Improving High-Dimensional Bayesian Network Structure
Learning by Exploiting Search Space Information

Technical Report 06-49

Avi Herscovici Oliver Brock
Department of Computer Science
University of Massachusetts Amherst

October 2, 2006

Abstract

Bayesian networks are frequently used to model statistical dependencies in data. Without prior
knowledge of dependencies in the data, the structure of a Bayesian network is learned from the data.
Bayesian network structure learning is commonly posed as an optimization problem where search is
used to find structures that maximize a scoring function. Since the structure search space is super-
exponential in the number of variables in a network, heuristics are applied to constrain the search space
of high-dimensional networks. Greedy hill climbing is then applied in the reduced search space. The
constrained search space of high-dimensional networks contains many local maxima that greedy hill
climbing cannot overcome. This issue has only been addressed by augmenting greedy search with TABU
lists or random moves. This is not a holistic solution to the problem.

By using a search algorithm that is global in nature, we are not confined to results in a particular
region of the search space, like previous approaches. We present Model-Based Search (MBS) [1] ap-
plied to Bayesian network structure learning. MBS uses information gained during search to explore
promising search space regions. Maintaining this search space information keeps a global view of the
search task and helps find structures at higher maxima than greedy hill climbing. We show that MBS
performs better than hill climbing in the Max-Min Parents and Children (MMPC) [30] search space and
can find better high-dimensional network structures than other leading structure learning algorithms.

1 Introduction

The scientific community is quickly gathering a plethora of new data sets that can be analyzed to form sig-
nificant scientific conclusions. For example, DNA microarray data is collected for analysis since it contains
information on the interactions of proteins. Economic data is analyzed to form models that can be used
to forecast events such as economic recessions. Initially, understanding relationships in these domains was
done through experimentation, which is usually costly and inefficient. When computers became common-
place, scientists began using computational methods that could exploit the newly available computational
power to extract meaningful information from data sets.

A data set is a collection of samples of the state of different random variables at a particular time.
By statistically analyzing these data sets we can estimate the distribution of the variables sampled in the
data and predict the state of a variable with knowledge of the variables on which it is dependent. Without
prior knowledge of dependencies between the variables, it is a computationally expensive task to learn the
dependencies and estimate the distributions. The complexity and difficulty in learning dependencies in data

is due to the following two factors: how many data samples are available and the amount of random variables
the data set describes. This thesis focuses on the amount of random variables the data set describes, formally
known as the dimensionality of the data set. A high-dimensional data set is composed of samples from many
random variables. High-dimensional data sets are common in biology, social networks, and other domains
where a large amount of entities are interacting.

A common method for learning dependencies between random variables is to train a Bayesian network
on data sampled from the distribution of these variables. A Bayesian network [25] is a graphical model
that compactly expresses the joint probability distribution of a set of random variables. More importantly, it
allows the user to visually infer dependencies between the random variables from the model. An example in
the biology domain is a Bayesian network, trained from genomic data, that expresses dependencies between
proteins [16]. The graphical model of a Bayesian network is a directed acyclic graph that contains a node
for each random variable. Dependencies among the variables in the network are expressed by edges. The
set of edges in a Bayesian network are referred to as the network structure. Without prior knowledge of the
network structure (the graphical representation of dependencies), the structure that best fits the data must be
learned from the data.

To learn a network structure computationally, we first formulate a search space of possible structures,
which consists of all the different edge combinations that form an acyclic graph. This search space is vast
even for a small amount of variables since an increase in the amount of nodes leads to a super exponen-
tial [27] increase in the amount of possible structures. Finding the optimal Bayesian network in the search
space of all possible structures was shown to be NP-hard [5]. Searching the network structure search space
by exhaustively evaluating network structures is infeasible. The best network structure must be approxi-
mated.

Approximating the best network structure is commonly posed as an optimization task that is solved by
a search technique and a scoring function which evaluates network structures. While a particular scoring
function has not been singled out as better than the others, a multitude of search algorithms have been used
in search-based methods with varying success. Greedy search algorithms were found to perform well on
low-dimensional data sets. They work by performing operations on an empty network that cause the greatest
score improvement at each iteration of search. In small networks, greedy search returns near optimal results
because the search space is not very complex and contains few local maxima. The performance of greedy
search on high-dimensional data sets begins to degrade because the search space is more complex.

To learn high-dimensional networks, researchers have used constraint-based techniques to reduce the
structure search space. Constraint-based techniques perform a statistical test on the network variables and
create a reduced search space which does not contain node pairs that are deemed independent by the statis-
tical test. Greedy search is then applied in the reduced search space. Using greedy search hampers search
quality because of local maxima in the constrained search space that greedy search cannot overcome. Greedy
search only explores a local region of a complex search space, which will only give locally optimal results.
Search is confined to these local regions leaving more promising regions unexplored for higher maxima. By
using a global approach to search, we can encounter higher quality regions of the search space that greedy
search leaves unexplored.

Model-Based Search (MBS), introduced in [1], has been successful in optimizing energy functions in
protein structure prediction. MBS builds a compact model that approximates the landscape of a search
space. MBS uses this model to guide search towards promising regions of the search space. This thesis is
a culmination of the research performed to improve high-dimensional Bayesian network structure learning
using MBS. We present a search-based structure learning algorithm which uses MBS to find high scoring
network structures in the Max-Min Parents and Children (MMPC) search space [30].

Background on Bayesian networks and in particular learning Bayesian networks from data follows the
introduction. Related works that influenced our research are mentioned as an inspiration to our approach and

O =N O
=l =] lvy
[Nl (@)

Figure 1: A Bayesian network of 3 discrete variables. Each variable has a domain size of 3 meaning each
variable can take on three discrete states. An example data table is also provided.

as a reference to the reader. The Model-Based Search algorithm is analyzed, and its implementation specific
to Bayesian networks is described. Experiments varying the MBS parameters are presented to show the
flexibility of MBS. Also the benefits of MBS over unoptimized distributed search is shown empirically. Last,
we show using two different quality metrics that MBS returns higher quality high-dimensional Bayesian
network structures than other leading structure learning algorithms. MBS clearly outperforms greedy search
in the MMPC search space. The results obtained are promising for finding accurate relationships in data
sets, yet there is still room for further progress in structure learning. We end by suggesting improvements to
MBS that can be made in future work.

2 Bayesian Networks

A Bayesian network, B, is composed of a pair, (G,), where G is the network structure and 6 is a set of
parameters. A Bayesian network’s structure G = (V, E) is a directed acyclic graph (DAG) which describes
conditional independence properties between random variables in the set V. The edges in the network, E,
correspond to conditional dependencies through the following property: every random variable is indepen-
dent of its non-descendants conditioned on its parents [25]. We call a variable V; the parent of variable V5 if
there is an edge from V; to V5. The set of parameters, 6, represent the probabilities of each random variable
given its parent node set:

0; = P(VHVParents(i))
The joint probability of the variables in a network is defined as follows:

n

P(Vh sy Vn) = H P(VHVParents(i))
=1

There are many advantages to using Bayesian networks to express joint probabilities of random variables
and dependencies between random variables. By explicitly stating and utilizing the dependency information
in the model, one can save computation of insignificant probabilities between independent variables. The
dependency information in the network is also useful for decision theory and allows for expert information
to be included. The parameters of a Bayesian network are always semantically meaningful as opposed to
black box models like neural networks. The output of a Bayesian network is consistent, meaning it will
always return the same answer if the model has the same parameters. Last, a Bayesian network can contain
continuous variables, discrete variables, or a mix which makes the model flexible for different applications.

An example Bayesian network along with a data set sampled from the network’s variables is shown in
Figure 1. The variables are discrete and can be in three states (0-2). Continuous random variables can be

trained and queried like discrete random variables, but they are beyond the scope of this thesis. A common
way to reduce the complexity added by continuous variables is to discretize the continuous data and proceed
using discrete variables.

In the example network, the probability distribution of random variable C is dependent on the values
of A and B. Since this example is discrete, the probability distribution of C is expressed as a conditional
probability table listing the probabilities of each value of C (0 through 2) given each combination of values
for variables A and B. The table for C would then have 27 entries if each probability is recorded or 18 if
only the essential probabilities were the recorded, where the rest can be easily calculated since the sum of
the probabilities of all the settings of variable C per combination of A and B is equal to 1. For example:
P(C=0A=0,B=1)+P(C=1A=0,B=1)+P(C =2|/A=0,B=1) = 1. The tables of A and
B would only have 3 entries each in the complete table since they are not dependent on any other variable
and can assume 3 different values. With complete probability tables, we can query a Bayesian network for
the probabilities of particular states of the network variables. We can also learn the probability tables and
the network structure from data.

3 Learning Bayesian Networks

The learning problem for Bayesian networks has two components. A network with a defined structure G
but without specified parameters requires computing the parameters from a data set with samples of the
network variables. The parameter learning problem can be formally stated as maximizing the likelihood
of the parameters # given observed data D and a network structure G. Given only data and no network
structure, we must learn the structure G of the network and then learn the parameters. Our variable set V' is
defined by the random variables that are sampled in the data; hence, structure learning involves connecting
the variables in G (i.e constructing the set of edges £). More formally, the structure learning problem is to
maximize the likelihood of the network structure GG given observed data D. Learning with incomplete data
is possible and is a heavily researched topic, but this thesis only considers complete data sets and refers the
reader to other literature about the topic [10, 26, 7].

Estimating the parameters of the network (parameter learning) means to estimate the local distribution
function of each random variable in a Bayesian network. Each local distribution is essentially a probabilistic
classification (in the discrete case) or a regression (in the continuous case) function. Using a maximum
likelihood approach [14] to estimate the parameters of discrete variables is straightforward since a parameter
can be computed by counting occurrences of a state in the data set, which is how many times the variable X
is of a particular state, and normalizing by the data sample size, which is the number of rows in the data set
or the amount of total samples per variable. A Bayesian approach can also be used to estimate parameters by
using a prior, most commonly a Dirichlet prior for multinomial variables. Then the Maximum a Posteriori
(MAP) estimate, which in the multinomial case is also Dirichlet, must be computed using the prior.

Structure learning has to be approached differently since computing the exact posterior over Bayesian
network structures is intractable for large networks. Search and score approaches are the most common
methods in finding network structures that fit a data set. They pose structure learning the structure as an
optimization problem. The search component is an algorithm with the goal of identifying high scoring
Bayesian network structures. The scoring function returns a score indicating how well a structure fits the
given data. When considering the approach holistically, the scoring function creates a landscape over the
different network structures that is traversed by the search method. The search method is used to find the
the global maximum of this landscape, which indicates the structure that best fits the given data.

3.1 Scoring Functions

Common scoring functions used to evaluate Bayesian network structures are the MDL, BIC, and the BDe(u)
score. The Minimum Description Length score, MDL, is computed from a description length formula, which
is minimized using a search procedure. Structure learning using the MDL score was presented in [19]. The
Bayesian Information Criterion (BIC) score is also commonly used and is exactly minus the MDL score [14].
The BDe score is derived in [14]. The BDeu score is an extension of the BDe metric where the prior joint
space, conditioned on the network, is uniform. The BDeu score is quite common in other literature and
there have not been any definitive studies showing the merits of one scoring function over another. We use
the BDeu score because it has the following attractive properties. With complete data the BDeu score is
decomposable and can be expressed as follows:

Score(G,D) = Z Score(V;, Parents(V;))

]

The implication of decomposability in the BDeu score is that the score only needs to be locally recom-
puted when a change to the network occurs. For example, if a 3 variable network with the numbers 1-3
as variable names were changed by adding an edge from node 1 to 3, then only node 3’s score component
needs to be recomputed (since its parent set changed). Nodes 1 and 2 maintain the same contribution to the
score. For large networks this saves an immense amount of computation. Another important property of the
BDeu score is score equivalence. When two graphs are members of the same Markov equivalency class,
they both represent the same joint probability distribution. This implies that we only need to find a structure
in the same equivalency class as the optimal graph and the structure will be statistically equivalent to the
optimal graph.

3.2 Search

Search techniques used in structure learning are predominantly greedy, meaning they require heuristic in-
formation about subsequent states when choosing their next state. This is a computationally expensive
requirement. Stochastic search, which uses randomness in selecting a subsequent state, is less computa-
tionally expensive but does not return consistent results. The stochastic search Metropolis-Hastings Monte
Carlo [22] is used [21] as a search method in search-based structure learning. The most common search
method [3] applied in search and score is greedy hill climbing, which performs local operations on the net-
work that lead to the best change in score until no more positive changes can be made. Hill climbing can be
augmented with a TABU list [12] or random restarts to try and escape local maxima. Due to its greediness,
hill climbing is computationally expensive and cannot be run on high-dimensional networks.

Researchers noted that searching DAG-space is slightly redundant, since some local moves result in
a graph that is in the same equivalence class as its predecessor in search. Greedy Equivalence Search
(GES) [6] performs greedy search in the the space of equivalence classes and represents an equivalence
class by a partially directed acyclic graph (PDAG). GES theoretically finds the most probable network in
the sample limit if the distribution of the data is faithful. In practice, GES is only locally optimal, and there
were attempts [24] to overcome local maxima during greedy search by introducing randomness into GES.
This approach improves results but does not solve the problem of local maxima holistically. There are also
approaches that search over orderings of network variables instead of graphs. In a recent paper [8], the
authors use Markov Chain Monte Carlo (MCMC) to search over orderings and compute a posterior over
features (i.e the posterior probability over models that contain a particular feature). There was also work
done on searching orderings with genetic algorithms [20].

The class of algorithms most successful in learning high-dimensional networks use a hybrid technique
of reducing the search space and then performing search. Sparse Candidate [9] was the first successful

algorithm that was applied to a network with hundreds of nodes. Sparse Candidate constrains the search to
find up to k candidate parents for each variable by using heuristics. A subnetwork is then created using hill
climbing and the entire process repeats until the candidate sets do not change or there is no improvement
in the network score. Max-Min Hill Climbing (MMHC) [31] improves upon Sparse Candidate by offering
a sound method in finding parents and children of a variable and not limiting the number of parents per
variable. The method is sound because it performs sound conditional independence tests, which means it
returns only statistically equivalent networks that are consistent with the independence test. By using the
Max-Min heuristic only a single iteration is required for each variable to find candidate parents and children.
The component which creates the parents and children search space is called Max-Min Parents and Children
(MMPC) [30]. A greedy search is then performed in the MMPC search space to orient the edges in the
search space. Due to the previously mentioned benefits of the MMPC search space over Sparse Candidate’s,
we perform search in the MMPC search space, which is described in the following section.

3.3 MMPC

MMPC returns a candidate set PC' of parents and children for a variable in a Bayesian network given data
D. Running MMPC on each variable of a network produces a constrained search space or “an unoriented
skeleton” [31] of the Bayesian network. The true MMPC algorithm improves on the original MMPC algo-
rithm called M M PC. MM PC works in two phases. First we define the minimum association between
two variables given a set of variables. The minimum association for variables X and 7" given a set Z and a
dependency metric dep (where dep is the inverse of an independence metric) is defined as follows:

MinAssoc(X, T, Z,dep) = gnclg dep(X,T|S)

MinAssoc returns the lowest score for all subsets S of Z. The first phase of M M PC creates the set C PC
for our target variable 7' and augments it according to the Max-Min heuristic. The Max-Min heuristic favors
variables that maximize the minimum association with 7" with respect to C'PC'. The intuition behind the
Max-Min heuristic is to find the variables that are dependent on 7" no matter on which subset of C'PC' we
condition. The second phase of M M PC' attempts to remove false positives by testing for independence
on all subsets of CPC. If this holds for some subset then the tested variable is removed from CPC.
The MMPC algorithm runs M M PC' on each variable and removes more false positives by checking the
following: for every member X from a target variable 71"’s candidate set C PC, we remove X from CPC if
T is not a member of X’s CPC set. The correctness of the algorithm is shown in [31]. The implementation
of MMPC uses the x? test for conditional independence.

3.4 Other Approaches to Structure Learning

A different set of approaches to structure learning is known as constraint-based. A constraint based method
uses statistical dependence measures, for example the x? test, to discover dependencies between variables
in the network. Dependency information is then used to create constraints on the network structure, since
variables found to be independent cannot have an edge between them. The SGS algorithm [28] and PC
algorithm [29] are examples of constraint-based algorithms. A more recently presented constraint-based
algorithm [2], Three Phase Dependency Analysis, uses techniques from information theory to test for de-
pendencies and perform search.

Structure learning algorithms also use constrained search to reduce computation time. Optimal Rein-
sertion [23] is a constrained search that uses special data structures to be more efficient. It starts from a
particular network and then node by node removes edges and reinserts higher scoring edges by searching
through parent and children sets. An exact method for finding a network structure is proposed in [18], but

it is only feasible on networks that have under a hundred variables with restrictions on the structures. Vari-
ational methods for structure learning were proposed in [17]. There is also an approach [13] that learns
networks using frequent sets.

4 Model-Based Search

As discussed in the previous section, a common approach to learning high-dimensional networks using
search and score methods is to reduce the search space in order to use low dimensional search techniques
efficiently. Greedy search is quite effective for low dimensional problems, and the most intuitive solution
is to reduce our problem to something we already know how to solve effectively. Unfortunately, the main
weakness of greedy search, its inability to escape local maxima, becomes a larger issue in the reduced search
space. Solutions like adding TABU lists or using random restarts do not address the problem directly. We
are still performing local search with these methods, and the results cannot substantially improve until we
can efficiently explore different regions of the search space. Model-Based Search (MBS) is designed with
a global perspective in mind. By using information we gain during search and some moderate assump-
tions about the search space, we can direct search towards promising regions of the search space where we
encounter higher maxima.

In most cases, a high-dimensional search space will contain a few promising areas fairly near each other
and many low scoring regions that are far from the optimal solution. By focusing on promising regions
in the search space, we avoid running through many similar and low scoring structures. MBS constructs a
model of the search space and discards low scoring areas. This is contrary to a TABU search where low
scoring structures are maintained. MBS maintains a model of regions in the search space that it determines
promising. It then uses the knowledge of promising regions to further explore the search space and improve
the model until search does not discover higher scoring regions.

Updating the model of the search space is done by sampling. MBS heavily samples regions that receive
high scores from a heuristic and discards samples that are low scoring. This adaptive sampling can also
be viewed as a communication between samples, where one sample sends a message to a few others to
help explore a promising region. This approach helps avoid local maxima. Figure 2 gives an illustration of
a sample in a 5-sample model that encounters a maximum and is later moved to aid search when a more
promising region is found.

(a) Iteration = ¢ t(b)Iteration =t + k

Figure 2: (a) At iteration ¢, sample A is stuck in a local maximum. It will either remain there if the other
samples have not found a better region to search and claim it is the global maximum or (b) join the other
samples at iteration ¢t 4+ k when they encounter a more promising area.

Using Model-Based Search requires the following: a sampling method for exploration, an initial sam-
pling strategy, an evaluation function, and a distance metric that forms the landscape of the evaluation
function. Any sampling method can be plugged in to explore the search space. It is also helpful to also pick

a method for sample improvement if the sampling does not include a score improvement criteria. Metropo-
lis Hastings Monte Carlo [22], which rejects samples that score below a threshold, is commonly used. The
initial sampling strategy should construct the initial model using domain information, heuristics, or by sam-
pling uniformly.

The distance metric has to create a search landscape that meets the following assumption for MBS to
work effectively: the search space has to be continuous, in the sense that high scoring samples will be near
other “similar” high scoring samples. The search space cannot have one extremely good sample that is far
away from all other samples because our model assumes that sampling in high scoring regions will increase
the likelihood of encountering high scoring structures. Figure 3 illustrates a good and bad landscape for
MBS.

(a) (b)

Figure 3: (a) A good landscape for Model-Based Search, where the landscape is continuous and contains
several wide hills where sampling in a region will lead us to the maximum. (b) A bad example where there
is one very narrow maximum far from any other high scoring regions, so sampling in the region will not
lead us to the global maximum.

The evaluation function takes two metrics into consideration. First is the quality of the sample given by
some energy or scoring function, which we call the sample score. Second is a metric used to help maintain
distant samples, which prevents search from becoming too concentrated. This metric is called the radius
and is defined as follows: the shortest distance to a sample with a higher score, normalized by the largest
distance. A weighted sum of these metrics is known as the model score and is used to evaluate the fitness of
the samples in our model.

Model-Based Search Algorithm
1. Create model by allocating n initial samples
2. Compute model score of each sample
3. Prune low scoring samples
4. Allocate new samples to sampling method
5. Sample around high scoring samples

6. Test for convergence and either go to 2 or terminate

Figure 4: The steps of the Model-Based Search algorithm

Using our sampling methods, evaluation function, and distance metric as building blocks, we can imple-

ment MBS using the steps in Figure 4. The next section describes the implementation of these steps applied
to Bayesian network structure learning.

4.1 Model-Based Search for Bayesian Network Structure Learning

We conduct Model-Based Search in the Max-Min Parents and Children (MMPC) [30] search space, which
is a reduced space of candidate parents and children for each variable (described in Section 3.3). Using a
reduced search space allows for hill climbing to be used in sample improvement, which results in a less
strict, efficient initial sampling.

4.1.1 Initial Model

Since the search space we are modeling is large, we need to spread our initial samples. If the samples are too
concentrated, the search may ignore a region that it cannot reach in future iterations. In using MBS to search
an energy landscape of protein configurations [1], the initial sampling of the search space is done uniformly.
There has been work done [15] on uniformly generating sparse DAGs. An efficient implementation of
uniform DAG generation would benefit MBS except when using hill climbing for sample improvement.
Using hill climbing in sample improvement already guides the samples towards the most promising set of
regions in the search space. This means spending time sampling uniformly would be wasteful because we
know a priori that the majority of high scoring structures will have a significant amount of common edges.
Our implementation of initial random graphs simply maintains randomness in the initial samples that will
eventually contain the high scoring features encountered by Monte Carlo or hill climbing. Random DAG
generation is implemented as follows:

e Create random ordering of |V| variables
e Connect each member of the list up to a maximum of & parents

By creating a strict ordering and connecting each variable to a variable further in the list, the graph is guar-
anteed to be acyclic. There are also two sources of randomness: a random ordering and random connections
adhering to the ordering. Connecting each node to a maximum of & (3 in our implementation) parents main-
tains sparseness. Initial sparseness is beneficial since heavily connected graphs will usually contain spurious
edges which lead search to a local maximum.

4.1.2 Distance Metric

Since we only want to explore regions of the search space that could lead us to the global maximum, we
maintain samples in high scoring regions while also keeping samples that are far away from the current
samples to prevent our search from being too concentrated. To perform this type of sampling we need to
define a distance metric between two samples. The distance metric is a critical component as it determines
the landscape of our search space. We also want to maintain the property that nearby samples have similar
features.

A simple distance metric implementation is the sum of the exclusive-or of two networks’ adjacency
matrices. This is essentially accumulating the difference in the DAG structure. This basic distance metric
is computed easily but contains a few flaws. Reversed edges are counted twice in making two samples
dissimilar whereas in some networks (e.g ones in the same equivalence class) the orientation of an edge
bares no effect on the statistical meaning of the model. An easy fix is to discount reversed edges. A more
computationally expensive solution is to convert each structure to a partially directed acyclic graph (PDAG),
which represents a structure’s respective equivalence class, and compute the difference between the two

PDAGs. We can also go a step further and include statistical similarities between two Bayesian networks.
This can be done using a statistical test, such as mutual information. Mutual information is defined as:
P(a,b

MI(A,B) = P(a,b)log——+~~
(48) = 3 Plasbos 5o

P(a) is computed by normalizing the count of “a” in the data set. By factoring in a missing edge’s statistical
effect on the model, two samples are different if the set of edges in their intersection contributes to the
statistical meaning of their respective models. A missing edge with high mutual information will have a
large contribution towards the sample (BDeu) score and is therefore more significant when comparing a
structure that contains the edge and a structure that does not.

4.1.3 Allocation of New Samples

To explore around our promising samples, each region in the model is assigned a particular number of
new samples to be generated by the sampling methods. The amount of samples per region is determined
by the model score (described in the previous section) of the sample representing the respective region.
The sample score component of the model score in our implementation is the BDeu score, and the distance
metric component is the difference of two DAGs weighted by mutual information. Regions where the model
score is the highest are sampled the heaviest. The total number of samples is kept consistent with the initial
number of samples by pruning (section 4.1.6).

4.1.4 Sampling Regions

Once the number of samples has been allocated to a region, the search space is sampled in this region. This
is done by running Metropolis Monte Carlo [22] from each sample. Metropolis Monte Carlo explores the
region by performing a random walk using add edge, delete edge, or reverse edge as operations. It accepts
higher scoring steps and some lower scoring ones based on a Boltzmann function:

scorenew —Score, g4

P(t)=e KT

By changing the parameter 7', one can adjust the threshold for accepting a low scoring sample.

4.1.5 Sample Improvement

After sampling there is a sample improvement step. Monte Carlo improves scores while performing its
random walk, but even a few steps of hill climbing can add high scoring edges that Monte Carlo may take
a long time to encounter randomly. This step is specific to MBS in Bayesian Network structure learning
and is motivated by the property that high scoring structures will usually contain a significant amount of
common edges. The sample improvement algorithm is greedy hill climbing (described in section 3) with the
following technique to save computation. Since a local move only affects a local component of the scoring
function as discussed in the background section, we only need to keep track of the best local move per node.
Initially this requires computing the score increase for every possible edge in the search space, but after this
initial computation we only have to recompute the best move for the node that was affected by the most
recent move. We then check a data structure that caches the maximum score improvement from every local
operation and perform the best operation.

10

4.1.6 Model Pruning

Since we want to keep our model at a reasonable size, there is some discarding of low scoring samples.
We discard samples that correspond to regions of the search space that are not promising for the search
to explore further. The remaining samples after pruning indicate the regions that will be explored in this
iteration of MBS.

4.1.7 Convergence

We define convergence as stagnation in the improvement of the model. MBS is set to halt after £ number
of iterations where the maximum score does not improve. There may be more effective measures of conver-
gence, but to keep our experiments consistent, we follow the measure of convergence for the algorithms we
test against.

4.2 Implementation Detail
4.2.1 Checking for Cycles

Since Bayesian networks adhere to the DAG constraint then we must check for cycles after making any
changes to a graph. Checking for cycles must be done efficiently since it must be done so often. In our
implementation, we store extra information in order to perform cycle checking in less time. We follow the
algorithm of [11], where maintaining an ancestor matrix that is the size of the adjacency matrix of the graph
is sufficient for a significant time boot. Checking for cycles after edge addition and deletion is constant, and
checking for a cycle after an edge reversal is linear. Updating the ancestor matrix after an accepted edge
addition is linear, while removal and reversal are quadratic.

4.2.2 Causal Explorer

Causal Explorer is a Matlab Bayesian network structure learning package developed at the University of
Vanderbilt’s Discovery Systems Laboratory and contains many of the implementations in [31]. The MBS
implementation was done using functions made available in Causal Explorer, so the other algorithms imple-
mented could be closely compared with MBS.

4.3 Variations on MBS

The implementation of MBS discussed in this paper performs search in the Max-Min Parents and Children
search space and creates initial samples in this search space as well. Using a reduced search space for
this particular implementation of MBS is essential because we use hill climbing as a sample improvement
method. The advantage of this method is if the reduced search space contains most of the edges in the
optimal graph, we can improve the scores of our samples more efficiently and still encounter a near-optimal
solution. The process is more efficient because we are not waiting for Monte Carlo to randomly encounter
the edges that most improve the score. Using only Monte Carlo also leads to samples with many edges that
do not significantly improve the score and are not in the optimal graph. These are also dense graphs near
maxima in the search space.

Since the heuristics used for constraining the structure search space are not perfect, we can only find
the best structure in our reduced search space. This may not be the optimal structure when searching the
original search space. A variation of the current implementation of MBS has the potential for better results
but cannot rely on greediness. In the variation, the algorithm creates initial samples in the MMPC search
space but then performs the search component in the entire DAG search space. For this approach to be

11

tractable, sample improvement by greedy search must be removed from MBS. Maintaining a greedy search
space for each sample in the original unconstrained search space is too expensive, so sample improvement
must be less greedy (e.g relying on Monte Carlo). We eventually encounter the issues discussed above with
Monte Carlo, so a high performing implementation remains a challenge.

S Experiments

In the first experimental section, we present experiments varying the parameters of Model-Based Search,
compare it to a distributed search that does not share information, and show it is a low variance stochastic
search. In the second experimental section, we compare the performance of Model-Based Search with the
Hill Climbing (augmented with a TABU list) and the Max-Min Hill Climbing algorithms implemented in
Causal Explorer. For the Gene network, hill climbing is replaced with the Sparse Candidate algorithm
also implemented in Causal Explorer. MBS is shown to consistently find higher quality networks on high-
dimensional networks using two separate metrics. The data used in all experiments is generated from a
known network, so the learned network can be compared with the optimal result. Table 1 shows the networks
from which the synthetic data sets were generated and their properties.

DATA SET VARIABLES EDGES DOMAIN RANGE
CHILD 20 25 2-6
INSURANCE 27 52 2-5
ALARM 37 46 2-4
CHILD10 200 257 2-6
INSURANCEI10 270 556 2-5
ALARMI10 370 570 2-4
GENE 801 972 3-5

Table 1: Networks used in experiments and their properties. The domain range is the range of the domain
sizes of the variables in the network (e.g a domain range of 2-3 indicates binary variables and variables with
3 possible states).

Note that the suffix 10 means the original network was pasted 10 times and connected randomly as
in [31]. All experiments are performed using 1000 data samples except where noted. We found that us-
ing more data samples leads to over-fitting, where networks with a higher score than the network which
generated the data are found. Also, some real-world data sets may not contain an immense amount of
data samples, so 1000 samples is a balance between over-fitting and having enough information about the
distribution.

Unless noted in a specific section, experiments on networks with under 100 variables are learned with
10-sample MBS with 20 Monte Carlo and 10 hill climbing steps per iteration. Networks with over 100
variables are learned with 15-sample MBS with 40 Monte Carlo and 15 hill climbing steps per iteration.
Sparse candidate experiments use maximum parents parameter of £k = 5 and conditional mutual information
as the statistical test. MMHC, Hill Climbing, and MBS terminate after 15 iterations with no improvement.

5.1 Experiments with MBS
5.1.1 Variance

Since MBS is a stochastic search algorithm, we show the results of running MBS on the same data with
different random seeds. Results (Figure 5) indicate a low variance on the output of MBS, and we can see

12

that it performs consistently regardless of the randomization seed. The standard deviation is over 15 runs
per data set.

Standard Deviation of MBS on the Gene Network Standard Deviation of MBS on Alarm10 Network

-648 -176

-176.5 |
-649 1
-177 4

-177.5 4

-178
-651 I MBS
EMMHC

HWHC

MBS
EMMHC
SCA

-178.5 4

BDeu Score
BDeu Score
H

-652 - 179 |

-179.5

-653 -

-180 |
-654 1

-180.5

-655 -181
Gene Alarm10

Figure 5: MBS is a stochastic algorithm and its variance is shown on data sets Gene and Alarm10. The error
bars indicate one standard deviation. The graphs show that the variance of MBS is small enough that we can
consistently compare results with the other deterministic algorithms like hill climbing, MMHC, and SCA.

5.1.2 The Model

To show the benefit of maintaining a model of the search space, we ran 15 independent trials of 1-sample
MBS and compared the results with a 15-sample MBS run. 15 runs of 1-sample MBS is a distributed
search that does not use any information during search since the samples do not communicate. The results
are shown in Figure 6. None of the fifteen trials reached the score that 15-sample MBS obtained in the
equivalent number of iterations. 15-sample MBS also maintains the highest score throughout each iteration.
This makes clear the advantage of using the knowledge gained in search to bias the next iteration.

5.1.3 Distance Metric

We performed experiments using four different distance metrics. The first is setting the distance between
every sample as 1. The second is the exclusive-or of the two graphs. The third is the exclusive-or discounted
by reversed edges and the fourth is the third metric weighted by mutual information. These experiments
were run on the child10 data set and the results are shown in table 2. Four experiments per trial and 10
trials were performed. Every trial had a unique random seed that was shared by the four different distance
metric experiments per trial. The results show that the first metric, having every sample equidistant from the
others, performs the worst. The simple exclusive-or is the second worst of the metrics. Unfortunately the
metric weighted by mutual information did not outperform the third metric as we had hoped. This leaves
future work to determine if the metric can be improved, perhaps by a weighting or a different statistical test.
The results do indicate that the distance metric affects performance, and our intuition about improving the
distance metric is correct.

13

15 Sample MBS Vs. 15 Runs of 1 Sample MBS

-188 |

-189

-190

-191}

=192}

BDeu Score

-193}

—194 /!

-195 MBS (15 Samples)| |

_196 |1l — — — MBS (1 Sample) 4

mﬁ

5 10 15 20 25 30 35
Iteration

Figure 6: The performance of 15 independent 1-sample MBS runs represented by dashed lines versus a
single run of 15-sample MBS. MBS with 15 samples shares information about the landscape and achieves
better results than multiple, independent runs of 1-sample MBS, which can be thought of as a generic
stochastic search.

METRIC 1 METRIC 2 METRIC 3 METRIC 4
AVERAGE SCORE -187.242866 -187.235452 -187.216303 -187.220316
BEST SCORE 0 2 5 3

Table 2: The average score for each metric and the number of times it scored best over 10 trials

5.1.4 Number of Samples

The results varying the amount of MBS samples are in Figure 7. The graph is expected to look like a
decaying exponential since at some point adding more samples will not significantly help exploration of the
search space. Since the experiments are not repeated, the variance of the algorithm is not accounted for and
the graph has some outliers. The graph does indicate that 10-sample MBS performs best on this particular
trial of the Gene network. Since using hill climbing in sample improvement accounts for the majority of
the score increase, even 5-sample MBS achieves good results. So if computation time is an issue, using
low-sample MBS will not dramatically detract from the results.

5.1.5 Sample Improvement

By using different sample improvement parameters we can achieve different results and different properties
for our final networks. The experiments were run on the Insurancel0 data set with 15 samples. The results
of running different sample improvement parameters are presented in Table 3 and are sorted by the ratio of
Monte Carlo steps to Hill Climbing steps per iteration of MBS. We can see the best results considering score
and SHD is a 2 to 1 Monte Carlo to Hill Climbing ratio.

14

Optimal Amount of Samples in MBS

45 S
O 5
Or o 10
* 15 %
35+ + 20
x 25
30} O 30
m
£
< 250
£
20 * +
15+
10t 0
5 Lo
-656.5 —656.4 —-656.3 —656.2 -656.1 —-656 -655.9 —655.8 —-655.7 —655.6

BDeu Score

Figure 7: The performance of MBS on the Gene network with varying amounts of samples. The optimal
setting would be at the bottom right (minimum time and maximum score). Without the outliers, the graph
shows that the performance of MBS levels off when a large number of samples is used, and the increase in
score comes at a very high computational cost.

MONTE CARLO STEPS HILL CLIMBING STEPS BDEU SCORE SHD

20 20 -224.9327 305
15 10 -225.6822 307
30 20 -224.2427 281
30 15 -224.0934 272
20 10 -224.2876 281
40 15 -224.1827 279
15 5 -224.8624 297
10 3 -225.0196 284
40 10 -224.7923 276
80 20 -223.9007 279
5 1 -225.5447 308
100 5 -224.7261 308

Table 3: MBS with different ratios of Monte Carlo steps to Hill Climbing steps. Below the middle line the
ratio of Monte Carlo to Hill Climbing steps is less than 2 to 1.

15

5.2 Score Improvement

Figure 8 shows the the BDeu score achieved on the low dimensional networks over 10 data sets (referred to as
trials) per network . Model-Based Search beats or equals hill climbing in the MMPC search space (MMHC)
in each run and occasionally beats regular hill climbing, which searches the entire space of legal moves. Hill
climbing is the leader on low-dimensional networks because the search space is not very complex, and there
is essentially a single large hill in the landscape that hill climbing can easily scale. MBS can only match
or slightly improve on MMHC when the reduced search space does not contain all the edges of the optimal
network.

When we consider the high dimensional networks in Figure 9, MBS shows even more improvement over
MMHC. On the gene network data, MBS scores higher than MMHC on all runs and Sparse Candidate on all
but one run. MBS clearly outperforms hill climbing when running in the same search space since it is more
complex and hill climbing gets stuck at a lower maximum. MBS is also the best performer on the network
with the highest dimensionality, Gene.

Child Scores Insurance Scores

-17.9 T T T -19.9 T T) T
* - MBS * - MBS
x-- MMHC x-- MMHC
© - HC 20+ O - HC H
_18F g *
¢ ° o o -20.1F B
—184f % * * — . o
* [}
X % 202 B
o
182 ° ot °©
o - r B)
5 * £ -20.3¢ o i
3 3
(2] 2]
& * 2 0
@ 1831 1 8 -204% *]
(o} X
*
*
* -2051 * *) B
-18.4 1 4 o
o x * +*
2061 q
o]
-18.51 g *
L -20.7| B
_186 _208
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
trial trial
Alarm Scores
-14.3 T T T
* MBS
x - MMHC
-14.40 A
o o HC
o)
*
-145F * q
M o
-14.6 " x % 1
* x
1471 q
®
2 {
@
-14.8F q
> x
a * ©
@ x
-14.9F B
o
-15F o) B
*
-15.1F o B
*
-15.2 % B
x
_153 I I I % I I I I
1 2 3 4 5 6 7 8 9 10

Figure 8: Score results for low dimensional networks Child, Insurance, and Alarm for 10 data sets generated
per network

16

BDeu Score

BDeu Score

Child10 Scores

Insurance10 Scores

-186.5 T T T -222 T 6} T
*-- MBS * - MBS
x -+ MMHC x-- MMHC
O HC 223 O - HC N
-187 *)
* *.
5 —224 ° o %
-187.5 8 © o 35 *
-225%F % 9
*
188 * *
h ¥ S 206t J
j53
o X n
3
X Q _oo7l 4
-188.5 | g -227
o]
-228 1 * q
X
-189 o R x
» -229+ E
X X
-189.5 = X
-230 x A
~190 I I I 231 I I I I I I I
1 5 6 9 10 1 2 4 5 6 7 8 9 10
trial trial
Alarm10 Scores Gene Scores
-175 T T T -650 T T T
* -~ MBS * - MBS
X~ MMHC X~ MMHC
O HC _651F * o SCA
-176+ B * @
e} —652 - 1
* X *
o
177 B -653 o % 3
* o]
* Q [}
X
© o * * g -654 - * o N X i
®
-178 B X
* § X o
R 655 q
* % X
-179 q —656 1
X *
-657 - b
-180 7
—658 5 A
X
-181 L L L -659 L L L L L L L
1 5 6 9 10 1 2 4 5 6 7 8 9 10

trial

17

Figure 9: Score results for high-dimensional networks Child10, Insurancel0,
data sets generated per network.

and Alarm10 and Gene for 10

5.3 Structural Hamming Distance

Although optimizing the BDeu score is an efficient method of reconstructing a Bayesian network, it is
flawed as a metric of network reconstruction. The score only corresponds to the a posteriori probability of a
network under certain assumptions, which the data may or may not uphold. Also, the score is dependent on
the amount of data samples and the particular priors used, so comparing results on varying amounts of data
is meaningless. It is also important to compare the learned network to the network which created the data.
The Structural Hamming Distance (SHD) [31] is a similarity metric between two PDAGs. Since Bayesian
networks can be statistically equivalent yet structurally different, we would like to compare two networks
in their equivalent class form as a PDAG. All the algorithms return DAGs instead of PDAGs, so we convert
DAGs to their equivalent PDAG using the method presented in [4]. The SHD algorithm is implemented as
described in [31].

SHD on Low Di i Data

50
45
40
35
30
Model-Based Search
25 W Max-Min Hill Climbing
Hill Climbing

20

15

10 I
0

Child (20) Insurance (27) Alarm (37)
Dataset Name (dimensionality)

o)

Figure 10: SHD results on low dimensional networks

The SHD results indicate the distance between the PDAG of the network encountered by search and
the PDAG of the optimal network (Figures 10, 11 and 12). The SHD is averaged over ten data sets that
were generated from each network. A lower SHD indicates similar PDAGs. The graphs show that MBS
consistently returns structures that are structurally the most similar to the network which generated the data.
Hill climbing performs worse because it will keep adding edges of low statistical significance if they improve
the score. MBS and MMHC use a constrained search space which inherently prevents the methods from
adding the spurious edges that are outside of the MMPC search space.

6 Conclusion and Future Work

Structure learning of Bayesian networks is a computationally expensive task that requires innovative algo-
rithms to produce high quality results. When high-dimensional data sets are learned, traditional search and
score methods cannot scale to handle the increase in search space size. Reducing the search space using
heuristics and running search has produced significant results, but there remains room for improvement.
This paper applies Model-Based Search, a global search technique, in a reduced search space. The results
are higher quality structures on high-dimensional networks than other leading structure learning algorithms.

18

SHD on High Di i Data

300

200

100 I — SR S
0

Child10 (200) Insurance10 (270) Alarm10 (370)
Dataset Name (dimensionality)

Model-Based Search
W Max-Min Hill Climbing
Hill Climbing

Figure 11: SHD results on high-dimensional networks

SHD Results on Gene Dataset

250

200

150

Model-Based Search
W Max-Min Hill Climbing

Sparse Candidate
100

50

Gene (801)
Dataset Name (dimensionality)

Figure 12: SHD results on the Gene network

The search achieves an improvement in the BDeu score and also in the Structural Hamming Distance indi-
cating structures that are more similar to the “optimal” structure which generated the data. The paper also
includes experiments on the performance of Model-Based Search. We show it is a low variance, stochastic
algorithm, which means it produces similar results consistently. Experiments also show the benefits of main-
taining a model of the search space. Finally experiments varying the parameters in MBS indicate optimal
settings and provide inspiration for future work.

Future work is abundant in applying Model-Based Search to structure learning. The author would like
to run MBS on more high-dimensional data sets and also obtain performance results on real-world data
sets. Finding the optimal settings for sample improvement is also a challenge, as is exploring different
sampling methods. Finally, implementing a high performance variation of MBS mentioned in section 4.3

19

can potentially produce even better results than obtained by the current version.

7 Acknowledgments

The authors would like to thank TJ Brunette for help with Model-Based Search and suggestions on the
implementation and this paper. We would also like to thank Sridhar Mahadevan for his additional review
of this paper. Last, special thanks goes to Laura Brown of the Discovery Systems Laboratory for help with
MMHC and Causal Explorer.

References

[1] TJ Brunette and Oliver Brock. Improving protein structure prediction with model-based search. Bioin-
formatics, 21:66-74, 2005.

[2] Jie Cheng, Russell Greiner, Jonathan Kelly, David Bell, and Weiru Liu. Learning Bayesian networks
from data: an information-theory based approach. Artificial Intelligence, 137(1-2):43-90, 2002.

[3] D. M. Chickering, D. Geiger, , and D. Heckerman. Learning Bayesian networks: Search methods and
experimental results. In Proceedings of the Fifth Conference on Artificial Intelligence and Statistics,
pages 112-128, Ft. Lauderdale, FL, 1995.

[4] David Chickering. A transformational characterization of equivalent Bayesian network structures. In
Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages
87-98, San Francisco, CA, 1995. Morgan Kaufmann.

[5] David Chickering, Christopher Meek, and David Heckerman. Large-sample learning of Bayesian
networks is np-hard. In Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intel-
ligence, pages 124—133, San Francisco, CA, 2003. Morgan Kaufmann Publishers.

[6] David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507-554, 2003.

[7] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, 39:1-38, 1977.

[8] Nir Friedman and Daphne Koller. Being Bayesian about network structure. a Bayesian approach to
structure discovery in Bayesian networks. Machine Learning, 50(1-2), January 2003.

[9] Nir Friedman, Iftach Nachman, and Dana Pe’er. Learning Bayesian network structure from mas-
sive datasets: The “sparse candidate” algorithm. In Proceedings of the 15th Annual Conference on
Uncertainty in Artificial Intelligence, pages 206-215, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[10] Zoubin Ghahramani and Michael 1. Jordan. Supervised learning from incomplete data via an em
approach. In Proceedings of the International Conference on Neural Information Processing Systems
(NIPS), pages 120-127, 1993.

[11] Paolo Giudici and Robert Castelo. Improving markov chain monte carlo model search for data mining.
Machine Learning, 50(1-2):127-158, 2003.

[12] Fred Glover and Fred Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

20

[13] Anna Goldenberg and Andrew Moore. Tractable learning of large bayes net structures from sparse
data. In Proceedings of the Twenty-First International Conference on Machine Learning, page 44,
New York, NY, USA, 2004. ACM Press.

[14] David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The combi-
nation of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.

[15] Jaime S. Ide and Fabio Gagliardi Cozman. Random generation of Bayesian networks. In SBIA '02:
Proceedings of the 16th Brazilian Symposium on Artificial Intelligence, pages 366-375, London, UK,
2002. Springer- Verlag.

[16] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Snyder, J. F.
Greenblatt, and M. Gerstein. A Bayesian networks approach for predicting protein-protein interactions
from genomic data. Science, 302(5644):449-453, 2003.

[17] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.

[18] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian networks. Journal
of Machine Learning Research, 5:549-573, 2004.

[19] W.Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the mdl principle.
Computational Intelligence, 10(3):269-293, 1994.

[20] P. Larrafiaga, M. Poza, Y. Yurramendi, R. H. Murgam, and C. M. H. Kuijpers. Structure learning of
Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Trans.
Pattern Anal. Mach. Intell., 18(9):912-926, 1996.

[21] D. Madigan and J. York. Bayesian graphical models for discrete data. International Statistical Review,
63:215-232, 1995.

[22] N. Metropolis and S. Ulam. The monte carlo method. Journal of the American Statistical Association,
1949.

[23] Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search operator for accelerated and
more accurate Bayesian network structure learning. In T. Fawcett and N. Mishra, editors, Proceedings
of the 20th International Conference on Machine Learning, pages 552559, Menlo Park, California,
August 2003. AAAI Press.

[24] Jens Nielsen, Tomas Kocka, and Jose Pefia. On local optima in learning Bayesian networks. In
Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence, pages 435-442,
San Francisco, CA, 2003. Morgan Kaufmann Publishers.

[25] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufman Publishers, 1988.

[26] Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669-709, 1995.

[27] R. W. Robinson. Counting labeled acyclic digraph. In F. Harary, editor, New Directions in Graph
Theory, pages 239-273. New York: Academic Press, 1973.

[28] P. Spirtes, C. Glymour, and R. Scheines. Causality from probability. In Proceedings of Advanced
Computing for the Social Sciences, Williamsburgh, VA, 1990.

21

[29] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT Press, 2000.

[30] I. Tsamardinos, C. Aliferis, and A. Statnikov. Algorithms for large scale markov blanket discovery,
2003.

[31] I. Tsamardinos, L.E. Brown, and C.F. Aliferis. The max-min hill-climbing Bayesian network structure
learning algorithm. Machine Learning, 2006.

22

