
TFS: A Transparent File System for Contributory Storage

James Cipar Mark D. Corner Emery D. Berger

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003
{jcipar, mcorner, emery}@cs.umass.edu

Abstract

Contributory applications allow users to donate unused re-
sources on their personal computers to a shared pool. Appli-
cations such as SETI@home, Folding@home, and Freenet are
now in wide use and provide a variety of services, including
data processing and content distribution. However, while sev-
eral research projects have proposed contributory applications
that support peer-to-peer storage systems, their adoption has
been comparatively limited. A key barrier to the adoption of
contributory storage systems is that contributing a large quan-
tity of local storage interferes with the principal user of the ma-
chine.

To overcome this barrier, we introduce the Transparent
File System (TFS). TFS provides background tasks with large
amounts of unreliable storage—all of the currently available
space—without impacting the performance of ordinary file ac-
cess operations. We show that TFS allows a peer-to-peer con-
tributory storage system to provide 40% more storage at twice
the performance when compared to a user-space storage mech-
anism. We analyze the impact of TFS on replication in peer-to-
peer storage systems and show that TFS does not appreciably
increase the resources needed for file replication.

1 Introduction

Contributory applications allow users to donate unused
resources from their personal computers to a shared pool.
These applications harvest idle resources such as CPU
cycles, memory, network bandwidth, and local storage to
serve a common distributed system. Contributory appli-
cations in wide use include computing efforts like Fold-
ing@home [16] and anonymous publishing and content
distribution such as Freenet [8]. The research commu-
nity has also developed a number of contributory appli-
cations, including distributed backup and archival stor-
age [23], server-less network file systems [2], and dis-
tributed web caching [11]. However, the adoption of
storage-based contributory applications has been limited
in comparison to those that are CPU-based.

Two major barriers impede broader participation in
contributory storage systems. First, existing contribu-
tory storage systems degrade normal application perfor-
mance. While transparency — the effect that system
performance is as if no contributory application is run-
ning — has been the goal of other OS mechanisms for
network bandwidth [30], main memory [7], and disk
scheduling [18], previous work on contributory storage
systems has ignored its local performance impact. In par-
ticular, as more storage is allocated, the performance of
the user’s file system operations quickly degrades [19].

Second, despite the fact that end-user hard drives are
often half empty [10, 15], users are generally reluctant
to relinquish their free space. For example, three of the
Freenet FAQs express the implicit desire to donate less
disk space [12]. Even when users are given the choice
to limit the amount of storage contribution, this option
requires the user to decide a priori what is a reasonable
contribution. Users may also try to donate as little as pos-
sible while still taking advantage of the services provided
by the contributory application, thus limiting its overall
effectiveness.

Contributions: This paper presents the Transparent
File System (TFS), a file system that can contribute
100% of the idle space on a disk while imposing a neg-
ligible performance penalty on the local user. TFS oper-
ates by storing files in the free space of the file system
so that they are invisible to ordinary files — in essence,
normal file allocation proceeds as if the system were not
contributing any space at all. We show in Section 5 that
TFS imposes nearly no overhead on the local user. TFS
achieves this both by minimizing interference with the
file system’s block allocation policy and by sacrificing
persistence — normal files may overwrite contributed
space at any time. TFS takes several steps that limit
this unreliability, but because contributory applications
are already designed to work with unreliable machines,
they behave appropriately in the face of unreliable files.
Furthermore, we show that because users typically create

1



little data in the course of a day [5], the erasure of con-
tributed storage is negligible when compared to the rate
of machine failures.

TFS is especially useful for replicated storage systems
executing across relatively stable machines with plenti-
ful bandwidth, as in a university or corporate network.
This environment is the same one targeted by distrib-
uted storage systems such as FARSITE [1]. As others
have shown previously, for high-failure modes, such as
wide-area Internet-based systems, the limitation is the
bandwidth between nodes, and not the total storage—the
bandwidth needed to replicate after failures essentially
limits the amount of storage the network can replicate.
In a stable network, TFS offers substantially more stor-
age than dynamic, user-space techniques.

Organization: We first provide a detailed explanation
of the interference caused by contributory applications,
and discuss current alternatives for contributing storage.
Second, we present the design of TFS, focusing on pro-
viding transparency to normal file access. We describe a
fully operating implementation of TFS and demonstrate
that its performance is on par with the file system it was
derived from, and up to twice as fast as user-space tech-
niques for contributing storage.

2 Interference from Contributing Storage

All contributory applications we are aware of are config-
ured to contribute a small, fixed amount of storage—the
contribution is small so as not to interfere with normal
machine use. This low level of contribution has little
impact on file system performance and files will only
be deleted by the contributory system, not because the
user needs storage space. However, such small, fixed-
size contributions limit contribution to small-scale stor-
age systems.

Instead of using static limits, one could use a dynamic
system that monitors the amount of storage used by lo-
cal applications. The contributory storage system could
then use a significantly greater portion of the disk, while
yielding space to the local user as needed. Possible
approaches include the watermarking schemes found in
Elastic Quotas [17] and FS2 [15]. A contributory storage
system could use these approaches as follows: whenever
the current allocation exceeds the maximum watermark
set by the dynamic contribution system, it could delete
contributory files until the contribution level falls below
a lower watermark.

However, if the watermarks are set to comprise all free
space on the disk, the file system is forced to synchro-
nously delete files from contributed storage when writing
new files to disk. In this case, the performance of the disk
would be severely degraded, similar to the synchronous
cleaning problem in LFS [27]. For this reason, Elastic

Quotas and FS2 use more conservative watermarks (e.g.,
max=85%), allowing the system to delete files lazily as
needed.

Choosing a proper watermark leaves the system de-
signer with a trade-off between contributing storage and
local performance. At one end of the spectrum, the sys-
tem can contribute little space, limiting the usefulness of
the system. At the other end of the spectrum, local per-
formance suffers.

To see why, consider the following: as a disk fills, the
file system’s block allocation algorithm becomes unable
to make ideal allocation decisions, causing fragmenta-
tion of the free space and allocated files. This fragmen-
tation increases the seek time when reading and writing
files, and has a noticeable effect on the performance of
disk bound processes. Throughput can drop by as much
as 77% in a file system that is only 75% full versus
an empty file system [28]—the more storage one con-
tributes, the worse the problem becomes. The only way
to avoid this is to maintain enough free space on the
disk to allow the allocation algorithm to work properly
and this limits contribution to only a small portion of
the disk. Though some file systems provide utilities to
defragment their disk layout, these utilities are ineffec-
tive when there is insufficient free space on the file sys-
tem. For instance, the defragmentation utility provided
with Microsoft Windows will not even attempt to de-
fragment a disk if more than 85% is in use. When one
wants to contribute all of the free space on the disk, this
is precisely what occurs. Further, defragmentation does
not help write performance, as the allocator must work
to avoid contributed storage, regardless of how unfrag-
mented existing files may be.

Any user-space scheme will be plagued by the per-
formance problems introduced by contributed storage—
filling the disk with data inevitably slows access. Given
a standard file system interface, it is simply not possible
to order the allocation of data on disk to preserve per-
formance for normal files. As we show in the next sec-
tion, by incorporating the mechanisms for contribution
into the file system itself, we can maintain file system
performance even at high levels of contribution.

Figure 1 depicts this effect. This figure shows the time
taken to run the read and copy phases of the Andrew
Benchmark on file systems with different amounts of
space being consumed. The full details of the benchmark
are presented in Section 5. As the amount of consumed
space increases, the time it takes to complete the bench-
mark increases. We assume that the user is using 50% of
the disk space for non-contributory applications, which
corresponds to results from a survey of desktop file sys-
tem contents [10]. The figure shows that contributing
more than 20% of the disk space will noticably affect the
file system’s performance, even if the contributed stor-

2



0

10

20

30

40

50

60

70

0 10 20 30 40 50

Contribution (%)

Ti
m

e 
(s

)

Ext2 Copy
Ext2 Read
TFS Copy
TFS Read

Figure 1: This figure shows the time it takes to perform
a series of file system operations while contributing dif-
ferent amounts of storage. As the amount of contributed
space increases, the time it takes for Ext2 to complete the
experiment also increases. However, the performance of
TFS stays nearly constant.

age would have been completely idle. As a preview of
TFS performance, note that when contributing 35% of
the disk, TFS is twice as fast as Ext2 for copying files.
Some performance is recovered when Ext2 contributes
45% of the disk—this is also explained in Section 5.

3 Design and Implementation of TFS

The Transparent File System (TFS) allows users to do-
nate storage to distributed storage systems with minimal
performance impact. Because block allocation policy is a
primary determinant of file system performance, design-
ers have devoted considerable attention to tuning it. Ac-
cordingly, deviating from that policy can result in a loss
of performance. Section 3.1 shows transparency with
respect to block allocation in the context of a popular
file system, Ext2 [6]. Ext2 organizes data on disk using
several rules of thumb that group data on disk accord-
ing to logical relationships. As we show in Section 5,
TFS minimally perturbs the allocation policy for ordi-
nary files, yielding a near-constant ordinary file perfor-
mance regardless of the amount of contributed storage.

In exchange for this performance, TFS sacrifices file
persistence. When TFS allocates a block for an ordinary
file, it treats free blocks and transparent blocks the same,
and thus may overwrite transparent data. Files marked
transparent may be overwritten and deleted at any time.
This approach may seem draconian, but because repli-
cated systems already deal with the failure of hosts in the
network, they can easily deal with the loss of individual
files. For instance, if one deletes a file from a BitTorrent
peer, other peers automatically search for other hosts that

have the file.
The design of TFS is centered on tracking which

blocks are allocated to which kind of file, preserving per-
sistence for normal user files, and detecting the overwrit-
ing of files in the contributed space. As the file system is
now allowed to overwrite certain other files, it is impera-
tive that it does not provide corrupt data to the contribu-
tion system, or worse yet, to the user. While our design
can preserve transparency, we have also chosen several
small performance concessions which have minimal ef-
fect on normal file use, but yield a better performing con-
tribution system. Additionally, file systems inevitably
have hot spots, possibly leading to continuous allocation
and deallocation of space to and from contribution—this
may lead to increased replication traffic elsewhere in the
network. Thus, we also incorporate a mechanism for de-
tecting these hot-spots and avoiding them for contribu-
tion.

3.1 Block Allocation
In TFS, file system performance is protected by mini-
mizing the amount of work that TFS must do when writ-
ing ordinary files. TFS simply treats transparent blocks
as if they were free, overwriting whatever data might be
currently stored in them. This policy allows block allo-
cation for ordinary files to proceed exactly as it would
if there were no transparent files present. This preserves
performance for ordinary files, but corrupts data stored in
transparent files. If an application were to read the trans-
parent file after a block was overwritten, it would receive
the data from the ordinary file in place of the data that
had been overwritten. This presents two issues: applica-
tions using transparent files must ensure the correctness
of all file data, and sensitive information stored in ordi-
nary files could be exposed to applications trying to read
transparent files. To prevent both effects, TFS records
which blocks have been overwritten so that it can avoid
treating the data in those blocks as valid transparent file
data. When TFS overwrites a transparent file, it marks it
as dirty and allocates the block to the ordinary file.

This requires some modifications to the allocation pol-
icy in Ext2. In TFS, a storage block can be in one of five
states: free, allocated, transparent-allocated, free-and-
dirty, and dirty-and-allocated. In contrast, blocks in a
typical file system can only be in one of two states: free
and allocated.

Figure 2 shows a state transition diagram for TFS
blocks. Ordinary data can be written over free or trans-
parent blocks. If the block was previously allocated to
transparent data, the file system marks these blocks as
dirty-and-allocated. When a block is denoted as dirty,
it means that the transparent data has been overwritten,
and thus “corrupted” at some point. Transparent data can

3



Delete
Transparent

Write 
Transparent

Write 

CleanClean
Transparent

Delete

Delete

Write

Write

Figure 2: A state diagram for block allocation in TFS.
The Free and Allocated states are the two allocation
states present in the original file system. TFS adds three
more states.

only be written to free blocks. It cannot overwrite allo-
cated blocks, other transparent blocks, or dirty blocks of
any sort. Figure 3, shows this from the perspective of
the block map. Without TFS, appending to a file leads
to fragmentation, leading to a performance loss in the
write, and in subsequent reads. In TFS, the file remains
contiguous, but the transparent file data is lost and the
blocks are marked as dirty-and-allocated.

When a process opens a transparent file, it must ver-
ify that none of the blocks have been dirtied since the
last time it was opened. If any part of the file is dirty,
the file system returns an error to open(). This signals
that the file has been deleted. TFS then deletes the in-
ode and directory entry for the file, and marks all of the
blocks of the file as clean, or clean and allocated. As or-
dinary files cannot be overwritten ever, scanning the allo-
cation bitmaps is not necessary when opening them. This
lazy-delete scheme means that if TFS writes transparent
files and never uses them again, the disk will eventually
fill with dirty blocks that could otherwise be used by the
transparent storage application. To solve this, TFS em-
ploys a simple, user-space cleaner that opens and closes
transparent files on disk. Any corrupted files will be de-
tected and automatically deleted by the open() operation.

Many file systems, including Ext2 and NTFS, denote a
block’s status using a bitmap. TFS augments this bitmap
with two additional bitmaps and provides a total of three
bits denoting one of the five states. In a 100GB file sys-
tem with 512 byte blocks, these bitmaps use only 50MB
of additional disk space. These additional bitmaps must
also be read into memory when manipulating files. How-
ever, very little of the disk will be actively manipulated

Allocated

Free
Transparent/
Contributed Space
Dirty-and-Allocated

Without TFS With TFS

Figure 3: The block map in a system with and without
TFS. When a file is appended in a normal file system it
causes fragmentation, while in TFS, it yields two dirty
blocks.

at any one time, and the additional memory requirements
are negligible.

3.2 Performance Concessions

This design leads to two issues: how TFS deals with open
transparent files and how TFS stores transparent meta-
data. In each case, we make a small concession to trans-
parent storage at the expense of ordinary file system per-
formance. While both concessions are strictly unneces-
sary, their negative impact on performance is negligible
and their positive impact on transparent performance is
substantial.

First, as TFS can verify that all blocks are clean only at
open time, TFS prevents the file system from overwriting
the data of open transparent files. One alternative would
be to close the transparent file and kill the process with
the open file descriptor if a dirty block is detected. How-
ever, not only would it be difficult to trace from blocks
to file descriptors, it could also lead to data corruption in
the transparent process. In our opinion, yielding to open
files is the best option.

Second, TFS stores transparent meta-data such as in-
odes and indirect blocks as ordinary data, rather than
transparent blocks. This will impact the usable space for
ordinary files and cause some variation in ordinary block
allocation decisions. However, consider what would hap-
pen if the transparent meta-data were overwritten. If the
data included the root inode of a large amount of trans-
parent data, all of that data would be lost and leave an
even larger number of garbage blocks in the file sys-
tem. Determining liveness typically requires a full trac-
ing from the root as data blocks do not have reverse map-
pings to inodes and indirect blocks. Storing transparent
storage metadata as ordinary blocks avoids both issues.

4



0.00001

0.0001

0.001

0.01

0.1

1

10

50 60 70 80 90 100

Percent of Disk Available to TFS

B
lo

ck
 A

llo
ca

tio
n 

R
at

e 
(k

B
/s

)
Machine 1

Machine 2

Figure 4: This figure shows cumulative histogram of two
user machine’s block allocations. This indicates the rate
at which TFS would overwrite transparent data if it were
to use a given amount of the disk.

3.3 Transparent Data Allocation
As donated storage is constantly overwritten by ordinary
data, one concern is that constant deletion will have ill ef-
fects on any distributed storage system. Every time a file
is deleted, the distributed system must detect and repli-
cate that file, meanwhile returning errors to any peers that
request it. To mitigate these effects, TFS identifies, and
avoids using, the hot spots in the file system that could
otherwise be used for donation. The total amount of
space that is not used for donation depends on the band-
width limits of the distributed system and is configurable
as shown in this section.

By design, the allocation policy for Ext2, and other
logically organized file systems, exhibits a high degree
of spatial locality. Blocks tend to be allocated to only
a small number of places on the disk, and are allocated
repeatedly. To measure this effect, we modified a Linux
kernel to record block allocations on two user worksta-
tions machines in our lab. A cumulative histogram of the
two traces is shown in Figure 4—machine 1 includes 27
trace days, and machine 2 includes 13 trace days. We
can observe two things from this graph. First, while one
user is a great deal more active than the other, both show
a great deal of locality in their access—machine 2 never
touched 70% of the disk. Second, an average of 1kB/s
of block allocations is approximately 84MB of alloca-
tions per day. Note that this is not the same as creating
84MB/s of data per day—the trace includes a great deal
of short-lived allocations such as temporary lock files.

Using this observation as a starting point, TFS can bal-
ance the rate of block deletion with the usable storage
on the disk. Using the same mechanism as our trace
recorder, TFS generates a trace of the block addresses

of all ordinary file allocations. It maintains a histogram
of the number of allocations that occurred in each block
and periodically sorts the chunks by the number of allo-
cations. Using this sorted list, it finds the smallest set of
blocks responsible for a given fraction of the allocations.

The fraction of the allocations to avoid, f , affects the
rate at which transparent data is overwritten. Increasing
the value of f means fewer ordinary data allocations will
overwrite transparent data. On the other hand, by de-
creasing the value of f , more storage becomes available
to transparent data. Because the effects of changing f are
dependent on a particular file system’s usage pattern, we
have found it convenient to set a target loss rate and allow
TFS to determine automatically an appropriate value for
f . Suppose ordinary data blocks are allocated at a rate of
r blocks per second. If f is set to 0 – meaning that TFS
determines that the entire disk is usable by transparent
data – then transparent data will be overwritten at a rate
approximately equal to r. The rate at which transparent
data is overwritten t is approximately t = (1−f)r. Solv-
ing for f gives f = 1− t

r . Using this, TFS can determine
the amount of storage available to transparent files, given
a target rate. Using this map of hot blocks in the file sys-
tem, the allocator for transparent blocks treats them as if
they were busy.

However, rather than tracking allocations block-by-
block, we divide the disk into groups of disk blocks,
called chunks, and track allocations to chunks. This
greatly reduces the memory requirements of the his-
togram, and due to spatial locality, a write to one block
is a very good predictor of writes to other blocks in the
same chunk. This gives the histogram predictive power
in avoiding hot blocks. Additionally, the rate at which
transparent data is overwritten is not exactly r because,
when a transparent data block is overwritten, an entire
file is lost. However, because of the large chunk size and
the high locality of chunk allocations, subsequent alloca-
tions for ordinary data tend to overwrite other blocks of
the same transparent file, making the rate that blocks are
overwritten approximately equal to the rate at which files
are lost.

The figure of merit is the rate of data erased for a rea-
sonably high allocation of donated storage. To examine
TFS under various allocations, we constructed a small
simulator using the block allocation traces used earlier
in the section. The simulator processes the trace sequen-
tially, and periodically picks a set of chunks to avoid.
Whenever the simulator sees an allocation to a chunk
which is not being avoided, it counts this as an over-
write. We ran this simulator with various fixed values
of f , the fraction of blocks to avoid, and recorded the av-
erage amount of space contributed, and the rate of data
being overwritten. Figure 5 graphs these results. Note
that the graph starts at 80% utilization. This is dependent

5



0.00001

0.0001

0.001

0.01

0.1

1

10

80 85 90 95 100

Percent of Disk Available to TFS

R
at

e 
of

 D
at

a 
Lo

ss
 (k

B
/s

)
Machine 1
Machine 2

Figure 5: This figure shows the rate of TFS data loss
when using block avoidance to avoid hot spots on the
disk. By doing this, TFS can provide more storage to
contributory applications without increasing the rate at
which data is lost.

on the highest value for f tested with. In our simula-
tion this was 0.99999. Also notice that, for contributions
less than approximately 85%, the simulated number of
overwrites is greater than the number given in Figure 4.
This is because, for very high values of f , the simulator’s
adaptive algorithm must choose between many chunks,
none of which have received very many allocations. In
this case, it is prone to make mistakes, and place trans-
parent data in places which will see allocations in the
near future. These results demonstrate that for machine
2’s usage pattern, TFS can donate all but 3% of the disk,
while only erasing contributed storage files at 0.08kB/s.
As we demonstrate in the next section, when compared
to the replication traffic due to machine failures, this is
negligible.

3.4 TFS Implementation
We have implemented a working prototype of TFS in the
Linux kernel (2.6.13.4). Various versions of TFS have
been used by one of the developers for over six months
to store his home directory as ordinary data and Freenet
data as transparent data. The source code will be freely
available at publication.

TFS comprises an in-kernel file system and a user-
space tool for designating files and directories as either
transparent or opaque, called setpri. We implemented
TFS using Ext2 as a starting point . The primary modifi-
cations we made to Ext2 were to augment the file system
with additional bitmaps, and to change the block alloca-
tion to account for the states described in Section 3. Ad-
ditionally, the openVFS call implements the lazy-delete
system described in the design. In user-space, we modi-

fied several of the standard tools (including mke2fs and
fsck) to use the additional bitmaps that TFS requires.
We implemented the hot block avoidance histograms in
user-space using a special interface to the kernel driver.
This made implementation and experimentation some-
what easier; however, future versions will incorporate
those functions into the kernel. An additional nicety is
that the filesystem reports the amount of space available
to ordinary files as the free space of this disk. This causes
utilities such as df, which are used to determine disk uti-
lization, to ignore transparent data. This addresses the
concerns of users who may be worried that contributory
applications are consuming their entire disk.

In our current implementation, the additional block
bitmaps are stored next to the original bitmaps as file
system metadata. This means our implementation is not
backwards-compatible with Ext2. However, if we moved
the block bitmaps to Ext2 data blocks, we could cre-
ate a completely backwards compatible version, easing
adoption — the adoption of Ext3 was also significantly
aided by backwards compatibility. Additionally, we be-
lieve that TFS can be incorporated into almost any file
system, including Ext3 and NTFS.

4 Storage Capacity and Bandwidth

The usefulness of TFS depends on the characteristics of
the distributed system it contributes to, including the dy-
namics of machine availability, the available bandwidth,
and the quantity of available storage at each host. In this
section, we show the relationship between these factors,
and how they affect the amount of storage available to
contributory systems. We define the storage contributed
as a function of the available bandwidth, the uptime of
hosts, and the rate at which hosts join and leave the net-
work.

4.1 Replication Degree
Many contributory storage systems use replication to en-
sure availability. However, replication limits the capacity
of the storage system in two ways. First, by storing re-
dundant copies of data on the network, there is less over-
all space [3]. Second, whenever data is lost, the system
must create a new replica.

To determine the effect of the first limit—the number
of replicas needed—we use a result from Blake and Ro-
drigues [4]. If the fraction of time each host was online is
u, and each file is replicated r times, then the probability
that no replicas of a file will be available at a particular
time is

(1 − u)r. (1)

6



To maintain an availability of a, the number of replicas
must satisfy the equation

a = 1 − (1 − u)r. (2)

Solving for r gives the number of replicas needed.

r =
ln(1 − a)
ln(1 − u)

(3)

We consider the desired availability a to be a fixed
constant. A common rule of thumb is that ”five nines” of
availability, or a = 0.99999 is acceptable, and the value
u is a characteristic of host uptime and downtime in the
network. Replication could be accomplished by keeping
complete copies of each file, in which case r would have
to be an integer. Replication could also be implemented
using a coding scheme that would allow non-integer val-
ues for r [22], and a different calculation for availability.
In our analysis, we simply assume that r can take any
value greater than 1.

4.2 Calculating the Replication Bandwidth
The second limiting effect in storage is the demand for
replication bandwidth. As many contributory systems
exhibit a high degree of churn, the effect of hosts fre-
quently joining and leaving the network [29, 13], repair-
ing failures can prevent a system from using all of its
available storage [4]. When a host leaves the network for
any reason, it is unknown when or if the host will return.
Accordingly, all files which the host was storing must
be replicated to another machine. For hosts that were
storing a large volume of data, failure imposes a large
bandwidth demand on the remaining machines. For in-
stance, a failure of one host storing 100GB of data every
100 seconds imposes an aggregate bandwidth demand of
1GB/s across the remaining hosts.

The critical metric in determining the bandwidth re-
quired for a particular storage size is the session time
of hosts in the network: the period starting when the
host joins the network, and ending when its data must be
replicated. This is not necessarily the same as the time a
host is online—hosts frequently leave the network for a
short interval before returning.

Suppose the average storage contribution of each host
is c, and the average session time is T . During a host’s
session, it must download all of the data that it will store
from other machines on the network. With a session time
of T , and a storage contribution of c, the average down-
stream bandwidth used by the host is B = c

T . Because
all data transfers occur within the contributory storage
network, the average downstream bandwidth equals the
average upstream bandwidth.

In addition to replication due to machine failures, both
TFS and dynamic watermarking cause an additional bur-
den due to the local erasure of files. If each host loses file
data at a rate of F , then the total bandwidth needed for
replication is

B =
c

T
+ F. (4)

Solving for the storage capacity as a function of band-
width gives

c = T · (B − F ). (5)

The file failure rate F in TFS is measurable using the
methods of the previous section. The file failure rate of
the dynamic system is much lower than TFS, and is di-
rectly tied to the rate of file creation by the user.

If the value c is the total amount of storage contributed
by each host in the network, then for a replication factor
of r, the amount of unique storage contributed by each
host is

C =
c

r
=

T · (B − F )
r

. (6)

The session time, T , is the time between when a host
comes online and when its data must be replicated to an-
other host, because it is going offline, or has been offline
for a certain amount of time. By employing lazy replica-
tion—waiting for some threshold of time, t, before repli-
cating its data, we can extend the average session time
of the hosts [3]. However, lazy replication reduces the
number of replicas of a file that are actually online at
any given time, and thus increases the number of repli-
cas needed to maintain availability. Thus, both T , the
session time, and r, the degree of replication, are func-
tions of t, this threshold time.

C =
T (t)(B − F )

r(t)
(7)

The functions T (t) and r(t) are sensitive to the fail-
ure model of the network in question. For instance, in a
corporate network, machine failures are rare, and session
times are long. However, in an Internet-based contribu-
tory system, users frequently sign on for only a few hours
at time.

5 TFS Evaluation

Our goal in evaluating TFS is to assess its utility for
contributing storage to a peer-to-peer file system. We
compare each method of storage contribution that we de-
scribed in Section 2 to determine how much storage can
be contributed, and the effects on the user’s application
performance. We compare these based on several met-
rics: the amount of storage contributed, the effect on the
block allocation policy, and the overall effect on local
performance.

7



In scenarios that are highly dynamic and bandwidth
limited, static contribution yields as much storage capac-
ity as any of the other three. If the network is more stable,
and has more bandwidth, the dynamic scheme provides
many times the storage of the static scheme; however,
it does so at the detriment of local performance. When
bandwidth is sufficient and the network is relatively sta-
ble, as in a corporate network, TFS provides 40% more
storage than dynamic watermarking, with no cost to lo-
cal performance. TFS always provides at least as much
storage as the other schemes without impacting local per-
formance.

5.1 Contributed Storage Capacity
To determine the amount of storage available to a con-
tributory system, we conduct trace based analysis using
the block avoidance results from Section 3, the analysis
of the availability trace outlined in Section 3.3, and the
relationship between bandwidth and storage described in
Section 4.2. From these, we use Equation 7 to determine
the amount of storage that can be donated by each host
in a network using each of the three methods of contri-
bution.

We assume a network of identical hosts, each with
100GB disks that are 50% full, and we use the block
traces for Machine 2 in Section 3.3. Given a fixed rate
of data loss caused by TFS, we determine the maximum
amount of data that can be stored by TFS based on the
data from Figure 5. We assume that the fixed contri-
bution and the dynamic contribution methods cause no
data loss. Though the dynamic contribution method does
cause data loss as the user creates more data on the disk,
the rate of data creation by users in the long term is
low [5]. We assume that the amount of non-contributed
storage being used on the disk is fixed at 50%. For fixed
contribution, each host contributes 5% of the disk (5
GB), the dynamic system contributes 35% of the disk,
and TFS contributes about 47%, leaving 3% free to ac-
count for the block avoidance.

To determine the functions T (t) and r(t), we analyze
availability traces gathered from two different types of
networks which exhibit different failure behavior. These
networks are the Microsoft corporate network [5] and
Skype superpeers [14]. The traces contain a list of time
intervals for which each host was online contiguously.
To determine the session time for a given threshold t, we
first combine intervals that were separated by less than t.
We then use the average length of the remaining intervals
and add the value t to it. The additional period t repre-
sents the time after a node leaves the network, but before
the system decides to replicate its data.

We use these assumptions to calculate the amount
of storage given to contributory systems with different

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Bandwidth (kB/s)

C
on

tri
bu

tio
n 

(G
B

)

TFS
Watermarking
Fixed Contribution

Figure 6: The amount of storage that can be donated
for contributions of network bandwidth, assuming a
corporate-like failure model. With reliable machines,
TFS is able to contribute more storage than other sys-
tems, even when highly bandwidth-limited.

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200

Bandwidth (kB/s)

S
to

ra
ge

 (G
B

)
TFS
Watermarking
Fixed Contribution

Figure 7: The amount of storage that can be donated
for contributions of network bandwidth, assuming an
Internet-like failure model. Because peer-to-peer nodes
on the internet are less reliable, the amount of contribu-
tion by TFS does not surpass the other techniques until
large amounts of bandwidth become available.

amounts of bandwidth. For each amount of bandwidth,
we find the value for the threshold time (Section 4.2) that
maximizes the contributed storage for each combination
of file system, availability trace, and bandwidth. We use
this value to compute the amount of storage available us-
ing Equation 7. Figure 6 shows the bandwidth vs. stor-
age curve using the reliability model based on availabil-
ity traces of corporate workstations at Microsoft [5]. Fig-
ure 7 shows similar curves using the reliability model de-
rived from traces of the Skype peer-to-peer Internet tele-
phone network [14].

Each curve has two regions: the amount of storage

8



increases with the available bandwidth until the point
where additional bandwidth does not increase available
storage. The slope of the first part of the curve is de-
termined by the frequency of machine failures and file
failures. This line is steeper on systems which are
more reliable. This means that, for the first part of the
curve when the systems are bandwidth-limited, TFS con-
tributes amounts of storage similar to the other two sys-
tems. The additional bandwidth needed for file failures
is small. The second part of the curve starts when the
amount of storage reaches the maximum allowed by that
contribution technique. For instance, when the small
contribution reaches 5% of the disk, it flattens out. This
part of the curve represents systems which have suffi-
cient replication bandwidth, and are only limited by the
amount of available storage. In this case, TFS is capa-
ble of contributing significantly more storage than other
methods.

In the Microsoft trace, the corporate systems have a
relatively high degree of reliability, so the bandwidth-
limited portion of the curves is short. This high relia-
bility means that, for even small bandwidth allocations,
TFS is able to contribute the most storage. The Skype
system shows a less reliable network of hosts. Much
more network bandwidth is required before TFS is able
to contribute more storage than the other storage tech-
niques can—in fact, much more bandwidth than is typ-
ically available in Internet connected hosts. However,
even when operating in a bandwidth-limited setting, TFS
is able to contribute as much as the other techniques. One
method to mitigate these bandwidth demands is to em-
ploy background file transfer techniques such as TCP-
Nice [30].

From these results, we can conclude that TFS always
donates as much storage as other methods; however, it is
most effective for networks of reliable machines where
it contributes 40% more storage than a dynamic water-
marking system. It is important to note that these systems
do not exhibit the same impact on local performance,
which we demonstrate next.

5.2 Local File System Performance
To show the effects of each system on the user’s file sys-
tem performance, we conduct two similar experiments.
In the first experiment, a disk is filled to 50% with or-
dinary file data. To achieve a realistic mix of file sizes,
these files were taken from the /usr directory on a desk-
top workstation. These files represent the user’s data,
and do not change during the course of the experiment.
After this, files are added to the system to represent
the contributed storage. We then run the Modified An-
drew Benchmark on the file system to determine the ef-
fects of the contributed files on the local file system’s

0

20

40

60

80

100

120

140

160

180

200

Ext2 (no
contribution)

Ext2 (2%
contribution)

Ext2(35%
contribution)

TFS

Ti
m

e(
s)

Delete
Compile
Read
Stat
Copy
Mkdir

Figure 8: Andrew benchmark results for 4 different un-
aged file systems. The first is an Ext2 system with no
contributory application. The second is Ext2 with a min-
imal amount of contribution (5%). The third has a signif-
icant contribution (35%). The fourth is TFS with com-
plete contribution. TFS performance is on par with Ext2
with no contribution.

performance. We used a Linux 2.6.14 source tree for
the Andrew Benchmark. We considered four cases: no
contribution, small contribution, large contribution, and
TFS. The case where there is no simulated contribution
is meant to be the baseline. Any decrease in performance
from this is interference caused by the contributed stor-
age. The small contribution is 5% of the file system. This
represents a fixed contribution where the amount of stor-
age contributed must be set very small. The large con-
tribution is 35% of the file system. This represents the
case of dynamically managed contribution, where a large
amount of storage can be donated. With TFS, the disk is
filled completely with transparent data.

We perform all of the experiments using four identical
Dell Optiplex SX280 systems with an Intel Pentium 4
3.4GHz CPU, 800MHz front side bus, 512MB of RAM,
and a 160GB SATA 7200RPM disk with 8MB of cache.
The trials were striped across the machines to account for
any subtle differences in the hardware. We conduct five
trials of each experiment, rebooting between each trial,
and present the average of the results.

The results of this first experiment are shown in Fig-
ure 8. The only system in which contribution causes any
appreciable effect on the user’s performance is the case
of a large contribution with Ext2. Both the small con-
tribution and TFS are nearly equal in performance to the
case of no contribution.

The second experiment is designed to show the ef-
fects of file system aging [28] using these three sys-
tems. Smith and Seltzer have noted that these effects can
change the results of file system benchmarks, and that
aged file systems provide a more realistic testbed for file

9



0

20

40

60

80

100

120

140

160

180

200

Ext2 (no
contribution)

Ext2 (2%
contribution)

Ext2(35%
contribution)

TFS

Ti
m

e(
s)

Delete
Compile
Read
Stat
Copy
Mkdir

Figure 9: Andrew benchmark results for 4 different aged
file systems. The first is an Ext2 system with no contrib-
utory application. The second is Ext2 with a minimal
amount of contribution (5%). The third has a signifi-
cant contribution (35%). The fourth is TFS with com-
plete contribution. TFS performance is still comparable
to Ext2 with no contribution.

system performance. Though our aging techniques are
purely artificial, they do capture the long term effects of
continuously creating and deleting files. As contributory
files are created and deleted, they are replaced by files
which are often allocated to different places on the disk.
The long term effect is that the free space of the disk be-
comes fragmented, and this fragmentation interferes with
the block allocation algorithm. To simulate this effect,
we ran an experiment very similar to the first. However,
rather than simply adding files to represent contributed
storage, we created and deleted contributory files at ran-
dom, always staying within 5% disk utilization of the
goal. After repeating this 200 times, we proceeded to
benchmark the file system. Figure 9 shows the results
of this experiment. As with the previous experiment, the
only system that causes any interference with the user’s
applications is the large contribution with Ext2. This in-
dicates that transparent file activity does not contribute
to file system aging. On the other hand, the Ext2 trial
took nearly 20 seconds longer after aging, showing that
file activity in Ext2 does cause the file system to age.

5.3 Block Allocation Layout
A closer look at the block allocation layout reveals the
cause of the performance difference between Ext2 and
TFS. We analyzed the block layout of files in four oc-
cupied file systems. Three of these systems were using
Ext2, the fourth was TFS. Each file system was filled to
50% capacity with ordinary data. Data was then added
to simulated different amounts of data contribution. For
Ext2, we consider three levels of contribution, 0%, 40%,

Figure 10: Block allocation pattern for several contribu-
tion levels in Ext2 and TFS. Both TFS and Ext2 with 0%
contribution show high locality. The other systems do
not because the contributed files interfere with the block
allocation policy.

and 45%. 0% and 40% were chosen as the best and worst
cases from Figure 1. 45% was chose because of its anom-
alous results in the same experiment. The TFS system
was filled to 50% capacity with ordinary data, and the
rest of the disk was filled with transparent files. We then
copied the files that would be used in the Andrew Bench-
mark into these disks, and recorded which data blocks
were allocated for these files.

Figure 10 shows the results of this experiment. The
horizontal axis represents the location of the block on
the disk. Every block which contains data to be used in
the Andrew Benchmark is marked black, the remaining
blocks are white, demonstrating the amount of fragmen-
tation in the Andrew Benchmark files. Note that both
Ext2 with 0% contribution, and TFS show very little
fragmentation. However the 40% case shows a high de-
gree of fragmentation. The file system with 45% contri-
bution also shows fragmentation, though less so than the
file system with 40% contribution. The relative amounts
of fragmentation in these charts correspond to the rela-
tive performance differences observed in Figure 1.

These results also provide a compelling explanation
for the performance improvement between 40% contri-
bution and 45% contribution. Ordinarily, the block al-
location scheme in Ext2 tries to allocate data blocks
for files in the same directory from the same block
group. However, directories are often allocated to dif-
ferent block groups. This is to keep the distribution of
free blocks relatively constant across the disk, so that no
block group is filled with data while others are nearly
empty. We speculate that, when the file system begins to
run out of free space, block groups are filled, so new di-
rectories must be allocated within the same block group
as their parents. Under normal circumstances, this is a
bad allocation policy, because it prevents files from be-
ing allocated near their siblings. However, because we
were running the Andrew benchmark on a deeply nested

10



source tree, this was advantageous for this experiment.

6 Related Work

Our work brings together two areas of research: tech-
niques to make use of the free space in file systems, and
the study of churn in peer-to-peer networks.

6.1 Using Free Disk Space
Recognizing that the file system on a typical desktop is
nearly half-empty, researchers have been studying ways
to make use of the extra storage. FS2 [15] is a file sys-
tem that uses the extra space on the disk for block-level
replication to reduce average seek time. FS2 dynami-
cally analyzes disk traffic to determine which blocks are
frequently used together. It can then create replicas of
blocks so that the spatial locality on disk matches the ob-
served temporal locality. FS2 uses a policy that deletes
replicas on-demand as space is needed. We believe that
it could benefit from a TFS-like allocation policy, where
all replicas except the primary one would be stored as
transparent blocks. In this way, the entire disk could be
used for block replication.

The Elephant File System [25] uses free disk space
to maintain old copies of user data. This approach al-
lows users to recover old data without explicitly saving
old copies of their data and without the need for a ver-
sion control system. Although the unreliability of trans-
parent files makes it inappropriate for Elephant data, it is
still likely that free disk space in a system using Elephant
would be available to donate to contributory systems.

A number of peer-to-peer storage systems have been
proposed that make use of replication and free disk space
to provide reliability. These include distributed hash ta-
bles such as Chord [21] and Pastry [24], as well as com-
plete file systems like the Chord File System [9], and
Past [23].

6.2 Churn in Peer-to-Peer Networks
The research community has also been active in studying
the dynamic behavior of deployed peer-to-peer networks.
Measurements of churn in live systems have been gath-
ered and studied as well. Chu et al. studied the avail-
ability of nodes in the Napster and Gnutella networks.
The Bamboo DHT was designed as an architecture that
can withstand high levels of churn [26]. The Bamboo
DHT [20] is particularly concerned with using a min-
imum amount of “maintenance bandwidth” even under
high levels of churn. We believe that these studies give
a somewhat pessimistic estimate of the stability of fu-
ture peer-to-peer networks. As machines become more
stable and better connected, remain on continuously, and

are pre-installed with stable peer-to-peer applications or
middleware, the level of churn will greatly diminish, in-
creasing the value of TFS.

7 Conclusions

We have presented three methods for contributing disk
space in peer-to-peer storage systems. We have included
two user-space techniques, and a novel file system, TFS,
specifically designed for contributory applications. We
have demonstrated that the key benefit of TFS is that it
leaves the allocation for local files intact, avoiding is-
sues of fragmentation—TFS stores files such that they
are completely transparent to local access. The design
of TFS includes modifications to the free bitmaps and a
method to avoid hot-spots on the disk.

We evaluated each of the file systems based the
amount of contribution and its cost to the local user’s per-
formance. We quantified the unreliability of files in TFS
and the amount of replication bandwidth that is needed to
handle deleted files. We conclude that out of three tech-
niques, TFS consistently provides at least as much stor-
age with no detriment to local performance. When the
network is relatively stable and adequate bandwidth is
available, TFS provides 40% more storage over the best
user-space technique. Further, TFS is completely trans-
parent to the local user, while the user-space technique
creates up to a 100% overhead on local performance. We
believe that the key to encouraging contribution to peer-
to-peer systems is removing the barriers to contribution,
which is precisely the aim of TFS.

References

[1] Atul Adya, William J. Bolosky, Miguel Castro,
Gerald Cermak, Ronnie Chaiken, John R. Douceur,
Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely
trusted environment. In 5th Symposium on Op-
erating System Design and Implementation (OSDI
2002). USENIX Association, December 2002.

[2] Atul Adya, William J. Bolosky, Miguel Castro,
Gerald Cermak, Ronnie Chaiken, John R. Douceur,
Jon Howell, Jacob R. Lorch, Marvin Theimer, and
Roger P. Wattenhofer. Farsite: federated, available,
and reliable storage for an incompletely trusted en-
vironment. SIGOPS Oper. Syst. Rev., 36(SI):1–14,
2002.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and
G. Voelker. Total Recall: System support for au-
tomated availability management. In Proceedings

11



of the First ACM/Usenix Symposium on Networked
Systems Design and Implementation (NSDI), 2004.

[4] Charles Blake and Rodrigo Rodrigues. High avail-
ability, scalable storage, dynamic peer networks:
Pick two. In Ninth Workshop on Hot Topics in
Operating Systems (HotOS-IX), pages 1–6, Lihue,
Hawaii, May 2003.

[5] William J. Bolosky, John R. Douceur, David Ely,
and Marvin Theimer. Feasibility of a serverless dis-
tributed file system deployed on an existing set of
desktop PCs. In Proceedings of the ACM SIGMET-
RICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS
2000), pages 34–43, New York, NY, USA, 2000.
ACM Press.

[6] Remy Card, Thodore Ts’o, and Stephen Tweedie.
Design and implementation of the second extended
filesystem. In Proceedings of the First Dutch Inter-
national Symposium on Linux. Laboratoire MASI
— Institut Blaise Pascal and Massachussets Insti-
tute of Technology and University of Edinburgh,
December 1994.

[7] James Cipar, Mark D. Corner, and Emery D.
Berger. Transparent contribution of memory. In
USENIX Annual Technical Conference (USENIX
2006), pages 109–114. USENIX, June 2006.

[8] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In
Proceedings of Designing Privacy Enhancing Tech-
nologies: Workshop on Design Issues in Anonymity
and Unobservability, pages 46–66, July 2000.

[9] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area cooper-
ative storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(SOSP ’01), Chateau Lake Louise, Banff, Canada,
October 2001.

[10] John R. Douceur and William J. Bolosky. A large-
scale study of file-system contents. In Proceedings
of the ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer
Systems (SIGMETRICS 1999), pages 59–70, New
York, NY, USA, 1999. ACM Press.

[11] Michael J. Freedman, Eric Freudenthal, and David
Mazires. Democratizing content publication with
Coral. In Proceedings of the 1st USENIX Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI ’04), San Francisco, California,
March 2004.

[12] http://freenetproject.org/faq.html.

[13] P. Brighten Goedfrey, Scott Shenker, and Ion Sto-
ica. Minimizing churn in distributed systems. In
Proc. of ACM SIGCOMM, 2006.

[14] Saikat Guha, Neil Daswani, and Ravi Jain. An Ex-
perimental Study of the Skype Peer-to-Peer VoIP
System. In Proceedings of The 5th International
Workshop on Peer-to-Peer Systems (IPTPS ’06),
Santa Barbara, CA, February 2006.

[15] H. Huang, W. Hung, and K. G. Shin. FS2: Dy-
namic data replication in free disk space for im-
proving disk performance and energy consumption.
In Proceedings of 20th ACM Symposium on Oper-
ating System Principles, October 2005.

[16] Stefan M. Larson, Christopher D. Snow, Michael
Shirts, and Vijay S. Pande. Computational Ge-
nomics. Horizon, 2002. Folding@Home and
Genome@Home: Using distributed computing to
tackle previously intractable problems in computa-
tional biology.

[17] Ozgur Can Leonard, Jason Neigh, Erez Zadok, Jef-
ferey Osborn, Ariye Shater, and Charles Wright.
The design and implementation of Elastic Quotas.
Technical Report CUCS-014-02, Columbia Univer-
sity, June 2002.

[18] Christopher R. Lumb, Jiri Schindler, and Gre-
gory R. Ganger. Freeblock scheduling outside of
disk firmware. In Proceedings of the Conference on
File and Storage Technologies (FAST), pages 275–
288, 2002.

[19] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system for
UNIX. Computer Systems, 2(3):181–197, 1984.

[20] Ratul Mahajan Miguel. Controlling the cost of re-
liability in peer-to-peer overlays. In Proceedings
of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), 2003.

[21] Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In ACM
SIGCOMM 2001, San Diego, CA, September 2001.

[22] Rodrigo Rodrigues and Barbara Liskov. High avail-
ability in DHTs: Erasure coding vs. replication. In
Proceedings of the 4th International Workshop on
Peer-to-Peer Systems, February 2005.

12



[23] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-
to-peer storage utility. In Proceedings of the 18th
SOSP (SOSP ’01), Chateau Lake Louise, Banff,
Canada, October 2001.

[24] Antony Rowstron and Peter Druschel. Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems. In Proceedings of
Middleware, November 2001.

[25] Douglas J. Santry, Michael J. Feeley, Norman C.
Hutchinson, and Alistair C. Veitch. Elephant: The
file system that never forgets. In Workshop on Hot
Topics in Operating Systems, pages 2–7, 1999.

[26] Timothy Roscoe Sean Rhea, Dennis Geels and John
Kubiatowicz. Handling churn in a DHT. Techni-
cal Report UCB/CSD-03-1299, EECS Department,
University of California, Berkeley, 2003.

[27] Margo Seltzer, Keith Bostic, Marshall Kirt McKu-
sick, and Carl Staelin. An implementation of a log-
structured file system for UNIX. In Winter USENIX
Technical Conference, January 1993.

[28] K. Smith and M. Seltzer. File system aging. In Pro-
ceedings of the 1997 Sigmetrics Conference, Seat-
tle, WA, June 1997.

[29] D. Stutzbach and R. Rejaie. Towards a better
understanding of churn in peer-to-peer networks.
Technical Report UO-CIS-TR-04-06, Department
of Computer Science, University of Oregon, No-
vember 2004.

[30] Arun Venkataramani, Ravi Kokku, and Mike
Dahlin. TCP Nice: A mechanism for background
transfers. SIGOPS Oper. Syst. Rev., 36(SI):329–
343, 2002.

13


