
University of Massachusetts, Technical Report TR46-06 1

Hyperion: High Volume Stream Archival for Retrospective Querying

Peter J. Desnoyers
Department of Computer Science
University of Massachusetts

Prashant Shenoy
Department of Computer Science
University of Massachusetts

Abstract
Network monitoring systems that support data archiving and after-
the-fact (retrospective) queries are useful for a multitude of pur-
poses, such as anomaly detection and network and security foren-
sics. Data archiving for such systems, however, is complicated by (a)
data arrival rates, which may be hundreds of thousands of packets
per second on a single link, and (b) the need for online indexing of
this data to support retrospective queries. At these data rates, both
common database index structures and general-purpose file systems
perform poorly.

This paper describes Hyperion, a system for archiving, index-
ing, and on-line retrieval of high-volume data streams. We employ a
write-optimized stream file system for high-speed storage of simul-
taneous data streams, and a novel use of signature file indexes in a
distributed multi-level index.

We implement Hyperion on commodity hardware and conduct
a detailed evaluation using synthetic data and real network traces.
Our streaming file system, StreamFS, is shown to be fast enough to
archive traces at over a million packets per second. The index allows
queries over hours of data to complete in as little as 10-20 seconds,
and the entire system is able to index and archive over 200,000 pack-
ets/sec while processing simultaneous on-line queries.

1 Introduction
Motivation: Network monitoring by collecting and exam-
ining packet headers has become popular for a multitude of
management and forensic purposes, from tracking the per-
petrators of system attacks to locating errors or performance
problems. Networking monitoring systems come in two fla-
vors. In live monitoring, packets are captured and examined
in real-time by the monitoring system. Such systems can run
continual queries on the packet stream to detect specific con-
ditions [20], compute and continually update traffic statistics,
and proactively detect security attacks by looking for worm
or denial of service signatures [9]. Regardless of the partic-
ular use, in live monitoring systems, captured packet headers
and payloads are discarded once examined.
However, there are many scenarios where it is useful to re-

tain packet headers for a period of time. Network forensics
is one such example—the ability to “go back” and retrospec-
tively examine network packet headers is immensely useful

for network troubleshooting (e.g., root-cause analysis), to de-
termine how an intruder broke into a computer system, or
to determine how a worm entered a particular administrative
domain. Such network monitoring systems require archival
storage capabilities, in addition to the ability to query and ex-
amine live data. Besides capturing data at wire speeds, these
systems also need to archive and index data at the same rates.
Further, they need to efficiently retrieve archived data to an-
swer retrospective queries.
Currently, there are two possible choices for architecting

an archiving system for data streams. A relational database
may be used to archive data, or a custom indexmay be created
on top of a conventional file system.
The structure of captured information—a header for each

packet consisting of a set of fields—naturally lends itself to a
database view. This has led to systems such as GigaScope [6]
and MIND [18], which implement a SQL interface for query-
ing network monitoring data.
A monitoring system must receive new data at high rates:

a single gigabit link can generate hundreds of thousands of
packet headers per second and tens of Mbyte/s of data to
archive, and a single monitoring system may record from
multiple links. These rates have prevented the use of tradi-
tional database systems. MIND, which is based on a peer-
to-peer index, extracts and stores only flow-level informa-
tion, rather than raw packet headers. GigaScope is a stream
database, and like other stream databases to date [20, 27, 1]
supports continual queries on live streaming data; data archiv-
ing is not a design concern in these systems. GigaScope, for
instance, can process continual queries on data from some of
the highest-speed links in the Internet, but relies on external
mechanisms to store results for later reference.
An alternative is to employ a general-purpose file system

to store captured packet headers, typically as log files, and
to construct a special-purpose index on these files to sup-
port efficient querying. A general-purpose file system, how-
ever, is not designed to exploit the particular characteristics
of network monitoring applications, resulting in lower sys-
tem throughput than may be feasible. Unix-like file systems,
for instance, are typically optimized for writing small files
and reading large ones sequentially, while network monitor-
ing and querying writes very large files at high data rates,

University of Massachusetts, Technical Report TR46-06 2

while issuing small random reads. Due to the high data vol-
ume in these applications, and the need to bound worst-case
performance in order to avoid data loss, it may be desirable
to optimize the system for these access patterns instead of re-
lying on a general-purpose file system.
Thus, the unique demands placed by high-volume stream

archiving indicate that neither existing databases nor file sys-
tems are directly suited to handle their storage needs. This
motivates the need for a new storage system that runs on com-
modity hardware and is specifically designed to handle the
needs of high-volume stream archiving in the areas of disk
performance, indexing, data aging, and query and index dis-
tribution.
Research Contributions: In this paper, we present Hy-

perion1, a novel stream archiving system that is designed for
storing and indexing high-volume packet header streams. Hy-
perion consists of three components: (i) StreamFS, a stream
file system that is optimized for sequential immutable stream-
ing writes, (ii) a multi-level index based on signature files,
used in the past by text search engines, to sustain high
update rates, and (iii) a distributed index layer which dis-
tributes coarse-grain summaries of locally archived data to
other nodes, to enable distributed querying.
We have implemented Hyperion on commodity Linux

servers, and have used our prototype to conduct a detailed
experimental evaluation using real network traces. In our ex-
periments, the worst-case StreamFS throughput for stream-
ing writes is 80% of the mean disk speed, or almost 50%
higher than for the best general-purpose Linux file system.
In addition, StreamFS is shown to be able to handle a work-
load equivalent to streaming a million packet headers per sec-
ond to disk while responding to simulateneous read requests.
Our multi-level index, in turn, scales to data rates of over
200K packets/sec while at the same time providing interactive
query responses, searching an hour of trace data in seconds.
Finally, we examine the overhead of scaling a Hyperion sys-
tem to tens of monitors, and demonstrate the benefits of our
distributed storage system using a real-world example.
The rest of this paper is structured as follows. Section 2

and 3 present design challenges and guiding design princi-
ples. Sections 4, 5, and 6 present the design and implementa-
tion of Hyperion. We present experimental results in Section
7, related work in Section 8, and our conclusions in Section
9.

2 Design Challenges
The design of a high-volume archiving and indexing system
for data streams must address several challenges:
Archive multiple, high-volume streams. A single heavily

1Hyperion, a Titan, is the Greek god of observation.

loaded gigabit link may easily produce monitor data at a rate
of 20Mbyte/sec2; a single system may need to monitor sev-
eral such links, and thus scale far beyond this rate. Merely
storing this data as it arrives may be a problem, as a com-
modity hardware-based system of this scale must necessarily
be based on disk storage; although the peak speed of such
a system is sufficient, the worst-case speed is far lower than
is required. In order to achieve the needed speeds, it is nec-
essary to exploit the characteristics of modern disks and disk
arrays as well as the sequential append-only nature of archival
writes.
Maintain indices on archived data — The cost of exhaus-

tive searches through archived data would be prohibitive, so
an index is required to support most queries. Over time, up-
dates to this indexmust be stored at wireline speed, as packets
are captured and archived, and thus must support especially
efficient updating. This high update rate (e.g. 220K pkts/sec
in the example above) rules out many index structures; e.g. a
B-tree index over the entire stream would require one or more
disk operations per insertion. Unlike storage performance re-
quirements, which must be met to avoid data loss, retrieval
performance is not as critical; however, our goal is that it be
efficient enough for interactive use. The target for a highly
selective query, returning very few data records, is that it be
able to search an hour of indexed data in 10 seconds.
Reclaim and re-use storage. Storage space is limited in

comparison to arriving data, which is effectively infinite if
the system runs long enough. This calls for a mechanism
for reclaiming and reusing storage. Data aging policies that
delete the oldest or the least-valuable data to free up space
for new data are needed, and data must be removed from the
index as it is aged out.
Coordinate between monitors. A typical monitoring sys-

tem will comprise multiple monitoring nodes, each monitor-
ing one or more network links. In network forensics, for
instance, it is sometime necessary to query data archived at
multiple nodes to trace events (e.g. a worm) as they move
through a network. Such distributed querying requires some
form of coordination between monitoring nodes, which in-
volves a trade-off between distribution of data and queries. If
too much data or index information is distributed across mon-
itoring nodes, it may limit the overall scale of the system as
the number of nodes increase; if queries must be flooded to
all monitors, query performance will not scale.
Run on commodity hardware. The use of commodity pro-

cessors and storage imposes limits on the processing and stor-
age bandwidths available at each monitoring node, and the
system must optimize its resource usage to scale to high data
volumes.

2800Mbit/sec traffic, 450 byte packets, 90 bytes captured per packet

University of Massachusetts, Technical Report TR46-06 3

Stream File
System

Multi-level Index
Packet
capture

index
distribution

monitored
network
elements

Figure 1: Components of the Hyperion network monitoring
system.

3 Hyperion Design Principles
The challenges outlined in the previous section result in three
guiding principles for our system design.
P1: Support queries, not reads: A general-purpose file

system supports low-level operations such as reads and
writes. However, the nature of monitoring applications dic-
tates that data is typically accessed in the form of queries;
in the case of Hyperion, for instance, these queries would
be predicates identifying values for particular packet header
fields such as source and destination address. Consequently,
a stream archiving system should support data accesses at the
level of queries, as opposed to raw reads on unstructured data.
Efficient support for querying implies the need to maintain an
index and one that is particularly suited for high update rates.
P2: Exploit sequential, immutable writes: Stream archiv-

ing results in continuous sequential writes to the underlying
storage system; writes are typically immutable since data is
not modified once archived. The system should employ data
placement techniques that exploit these I/O characteristics to
reduce disk seek overheads and improve system throughput.
P3: Archive locally, summarize globally. There is an in-

herent conflict between the need to scale, which favors local
archiving and indexing to avoid network writes, and the need
to avoid flooding to answer distributed queries, which favors
sharing information across nodes. We “resolve” this conflict
by advocating a design where data archiving and indexing is
performed locally and a coarse-grain summary of the index is
shared between nodes to support distributed queryingwithout
flooding.
Based on these principles, we have designed Hyperion, a

stream archiving system that consists of three key compo-
nents: (i) a stream file system that is highly optimized for high
volume archiving and retrospective querying, (ii) amulti-level
index structure that is designed for high update rates while re-
taining reasonable lookup performance, and (iii) a distributed
index layer that distributes a coarse-grain summary of the lo-
cal indices to enable distributed queries (see Figure 1) The
following sections present the rationale for and design of

T
i
m
e

Disk head position

A B C

Each stream wraps from the end of its segment back
to the beginning

A
B

C

B
A

C
B
A

C
A

Figure 2: Write arrivals and disk accesses for single file per
stream. Writes for streams A, B, and C are interleaved, caus-
ing most operations to be non-sequential.

T
i
m
e

Disk head position

A B C A B C

Delete first and re-use when entire file system is full

A
B

C

B
A

C
B
A

C
A

Figure 3: Logfile rotation. Data arrives for streams A, B, and
C in an interleaved fashion, but is written to disk in a mostly
sequential order.

these components in detail.

4 Hyperion Stream File System

The requirements for the Hyperion storage system are: stor-
age of multiple high-speed traffic streams without loss, re-use
of storage on a full disk, and support for concurrent read ac-
tivity without loss of write performance. The main barrier to
meeting these requirements is the variability in performance
of commodity disk and array storage; although storage sys-
tems with best-case throughput sufficient for this task are eas-
ily built, worst-case throughput can be three orders of magni-
tude worse.
In this section we first consider implementing this storage

system on top of a general-purpose file system. After ex-
ploring the performance of several different conventional file
systems on stream writes as generated by our application, we
then describe StreamFS, an application-specific file system

University of Massachusetts, Technical Report TR46-06 4

for stream storage.3
In order to consider these issues, we first define a stream

storage system in more detail. Unlike a general purpose
file system which stores files, a stream storage system stores
streams. These streams are:

• Recycled: when the storage system is full, writes of new
data succeed, and old data is lost (i.e. removed or over-
written in a circular buffer fashion). This is in contrast
to a general-purpose file system, where new data is lost
and old data is retained.

• Immutable: an application may append data to a stream,
but does not modify previously written data.

• Record-oriented: attributes such as timestamps are as-
sociated with ranges in a stream, rather than the stream
itself. Optionally, as in StreamFS, data may be written
in records corresponding to these with boundaries which
are preserved on retrieval.

This stream abstraction provides the features needed by
Hyperion, while lacking other features (e.g. mutability)
which are un-needed for our purposes.

4.1 Why Not a General Purpose Filesystem?
To store streams such as this on a general purpose file system,
a mapping between streams and files is needed. A number of
such mappings exist; we examine several of them below. In
this consideration we ignore the use of buffering and RAID,
which may be used to improve the performance of each of
these methods but will not change their relative efficiency.
File-per-stream: A naı̈ve stream storage implementation

may be done by creating a single large file for each data
stream. When storage is filled, the beginning of the file can-
not be deleted if the most recent data (at the end of the file)
is to be retained, so the beginning of the file is over-written
with new data in circular buffer fashion. A simplified view of
this implementation and the resulting access patterns may be
seen in Figure 2. Performance of this method is poor, as with
multiple simultaneous streams the disk head must seek back
and forth between the write position on each file.
Log files: A better approach to storing streams is known

as logfile rotation, where a new file is written until it reaches
some maximum size, and then closed; the oldest files are then
deleted to make room for new ones. Simplified operationmay
be seen in Figure 3, where files are allocated as single extents
across the disk. This organization is much better at allocat-
ing storage flexibly, as allocation decisions may be revised

3Specialized file systems for application classes (e.g. streaming media)
have a poor history of acceptance. However, file systems specific to a single
application, often implemented in user space, have in fact been used with suc-
cess in a number of areas such as web proxies [25] and commercial databases
such as Oracle. [21]

A
B

C

B
A

C
B
A

C
A

T
im

e

Disk head position

ABC BAC B ACAC B

freeavailable for reclamation

write frontier

C

Figure 4: Log allocation - StreamFS, LFS. Data arrives in an
interleaved fashion and is written to disk in that same order.

dynamically when choosing which file to delete. As shown
in the figure, fairly good locality will be maintained when
first filling the volume; with continued use, however, consec-
utively created files and extents may be located far apart on
disk, degrading throughput to that of the previous method.
Log-Structured File System: The highest write through-

put will be obtained if storage is allocated sequentially as
data arrives, as illustrated in Figure 4. This is the method
used by Log-structured File Systems (LFS) such as [22], and
when logfile rotation is used on such a file system, interleaved
writes to multiple streams will be allocated closely together
on disk.
Although write allocation in log-structured file systems is

straightforward, cleaning, or the garbage collecting of storage
space after files are deleted, has however remained problem-
atic [24, 32]. Cleaning in a general-purpose LFS must handle
files of vastly different sizes and lifetimes, and all existing
solutions involve copying data to avoid fragmentation. The
FIFO-like Hyperion write sequence is a very poor fit for such
general cleaning algorithms; in Section 7 our results indicate
that it results in significant cleaning overhead.

4.2 StreamFS Storage Organization
The Hyperion stream file system, StreamFS, adopts the log
structured write allocation of LFS; as seen in Figure 4, all
writes take place at the write frontier, which advances as
data is written. LFS requires a garbage collector, the segment
cleaner to eliminate fragmentation which occurs as files are
deleted; however, StreamFS does not require this, and never
copies data in normal operation. This eliminates the primary
drawback of log-structured file systems and is made possible
by taking advantage of both the StreamFS storage reservation
system and the properties of stream data.
The trivial way to do this would be to over-write all data

as the write frontier advances, implicitly establishing a sin-

University of Massachusetts, Technical Report TR46-06 5

permanent
identifier

approx.
length

address

+

file ID
length
...

hash(fileID+
 FS secret)

Data

Figure 5: Random read operation.

gle age-based expiration policy for all streams. Such a policy
would not address differences between streams in both rate
and required data retention duration. Instead, StreamFS pro-
vides a storage guarantee to each stream; no records from a
stream will be reclaimed or over-writtenwhile the stream size
(i.e. retained records) is less than this guarantee. Conversely,
if the size of a stream is larger than its guarantee, then only
that amount of recent data is protected, and any older records
are considered surplus.
The sum of guarantees is constrained to be less than the

size of the storage system minus a fraction; we term the ra-
tio of guarantees to volume size the volume utilization. 4 As
with other file systems the utilization has a strong effect on
performance.
StreamFS avoids a segment cleaner by writing data in

small fixed-length blocks (default 1MB); each block stores
data from a single stream. As the write frontier advances, it is
only necessary to determinewhether the next block is surplus.
If so, it is simply overwritten, as seen in Figure 4, and if not it
is skipped and will expire later; no data copying or cleaning
is needed in either case. This provides a flexible storage al-
location mechanism, allowing storage reservation as well as
best-effort use of remaining storage. Simulation results have
shown [8] this “cleaning” strategy to perform very well, with
no virtually no throughput degradation for utilizations of 70%
or less, and no more than a 15% loss in throughput at 90%
utilization.

4.3 Read Addressing via Persistent Handles
Hyperion uses StreamFS to store packet data and indexes to
that data, and then handles queries by searching those indexes
and retrieving matching data. This necessitates a mechanism
to identify a location in a data stream by some sort of pointer
or persistent handle which may be stored in an index (e.g.
across system restart), and then later used to retrieve the cor-
responding data. This value could be a byte offset from the
start of the stream, with appropriate provisions (such as a 64-
bit length) to guard against wrap-around. However, the pat-

4This definition varies slightly from that used for general-purpose file
systems, as much of the “free” space beyond the volume utilization may
hold accessible data.

Block

records record
headers

1

2

3

N 1

Block
header

Block Map

A B A C A

stream ID

stream first last

A * *
B * *
C * *
D * *

size

*

*

*

*

Directory

File System
Root

Device table
device parameters

A ...

Figure 6: StreamFS metadata structures: record header for
each record written by the application, block header for each
fixed-length block, block map for every N (256) blocks, and
one file system root.

tern of reads generated by the index is highly non-sequential,
and thus translating an offset into a disk location may require
multiple accesses to on-disk tables. We therefore use a mech-
anism similar to a SYN cookie [2], where the information
needed to retrieve a record (i.e. disk location and approxi-
mate length) is safely encoded and given to the application
as a handle, providing both a persistent handle and a highly
optimized random read mechanism.

Using application-provided information to directly access
the disk raises issues of robustness and security. Although we
may ignore security concerns in a single-application system,
we still wish to ensure that in any case where a corrupted han-
dle is passed to StreamFS, an error is flagged and no invalid
data is returned. This is done by using a self-certifying record
header, which guarantees that a handle is valid and that ac-
cess is permitted. This header contains the ID of the stream
to which it belongs and the permissions of that stream, the
record length, and a hash of the header fields (and a file sys-
tem secret if security is of concern) allowing invalid or forged
handles to be detected. To retrieve a record by its persistent
handle, StreamFS decodes the handle, applies some simple
sanity checks, reads from the indicated address and length,
and then verifies the record header hash. At this point a valid
reader has been found; permission fields may then be checked
and the record returned to the application if appropriate.

University of Massachusetts, Technical Report TR46-06 6

4.4 StreamFS Organization
The record header used for self-certifying reads is one of
the StreamFS on-disk data structures illustrated in Figure 6.
These structures and their fields and functions are as follows:

• record: Each variable-length record written by the ap-
plication corresponds to an on-disk record and record
header. The header contains validation fields described
above, as well as timestamp and length fields.

• block: Multiple records from the same stream are com-
bined in a single fixed-length block, by default 1Mbyte
in length. The block header identifies the stream to
which the block belongs, and record boundaries within
the block.

• block map: Every Nth block (default 256) is used as a
block map, indicating the associated stream and an in-
stream sequence number for each of the precedingN−1
blocks. This map is used for write allocation, when it
must be determined whether a block is part of a stream’s
guaranteed allocation and must be skipped, or whether it
may be overwritten.

• file system root: The root holds the stream directory,
metadata for each stream (head and tail pointers, size,
parameters), and a description of the devices making up
the file system.

4.5 Striping and Speed Balancing
Striping: StreamFS supports multiple devices directly; data
is distributed across the devices in units of a single block,
much as data is striped across a RAID-0 volume. The ben-
efits of single disk write-optimizations in StreamFS extend
to multi-disk systems as well. Since successive blocks (e.g.,
block i and i+1) map onto successive disks in a striped sys-
tem, StreamFS can extract the benefits of I/O parallelism and
increase overall system throughput. Further, in a d disk sys-
tem, blocks i and i+ d will map to the same disk drive due
to wrap-around. Consequently, under heavy load when there
are more than d outstanding write requests, writes to the same
disk will be written out sequentially, yielding similar benefits
of sequential writes as in a single-disk system.
Speed balancing: Modern disk drives are zoned in or-

der to maintain constant linear bit density; this results in disk
throughput which can differ by a factor of 2 between the in-
nermost and the outermost zones. If StreamFS were to write
out data blocks sequentially from the outer to inner zones,
then the system throughput would drop by a factor of two
when the write frontier reached the inner zones. This worst-
case throughput, rather than the mean throughput, would then
determine the maximum loss-less data capture rate of the
monitoring system.

StreamFS employs a balancing mechanism to ensure
that system throughput remains roughly constant over
time, despite variations across the disk platter. This is
done by appropriately spreading the write traffic across
the disk and results in an increase of approximately
30% in worst-case throughput. The disk is divided
into three5zones R, S and T , and each zone into large,
fixed-sized regions (R1, . . . ,Rn),(S1, . . . ,Sn),(T1, . . . ,Tn).
These regions are then used in the following order:
(R1,S1,Tn,R2,S2,Tn−1, . . . ,Rn,Sn,T1); data is written sequen-
tially to blocks within each region. The effective throughput
is thus the average of throughput at 3 different points on the
disk, and close to constant.
When accessing the disk sequentially, a zone-to-zone seek

will be required after each region; the region size must thus
be chosen to balance seek overhead with buffering require-
ments. For disks used in our experiments, a region size of
64MB results in one additional seek per second (degrading
disk performance by less than 1%) at a buffering requirement
of 16MB per device.

5 Indexing Archived Data
An Hyperion monitor needs to maintain an index which sup-
ports efficient retrospective queries, but also which may be
created at high speed. Disk performance significantly lim-
its the options available for the index; although minimizing
random disk operations is a goal in any database, here mul-
tiple fields must be indexed in records arriving at a rate of
over 100,000 per second per link. To scale to these rates,
Hyperion relies on index structures that can be computed on-
line and then stored immutably. Hyperion partitions a stream
into intervals and computes one or more signatures [13] for
each interval. The signatures can be tested for the presence
of a record with a certain key in the associated data interval.
Unlike a traditional B-tree-like structure, a signature only in-
dicates whether a record matching a certain key is present; it
does not indicate where in the interval that record is present.
Thus, the entire interval needs to be retrieved and scanned
for the result. However, if the key is not present, the entire
interval can be skipped.
Signature indices are computed on a per-interval basis; no

stream-wide index is maintained. This organization provides
an index whichmay be streamed to disk along with the data—
once all data within an interval have been examined (and
streamed to storage), the signature itself can also be streamed
out and a new signature computation begun for the next inter-
val. This also solves the problem of removing keys from the

5The original choice of 3 regions was selected experimentally, but later
work [8] demonstrates that this organization results in throughput variations
of less than 4% across inner-to-outer track ratios up to 4:1.

University of Massachusetts, Technical Report TR46-06 7

data
segment

data
segment

data
segment

Signature over k
data segments

Signature over single
data segment

Time

data stream

level 1 index
stream

level 2 index
stream

Figure 7: Hyperion multi-level signature index, showing two
levels of signature index plus the associated data records.

index as they age out, as the signature associated with a data
interval ages out as well.

5.1 Multi-level Signature Indices
Hyperion uses a multi-level signature index, the organization
of which is shown in detail in Figure 7. A signature index,
the most well-known of which is the Bloom Filter [3], cre-
ates a compact signature for one or more records, which may
be tested to determine whether a particular key is present in
the associated records. (This is in contrast to e.g. a B-tree or
conventional hash table, where the structure provides a map
from a key to the location where the corresponding record
is stored.) To search for records containing a particular key,
we first retrieve and test only the signatures; if any signa-
ture matches, then the corresponding records are retrieved
and searched.
Signature functions are typically inexact, with some prob-

ability of a false positive, where the signature test indicates
a match when there is none. This will be corrected when
scanning the actual data records; the signature function can-
not generate false negatives, however, as this will result in
records being missed. Search efficiency for these structures
is a trade-off between signature compactness, which reduces
the amount of data retrieved when scanning the index, and
false positive rate, which results in unnecessary data records
being retrieved and then discarded.
The Hyperion index uses Bloom’s hash function, where

each key is hashed into a b-bit word, of which k bits are set
to 1. The hash words for all keys in a set are logically OR-
ed together, and the result is written as the signature for that
set of records. To check for the presence of a particular key,
the hash for that key h0 is calculated and compared with the
signature for the record, hs; if any bit is set in h0 but not set in
hs, then the value cannot be present in the corresponding data
record. To calculate the false positive probability, we note
that if the fraction of 1 bits in the signature for a set of records
is r and the number of 1 bits in any individual hash is k, then
the chance that a match could occur by chance is 1− (1− r) k;
e.g. if the fraction of 1 bits is 12 , then the probability is 2

−k.

Multi-level index: Hyperion employs a two-level in-
dex [23], where a level-1 signature is computed for each data
interval, and then a level-2 signature is computed over k data
intervals. A search scans the level-2 signatures, and when a
match is detected the corresponding k level-1 signatures are
retrieved and tested; data blocks are retrieved and scanned
only when a match is found in a level-1 signature.
When no match is found in the level-2 signature, k data

segments may be skipped; this allows efficient search over
large volumes of data. The level-2 signature will suffer from
a higher false positive rate, as it is k times more concise than
the level-1 signature; however, when a false positive occurs
it is almost always detected after the retrieval of the level-
1 signatures. In effect, the multi-level structure allows the
compactness of the level-2 signature, with the accuracy of
the level-1 signature.
Bit-sliced index: The description thus far assumes

that signatures are streamed to disk as they are produced.
When reading the index, however, a signature for an entire
interval—thousands of bytes—must be retrieved from disk in
order to examine perhaps a few dozen bits.
By buffering the top-level index and writing it in bit-

sliced [12] fashion we are able to retrieve only those bits
which need to be tested, thus possibly reducing the amount
of data retrieved by orders of magnitude. This is done by ag-
gregating N signatures, and then writing them out in N-bit
slices, where the ith slice is constructed by concatenating bit
i from each of the N signatures. If N is large enough, then a
slice containing N bits, bit i from each of N signatures, may
be retrieved in a single disk operation. (although not imple-
mented at present, this is a planned extension to our system.)

5.2 Handling Range and Rank Queries
Although signature indices are very efficient, like other hash
indices they are useful for exact-match queries only. In partic-
ular, they do not efficiently handle certain query types, such
as range and rank (top-K) queries, which are useful in net-
work monitoring applications.
Hyperion can use certain other functions as indices, as

well. Two of these are interval bitmaps [26] and aggregation
functions.
Interval bitmaps are a form of what are known as bitmap

indices [4]; the domain of a variable is divided into b inter-
vals, and a b-bit signature is generated by setting the one bit
corresponding to the interval containing the variable’s value.
These signatures may then be superimposed, giving a sum-
mary which indicates whether a value within a particular
range is present in the set of summarized records.
Aggregate functions such as min and max may be used as

indexes as well; in this case the aggregate is calculated over
a segment of data and stored as the signature for that data.

University of Massachusetts, Technical Report TR46-06 8

Thus a query for x < X0 can use aggregate minima to skip
segments of data where no value will match, and a query for
x withCOUNT (x) > N0 can make use of an index indicating
the top K values [17] in each segment and their counts.
Of these, min and max have been implemented in the Hy-

perion system.

5.3 Distributed Index and Query
Our discussion thus far has focused on data archiving and in-
dexing locally on each node. A typical network monitoring
system will comprise multiple nodes and it is necessary to
handle distributed queries without resorting to query flood-
ing. Hyperion maintains a distributed index that provides an
integrated view of data at all nodes, while storing the data it-
self and most index information locally on the node where
it was generated. Local storage is emphasized for perfor-
mance reasons, since local storage bandwidth is more eco-
nomical than communication bandwidth; storage of archived
data which may never be accessed is thus most efficiently
done locally.
To create this distributed index, a coarse-grain summary of

the data archived at each node is needed. The top level of the
Hyperion multi-level index provides such a summary, and is
shared by each node with the rest of the system. Since broad-
casting the index to all other nodes would result in excessive
traffic as the system scales, an index node is designated for
each time interval [t1,t2). All nodes send their top-level in-
dices to the index node during this time-interval. Designating
a different index node for successive time intervals results in
a temporally-distributed index. Cross-node queries are first
sent to an index node, which uses the coarse-grain index to
determine the nodes containing matching data; the query is
then forwarded to this subset for further processing.

6 Implementation
We have implemented a prototype of the Hyperion network
monitoring system on Linux, running on commodity servers;
it currently comprises 7000 lines of code.
The StreamFS implementation takes advantage of Linux

asynchronous I/O and raw device access, and is implemented
as a user-space library. In an additional simplification, the
file system root resides in a file on the conventional file sys-
tem, rather than on the device itself. These implementation
choices impose several constraints: for instance, all access to
a StreamFS volume must occur from the same process, and
that process must run as root in order to access the storage
hardware. These limitations have not been an issue for Hype-
rion to date; however, a kernel implementation of StreamFS
is planned which will address them.

The index is a two-level signature index with linear scan of
the top level (not bit-sliced) as described in Section 5.1. Mul-
tiple keys may be selected to be indexed on, where each key
may be a single field or a composite key consisting of multi-
ple fields. Signatures for each key are then superimposed in
the same index stream via logical OR. Query planning is not
yet implemented, and the query API requires that each key to
be used in performing the query be explicitly identified.
Packet input is supported from trace files and via a special-

purpose gigabit ethernet driver, sk98 fast, developed for
nProbe at the University of Cambridge [19]. Support for En-
dace DAG hardware is planned, as well.
The Hyperion system is implemented as a set of modules

which may be controlled from a scripting language (Python)
through an interface implemented via the SWIG wrapper
toolkit. This design allows the structure of the monitoring
application to be changed flexibly, even at run time—as an
example, a query is processed by instantiating data source
and index search objects and connecting them. Communica-
tion between Hyperion systems is by RPC, which allows re-
mote query execution or index distribution to be handled and
controlled by the same mechanisms as configuration within a
single system.

7 Experimental Results
In this section we present operational measurements of the
Hyperion network monitor system. Tests of the stream file
system component, StreamFS, measure its performance and
compare it to that of solutions based on general-purpose file
systems. Micro-benchmarks as well as off-line tests on real
data are used to test the multi-level indexing system; the
micro-benchmarks measure the scalability of the algorithm,
while the trace-based tests characterize the search perfor-
mance of our index on real data. Finally, system experiments
characterize the performance of single Hyperion nodes, as
well as demonstrating operation of a multi-node configura-
tion.

7.1 Experimental Setup
Unless specified otherwise, tests were performed on the fol-
lowing system:

Hardware 2 × 2.4GHz P4 Xeon, 1 GB memory
Storage 4 × Fujitsu MAP3367NP

Ultra320 SCSI, 10K RPM
OS Linux 2.6.9 (CentOS 4.4)

Network SysKonnect SK-9821 1000mbps

File system tests wrote dummy data (i.e. zeros), and ig-
nored data from read operations. Most index tests, however,
used actual trace data from the link between the University
of Massachusetts and the commercial Internet [31]. These

University of Massachusetts, Technical Report TR46-06 9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000

T
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
/
s
e
c
)

Time (seconds)

XFS
LFS

Ext3
JFS

Reiser

XFS
NetBSD LFS

Ext3
JFS

Reiser

Figure 8: Streaming write-only throughput by file system.
Each trace shows throughput for 30s intervals over the test
run.

trace files were replayed on another system by combining the
recorded headers (possibly after modification) with dummy
data, and transmitting the resulting packets directly to the sys-
tem under test.

7.2 File Systems and Databases
Our first tests establish a baseline for evaluating the per-
formance of the Hyperion system. Since Hyperion is an
application-specific database, built on top of an application-
specific file system, we compare its performance with that
of existing general-purpose versions of these components. In
particular, we measure the speed of storing network traces on
both a conventional relational database and on several con-
ventional file systems.
Database Performance: We briefly present results of

bulk loading packet header data on Postgres 7.4.13. Approxi-
mately 14.5M trace data records representing 158 seconds of
sampled traffic were loaded using the COPY command; after
loading, a query retrieved a unique row in the table. To speed
loading, no index was created, and no attempt was made to
test simultaneous insert and query performance. Mean results
with 95% confidence intervals (8 repetitions) are as follows:

data set 158 seconds 14.5M records
table load 252 s (±7 s) 1.56 × real-time

query 50.7 s (±0.4 s) 0.32 × real-time
Postgres was not able to load the data, collected on a mod-
erately loaded (40%) link, in real time. Query performance
was much too slow for on-line use; although indexing would
improve this, it would further degrade load performance.
Baseline File system measurements: These tests mea-

sure the performance of general-purpose file systems to serve
as the basis for an application-specific stream database for
Hyperion. In particular, we measure write-only performance
with multiple streams, as well as the ability to deliver write
performance guarantees in the presence of mixed read and

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

T
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
/
s
e
c
)

Time (seconds)

StreamFS worst case

XFS worst case

Max sustainable disk throughput

XFS
StreamFS

Figure 9: XFS vs. StreamFS write only throughput, show-
ing 30 second and mean values. Straight lines indicate disk
throughput at outer tracks (max) and inner tracks (min) for
comparison. Note the substantial difference in worst-case
throughput between the two file systems.

write traffic. The file systems tested on Linux are ext3, Reis-
erFS, SGI’s XFS [29], and IBM’s JFS; in addition LFS was
tested on NetBSD 3.1.

Preliminary tests using the naı̈ve single file per stream
strategy from Section 4.1 are omitted, as performance for all
file systems was poor. Further tests used an implementation
of the log file strategy from Section 4.1, with file size capped
at 64MB. Tests were performed with 32 parallel streams of
differing speeds, with random write arrivals of mean size
64KB. All results shown are for the steady state, after the
disk has filled and data is being deleted to make room for
new writes.

The clear leader in performance is XFS, as may be seen
in Figure 8. It appears that XFS maintains high write per-
formance for a large number of streams by buffering writes
and writing large extents to each file – contiguous extents as
large as 100MB were observed, and (as expected) the buffer
cache expanded to use almost all of memory during the tests.
(Sweeney et al. [29] describe how XFS defers block assign-
ment until pages are flushed, allowing such large extents to
be generated.)

LFS has the next best performance. We hypothesize that a
key factor in its somewhat lower performance was the signif-
icant overhead of the segment cleaner. Although we were not
able to directly measure I/O rates due to cleaning, the system
CPU usage of the cleaner process was significant: approxi-
mately 25% of that used by the test program.

University of Massachusetts, Technical Report TR46-06 10

 0

 10

 20

 30

 40

 50

 0 100 200 300

W
r
i
t
e

t
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
s

p
e
r

s
e
c
o
n
d
)

Random read rate (reads per second)

StreamFS Write/Read
XFS - Write/Read

Figure 10: Scatter plot of StreamFS and XFS write and read
performance.

 0

 200

 400

 600

 800

 1000

128K64K32K16K8K4K2K
 0

 4

 8

 12

 16

 20

 24

R
e
a
d

o
p
e
r
a
t
i
o
n
s
/
s
e
c

1
0
6

B
y
t
e
s
/
s
e
c

Operation size (bytes)

Operation rate
Throughput

Interleaving: 1:1
2:1
3:1
7:1

Figure 11: Streaming file system read performance. Through-
put (rising) and operations/sec (falling) values are shown.
The interleave factor refers to the number of streams inter-
leaved on disk - i.e. for the 1:1 case the stream being fetched
is the only one on disk; in the 1:7 case it is one of 7.

7.3 StreamFS Evaluation

In light of the above results, we evaluate the Hyperion file
system StreamFS by comparing it to XFS.
StreamFSWrite Performance: In Figure 9 we see repre-

sentative traces for 32-stream write-only traffic for StreamFS
and XFS. Although mean throughput for both file systems
closely approaches the disk limit, XFS shows high variability
even when averaged across 30 second intervals. Much of the
XFS performance variability remains within the range of the
disk minimum and maximum throughput, and is likely due
to allocation of large extents at random positions across the
disk. A number of 30s intervals, however, as well as two 60s
intervals, fall considerably below the minimum disk through-
put; we have not yet determined a cause for these drop-offs
in performance. The consistent performance of StreamFS, in
turn, gives it a worst-case speed close to the mean — almost
50% higher than the worst-case speed for XFS.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

W
r
i
t
e

T
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
s
/
s
e
c
)

Simultaneous Write Streams

XFS - no reads
StreamFS - no reads

StreamFS - 3 reads/sec
XFS - 3 reads/sec

Figure 12: Sensitivity of performance to number of streams.

Read/Write Performance: Useful measurements of com-
bined read/write performance require a model of read access
patterns generated by the Hyperion monitor. In operation,
on-line queries read the top-level index, and then, based on
that index, read non-contiguous segments of the correspond-
ing second-level index and data stream. This results in a read
access pattern which is highly non-contiguous, althoughmost
seeks are relatively small. We model this non-contiguous ac-
cess stream as random read requests of 4KB blocks in our
measurements, with a fixed ratio of read to write requests in
each experiment.
Figure 10 shows a scatter plot of XFS and StreamFS per-

formance for varying read/write ratios. XFS read perfor-
mance is poor, and write performance degrades precipitously
when read traffic is added. This may be a side effect of orga-
nizing data in logfiles, as due to the large number of individ-
ual files, many read requests require opening a new file han-
dle. It appears that these operations result in flushing some
amount of pending work to disk; as evidence, the mean write
extent length when reads are mixed with writes is a factor of
10 smaller than for the write-only case.
StreamFS Read Performance: We note that our proto-

type of StreamFS is not optimized for sequential read ac-
cess; in particular, it does not include a read-ahead mecha-
nism, causing some sequential operations to incur the latency
of a full disk rotation. This may mask smaller-scale effects,
which could come to dominate if the most significant over-
heads were to be removed.
With this caveat, we test single-stream read operation, to

determine the effect of record size and stream interleaving on
read performance. Each test writes one or more streams to
an empty file system, so that the streams are interleaved on
disk. We then retrieve the records of one of these streams in
sequential order. Results may be seen in Figure 11, for record
sizes ranging from 4KB to 128KB. Performance is dominated
by per-record overhead, which we hypothesize is due to the
lack of read-ahead mentioned above, and interleaved traffic
has little effect on performance.

University of Massachusetts, Technical Report TR46-06 11

Sensitivity testing: These additional tests measured
changes in performance with variations in the number of
streams and of devices. Figure 12 shows the performance
of StreamFS and XFS as the number of simultaneous streams
varies from 1 to 32, for write-only and mixed read/write op-
erations. XFS performance is seen to degrade slightly as the
number of streams increases, and more so in the presence of
read requests, while StreamFS throughput is relatively flat.
Multi-device tests with StreamFS on multiple devices and

XFS over software RAID show almost identical speedup for
both. Performance approximately doubles when going from 1
to 2 devices, and increases by a lesser amount with 3 devices
as we get closer to the capacity of the 64-bit PCI bus on the
test platform.

7.4 Index Evaluation
The Hyperion index must satisfy two competing criteria: it
must be fast to calculate and store, yet provide efficient query
operation. We test both of these criteria, using both generated
and trace data.
Signature Index Computation: The speed of this compu-

tation was measured by repeatedly indexing sampled packet
headers in a large (# cache size) buffer. on a single CPU.
Since the size of the computation input — i.e. the number of
headers indexed – is variable, linear regression was used to
determine the relationship between computation parameters
and performance.
In more detail, for each packet header we create N indices,

where each index i is created on Fi fields (e.g. source address)
totaling Bi bytes. For index i, the Bi bytes are hashed into
an M-bit value with k bits set, as described in Section 5.1.
Regression results for the significant parameters are:

variable coeff. std. error t-stat
index (N) 132 ns 6.53 ns 20.2

bytes hashed (Bi) 9.4 ns 1.98 ns 4.72
bit generated (k) 43.5 ns 2.1 ns 21.1

As an example, if 7 indices are computed per header, with
a total of 40 bytes hashed and 60 signature bits generated,
then index computation would take 7 · 132+ 40 · 9.4+ 60 ·
43.5 = 3910ns or 3.9 !s/packet, for a peak processing rate
of 256,000 headers per second on the test CPU, a 2.4GHz
XeonAlthough not sufficient to indexminimum-sized packets
on a loaded gigabit link, this is certainly fast enough for the
traffic we have measured to date. (e.g. 106,000 packets/sec
on a link carrying approximately 400Mbit/sec.)
Signature Density: This next set of results examines the

performance of the Hyperion index after it has been written to
disk, during queries. In Figure 13 we measure the signature
density, or the fraction of bits set to 1, when summarizing
addresses from trace data. On the X axis we see the number
of addresses summarized in a single hash block, while the
different traces indicate the precision with which each address

 1

 0.75

 0.5

 0.25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

I
n
d
e
x

d
e
n
s
i
t
y

(
f
r
a
c
t
i
o
n

o
f

1

b
i
t
s
)

Values indexed

10 bits/value (random)
12 bits/value (trace data)
10 bits/value (trace data)
8 bits/value (trace data)

Figure 13: Signature density when indexing
source/destination addresses, vs. number of addresses
hashed into a single 4KB index block. Curves are for varying
numbers of bits (k) per hashed value; top curve is for uniform
random data, while others use sampled trace data.

is summarized. From Bloom [3] we know that the efficiency
of this index is maximized when the fraction of 1 (or 0) bits
is 0.5; this line is shown for reference.
From the graph we see that a 4KB signature can efficiently

summarize between 3500 and 6000 addresses, depending on
the parameter k and thus the false positive probability. The
top line in the graph shows signature density when hash-
ing uniformly-distributed random addresses with k = 10; it
reaches 50% density after hashing only half as many ad-
dresses as the k = 10 line for real addresses. This is to be
expected, due to repeated addresses in the real traces, and
translates into higher index performance when operating on
real, correlated data.
Query overhead: Since the index and data used by a

query must be read from disk, we measure the overhead of a
query by the factors which affect the speed of this operation:
the volume of data retrieved and the number of disk seeks in-
curred. A 2-level index with 4K byte index blocks was tested,
with data block size varying from 32KB to 96KB according
to test parameters. The test indexed traces of 1 hour of traffic,
comprising 26GB, 3.8 · 108 packets, and 2.5 · 106 unique ad-
dresses. To measure overhead of the index itself, rather than
retrieval of result data, queries used were highly selective, re-
turning only 1 or 2 packets.
Figures 14 and 15 show query overhead for the simple and

bit-sliced indices, respectively. On the right of each graph,
the volume of data retrieved is dominated by sub-index and
data block retrieval due to false hits in the main index. To
the left (visible only in Figure 14) is a domain where data
retrieval is dominated by the main index itself. In each case,
seek overhead decreases almost linearly, as it is dominated by
skipping from block to block in the main index; the number
of these blocks decreases as the packets per block increase.
In each case there is a region which allows the 26GB of data

University of Massachusetts, Technical Report TR46-06 12

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000
 0

 1000

 2000

 3000

 4000

1
0
6

B
y
t
e
s

R
e
t
r
i
e
v
e
d

S
e
e
k
s

Packets per index hash

Seeks
Data retrieved

Figure 14: Single query overhead for summary index, with
fitted lines. N packets (X axis) are summarized in a 4KB in-
dex, and then at more detail in several (3-6) 4KB sub-indices.
Total read volume (index, sub-index, and data) and number
of disk seeks are shown.

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000
 0

 1000

 2000

 3000

 4000

1
0
6

B
y
t
e
s

r
e
t
r
i
e
v
e
d

S
e
e
k
s

Packets per index hash

Seeks
Data retrieved

Figure 15: Single query overhead for bit-sliced index. Iden-
tical to Figure 14, except that each index was split into 1024
32-bit slices, with slices from 1024 indices stored consecu-
tively by slice number.

to be scanned at the cost of 10-15 MB of data retrieved, and
1000-2000 disk seeks.

7.5 Prototype Evaluation
After presenting test results for the components of the Hype-
rion network monitor, we now turn to tests of its performance
as a whole. Our implementation uses StreamFS as described
above, and a 2-level index without bit-slicing. The following
tests for performance, functionality, and scalability are pre-
sented below:

• performance tests: tests on single monitoring node
which assess the system’s ability to gather and index
data at network speed, while simultaneously processing
user queries.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100000 150000 200000 250000
 0

 0.25

 0.5

 0.75

 1

P
a
c
k
e
t

l
o
s
s

r
a
t
e

I
d
l
e

C
P
U

Packets / second

Loss rate
Idle CPU

Figure 16: Packet arrival and loss rates.

• functionality testing: three monitoring nodes are used to
trace the origin of simulated malicious traffic within real
network data.

• scalability testing: a system of twenty monitoring nodes
is used to gather and index trace data, to measure the
overhead of the index update protocol.

Monitoring and Query Performance: These tests were
performed on the primary test system, but with a single data
disk. Traffic from our gateway link traces was replayed over
a gigabit cable to the test system. First the database was
loaded by monitoring an hour’s worth of sampled data —
4 · 108 packets, or 26GB of packet header data. After this,
packets were transmitted to the system under test with inter-
arrival times from the original trace, but scaled so as to vary
the mean arrival rate, with simultaneous queries. We compute
packet loss by comparing the transmit count on the test sys-
tem with the receive count on Hyperion, and measure CPU
usage.
Figure 16 shows packet loss and free CPU time remain-

ing as the packet arrival rate is varied.6 Although loss rate
is shown on a logarithmic scale, the lowest points represent
zero packets lost out of 30 or 40 million received. The re-
sults show that Hyperion was able to receive and index over
200,000 packets per second with negligible packet loss. In
addition, the primary resource limitation appears to be CPU
power, indicating that it may be possible to achieve signifi-
cantly higher performance as CPU speeds scale.
System Scalability: In this test a cluster of 20 monitors

recorded trace information from files, rather than from the
network itself. Tcpdump was used to monitor RPC traffic be-
tween the Hyperion processes on the nodes, and packet and
byte counts were measured. Each of the 20 systems mon-
itored a simulated link with traffic of approximately 110K
pkts/sec, with a total bit rate per link of over 400 Mbit/sec.
Level 2 indices were streamed to a cluster head, a position

6Idle time is reported as the fraction of 2 CPUs which is available. Packet
capture currently uses 100% of one CPU; future work should reduce this.

University of Massachusetts, Technical Report TR46-06 13

which rotates over time to share the load evenly. A third level
of index was used in this test; each cluster head would store
the indices received, and then aggregate them with its own
level 2 index and forward the resulting stream to the current
network head. Results are as follows:

Hyperion communication overhead overhead in K bytes/sec
leaf cluster head net head

transmit 102 KB/s 102 KB/s
receive 408 KB/s 510 KB/s

From these results we see that scaling to dozens of nodes
would involve maximum traffic volumes between Hyperion
nodes in the range of 4Mbit/s; this would not be excessive in
many environments, such as within a campus.
Forensic Query Case Study: This experiment examines

a simulated 2-stage network attack, based on real-world ex-
amples. Packet traces were generated for the attack, and then
combined with sampled trace data to create traffic traces for
the 3 monitors in this simulation, located at the campus gate-
way, the path to target A, and the path to B respectively.
Abbreviated versions of the queries for this search are as

follows:
1 SELECT p WHERE src=B,dport=SMTP,t≤ Tnow
Search outbound spam traffic from B, locating start time
T0.

2 SELECT p WHERE dst=B,t∈ T0 · · ·T0+!
Search traffic into B during single spam transmission to
find control connection.

3 SELECT p WHERE dst=B,t∈ T0−! · · ·T0
Find inbound traffic to B in the period before T0.

4 SELECT p WHERE s/d/p=Z/B/Px, syn, t≤ T0
Search for SYN packet on this connection at time T−1.

5 SELECT p WHERE dst=B,t∈ T−1−! · · ·T−1
Search for the attack which infected B, finding connection
from A at T2.

6 SELECT p WHERE dst=A,t∈ T−2−! · · ·T−2+!
Find external traffic to A during the A-B connection to lo-
cate attacker X.

7 SELECT p WHERE src=X,syn,t≤ T−2
Find all incoming connections from X

We note that additional steps beyond the Hyperion queries
themselves are needed to trace the attack; for instance, in
step 3 the search results are examined for patterns of known
exploits, and the results from steps 5 and 6 must be joined
in order to locate X. Performance of this search (in particu-
lar, steps 1, 4, and 7) depends on the duration of data to be
searched, which depends in turn on how quickly the attack is
discovered. In our test, Hyperion was able to use its index
to handle queries over several hours of trace data in seconds.
In actual usage it may be necessary to search several days
or more of trace data; in this case the long-running queries
would require minutes to complete, but would still be effec-
tive as a real-time forensic tool.

8 Related Work
Like Hyperion, both PIER [15] and MIND [18] are able to
query past network monitoring data across a distributed net-
work. Both of these systems, however, are based on DHT
structures which are unable to sustain the high insertion rates
required for indexing packet-level trace data, and can only in-
dex lower-speed sources such as flow-level information. The
Gigascope [6] network monitoring system is able to process
full-speed network monitoring streams, and provides a SQL-
based query language. These queries, however, may only
be applied over incoming data streams; there is no mecha-
nism in GigaScope itself for retrospective queries, or queries
over past data. StreamBase [28] is a general-purpose stream
database, which like GigaScope is able to handle stream-
ing queries at very high rates. In addition, like Hyperion,
StreamBase includes support for persistent tables for retro-
spective queries, but these tables are conventional hash or B-
tree-indexed tables, and are subject to the same performance
limitations.
A number of systems such as the Endace DAG [10]

have been developed for wire-speed collection and storage
of packet monitoring data, but these systems are designed
for off-line analysis of data, and provide no mechanisms for
indexing or even querying the data. CoMo [16] addresses
high-speed monitoring and storage, with provisions for both
streaming and retrospective queries. Although it has a storage
component, however, it does not include any mechanism for
indexing, limiting its usefulness for querying large monitor
traces.
The log structure of StreamFS bears a debt to the origi-

nal Berkeley log-structured file system [22], as well as the
WORM file system from the V System [5]. There has been
much work in the past on supporting streaming reads and
writes for multimedia file systems (e.g. [30]); however, the
sequential-write random-read nature of our problem results
in significantly different solutions.
There is an extensive body of literature on Bloom filters

and the signature file index used in this system; two useful
articles are a survey by Faloutsos [11] and the original article
by Bloom [3]. Multi-level and multi-resolution indices have
been described both in this body of literature (e.g. [23]) as
well as in other areas such as sensor networks [14, 7].

9 Conclusions
In this paper, we argued that neither general-purpose file sys-
tems nor common database index structures meet the unique
needs imposed by high-volume stream archiving and index-
ing. We proposed Hyperion, a novel stream archiving system
that consists of StreamFS, a write-optimized stream file sys-
tem, and a multi-level signature index that handles high up-

University of Massachusetts, Technical Report TR46-06 14

Monitor 1

Monitor 2

Monitor 3

X

5

Z

4

3

2

2

1
1

3

4

5

B

A

main internet
link

subnet 1

subnet 2

Internet

Figure 17: Forensic query example: (1) attacker X compromises system A, providing an inside platform to (2) attack system
B, installing a bot. The bot (3) contacts system Z via IRC, (4) later receives a command, and begins (5) relaying spam traffic.

date rates and enables distributed querying. Our prototype
evaluation has shown that (i) StreamFS can scale to write
loads of over a million packets per second, (ii) the index can
support over 200K packet/s while providing good query per-
formance for interactive use, and (iii) our system can scale to
tens of monitors. As part of future work, we plan to enhance
the aging policies in StreamFS and implement other index
structures to support richer querying.

10 Acknowledgments
This work was funded in part by NFS grants EEC-0313747,
CNS-0323597, and CNS-0325868. The authors would also
like to thank Deepak Ganesan and the anonymous reviewers
for contributions to this paper.

References
[1] ABADI, D. J., AHMAD, Y., BALAZINSKA, M., ÇETINTEMEL, U.,

CHERNIACK, M., HWANG, J.-H., LINDNER, W., MASKEY, A. S.,
RASIN, A., RYVKINA, E., TATBUL, N., XING, Y., AND ZDONI, S.
The Design of the Borealis Stream Processing Engine. In Proc. Conf.
on Innovative Data Systems Research (Jan. 2005).

[2] BERNSTEIN, D. Syn cookies. Published at http://cr.yp.to/
syncookies.html.

[3] BLOOM, B. Space/time tradeoffs in hash coding with allowable errors.
Communications of the ACM 13, 7 (July 1970), 422–426.

[4] CHAN, C.-Y., AND IOANNIDIS, Y. E. Bitmap index design and eval-
uation. In Proc. ACM SIGMOD Intl. Conf. on Management of Data
(June 1998), pp. 355–366.

[5] CHERITON, D. The V Distributed System. Communications of the
ACM 31, 3 (Mar. 1988), 314–333.

[6] CRANOR, C., JOHNSON, T., SPATASCHEK, O., AND SHKAPENYUK,
V. Gigascope: a stream database for network applications. In
Proc. 2003 ACM SIGMOD Intl. Conf. on Management of data (2003),
pp. 647–651.

[7] DESNOYERS, P., GANESAN, D., AND SHENOY, P. TSAR: a two tier
sensor storage architecture using interval skip graphs. In Proc. 3rd
Intl. Conf on Embedded networked sensor systems (SenSys05) (2005),
pp. 39–50.

[8] DESNOYERS, P., AND SHENOY, P. Hyperion: High Volume Stream
Archival for Retrospective Querying. Tech. Rep. TR46-06, University
of Massachusetts, Sept. 2006.

[9] DREGER, H., FELDMANN, A., PAXSON, V., AND SOMMER, R. Op-
erational experiences with high-volume network intrusion detection.
In Proc. 11th ACM Conf. on Computer and communications security
(CCS ’04) (2004), pp. 2–11.

[10] ENDACE INC. Endace DAG4.3GE Network Monitoring Card. avail-
able at http://www.endace.com, 2006.

[11] FALOUTSOS, C. Signature-Based Text Retrieval Methods: A Survey.
IEEE Data Engineering Bulletin 13, 1 (1990), 25–32.

[12] FALOUTSOS, C., AND CHAN, R. Fast Text Access Methods for Opti-
cal and Large Magnetic Disks: Designs and Performance Comparison.
In VLDB ’88: Proc. 14th Intl. Conf. on Very Large Data Bases (1988),
pp. 280–293.

[13] FALOUTSOS, C., AND CHRISTODOULAKIS, S. Signature files: an ac-
cess method for documents and its analytical performance evaluation.
ACM Trans. Inf. Syst. 2, 4 (1984), 267–288.

[14] GANESAN, D., ESTRIN, D., AND HEIDEMANN, J. Dimensions:
Distributed multi-resolution storage and mining of networked sensors.
ACM Computer Communication Review 33, 1 (January 2003), 143–
148.

[15] HUEBSCH, R., CHUN, B., HELLERSTEIN, J. M., LOO, B. T.,
MANIATIS, P., ROSCOE, T., SHENKER, S., STOICA, I., AND
YUMEREFENDI, A. R. The Architecture of PIER: an Internet-Scale
Query Processor. In Proc. Conf. on Innovative Data Systems Research
(CIDR) (Jan. 2005).

[16] IANNACCONE, G., DIOT, C., MCAULEY, D., MOORE, A., PRATT,
I., AND RIZZO, L. The CoMo White Paper. Tech. Rep. IRC-TR-04-
17, Intel Research, Sept. 2004.

[17] KARP, R. M., SHENKER, S., AND PAPADIMITRIOU, C. H. A simple
algorithm for finding frequent elements in streams and bags. ACM
Trans. Database Syst. 28, 1 (2003), 51–55.

[18] LI, X., BIAN, F., ZHANG, H., DIOT, C., GOVINDAN, R., HONG, W.,
AND IANNACCONE, G. Advanced Indexing Techniques for Wide-Area
Network Monitoring. In Proc. 1st IEEE Intl. Workshop on Networking
Meets Databases (NetDB) (2005).

University of Massachusetts, Technical Report TR46-06 15

[19] MOORE, A., HALL, J., KREIBICH, C., HARRIS, E., AND PRATT, I.
Architecture of a Network Monitor. Passive & Active Measurement
Workshop 2003 (PAM2003) (2003).

[20] MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., BABU,
S., DATAR, M., MAKU, G., OLSTON, C., ROSENSTEIN, J., AND
VARMA, R. Query processing, approximation, and resource manage-
ment in a data stream management system. InProc. Conf. on Innovative
Data Systems Research (CIDR) (2003).

[21] NDIAYE, B., NIE, X., PATHAK, U., AND SUSAIRAJ, M. A
Quantitative Comparison between Raw Devices and File Systems
for implementing Oracle Databases. http://www.oracle.com/
technology/deploy/performance/WhitePapers.html, Apr.
2004.

[22] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Transactions on
Computer Systems 10, 1 (1992), 26–52.

[23] SACKS-DAVIS, R., AND RAMAMOHANARAO, K. A two level super-
imposed coding scheme for partial match retrieval. Information Sys-
tems 8, 4 (1983), 273–289.

[24] SELTZER, M. I., SMITH, K. A., BALAKRISHNAN, H., CHANG, J.,
MCMAINS, S., AND PADMANABHAN, V. N. File System Logging
versus Clustering: A Performance Comparison. In USENIX Winter
Technical Conference (1995), pp. 249–264.

[25] SHRIVER, E., GABBER, E., HUANG, L., AND STEIN, C. A. Stor-
age management for web proxies. In Proc. USENIX Annual Technical
Conference (2001), pp. 203–216.

[26] STOCKINGER, K. Design and Implementation of Bitmap Indices for
Scientific Data. In Intl. Database Engineering & Applications Sympo-
sium (July 2001).

[27] STONEBRAKER, M., CETINTEMEL, U., AND ZDONIK, S. The 8
requirements of real-time stream processing. SIGMOD Record 34, 4
(2005), 42–47.

[28] STREAMBASE, I. StreamBase: Real-Time, Low Latency Data
Processing with a Stream Processing Engine. from http://www.
streambase.com, 2006.

[29] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C., NISHI-
MOTO, M., AND PECK, G. Scalability in the XFS File System. In
USENIX Annual Technical Conference (Jan. 1996).

[30] TOBAGI, F. A., PANG, J., BAIRD, R., AND GANG, M. Streaming
RAID: a disk array management system for video files. In Proc. 1st
ACM Intl. Conf. on Multimedia (1993), pp. 393–400.

[31] Umass trace repository. Available at http://traces.cs.umass.
edu.

[32] WANG, W., ZHAO, Y., AND BUNT, R. HyLog: A High Performance
Approach to Managing Disk Layout. In Proc. 3rd USENIX Conf. on
File and Storage Technologies (FAST) (2004), pp. 145–158.

Appendix A Performance Analysis
The speed balancing optimization for zoned disks, the storage
allocation policy and the signature file index were measured
and evaluated analytically. Results are given in this appendix.

A.1 Disk Speed Balancing
The speed balancing mechanism described in Section 4.5 is
designed to even out the variation in speed due to zoned

bit recording,7which results in a linear relationship between
track number and both throughput and track capacity. This
variation in track capacity, in turn, results in a non-linear re-
lationship between block number on a disk and throughtput.
The relation between disk position (in blocks) and track

number, thus bit rate, is obtained by integrating capacity per
track, giving a transfer rate proportional to k 4− t(a). This
may be seen in Figure 18(a), where the measured transfer rate
of a drive is compared with the curve determined from this
equation and disk parameters.
Our balancing method results in a logical volume where if

the raw transfer rate at an address a is t(a), then the translated
mean transfer rate is 13

(
t(a/3)+ t(a3 + N

3)+ t(N− a
3)

)
. This

is shown plotted in Figure 18(a) as well, and may be seen to
result in near constant average throughput across the logical
volume.
Measured performance of the disk speed balancing mech-

anism is shown in Figure 18(a); as may be seen, throughput
is almost constant, resulting in a 25% increase in worst-case
throughput.

Result 1 Let transfer rate r decrease linearly from 1+d to d
as track position t goes from 0 to 1, and logical block address
a range from 0 to 1. Then:

• Transfer rate at address a is:
r (a) =

√
(1−a)d2+2(1−a)d+1

• After the balancing algorithm in Section 4.5, the mean
transfer rate at translated address a′ is:
1
3 r

(
a′
3

)
+ 1
3 r

(
1+a′
3

)
+ 1
3 r

(
1− a′

3

)

• If the ratio of outer to inner transfer rate is less than
4:1, the balanced throughput will vary from the mean by
a ratio of no more than 1.038:1.

Derivation of Result 1:

• The capacity of track t is equal to " (d+(1− t)) where
" is a proportionality constant.

• Integrating and setting " so that total capacity is 1, the
capacity of tracks 0 . . . t is thus

1
d+1/2

(
(d+1)t− t2/2

)

• Given a block address a, the corresponding track number
t(a) is thus

t(a) = (d+1)−
√

(d+1)2− (2d+1)a

7Zoned bit recording (ZBR) maintains an approximately constant linear
bit density across tracks, by storing more bits on the outer tracks. The disk
rotates at constant speed, and thus the bits on the outer tracks pass under the
head more quickly than those on inner tracks.

University of Massachusetts, Technical Report TR46-06 16

 20

 40

 60

 80

 0 20 40 60 80 100

T
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
s
/
s
e
c
)

Disk position (in percent)

Measured
Predicted
Balanced

(a) Disk speed vs. location

 30

 35

 40

 45

 50

 55

 60

 0 200 400 600 800 1000 1200 1400W
r
i
t
e

T
h
r
o
u
g
h
p
u
t

(
1
0
6

b
y
t
e
s
/
s
e
c
)

Time (in seconds)

34.4

42.8

No Speed Balancing
Speed Balancing

(b) Measured speed with and without balancing

Figure 18: Disk speed balancing (a) shows measured and predicted disk throughput vs. position, and predicted balanced
performance; in (b) we see the effect of the balancing algorithm on actual stream file system throughput.

and transfer rate

r(a) = [d+(1− t(a))]
=

√
(d+1)2− (2d+1)a

• The balancing mechanism translates an address a in the
range 0 · · ·N−1 to a′ as follows:

a′ =

a= 0 (mod 3) : a/3
a= 1 (mod 3) : N/3+(a−1)/3
a= 2 (mod 3) : N− (a−2)/3

and we let the balanced throughput at a denote the mean
of throughputs for a−1, a, and a+1:

rbal(a) =
1
3
r(a/3)+

1
3
r((a+1)/3)+

1
3
r((3−a)/3)

• Substituting n = d+1
d , the ratio of outer-track to inner-

track circumference, the maximum ratio of max to min
balanced throughput for values of n in 1+# . . .4 is found
at approximately n = 1.9567, with rmax(n)/rmin(n) =
1.0377.

A.2 Storage Fragmentation
Result 2 Let the total size of storage be S and the total ar-
rival rate R; each stream i arrives at rate riR, and has a com-
mitted allocation of ci ·S. Let c= $i ci; i.e. the total fraction
of storage which is reserved, and require that (i) ci ≤ ri

k and
(ii) ci ≥ c·ri

! ; i.e. the ratio of committed allocation to rate for
each flow is bounded on both sides. Then:

• The probability pskip that the next block at the write fron-
tier will be skipped is less than

(k−1)(l−1)(k
c −1

)
!+1

• If the reservation rate, c, is 12 , and k= 2 and ! = 2, then:
pskip < 1

7 or 0.1428

• For a block size of 1MB, a seek time of 4ms8 and a disk
throughput of 60MB/s, this results in a throughput loss
of approximately 4%.

Derivation of Result 2:

• Streams may be divided into “fast” and “slow” streams:
a stream is fast if ri > ci, and slow if ri < ci. Note that
blocks written by a fast stream will become available
before the write frontier wraps around to them, while
blocks written by a slow stream may need to be skipped
when the write frontier reaches them.

• Without loss of generality we may assume that there is
a single slow stream. In the worst case both (i) and (ii)
above are equalities: ck (=i = crk

! (thus ci = c(!−1)
!).

• Let the fraction of blocks that must be skipped be " .
This is equal to ci minus the number of blocks written
by stream i during one rotation of the write frontier, in
which (1−")S blocks are written:

" = ci− (1−")ri
8For short seeks on a 10K RPM disk, 3ms of mean rotational latency plus

1ms of settling time.

University of Massachusetts, Technical Report TR46-06 17

• We note that pskip = " , and the results above follow di-
rectly.

A.3 Signature File Index
Result 3 Given a two-level index, where records are of size S,
index 1 consists of signatures of b1 bits for every N1 records,
with k1 bits per key, and index 2 signatures are b2 bits for
every N2 (=K ·N1) records, with k2 bits set per key:

• The amount of data retrieved from index 1 plus the
record data retrieved due to false positives is minimized
for (approximately) k1 = log2(S)− 1, and the cost (i.e.
data retrieved) per N1 records queried is

N log2(S)
ln(2) + N1

2

• The data retrieved to scan index 2, including reads
of index 1 and data records due to false positives, is
minimized at approximately k2 = log2(ln(S)), and the
amount of data retrieved to query over N2 records is:

log2(ln(S))N2
ln(2)

+
K
ln(S)

N log2(S)
ln(2)

+
N1
2

To analyze the cost of the index, we measure the total
amount of data read from storage if no matching terms are
found. Note that this ignores the per-operation cost of stor-
age, which although significant is dependent on hardware de-
tails.
Derivation of Result 3:

• Bloom [3] derives the result that the smallest signature
index for a given false positive probability is sized so
that the probability of any bit in the index being set to
1 is 1

2 , and thus the false positive probability p false is
2−k1 . This will be the case when ln(2)b1 (not necessarily
unique) bits have been set, or k1N1 = ln(2)b1.

• The cost per block search is the cost of reading the index
(1
ln(2)k1N1) plus 2

−k1 times the cost of reading the entire
block, or

C1 =
1

ln(2)
k1N1+2−k1N1S

which is minimized at approximately k1 = log2(S)− 1,
for a total cost of N1 log2(S)ln(2) + N1

2 .

• If we groupM = N2/N1 level one index blocks together,
and generate a level two index with k2 bits set per record,
then the size of the level two index is 1

ln(2)k2N2 and the
cost is

C2 =
1

ln(2)
k2N2+2−k2MC1

which is minimized at k2 = log2(C)− log2(N1)− 1 or
about k2 = log2(ln(S)). Substituting back we obtain the
result above.

