equal share of bandwidth on the
path shared with S2R2 that leads to significantly higher over-
all bandwidth to S1R1 (14Mbps) than S2R2 (4Mbps). Using
Joint instead, would move each transfer to its best set of paths,
i.e. S1R1 occupies only the 10Mbps path and S2R2 completely
occupies 8Mbps path, thereby leading to a fairer allocation of
resources.
Using Joint when S1R1 is the only transfer, however, can lead

to under-utilization of the capacity on a path. This is because
even if S1R1 is the only transfer on a path, the transfer backs-off
proportional to the cumulative congestion window on all paths
thereby losing more throughput than Independent control. A
more detailed explanation of the effect on throughput is in the
technical report [26]. This behavior of Joint could be unneces-
sarily aggressive for background transfers whose goal is to reap
as much spare capacity as possible.

variant that combines the behaviors by adapting the value of ξ.
• Adaptive: We set ξ = wi

Mi
, where wi is the congestion win-

dow during decrement, and M i is the maximum congestion
window size observed by the transfer on path i.
Adaptive control has the following properties. When a mul-

tipath connection is the only one active on one or more of its
paths, the multiplicative decrement on such paths behaves more
like Independent because wi is close to Mi. As the number of
transfers sharing the path increases, the behavior of Adaptive be-
comes closer to Joint. However, for this technique to work well,
each transfer should observe the maximum congestion window
Mi at some time during its activity. Due to this requirement,
Adaptive could take longer to achieve the same fairness prop-
erty as Joint. We believe that this tradeoff is acceptable for long
running transfers.
We formally summarize the above observations in the theo-

rem below (and present a proof in the technical report [26]).
Theorem 1: (a) Joint control of congestion and routing can

degrade steady-state throughput by an Ω(log(C)) factor com-
pared to independent control along a path of bottleneck capacity
C, (b) Adaptive control achieves the same steady-state through-
put as independentwhen there is exactly one flow along the path.

B. Path Selection

On the arrival of a packet from the sender, the entry gateway
attempts to balance load across the available paths by choos-
ing for each packet a path with minimum bytes in nwi

cwndi
, where

bytes in nwi represents the number of unacknowledged bytes
sent on path i. The same expression is used to stripe packets
even when bytes in nwi exceeds cwndi to ensure load balanc-
ing on the paths. Once the entry gateway selects a path (i.e., the
corresponding relay node) to send the packet through, it uses
packet encapsulation to facilitate routing packets through the re-
lay node. Additionally, each encapsulated packet carries a multi-
path header that contains a packet type (to represent data, probe,
loss signal, etc.), a timestamp (representing when the packet left
the entry gateway) and a path identifier (which is the IP address
of the relay node). This header allows the exit gateway to iden-
tify the path taken by the packet, and detect and associate con-
gestion to the path based on the delay observed by the packet.

C. Reordering

Since packets are sent on several paths with different laten-
cies, they can arrive out of order and cause the receiver to send
duplicate acknowledgments to the sender. Such duplicate ac-
knowledgments falsely indicate packet loss to the sender that
can lead to a substantial reduction of its congestion window
thereby reducing its throughput.
To avoid such false indications, our mechanism reorders

packets received from multiple paths at the exit gateway before
sending them to the receiver. If packets are in sequence, they are
sent immediately to the receiver. Otherwise, they are kept in a
reorder queue till either the packets before them arrive (and thus
complete the sequence) or a timer expires. Since the reorder de-
lay required at the exit gateway is governed by the path with the
longest delay, we set the timer to a value that is a factor ρ of the

4

D. Congestion Indication

To reduce interference, background transfers should back-off
as early as possible when required. We achieve this behavior by
reacting to increased packet delays, in addition to losses.

Detecting Increased Delays Harp uses relative increase in
one-way packet delays as early indicators of congestion [15].
To achieve this, each packet is timestamped (in the multipath
header) at the entry gateway before being sent on a path. The
exit gateway calculates the one-way delay using the timestamp
and its current time. Also, the exit gateway keeps track of mini-
mum (dmini) and maximum (dmaxi)delays observed by pack-
ets on each path for a connection. If a packet observes a delay
greater than ∆i = dmini + (dmaxi − dmini) × δ, where δ is
a threshold parameter, the exit gateway sends a congestion indi-
cation to the entry gateway. Observe that in the above condition,
we only use the relative difference in packet delays to infer con-
gestion; hence the clocks on the entry and exit gateways need not
be perfectly synchronized. Congestion can be indicated by ei-
ther sending an explicit message to the entry gateway or by pig-
gybacking the indication on a returning acknowledgment. We
choose the latter in Harp for efficiency.

Detecting Losses Since the exit gateway maintains a reorder
queue, it can detect packet losses earlier than the receiver. The
exit gateway maintains a variable last byte rcvdi for each path
i that indicates the highest byte received on the path. Addition-
ally, it maintains a rcvnxt variable per connection that indicates
the next byte expected in sequence. When the last byte rcvd i

on each path exceeds rcvnxt, the exit gateway detects a possible
packet loss, and sends a loss indication to the entry gateway. The
message also contains the range of missing bytes, which can be
determined by rcvnxt and the sequence number of the packet at
the head of the reorder queue. Observe that the exit gateway can
not exactly determine which path the loss occurred. Hence the
range is used at the entry gateway to determine the path(s) on
which the packets containing the missing bytes were sent. For
each path on which any of the missing bytes were sent, the con-
gestion window is reduced as described in Section III-A. This
technique of detecting packet losses is simpler and quicker than
waiting for and interpreting duplicate acknowledgments from
the receiver.
As an optimization, we could cache unacknowledged packets

at the entry gateway and respond to loss indications by retrans-
mitting packets and thus avoid exposing the loss to the sender.
To avoid exposing the loss, we will also have to interpret and
supress duplicate acknowledgments from the receiver. Note that
doing so would not violate our first guideline of maintaining
end-to-end semantics described in Section II. However, we do
not currently incorporate this optimization in our prototype.
Formally, we state the following theorem on interference

caused by Harp, and present a proof in the technical report [26].
Theorem 2: The interference, or reduction in throughput of

foreground flows, that Harp’s multipath background controller
inflicts is bounded by a factor O(e(− B

m ·(1−δ)(1−β))), where B
is the bottleneck buffer capacity, δ the delay threshold, β the
MD parameter, andm the number of foreground flows along the

E. Congested-path Suppression

Congested paths can increase the packet delays substantially
and even cause losses thereby causing packets on other paths to
wait in the reorder queue. Such a wait degrades the throughput
of the connection because new packets are not sent by the sender
unless the receiver acknowledges the old packets.
To reduce the impact of such congested paths on through-

put, whenever the congestion window for a path reaches MIN -
CWND, the path is temporarily marked as choked. No subse-
quent packets are sent on this path unless it is unchoked. From
then on, a probe (unchoke request) with timestamp is sent on
each choked path periodically. If the probe does not perceive
delay greater than ∆i as in Section III-D, the exit gateway re-
turns an unchoke indication to the entry gateway. Otherwise,
the exit gateway simply drops the probe. Observe that imple-
menting choking and unchoking as above automatically handles
path failures—(1) no data packets are sent on the failed path,
and (2) if an unchoke request does not reach the exit gateway,
no unchoke indication is sent back and hence the path remains
choked.

F. Sender Rate Control

Harp is oblivious to the congestion control algorithm running
at the sender. This can lead to a mismatch between the conges-
tion windows on the sender and the entry gateway. The mis-
match can lead to packet losses that reduce the congestion win-
dow on the sender, thereby reducing the throughput achieved by
the background transfer.
One way to overcome the mismatch is to ensure that the

sender does not send more bytes than what the entry gateway’s
congestion window can allow across all paths. To achieve this
effect, the entry gateway rewrites the TCP header in the ac-
knowledgments returning to the sender with a receiver window
equal to the minimum of the window allowed by the receiver
and the congestion window allowed by the entry gateway. To
handle receiver window scaling used by most bulk transfer ap-
plications [27], we monitor SYN packets to check if end-hosts
exchange the scaling option, and scale the receiver window that
we rewrite in the acknowledgments accordingly.

G. Implementation

We have implemented a prototype of Harp using the Click
router toolkit [23]. Click provides the necessary infrastructure
to capture, modify, route, and transmit packets. Using Click’s
features, we build Harp such that it can be run both at the user-
and the kernel-levels. Although for a given end-to-end connec-
tion our mechanism is distributed across different transit nodes,
each transit node can simultaneously function as entry, relay or
exit node for different end-to-end connections.

Transit node initialization In our implementation of Harp, an
end-host (sender or receiver) using the mechanism associates
itself to a transit node as its entry/exit node. This associa-
tion can be done explicitly by the end-host, or seamlessly by
an administrator. The information about each < end host,
associated transit node > pair is exchanged among transit
nodes to enable successful routing of a sender’s packets through

5

Param Value Remarks
α 0.03 MI parameter, chosen as a small value to ensure stabil-

ity [19], but large enough to get good throughput.
β 0.125 MD parameter, same as DECbit scheme [29], scal-

ableTCP [30] and VCP [31]
δ 0.15 Threshold on packet delays above which exit gateway

indicates congestion. Value borrowed from TCP-LP
study [15].

ρ 1.5 reorder delay factor that determines how long exit
gateway delays packets.

Table I. Parameters used for simulations and prototype experiments.

a firewall table; the identity of the end-host can be a wild-card
to associate a group of IP addresses and (optionally) TCP ports
to a transit node.

Initial path selection For each entry and exit node pair, our
prototype selects paths through relays that differ in RTTs from
the direct path by at most a factor of 1.5.

Background transfer identification Our current prototype as-
sumes that the administrator of the entry node specifies a config-
uration similar to a firewall table to identify background flows.

IV. EXPERIMENTAL EVALUATION

We validate the effectiveness of Harp using both ns simula-
tions and evaluation of a prototype on the planetlab [24] testbed.
Each of these environments allows us to demonstrate different
aspects of Harp effectively. Further, simulations helped deter-
mine the right parameter settings for our real system prototype.
Throughout this section, unless specified, we use the parameter
settings as shown in Table I.

A. ns Simulations

In this section, we demonstrate different aspects of Harp us-
ing several topologies (shown in Figure 4) and a random topol-
ogy generated by GT-ITM [28]. Topology1 is designed to (1)
demonstrate that Harp can utilize spare capacity on multiple
paths without causing much interference to foreground trans-
fers, and (2) perform sensitivity analysis to various system pa-
rameters. Topology2 is designed to demonstrate that Harp leads
to better allocation of network resources among multiple back-
ground transfers. Topology3 is generated by GT-ITM [28], and
is used to demonstrate the effectiveness of Harp in complex traf-
fic scenarios. In the first two topologies, T1 to T5 represent the
transit nodes, and S# and R# represent source and destination of
bulk transfers respectively. Topology3 contains 100 nodes act-
ing as routers, and an additional 20 nodes connected to randomly
chosen routers and acting as gateways and relays. The link band-
widths between routers vary from 10Mbps to 100Mbps. Finally,
several clients and servers are connected randomly to routers.
The clients and the servers use TCP-Reno as the transport pro-

tocol and generate foreground traffic. All routers (represented as
shaded circles) perform droptail FIFO queuing. The bottleneck
links on each path are represented by dotted lines.

Improvement in completion times We first show that
Harp speeds-up background transfers substantially compared to
unipath protocols, while causing minimum interference to fore-
ground transfers. We use Topology1 and replay a web proxy
trace between server and clients on both paths. The trace has 32

Bytes to 1.7 MB, with an average size of 7.8 KB.
Figure 5(a) shows the completion time for a 100MB back-

ground transfer between S1 and R1 with Harp (Harp-multipath),
with a unipath protocol (Harp-singlepath), and with TCP-Reno
(Reno-singlepath) as we activate different number of clients on
each path. The graph shows that, as the number of foreground
clients increase, the completion time for the transfer increases
in all cases, as expected. However, using multiple paths re-
duces the background completion time by a factor of two. Ob-
serve that Harp-singlepath achieves lower completion time than
Reno-singlepath because Reno waits till a loss occurs and halves
its congestion window every time the loss occurs. In contrast,
Harp-singlepath avoids losses by backing off early (by a smaller
proportion defined by β).
To demonstrate that Harp reduces interference significantly

compared to a non-background protocol such as Reno, we mea-
sure the stretch observed by the client requests. We define
stretch for each request as the ratio of completion time for client
requests when background transfers are active and completion
time for the same requests when the transfers are not active. We
compare the 90-th percentile stretch observed when the back-
ground transfers use one of Harp and TCP-Reno. Figure 5(b)
shows that the stretch can be greater than 100% even with a sin-
gle background transfer using Reno, and it rapidly increases to
500%with 29 transfers. With Harp, the stretch does not increase
much with increasing background transfers, and is below 35%
even with 29 transfers, thereby demonstrating that Harp trans-
fers compete only for the spare capacity.

Spare capacity utilization Figure 5(c) shows the effective-
ness of Harp in quickly harvesting spare capacity left by a long
running foreground transfer. The foreground transfer starts at
t = 50s and ends at t = 200s and its sending rate is varied dur-
ing this period as shown in the figure (by controlling its receiver
window size). The graph shows that the throughput obtained by
Harp closely reflects the spare capacity available with time.

Fairness in resource allocation We first compare the variants
(Independent, Joint and Adaptive) of multipath congestion con-
trol and show that the Adaptive variant chosen by Harp achieves
fairness without compromising utilization. We consider Topol-
ogy2 where we set up two background transfers: one between
S1 and R1 that uses all four paths available (direct and through
T2, T4 and T5), and the other between S2 and R2 that uses only
one path (S2 to router to T3 to R2). Both transfers share a bot-
tleneck link. The transfer S2R2 starts 100 seconds after S1R1.
Figure 6(a) shows the throughput achieved by both the transfers
over time. Between 0 and 100s when S1R1 is the only active
transfer, the throughput achieved when using Independent and
Adaptive is about 20% higher than Joint. When S2R2 becomes
active, both Adaptive and Joint yield throughput on path through
T2 to ensure that S2R2 gets a better share of resources, whereas
Independent does not yield the path thereby being significantly
unfair to the transfer S2R2. Furthermore, Adaptive continues to
utilize the other three paths more effectively than Joint between
100 and 250s. Note that in this experiment (and the others in
this section) line 12 in Algorithm 1 never gets invoked because
all transfers backoff based on delays and avoid losses; so the

6

R1

10Mbps

S1
10Mbps

T3T1

T2

Clients

Server Clients

Server

S1
10Mbps

R1

R2

10Mbps

S2

10Mbps

10Mbps

T3T1

T2

T4

T5

34

33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

119

20

19

2

91

118

18

1

89

90

117

17

0

88

116

16

87

115

15

86

114

14

85

113

13

84

112

12

83

111

11

82

109

110

10

81108

79
80

107
78

106

77

105 76

104

75

103

74

102

73

101

72

100

71

69

70

6867

66

65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42

41

40
39

38

37

36

35

(a) Topology1 (b) Topology2 (c) Topology3
Fig. 4. Topologies for ns simulations.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Co
m

pl
et

io
n

tim
e

(in
 s

ec
on

ds
)

Number of foreground clients

Harp-Multipath
Reno-Singlepath
Harp-Singlepath

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

90
-p

er
ce

nt
ile

 s
tre

tc
h

Number of bulk (background) transfers

Harp
Reno

Ideal Stretch

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

Foreground
Harp-multipath

(a) (b) (c)
Fig. 5. (a) spare capacity utilization with foreground web transfers, (a) stretch caused to foreground requests, (c) Utilization with a long running foreground transfer

observations show the benefit of Adapative in increasing utiliza-
tion, while ensuring fair resource allocation when required.
Next, we use Topology2 and start multiple background trans-

fers like S1R1 between T1 and T3, all of them utilizing all paths.
Figure 6(b) plots Jain’s fairness index [32] for different number
of transfers with time. The graph shows that the fairness index
stays close to 1.0 with increasing number of transfers when all
transfers share the same set of network resources.

Utilization in a large topology We perform several experi-
ments with Topology3 and different foreground and background
traffic scenarios. For brevity, we present one result in Fig-
ure 6(c). We start 5 background transfers at different entry
nodes (each lasting about 50 seconds) and 200 foreground trans-
fers (each lasting about 1 second) at random times in a simula-
tion run of 5 minutes. The graph shows the average throughput
achieved by each foreground and background transfer. Harp,
when alone (the bar Harp), reaps significant spare capacity in
the network. The bars Harp/FG and Harp-S/FG show that (in the
presence of foreground transfers) Harp with multiple paths reaps
more spare capacity than Harp with single path. The bars FG
and FG/Harp represent foreground throughput with and without
Harp transfers; Harp has little impact on foreground transfers.

A.1 Sensitivity Analysis

We study the sensitivity of Harp to resource parameters (such
as varying bandwidths and link delays on paths), system param-
eters (such as reorder delay and δ), and design choices (such
as choking and handling congestion window mismatch). For
brevity, we discuss only a subset of the results. We perform all
the experiments using Topology1.

Heterogeneous link delays For this experiment, we vary the
delay on the path T1,T2,T3 as a factor of the delay on path
T1,T3; e.g., a link delay factor of 1.5 means T1,T2,T3 has 1.5

as the variation in delays in the two paths increases, the com-
pletion times achieved by a multipath transfer (when alone and
when competing with foreground clients replaying the proxy
trace) increases. This graph hints that paths with low variation
should be chosen in order to reap maximum benefits of multi-
path; further, paths with large variation can even be detrimental.

Effect of reordering delay ρ Figure 7(b) shows the effect on
completion times of maximum reordering delay ρ (Section III-
C) applied to packets at the exit gateway. Small values of ρ
result in greater number of packets getting reordered that make
the receiver send duplicate acknowledgments and falsely indi-
cate congestion to the sender. The sender backs off on such
indications and thereby takes longer to complete the transfer.
As ρ increases, the completion times decrease and flattens after
certain value of ρ. Observe that in presence of foreground trans-
fers, longer reordering delays are required to achieve maximum
throughput. Using this graph, we pick ρ=1.5 for our prototype.

Benefit of choking To demonstrate the benefit of choking, we
plot in Figure 7(c) the throughput achieved with time by a mul-
tipath transfer between S1 and R1 (1) when using and (2) when
not using choking. Between t =120s–320s, we start a long-
running foreground transfer (not shown in the graph to avoid
clutter) from server to a client through T2. The graph shows
that when the foreground transfer starts, the bulk transfer backs
off from the path T1,T2,T3. However, when choking is not used,
the entry gateway sends one data packet per round-trip time to
probe for available bandwidth. Since this packet will likely ob-
serve increased delay or even get dropped when the foreground
transfer is active, packets sent on the direct path get delayed
in the reorder queue and thereby reduce the throughput signif-
icantly even on the direct path. In contrast, when choking is
enabled, the entry gateway sends probe packets that do not con-
tain any data, thereby maintaining high throughput on the direct

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

Joint,Flow1

Adaptive,Flow1 Independent,Flow1

Joint,Flow2

Adaptive,Flow2

Independent,Flow2

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100
Fa

irn
es

s
in

de
x

Time (in seconds)

#flows = 1
#flows = 10
#flows = 20
#flows = 50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

FG/HarpFGHarp-S/FGHarp/FGHarp

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

(a) (b) (c)
Fig. 6. (a) Resource allocation with different multipath congestion control algorithms, (b) Fairness among multiple multipath transfers, (c) Spare capacity utilization

in a large topology

 0

 50

 100

 150

 200

 250

 0 0.5 1 1.5 2 2.5 3 3.5 4

Co
m

pl
et

io
n

tim
e

(in
 s

ec
on

ds
)

Link delay factor

Harp-multipath, no foreground
Harp-multipath, with foreground

Harp-singlepath, with foreground

 0

 50

 100

 150

 200

 250

 0 0.5 1 1.5 2 2.5 3

Co
m

pl
et

io
n

tim
e

(in
 s

ec
on

ds
)

Rho (reorder delay factor)

Harp-multipath, no foreground
Harp-multipath, with foreground

Harp-singlepath, with foreground

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

With choking
No choking

(a) (b) (c)
Fig. 7. (a) With increasing indirect path delay, (b) With increasing re-order delay, (c) Benefit of choking

Entry ExitSndr Rcvr
LAN LAN

Relay

Relay

Iperf Iperf

Relay

Planetlab

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Set 1 Set 2 Set 3

Av
er

ag
e

Co
m

pl
et

io
n

Ti
m

e
(s

)

1 path
2 paths
3 paths

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250

Pr
ob

ab
ilit

y(
Ti

m
e

<
x)

Time in reorder queue (ms)

2 Paths
3 Paths

(a) (b) (c)
Fig. 8. (a) Wide-area experimental setup, (b) Through achieved by Harp with multiple paths, and (c) reorder delay CDF at the exit gateway.

B. Prototype Evaluation

In this section, we present an evaluation of Harp over Planet-
lab [24] to demonstrate its effectiveness in an Internet setting.

Experimental Setup We setup an entry gateway and an exit
gateway at Rutgers University and UMASS Amherst, and place
a sender and a receiver on the same LAN as the entry and exit
gateways respectively to avoid the access link of the sender and
the receiver from becoming the bottleneck (see Figure 8(a)). We
use several planetlab nodes shown in Table II to act as relay
nodes to provide path diversity between the entry and exit gate-
ways. We divide the planetlab nodes into three sets and repeat
each experiment on all three sets. The right column in the table
shows the range of minimum one-way delays between the entry
and exit gateways through the relay nodes. We use Iperf [33] to
generate foreground and background transfers of size 100MB.

Results Figure 8(b) shows the completion times observed by
the transfer when using one, two and three paths for each of the

Relay nodes One-way Delays (ms)
Set 1 Columbia, Dartmouth, MIT 24-29
Set 2 NYU, Purdue UIUC 26-38
Set 3 Cornell, Princeton, RPI 23-32

Table II. Relay nodes, and one-way delays between entry and exit gateways
through the relays.

show the average completion time. The figure shows that by
using two additional paths, Harp decreases the completion time
of a background transfer in all three sets by about a factor of
two.
To understand the impact of using multiple paths on packet

reordering, we plot in Figure 8(c) the CDF of the time spent by
the packets in the reorder queue at the exit gateway when using
two and three paths. The graph shows that more than 90% of
the packets spend less than 20ms in the queue, demonstrating
that a small queue is sufficient to avoid most reordering. Also,
less than 1% of the packets suffer a timeout and cause packet
reordering.
To demonstrate the non-interference and fairness properties

8

 0

 100

 200

 300

 400

 500

 600

BG/FGFG/BGBGFG

Co
m

pl
et

io
n

Ti
m

e(
in

 s
ec

on
ds

)

 0

 100

 200

 300

 400

 500

 600

 700

S1R1 S2R2 S1R1 S2R2

Co
m

pl
et

io
n

tim
e

(in
 s

ec
on

ds
) Adaptive

Independent

(a) (b)
Fig. 9. (a) Non-interference, (b) Fairness

ceiver pairs S1R1 and S2R2 sharing links similar to Figure 3;
S1R1 has access to two paths (through MIT and Dartmouth)
and S2R2 has one path (through MIT) that is common with
S1R1. For Figure 13(a), we setup one background transfer be-
tween S1R1 that uses the single path throughMIT, and one fore-
ground transfer between S2R2. We consider three scenarios—
foreground alone, background alone, and foregroundwith back-
ground. We make the following observations: (1) When alone,
background completion time (second bar) is close to the fore-
ground completion time (first bar), thereby demonstrating that
background reaps spare capacity effectively, and (2) foreground
completion time with background (third bar) is close to fore-
ground alone, thereby demonstrating that background effec-
tively backs-off to make way for foreground; background’s com-
pletion time increases substantially as a result (fourth bar). For
Figure 13(b), we setup a background transfer between S1R1 that
uses both the available paths and a background transfer between
S2R2, and examine two variants of multipath congestion con-
trol. The graph shows that S2R2 observes lower completion
time with Adaptive than with Independent, thereby demonstrat-
ing that Adaptive leads to a fairer allocation of resources.

V. RELATED WORK

This work bridges ideas from background transport protocols,
multipath routing and congestion control, and overlay-based
network sevices.
The primary goal of background transport is to be noninter-

fering with foreground transfers while providing practical levels
of utilization of spare capacity. Noninterference is conceptually
easy to provide using differentiated services, or Diffserv [13].
Once deployed, heterogeneous pricing can incent users to truth-
fully mark their traffic as foreground or background. However,
it is unclear if and when router support to assist transport proto-
cols will become available.
A more pragmatic effort in recent times has led to the de-

velopment of end-host based protocols such as TCP Nice [14],
TCP-LP [15], and Key et al. [16] that emulate low-priority trans-
port without support from routers. The delay-based backoff in
Harp’s controller is similar in spirit to Nice or LP. Our previous
experience with Nice suggests that end-host based protocols are
imperfect due to feedback delay and can significantly degrade
utilization to maintain noninterference, e.g., in the presence of
a competing Web workload, Nice can leave upto 50% of spare
capacity on the path unused. Furthermore, even a perfect back-
ground protocol will find few takers without a suitable incentive
mechanism for users to “nice” transfers.

damentally lack a mechanism for network-wide scheduling of
resources and can arbitrarily delay background transfers along a
path. Various studies have shown significant levels of spare ca-
pacity [14, 34], load imbalance [34], and background traffic in
the Internet. Harp’s support for multipath background transport
exploits this state of affairs to ensure quick completion of both
foreground and background transfers.
Application-level approaches for background transport in-

clude (i) coarse-grain scheduling such as running backup [35]
and data prefetching [36] applications during off-peak hours, (ii)
rate limiting for applications such as Web prefetching [37, 38],
(iii) adaptive rate control such as inMicrosoft XP’s Background
Intelligent Transfer Service [39] etc. These require tedious man-
ual effort to configure parameters to reduce interference. Over-
lay quality-of-service approaches such as OverQoS [40] and
MPAT [41] can provide limited noninterference among the set
of flows they manage. In contrast, Harp provides a network-
wide abstraction of low priority service. Harp does not require
a large number of flows and can operate equally well with a
single user. Harp’s relay nodes are simple and provide only for-
warding functionality, while its gateway-based congestion con-
trol feature exists primarily to ease deployment at access points.
Broadband users can directly use Harp without a gateway.
Multipath routing has seen a long history of work since Max-

emchuk’s seminal work on dispersity routing [42] to improve
throughput and resilience to path failures or packet losses. Strip-
ing or inverse multiplexing [43, 44, 45, 46, 47] provides link
level mechanisms for splitting input flows among multiple links
to increase throughput. More recently, multipath techniques
have been proposed in the context of overlay routing or multi-
homed clients [48, 49, 50, 51]. Katabi et al. [52] and Elwalid et
al. [53], propose splitting aggregate traffic flows along multiple
paths to achieve load balancing and stability in the context of
intradomain traffic engineering. In contrast, Harp uses multiple
paths for scheduling transfers with heterogeneous requirements.
Lee et al. [54] and Zhang et al. [25] propose modifications

to TCP’s fast retransmit or delayed acknowledgment schemes
to tolerate packet reordering across heterogeneous paths. Harp
interoperates with legacy TCP implementations by interposing a
network-layer connection proxy at a gateway or end-host similar
in spirit to our previouswork onOasis [55], a refactored network
stack for overlay transport services.
Multipath transport mechanisms pTCP [56] and RMTP [57]

do not consider fairness when two or more paths for a single
flow share the same bottleneck link. mTCP [25] by Zhang et
al. explicitly identifies paths with shared bottlenecks and treats
them as one flow. Thus, mTCP is TCP-fair on each path. How-
ever, it does not provide fairness of network-wide resource al-
location, as users having access to more paths obtain an unfair
share of network resources.
In contrast, Multipath TCP [20] and KV [19] are based on

a utility-theoretic framework for network-wide resource allo-
cation (see Kelly et al. [18] for a seminal paper), and system-
atically address fairness. These controllers maintain nontrivial
sending rates for a multipath connection only along its best set
of paths and the aggregate throughout is commensurate to a uni-
path connection’s share of network resources on one of its best

9

single flow on paths with shared congestion. Harp’s congestion
controller is based on KV, but uses delay-based congestion sig-
nals and provides a background abstraction. Our experimental
effort led us to identify and address a critical limitation of the
fluid model assumed in the above theoretical works, and is also
applicable to foreground transport.

VI. CONCLUSIONS

In this paper, we present the design and implementation of a
network architecture, Harp, to allocate network resources more
in line with human needs in a background-dominated Internet.
Harp is based upon a multipath background congestion control
algorithm that moves background traffic out of the way of fore-
ground to ensure quick completion for both kinds of transfers.
Compared to end-host protocols, this approach improves utiliza-
tion and fairness of resource allocation. Our gateway-based im-
plementation obviates modification to or cooperation from end-
hosts. Our extensive evaluation using simulations and a proto-
type deployed on Planetlab demonstrates significant reduction
in human wait-time.

REFERENCES
[1] “Kazaa.” http://www.kazaa.com.
[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” in

http://www.bittorrent.com/bittorrentecon.pdf.
[3] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high band-

width data dissemination using an overlay mesh,” in SOSP, 2003.
[4] L. Cherkasova and J. Lee, “FastReplica: Efficient Large File Distribution

within Content Delivery Networks,” in Proc. of USITS, 2003.
[5] S. Ganguly, A. Saxena, S. Bhatnagar, S. Banerjee, and R. Izmailov, “Fast

replication in content distribution overlays,” in Proc. of Infocom, 2005.
[6] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin, “NPS: A

Non-interfering Deployable Web Prefetching System,” in USITS, 2003.
[7] D. Rosenberg, “Prefetching Content for Increased Perfor-

mance.” http://devedge-temp.mozilla.org/viewsource/2003/link-
prefetching/index en.html, Feb 2003.

[8] “Imx series ip set top box.” http://www.matrixstream.com/IMX 1000.cfm.
[9] “LiveVault Corporation.” http://www.livevault.com/.
[10] “Remote backup systems.” http://remote-backup.com/rbackup/.
[11] “Microsoft Windows Update.” http://windowsupdate.microsoft.com/.
[12] CacheLogic Home Page, “Advanced Solutions for P2P Networks Home

Page.” http://cachelogic.com/research/p2p2005.php.
[13] S. Blake et al., “An architecture for differentiated services,” in RFC 2475,

1998.
[14] A. Venkatramani, R. Kokku, and M. Dahlin, “TCP-Nice: A Mechanism

for Background Transfers,” in Proc. of OSDI, 2002.
[15] A. Kuzmanovic and E. W. Knightly, “TCP-LP: A Distributed Algorithm

for Low Priority Data Transfer.,” in Proc. of INFOCOM 2003, 2003.
[16] P. Key, L. Massoulie;, and B. Wang, “Emulating low-priority transport at

the application layer: a background transfer service,” SIGMETRICS Per-
form. Eval. Rev., vol. 32, no. 1, 2004.

[17] L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet Impasse
through Virtualization,” in HOTNETS III, 2004.

[18] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication net-
works: shadow prices, proportional fairness and stability,” in Journal of
the Operational Research Society, vol. 49, 1998.

[19] F. Kelly and T. Voice, “Stability of end-to-end Algorithms for Joint Rout-
ing and Rate Control,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 2,
pp. 5–12, 2005.

[20] H. Han et al., “Multi-path TCP: A Joint Congestion Control and Routing
Scheme to Exploit Path Diversity in the Internet,” in IMA Workshop on
Measurements and Modeling of the Internet, 2004.

[21] “Akamai, Inc. Home Page.” www.akamai.com.
[22] “Google Enterprise Services.” http://www.google.com/enterprise.
[23] E. Kohler et al., “The Click Modular Router,” ACM Transactions on Com-

puter Systems, vol. 18, August 2000.
[24] “PlanetLab.” http://www.planet-lab.org.
[25] M. Zhang et al., “A Transport Layer Approach for Improving End-to-

End Performance and Robustness Using Redundant Paths ” in Proc of the

[26] R. Kokku, A. Bohra, S. Ganguly, and A. Venkataramani, “A Multipath
Background Network Architecture.
http://www.cs.umass.edu/∼arun/harp-tech.pdf,” tech. rep., University of
Massachusetts, Amherst, 2006.

[27] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison
Wesley, 1994.

[28] “Modeling topology of large internetworks.” http://www-
static.cc.gatech.edu/projects/gtitm/.

[29] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for conges-
tion avoidance in computer networks with a connectionless network layer,”
in SIGCOMM ’88, (New York, NY, USA), 1988.

[30] T. Kelly, Engineering flow controls for the Internet. PhD thesis, University
of Cambridge, 2004.

[31] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit is
enough,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, 2005.

[32] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks,” Computer Networks, 1989.

[33] “Iperf, The TCP/UDP Bandwidth Measurement Tool.”
http://dast.nlanr.net/Projects/Iperf/.

[34] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-
area internet bottlenecks,” in IMC ’03: Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, (New York, NY, USA),
pp. 101–114, ACM Press, 2003.

[35] C. Maltzahn, K. Richardson, D. Grunwald, and J. Martin, “On bandwidth
smoothing,” in 4th International Web Caching Workshop, 1999.

[36] S. Dykes and K. A. Robbins, “”a viability analysis of cooperative proxy
caching”,” in INFOCOM 2001, 2001.

[37] N. Spring et al., “Receiver based management of low bandwidth access
links,” in Proc of IEEE Infocom, 2000.

[38] M. Crovella and P. Barford, “The network effects of prefetching,” in Info-
com, 1998.

[39] “Windows XP Background Intelligent Transfer Ser-
vice.” http://www.microsoft.com/windowsserver2003 /tech-
info/overview/bits.mspx.

[40] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “Overqos:
offering internet qos using overlays,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 1, 2003.

[41] M. Singh, P. Pradhan, and P. Francis, “MPAT: Aggregate TCP Congestion
Management as a Building Block for Internet QoS,” in ICNP, 2004.

[42] N. F. Maxemchuk, Dispersity routing in store-and-forward networks. PhD
thesis, Univ. Pennsylvania, Philadelphia, 1975.

[43] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable strip-
ing protocol,” in ACM SIGCOMM, 1996.

[44] B. Traw and J. Smith, “Striping within the network subsystem,” in IEEE
Network, vol. 9, 1995.

[45] J. Duncanson, “Inverse multiplexing,” in IEEE Communications Maga-
zine, vol. 32, 1994.

[46] A. Qureshi and J. Guttag, “Horde: separating network striping policy from
mechanism,” in ACM MobiSys, 2005.

[47] K.-H. Kim and K. G. Shin, “Improving TCP Performance over Wireless
Networks with Collaborative Multi-homed Mobile Hosts,” in ACM Mo-
biSys, 2005.

[48] D. Andersen, A. Snoeren, and H. Balakrishnan, “Best-Path vs. Multi-Path
Overlay Routing,” in Proc of IMC, 2003.

[49] A. Akella and J. Pang and B. Maggs and S. Seshan and A. Shaikh, “A
Comparison of Overlay Routing and Multihoming Route Control,” in Proc
of ACM SIGCOMM, 2004.

[50] A. Sen et al., “On Multipath Routing with Transit Hubs,” in Proc. of Net-
working, May 2005.

[51] A. Snoeren, K. Conley, and D. Gifford, “Mesh-Based Content Routing
using XML,” in SOSP, 2001.

[52] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the Tightrope:
Responsive Yet Stable Traffic Engineering,” in Proc. of SIGCOMM,
(Philadelphia), Aug 2005.

[53] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in INFOCOM, 2001.

[54] Y. Lee, I. Park, and Y. Choi, “Improving TCP Performance in Multipath
Packet Forwarding Networks,” in Journal of Communication and Net-
works, vol. 4(2), Jun 2005.

[55] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy, and T. Ander-
son, “Oasis: an overlay-aware network stack,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 41–48, 2006.

[56] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts,” in MobiCom, 2002.

[57] L. Magalhaes and R. Kravets, “Transport level mechanisms for bandwidth

10

APPENDIX

I. ANALYSIS OF HARP’S CONGESTION CONTROLLER

Consider a simple droptail FIFO queueing network that in-
duces exactly one bottleneck on each path. Assume a syn-
chronous fluid model, i.e., packets are infinitesimal in size and
a loss or delay signal is instantaneously observed by all flows
through the corresponding router.
Theorem 1: (a) Joint control of congestion and routing can

degrade steady-state throughput by an Ω(log(C)) factor com-
pared to independent control along a path of bottleneck capacity
C, (b) Adaptive control achieves the same steady-state through-
put as independentwhen there is exactly one flow along the path.
Theorem 2: The interference, or reduction in throughput of

foreground flows, that Harp’s multipath background controller
inflicts is bounded by a factor O(e(− B

m ·(1−δ)(1−β))), where B
is the bottleneck buffer capacity, δ the delay threshold, β the
MD parameter, and m the number of foreground flows along
the path, independent of the number of background flows.

II. ANALYSIS OF HARP’S INTERFERENCE

In this section we give a proof of Theorem 2 that derives
an upper bound on the intereference inflicted by Harp on TCP
flows.
We use a simplified fluid approximationmodel of the network

to help model the interaction of multiple flows using different
congestion control algorithms. We assume that each active path
has exactly one bottleneck, and that routers perform FIFO drop-
tail queuing. In the following, we use a flow to mean a unipath
transfer along a point-to-point path and a connection to mean
a potentially multipath transfer consisting of several individual
flows.
Let µ denote the service rate and B the buffer capacity of a

router at a bottlenecked link. Assume that all flows through the
link have the same round-trip delay; we will relax this assump-
tion subsequently. Let τ denote this round-trip delay excluding
all queuing delays.
Consider a fixed number, m, of (unipath) TCP flows and l

Harp multipath connections at least one of whose paths goes
through the link. Let qt = δ · B be the queue size that trig-
gers early delay-based backoff for Harp flows. Recall that δ is
the fraction of the queue capacity, B, that triggers this backoff.
By assumption, the connections are synchronous, i.e. they ex-
perience the same propagation delay τ and, in the case of buffer
overflow, all connections simultaneously detect a loss and multi-
ply their window sizes by 1− β. We model only TCP’s conges-
tion avoidance phase to analyze the steady-state behavior. We
remark that TCP’s slow start is more aggressive than congestion
avoidance, so the interference inflicted by Harp is likely to be
less in slow start.
We obtain a bound on the reduction in the throughput of TCP

flows due to the presence of Harp connections by analyzing the
dynamics of the queue at the bottleneck link. We achieve this
goal by dividing the duration of the flows into periods. In each
period we bound the decrease in the number of TCP packets
processed by the router due to interfering Harp packets.
LetWr(t) andWn(t) denote respectively the total number of

total window size,W (t), isWr(t)+Wn(t). We trace these win-
dow sizes across periods. The end of a period and the beginning
of the next is marked by a packet loss, at which time each flow
reduces its window size by a factor of 1 − β. Just before a loss,
we have W (t) = µτ + B, and W (t) = (µτ + B)(1 − β) just
after. Let t0 be the beginning of one such period just after a loss.
Consider the case when W (t0) = (µτ + B)(1 − β) < µτ and
m > l. The window dynamics in any period can be split into
three intervals as described below.
We formulate differential equations to describe the dynamics

of the queue size in the following three intervals of a period. In
the interval descriptions below, the first term denotes TCP dy-
namics and the second Harp dynamics.

Additive Increase, Multiplicative Increase [t0, t1] :

dWr(t)
dt = m

τ

dWn(t)
dt = l·Wn(t)

τ

(1)

Additive Increase, Multiplicative Increase [t1, t2] :

dWr(t)
dt = mµ

W (t)

dWn(t)
dt = lµWn(t)

W (t)

(2)

Additive Increase, Multiplicative Decrease [t2, t3] :

dWr(t)
dt = mµ

W (t)

dWn(t)
dt <= −min(βWn(t)µ

W (t) , mµ
W (t))

(3)

Note that in equation 13, the effective round-trip delay in-
creases from τ to W (t)/µ. Equation 3 is somewhat nontrivial.
The right hand side of the second equation in 3 says that the
rate of decrease of Harp flows is at most the rate of increase of
TCP flows, as otherwise, the net decrease will outweigh increase
causing the queue size to drop below the delay threshold halting
Harp’s backoff. The inequality sign exists as a Harp flow’s back-
off is proportional to the aggregate rate of the multipath connec-
tion to which it belongs. This backoff is greater than or equal to
the backoff that would result if each Harp flow in the queue were
the only flow with a nonzero sending rate in its corresponding
multipath connection.

A. Proofs
Next, we prove three lemmas that make it easier to calculate

the reduction in the total amount of TCP flow that gets sent in a
period due to interference from Harp flows.

Lemma 1: The values of Wr and Wn at the beginning of pe-
riods stabilize after several packet losses, so that each period
thereafter is of a fixed duration T .

Proof: Let t0 mark the beginning of a period just after a packet
loss so thatW (t0) = (µτ +B)(1−β) < µτ . Let t1, t2, t3 mark
respectively the end of the three intervals constituing the current
period. The beginning of the interval [t2, t3] initiates multiplica-

11

equation 3. Note that for t < t2, Wn(t) ≥ l as each Harp flow
maintains a window of at least one packet.
If Wn(t2) > 2m, Wn multiplicatively decreases at a rate just
enough to counter the rate of increase of Wr, thereby keeping
W fixed at µτ + qt till time t

′

2 such thatWn(t
′

2) = 2m. For the
rest of the period [t

′

2, t3] the system dynamics are given by:

dWr(t)
dt = mµ

W (t)

dWn(t)
dt = −βWn(t)µ

W (t)

(4)

These equations yield a unique solution toWr(t3) andWn(t3),
and therefore Wr(t3+) and Wn(t3+). The dynamics in every
period thereafter exactly emulates the current one.
If Wn(t2) < 2m, it is straightforward to show that Wn at the
beginning of the third interval in every period thereafter keeps
monotonically increasing or decreasing. However, as stated
above above, this value is bounded below by l and above by
2m. Thus, the length of the period T and the system dynamics
of a period converge.
Corollary 1: After the first packet loss, the residual number of

outstanding Harp packets ε just before a packet loss is bounded
above by Wn(t3), obtained by solving (4) with the following
boundary conditions:
Initial: Wn(t

′

2) = 2m, W (t
′

2) = µτ + qt

Final: W (t3) = µτ + B

Lemma 2: The total amount of flow sent by TCP flows in a
period depends only on the initial and final values of W r in the
period.

Proof: The total amount of flow sent by TCP flows is given by
integrating the instantaneous sending rate over the duration of
the period. The instantaneous sending rate at time t is obtained
by dividing the current window sizeWr(t) by the current value
of the round-trip delayW (t)/µ. Thus, the total amount of TCP
flow R sent out in a period beginning at t0 is given by:

R = 1
m

∫ t0+T
t0

Wr(t)µ
W (t) dt (5)

From (1),(13) and (3) we observe that the rate of increase of
Wr throughout a period is given by:

dWr(t)
dt = mµ

W (t) (6)

From (5) and (6) we get:

R = 1
m

∫ Wr(t0+T)
Wr(t0)

Wr(t)dWr(t)

= W 2
r (t)
2m |t0+T

t0

(7)

Hence proved.

flows and a nonzero number of Harp flows is shorter than that of
a system consisting of only the TCP flows.

Proof: The proof of this lemma follows straighforwardly from
the dynamics ofWr(t) alone. Let T

′
denote the length of a pe-

riod when only m TCP flows (and no Harp flows) are present,
andW

′

r(t) denote the total number of outstanding TCP packets
at time t. Rewriting (6) forW

′

r(t):

W
′

r(t)dW
′

r(t) = mµdt (8)

Assume that a period begins at time t0.

T
′

= 1
mµ

∫ t0+T
′

t0
W

′

r(t)dW
′

r(t)

=
∫ (µτ+B)
(µτ+B)(1−β) W

′

rdW
′

r

(9)

Similarly, using (6) we obtain for T :

T =
∫ t0+T

t0
W (t)dWr(t)

=
∫ t0+T

t0
W (t)dW (t).dWr(t)

dW (t)

=
∫ (µτ+B)
(µτ+B)(1−β) WdW.dWr

dW

(10)

Notice that the multiplicative term dWr
dW < 1 throughout the pe-

riod, asW = Wr + Wn. Therefore T < T
′
.

B. Bounding Interference

Interference is defined as the fractional loss in throughput of
TCP flows due to the presence of Harp flows. In order to com-
pute this throughput, we first need the residual number of out-
standing Harp packets ε just before the end of a period. We use
Corollary 1 and solve equatiion 4. Dividing the second differen-
tial equation by the first we obtain:

dWn(t)
dWr(t) = −βWn(t)

m

⇒ dWn(t)
Wn(t) = −βdWr(t)

m

Integrating both sides we obtain:
∫ ε

m/β
dWn
Wn

= − β
m

∫ µτ+B−ε
µτ+qt−m/β dWr

⇒ log(βε
m) ≤ − β

m [B − qt]

⇒ ε ≤ m
β · e(−(β(B−qt)

m))

⇒ ε ≤ m
β · e(−(β(1−δ)B

m))

The fractional loss in throughput of TCP flows may now be
easily computed using Lemma 2. The asymptotic throughput
obtained by TCP flows is the total flow sent out in a period di-

12

sent out by the TCP flows is a period depends only on the initial
and final values of Wr(t) in a period. Thus, the throughput P
obtained by TCP flows is computed using (7) as:

P = β
mT · [(µτ + B − ε)2 − ((µτ + B − ε)(1 − β))2]

The throughput obtained by the TCP flows in the absence of any
Harp flows is given by:

Q = β
mT ′ · (µτ + B)2(1 − (1 − β)2)

The interference I defined as the fractional loss in throughput is
given by Q−P

Q . By Lemma 3, T ′
> T , which yields:

I ≤ [(µτ+B−ε)2−(µτ+B)2]
(µτ+B)2

≤ 2ε
(µτ+B)

= 2m
β(µτ+B)e

(−(β(1−δ)B
m))

(11)

Hence Theorem 1 follows.

C. Case m < l

In this case we simply give the differential equations govern-
ing the dynamics of the window sizes claim that Lemmas 1 to
3 hold in this case as well. The proof is similar to the previous
case and is omitted.
In interval [t0, t1] W (t) increases fromW (t0) to µτ , at which

point the queue starts building up. TCP flows increase linearly
and Harp flows increase multiplicatively and their dynamics can
be represented as:

dWr(t)
dt = m

τ

dWn(t)
dt = l

τ

(12)

The next interval [t1, t2] is also marked by additive increase of
Wr, and multiplicative increase of Wn. The window dynamics
during interval [t1, t2] are as follows:

dWr(t)
dt = mµ

W (t)

dWn(t)
dt = lµWn(t)

W (t)

(13)

The end of this interval is the time t2 whenW (t2) = µτ + qt,
where qt is the threshold queue size that begins multiplicative
backoff for Harp flows. However, again the rate of decrease of
Wn(t) is bounded by the rate of increase of increase of Wr(t).
Thus, the dynamics of interval [t2, t3] are governed by:

dWr(t)
dt = mµ

W (t)

dWn(t)
dt < −min(βWn(t)µ

W (t) , mµ
W (t))

(14)

The end of the above interval marks the completion of the pe-
riod. At this point W (t3) = µτ + B, and right after, each flow

the next period.

Using Lemmas 1 to 3, it is easily shown that the interference
bound in (11) continues to hold. We note that the magnitude of
l does not affect the interference simply because the bigger l is,
the faster the multiplicative backoff.

III. ANALYSIS OF INDEPENDENT VS. JOINT CONTROL

In this section, we present an intuition of why Joint control
can lead to substantial underutilization of a path in comparison
to Independent control. To do so, we first derive the average
throughput obtained by a flow using either of the two controls.

L

C

Tm Time
Co

ng
es

tio
n

wi
nd

ow

X

Fig. 10. MIMD behavior

Consider Figure 10 that shows the behavior of a congestion
control algorithm usingMIMD.C represents the maximum con-
gestion window (in packets) a flow would observe on a particu-
lar path before backing-off because of dropped or marked pack-
ets. C also represents the maximum capacity of the path. The
MD part determines the new congestion window L to which
the path of the flow drops. Let α represent the MI parameter,
and Tm represent the time it takes for the congestion window to
reach C from L. Then,

L × (1 + α)Tm = C

⇒ Tm =
log

(
C
L

)

log (1 + α)
(15)

The average throughput B of a single flow on a path under the
above behavior can be calculated as 1/Tm× (area of region X),
i.e.,

B =
1

Tm
×

∫ Tm

0
L × (1 + α)t (16)

Simplifying Equation 16, and using Equation 15,

B =
C − L

log
(

C
L

) (17)

Now, let β be theMD parameter. On a decrement, the conges-
tion window of Independent is L = C × (1− β). For joint, this
value can be lower than that of Independent because the decre-
ment is based on the congestion windows of other paths that are
not in consideration here. Assume that L is lower bounded by
1. In the worst case, Joint can take the value of L down to 1.

13

Joint can be calculated as

BI =
C × β

−log (1 − β)
(18)

BC =
C − 1
log C

(19)

Substituting β = 0.125 in Equation 18 and evaluating the
ratio of average throughput obtained by Independent and Joint,
we get

BI

BC
≈ 0.94 × C × log C

C − 1
(20)

When C=100 packets, the throughput ratio on a path is 4.3,
i.e., a flow using Joint instead of Independent achieves about
75% lower throughput on a path even if it is the only flow using
the path.

IV. ADDITIONAL SIMULATION AND PROTOTYPE RESULTS

5MbpsS1 R1

15
M

bp
s

S2

R2

1T

T3
T4

T5

T2

Fig. 11. Topology4.

Fairness on shared bottleneck links We now demonstrate that
Adaptive almost inherits from Joint the property of implicitly
detecting shared bottleneck links and achieving only a fair share
of resources. We use Topology3 for this experiment with S1R1
being the bulk transfer using up to four paths (direct and through
T3, T4 and T5), and S2R2 using only the direct path through
T2. We consider two scenarios: (1)One-indirect: S1R1 uses
only one of indirect path through T3 out of the three, and (2)
Three-indirect: S1R1 uses all three indirect paths. The graphs in
Figure 12 compare resource allocation between S1R1 and S2R2
using Joint, Independent and Adaptive control. Figures 12(b)
and 12(e) (when compared to the other graphs) show that In-
dependent makes S1R1 more aggressive when using all three
paths through the bottleneck link shared by S2R2, thereby sub-
stantially hurting S2R2. Whereas both Adaptive and Joint even-
tually backoff from using two of the three paths (except for send-
ing probe packets). Figures 6 and 12 together demonstrate that
Adaptive represents the best of Independent and Joint.

PrototypeEvaluation To demonstrate the non-interference and
fairness properties of Harp in simple realistic settings, we con-
sider two sender receiver pairs S1R1 and S2R2 sharing links
similar to Figure 3; S1R1 has access to two paths (through
MIT and Dartmouth) and S2R2 has one path (through MIT)
that is common with S1R1. For Figure 13(a), we setup one
background transfer between S1R1 that uses the single path
through MIT, and one foreground transfer between S2R2. We
consider three scenarios—foreground alone, background alone,
and foreground with background. We make the following ob-
servations: (1) When alone, background completion time (sec-

thereby demonstrating that background reaps spare capacity ef-
fectively, and (2) foreground completion time with background
(third bar) is close to foreground alone, thereby demonstrating
that background effectively backs-off to make way for fore-
ground; background’s completion time increases substantially
as a result (fourth bar). For Figure 13(b),(c), we setup a back-
ground transfer between S1R1 that uses both the available paths
and a background transfer between S2R2, and examine two vari-
ants of multipath congestion control. The graph shows that
S2R2 observes higher throughput with Adaptive than with In-
dependent, thereby demonstrating that Adaptive leads to a fairer
allocation of resources.
Figure 14 shows the variation of the throughput over time

along with the delay between the time the packet is sent out by
the entry gateway and the time it is received by the exit gateway.
From Figure 14 (a) we see that while most packets are received
within 60ms, some observe significant delays which leads to the
sender timing out and retransmitting. This leads to the sending
rate being drastically reduced and the consequence is a lower
average throughput. A similar behavior is seen over two paths
(Figure 14 (b)).

14

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

(a) Joint, S1R1 (b) Independent, S1R1 (c) Adaptive, S1R1

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Time (in seconds)

One-indirect
Three-indirect

(d) Joint, S2R2 (e) Independent, S2R2 (f) Adaptive, S2R2
Fig. 12. Resource allocation for transfers S1R1 and S2R2 without and with shared bottleneck.

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40 45 50 55 60

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Harp-singlepath
Foreground

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50 55 60

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

S2R2
S1R1

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40 45 50 55 60

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

S2R2
S1R1

(a) Foreground vs. Harp (b) Adaptive (c) Independent

Fig. 13. (a) Non-interference, (b) and (c) Resource allocation among two background transfers with Adaptive and Independent

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30
 1

 2

 3

 4

 5

 6

 7

 8

 9

De
la

ys
 (m

s)

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Throughput
Delays

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30
 0

 2

 4

 6

 8

 10

 12

 14

 16

De
la

ys
 (m

s)

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Throughput
Delays

(a) Single Path (b) Two Paths

Fig. 14. Throughput in time and the distribution of delays for (a) one path and (b) two paths

