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Abstract

Gupta and Kumar established that the per node throughput of ad hoc networks with multi-pair unicast traffic
scales with an increasing number of nodes as , thus indicating that network performance
does not scale well. However, Gupta and Kumar did not consider the possibility of network coding and broadcasting
in their model, and recent work has suggested that such techniques have the potential to greatly improve network
throughput.

Here, for multiple unicast flows in a random topology under the protocol communication model of Gupta and
Kumar [1], we show that for arbitrary network coding and broadcasting in a random topology that the throughput
scales as where is the total number of nodes and is the transmission radius. When

is set to ensure connectivity, , which is of the same order as the lower bound for the
throughput without network coding and broadcasting; in other words, network coding and broadcasting at most
provides a constant factor improvement in the throughput. This result is also extended to other dimensional random
deployment topologies, where it is shown that for the topology, for

networks and in , combined with the lower bounds of non-coding throughput, we show

coding&broadcasting provide no order difference improvement.
Of course, in practice the constant factor of improvement is important; thus, to more precisely characterize

the benefit of network coding for multi-pair communication in wireless networks, we derive tight bounds for the
throughput benefit ratio - the ratio of optimal network coding scheme throughput to the optimal non-coding flow

scheme throughput. We show that the improvement factor is for random networks, where is a

parameter of the wireless medium that characterizes the intensity of the interference. We obtain this by giving tight
bounds (both upper and lower) on the throughput of the coding and flow schemes. For networks, we obtain an

upper bound for the throughput benefit ratio as for large , where .
This is obtained by finding a tighter upper bound for the coding scheme throughput and a tighter lower bound for
the flow scheme throughput.

We then consider the more general physical communication model as in Gupta and Kumar [1]. We show that
the coding scheme throughput under the physical model is upper bounded by for the random network

and by for the case. We also show the flow scheme throughput for the case can achieve the same

order throughput as the coding scheme. Combined with previous work on a lower bound [2], we conclude that
the throughput benefit ratio under the physical model is also bounded by a constant. Thus we have shown for both
the protocol and physical model, the coding benefit on throughput is a constant factor.

Finally, we evaluate the potential coding gain from another important perspective - total energy efficiency - and
show that the factor by which the total energy is decreased is upper bounded by .
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I. INTRODUCTION

Multi-hop wireless networks have been intensively studied in recent years for both commercial and government
applications. Such networks, static or mobile, have the potential to serve as either a self-contained network that
provides communication without the presence of an established infrastructure, or as a ubiquitous bridge between
end users and the high speed wired infrastructure. Two representative applications are wireless sensor networks and
wireless mesh networks. Multi-hop wireless sensor networks can be deployed randomly in geographic regions to
collect large volume of environment data and provide distributed query services. Wireless mesh networks can be
potentially deployed in the streets of big cities, campuses, conference centers, combat fields, etc. Hence, issues of
the connectivity and capacity of such networks are of interest.

Even though these self-contained wireless mesh networks alone may not be enough to sustain all of the communi-
cation among users, they probably will be mandatory for supporting the last several hops to the end users, and thus
serve as a glue between the end users at any corner and the wired infrastructure. For either case, one major concern
with such wireless networks is scalability. Under a traditional communication model without network coding,
Gupta&Kumar [1] shows that the per node throughput of such random networks scales as

where is the total number of nodes in the network and each node needs to send to a randomly chosen destination
with a rate of . This result shows that as the total number of nodes increases, the many to many throughput
decreases polynomially. However, recent work by Ahlswede, Cai, Li and Yeoung [3] introduces the concept of
network coding (NC), and there has been tremendous interest in applying network coding in both wired [4] and
wireless networks [5] [6] [7]. For the wired case, the benefit of network coding in terms of throughput and capacity
is often limited. Specifically, for networks with bidirectional links that can be modelled as an arbitrary undirected
graph, [4] shows that the throughput improvement is upper bounded by a factor of for the single multicast case,
and upper bounded by one (no benefit) for the single unicast or broadcast case, and it is conjectured that there is
no throughput benefit for the multi-pair unicast case; this is called the Li&Li conjecture, which is still open with
no counter-examples found yet.

For wireless networks, network coding, combined with wireless broadcasting, can potentially improve the per-
formance on throughput [6] [7], energy efficiency and congestion control [5] [6]. In addition, recent work by Katti
et al. [8] demonstrates the potential throughput benefit of applying network coding to wireless networks through
constructive examples and experiments. Since network coding was not taken into consideration in Gupta&Kumar’s
original work [1] and the related works that followed, an interesting question raised after [8] is how much throughput
benefit can it provide to such networks. Answering this question will help us to better understand not only the
benefit and limitations of network coding on the capacity of wireless networks and networks in general, but also the
degree of scalability of random wireless networks, thus providing design guidelines for the coverage ratio between
wireless mesh net and the infrastructure wired net in hybrid networks.

The idea of [8] is to broadcast combined information (coded) of intersecting flows, and then each flow’s next
hop relaying node is able to decode its relaying flow’s traffic based on all of the broadcasts that it has received as
well as on local information (source data generated locally). In this way a node can potentially deliver to multiple
neighboring nodes multiple data flows with a single broadcast transmission. An example of this is shown in
Fig. 1. Without network coding and broadcasting, four transmissions are required; however, when the opportunistic
algorithm of [8] is applied, with the middle node broadcasting the XOR of and , only three transmissions are
required to move packets and forward two hops.

Thus, intuitively it appears that there could be a throughput benefit ratio proportional to the expected number of
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neighbors, in the case of uniformly random deployed networks. However, here we demonstrate that such
a large improvement is not possible; in fact, only a constant improvement in throughput can be achieved. Since
bandwidth is a scarce resource in wireless networks, and also because we may not use the ad-hoc mesh network
alone to support the end to end traffic, the significance of the constant factor matters. So we further provide bounds
on the scalar throughput benefit ratio and extend the results to more realistic communication models.

a
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Without coding/broadcasting 4 
transmissions

With coding/broadcasting 3 
transmissions

Fig. 1. An example demonstrating the benefit of Katti etc. [8]’s opportunistic coding scheme

More formally, we first derive a tighter upper bound on the throughput of schemes aided by network coding and
broadcasting. We obtain this by analyzing the information rate across a sparsity cut of the network. By exploiting
the geometric constraints on the receivers’ locations, we derive a fairly tight upper bound on the maximum number
of simultaneous transmissions across any sparsity cut. This, combined with an information compression coding rate
constraint, yields the throughput upper bound for the coding scheme. Next, we derive a tighter lower bound for
the non-coding scheme throughput in a semi-constructive way by showing that there exist flow schemes within a
constructive framework that can achieve the lower bound throughput rate. With these two bounds together, we show
that in the case, the constant factor improvement that network coding can provide for multi-pair concurrent
unicast throughput is bounded as for large , where is a parameter of the wireless

medium that characterizes the intensity of the interference and . For the case, we
obtain a tight benefit ratio as , i.e., we show that throughput improvement is the maximum achievable.

The reason that we can get this tighter result for the case is because of the lower geometric complexity in
than in the higher dimensional cases.

The protocol communication model of [1] is a nice abstraction of the wireless communication channel. A more
general and realistic refined model is the physical communication model [1]. To make our results more persuasive,
we also analyze the throughput benefit of network coding under the physical model. We show that the coding
scheme throughput is upper bounded by for the case and by for the case. We also show

a same order lower bound for the flow scheme throughput. Combining this and [2]’s previous result on the
throughput lower bound, we demonstrate that the throughput benefit ratio of coding schemes is also at most a

constant under the physical model.
At first, our results might seem counter-intuitive, since, with network coding and broadcasting, each node can

send information to all neighbors with one transmission as demonstrated in [8]. However, essentially each node still
needs to receive information one transmission at a time. In other words, whereas there is simultaneous transmission,
there is no simultaneous receptions. Since the information flow rate across any node also needs to be conserved,
the incoming information rate will be a bottleneck for the throughput improvement.

Another concern with multi-hop wireless networks is energy consumption. For either static or mobile nodes in
the network, the power is mostly supported by a self-carried battery which has limited energy. This is especially
true for low cost cheap sensors. [9] studies the problem of minimizing the total energy cost of collecting correlated
data at a single sink and proves that a special joint coding/routing scheme can achieve the minimum cost. In this
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work, we evaluate the energy efficiency for multiple source-sink pair unicast traffic. We assume the data (messages)
from different sources are independent of each other. Without network coding, the minimum cost scheme is to
straightforwardly send each source to its sink independently along a shortest path (in terms of energy cost) route.
We focus on the further coding gain based on the minimum cost flow scheme. For both the coding scheme and
flow scheme, we ignore the delay and throughput aspects and merely ask the question of how much energy could
be further saved by exploiting network coding and broadcasting. [10] gives coding gain bounds for the limited case
where overhearing is not used for coding, we conisder the more general case where coding is based on a node’s
current possessed info. including all the overhearings and show that this energy benefit is at most a factor of .
Main Contributions Our main contributions are summarized as follows:

We show that, contrary to the common intuition, for multi-pair unicast traffic in wireless multi-hop networks,
the benefit of network coding and broadcasting on the concurrent throughput rate is upper bounded by a
constant factor for both the protocol model and the physical model. This is true for random deployed networks
in , , and in general Euclidean space.
We further bound the constant factor as for networks and for the case.

We first characterize the throughput order of the coding scheme on such networks and also derive tight bounds
for the constants. We also develop tighter lower bounds for the non-coding scheme on such networks.
We show that the coding gain for energy efficiency is bounded by a constant factor of for the COPE [10]
type of point to point codings.

II. MODEL FORMULATION

For both static and mobile ad-hoc networks, we consider the network model of Gupta&Kumar [1], where nodes
are randomly located, i.e., independently and uniformly distributed, in a region of fixed area. The reason that this
model is often justified is two-fold: first, in reality, deploying a large volume of static nodes is costly, and random
deployment is the most economic option; second, even if the nodes are mobile, the mobility pattern is often either
dynamically random or not available for use, or, even if the knowledge is present, the cost to use the mobility
information may not be worth its benefit(e.g. imagine mobile users in the streets of NYC); in addition, often the
speed of the node movement is much far below the wireless signal transmitting speed, and thus the mobile case
can be treated as a static random network for the lifetime of a packet.

Gupta&Kumar [1] studies two types of regions: a disk and the surface of a sphere, both with an area of one
meter squared. More generally, we do not limit the shape of the region or its dimension. However, for simplicity
of presentation, we derive our results based on a unit square in two dimensions ( ), a unit line segment in one
dimension ( ), and a unit cube in three dimensions ( ).

There are source-destination pairs in the network. Each node in the network is a data source that needs to
route its data through multi-hop wireless communications to a destination node that is independently and uniformly
randomly chosen. The same protocol and physical communication models as in Gupta&Kumar [1] are employed.

For the protocol model, as shown in Fig. 2, a transmission from node to is successful iff the distance between
them satisfies and any other simultaneously transmitting node satisfies .
Here, is node ’s location, is the transmission radius and ensures a safety zone that limits the
interference; in particular, is a constant that depends on the properties of the wireless medium. In addition,
there is a finite bandwidth limit of bits/sec for each transmission. In order to ensure connectivity, the fixed

transmission radius for the protocol model needs to be at least [1].
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Fig. 2. The protocol communication model

The physical communication model [1] differs from the protocol model in that there is no fixed transmission
radius. Each transmission has a fixed power , a transmission from node to is successful if the signal to noise
ratio is above a threshold:

(1)

where is the node set of all other nodes that are simultaneously transmitting, is the ambient noise level and
is the threshold.

As in Gupta&Kumar [1], attention here is focused on the many to many throughput of the network, i.e. the data
rate at which each node can send to its destination node. A throughput (bits/sec) is feasible if there exists
a scheme that achieves on average. The throughput capacity of such a random network is defined as the
maximum throughput that is feasible with high probability.

Here, transmission schemes correspond to the same type of “spatial and temporal scheduling schemes that operate
the network in a multi-hop fashion and buffers at intermediate nodes when awaiting transmissions” as in [1]. Two
types of schemes are considered: a flow scheme and a coding scheme. A flow scheme is a non-coding scheme
where data are routed as commodity flows (duplication, forwarding, but no coding) and thus the broadcast nature
of the wireless medium is not helpful for the flow scheme for the unicast task. Gupta&Kumar[1] focus on the
throughput of flow schemes. A coding scheme is one that allows all of the operations in a flow scheme, along with
allowing messages received at each node to be decoded/recoded; in other words, intermediate nodes can send the
results obtained from applying arbitrary functions to all previously received bits and its own source data as long
as each destination node is able to decode the data intended for it from all of its received bits and local data. Thus
all possible benefits of combining network coding and wireless broadcasting as demonstrated in Katti etc. [8] are
incorporated in the considered coding schemes. The throughput capacity is denoted as for flow schemes and

for coding schemes. The throughput benefit ratio of the coding scheme is denoted as . As in

Gupta&Kumar [1], all packets are independent of each other whether they are from different sources or the same
source; in other words, there are no spatial or temporal correlations among the source data.

III. THROUGHPUT BENEFIT OF CODING SCHEMES UNDER THE PROTOCOL MODEL

In this section, we show that under the protocol modek, coding schemes provide at most a constant factor
improvement in throughput over flow schemes. In other words, there exists some constant (i.e. not dependent on

) such that . After this, we derive tight bounds for the constant factor.
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A. Sparsity Cut for a Random Network

Before we present the throughput improvement results, we redefine sparsity cut for a random network.
In general, a cut is defined as a partition of the nodes in a graph, the cut capacity is the sum of the links’

bandwidths crossing the cut, and the sparsity cut is a cut where the cut capacity divided by the traffic demand is the
minimum over all cuts. Since the network studied here is a random network embedded in an Euclidean space and
transmissions are between neighboring nodes, attention can be focused on a narrow class of cuts that are induced
by a line segment (or a plane in the case) that cuts the region into two regions. The cut length is defined as
the length of the cut line segment. The cut lines that we consider have zero width measuring such that no nodes
lie on it. Denote the two subregions divided by the cut as and . A sparsity cut for a random network is
defined as a cut induced by the line segment with the minimum length that separates the region into two equal
area subregions. For the square deployment region illustrated in Fig. 3, the line segment induces a sparsity cut

. Since nodes are uniformly randomly deployed in a random network, such a sparsity cut captures the traffic
bottleneck of these random networks on average. The cut capacity is defined as where equals
the transmission bandwidth times the maximum possible number of simultaneous transmissions (broadcast or
non-broadcast) across the cut from to 1; and equals the same quantity from to . This cut capacity
constrains the information rate that the nodes from one side of the cut as a whole can deliver to the nodes at the
other side as a whole. The number of sources in whose destinations are in is denoted as .

B. Throughput Order of Coding Scheme

The cut capacity is bounded by deriving an upper bound on the maximum number of simultaneous transmissions
across the cut. It is easy to see that all of the direct receivers of transmissions across a cut in one direction

lie in the shaded rectangle region with area as shown in Fig. 3. In [1], disks of radius centered

at each receiver are disjoint2. However, [1] does not exploit broadcast transmissions while a coding scheme does.
As shown in Fig. 4, with the consideration of broadcast and network coding, observe that such disks centered at
receivers of the same sender (broadcast transmission) could overlap, disks centered at receivers of different senders
are still disjoint. In other words, we have the following Observation:

Observation 1: The union of disks (with radius ) centered at the receivers of one transmission should be
disjoint from the union of disks centered at the receivers of another transmission.

1) case::

Lemma 1: The capacity of a cut for a region has an upper bound of where

Proof: The cut capacity is bounded by deriving an upper bound on the maximum number of simultaneous
transmissions across the cut. It is easy to see that all of the direct receivers of all transmissions across a cut in
one direction lie in the shaded rectangle region with area as shown in Fig. 3. When , Observation

1 means each transmission across the cut consumes at least an area of of the shaded region in Fig.3,
with the minimum achieved when receiver lies in the corner of the shaded region. Thus, the maximum number of

simultaneous transmissions across the cut is upper bounded by the area of the shaded region divided by ,

which is .

1The maximum number of bits of information per second that can be transmitted across the cut from one side ( ) to the other ( )
2Otherwise some sender is within of some other sender’s receiver.
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When , as shown in Fig. 5, any two receivers of two different transmissions require a difference

in their coordinates along the cut line. Thus, there can be at most simultaneous transmissions

across the cut.
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Since each transmission is able to send bits/sec, combining the two cases above, the cut capacity is upper

bounded by and , where .

Corollary 1: The sparsity cut capacity of a random network has an upper bound of .

Proof: Regardless of the shape of the unit area region, there exists a sparsity cut for each orientation of the
cut line. If we rotate the cut line, there has to be at least one sparsity cut with cut length . Hence, from
Lemma 1, we derive the corollary.

Next an upper bound for the throughput of coding schemes in a random network is derived.
Theorem 1: The throughput of coding schemes in a random network is upper bounded by

Proof: Assume the coding throughput of the node random network is . Then, by its definition,
with high probability (w.h.p.) there exists some coding scheme that, for some , during each time interval

(in seconds), every node can send bits of information to its corresponding destination node.
For a sparsity cut in the middle, by a Chernoff bound [11] argument we have that w.h.p. there are
pairs of source-destination nodes that need to cross in one direction, i.e., w.h.p.. Now

we view all of the nodes lying on the right side of as a super node, and treat all of the distinct messages it
receives from the left side of within the time interval as a single ‘meta’ message . We denote
the number of bits of as . According to the definition of our coding scheme, this meta message can be
arbitrarily coded but with only one coding constraint: by Shannon’s data compression theorem [12], in order for
the right side destination nodes to decode the original data from the left side sources which are independent of
each other, has to satisfy or w.h.p..

At the same time, our work above has provided a capacity constraint that upper bounds . A broadcast
transmission across the cut to multiple receivers delivers identical information to the receivers; however, by the
definition of , the identical messages will only be counted once in for one of the receivers. Also by the
definition of cut capacity and Corollary 1, we get . Combined with the coding constraint above,

we derive w.h.p.. Since is at least to ensure connectivity [1], and throughput is

defined as a high probability quantity, we have .

Theorem 2: The throughput benefit ratio is upper bounded by a constant:

Proof: Gupta&Kumar [1] already establishes a lower bound for the throughput of flow schemes,

where is a constant. Combined with Theorem 1, we get . Meanwhile,

since coding scheme is a superset of flow scheme, , thus .
This constant throughput benefit ratio is true for a random network deployed in any arbitrarily shaped region.

First, the upper bound for the throughput of the coding scheme still holds. Second, the constructive lower bound of
Gupta&Kumar [1] can in fact be extended to arbitrarily shaped regions, even though the asymmetry may cause the
constructive scheme in [1] to have a skewed load distribution for some cut. Since the region is of fixed area, the
throughput loss due to the asymmetric shape will be a fixed constant factor as increases. Thus, we have shown
that network coding combined with wireless broadcast provides no order-different improvement on the throughput
of a random network deployed in any arbitrarily shaped region.
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2) 1D case: The case is easier to deal with than the case. Traffic either goes left or right along one
line. However, differs from in that the transmission radius does not affect the order of throughput. Thus,
we are able to give a constructive lower bound for the throughput that does not have a factor as in the

and cases.
First we make the following straightforward observation.
Observation 2: Under the protocol, for any cut in the line, there can be at most one transmission across the

cut (including both directions) at any given point in time.
Lemma 2: The throughput of the coding scheme on a random network is upper bounded by

Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .
Consider the sparsity cut that cuts the line segment in the middle. Using a Chernoff bound [11], it is easy to

show that the number of sources that need to send data across from left to right is larger than w.h.p.,
and that the same is true for the number of sources crossing the cut from right to left.

Applying the same technique as in Theorem 1 and by Observation 2, we have , which
yields the desired result.

To our knowledge, there is no constructive lower bound for the throughput of a random network yet. In this
paper, we first construct a lower bound for a random network and show that its throughput capacity is on the
order of .

Lemma 3: The throughput of flow schemes on a random network is lower bounded by

where .

Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .

We choose a transmission radius , divide the line deployed region into bins each of length

and all together bins. Then by the same union bound argument as in [13], w.h.p. every bin

contains at least one node. Furthermore, a node in one bin can reach any node in an adjacent bin directly.
Routing consists of hopping from one bin to the next bin in direction of the destination unless the destination

is in the same bin as the source. Any node in the next bin can be a relay but for the last bin the algorithm will
choose the destination node itself.

Next we show that there exists a spatial&temporal scheduling scheme that on average allows each bin a chance to
transmit bits to each of its two neighboring bins every seconds. This is done by mapping the bin-hopping
transmissions to a new graph. For each bin we construct two virtual vertices in a new graph, one for transmissions
from this bin going to the right, one for transmissions going left. We connect any two vertices in the new graph
with an edge if the transmissions that they represent could potentially interfere with each other when occurring
simultaneously. When , each vertex in the new graph will have a degree of at most . By the graph coloring
theorem [14], colors are enough to color the vertices s.t. no two interfering vertices (transmissions) have the
same color. This gives a schedule of length where each bin gets a chance to transmit to both directions. When
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, we count the potential interfering bin transmissions and it is not hard to see that the vertex degree is at
most , so there is a schedule of length . Combining these two cases, we have on average
that every seconds each bin will get a chance to transmit one second ( bits) for both directions.

There are altogether bins. Denote the sum of the number of source and destination nodes in each

bin as . Then, using the Chernoff bound and the union bound of probability, we have for
all simultaneously w.h.p.. Also, using the Chernoff bound and union bound, for any cut, the number
of sources that need to send traffic across the cut is upper bounded by for each of the two directions,

where is an arbitrarily small constant. Thus a throughput of is achievable w.h.p.,

because there exists a schedule that can deliver bits/sec across any cut w.h.p.. This throughput is

just . Since as , it can be absorbed into the term,

yielding the lemma.
Theorem 3: The throughput improvement of the coding scheme over the flow scheme is at most a constant

factor; more specifically:

where .

Proof: This follows directly from Lemmas 2 and 3.
From Theorem 3, we see that, as in , coding schemes provide no order different throughput improvement

as in . One thing to notice is that in there is no factor in the throughput. The reason that such can
be achieved is because in the transmission radius has no order difference effect on the throughput. Intuitively,
in , as we increase the transmission radius , the number of hops and the relaying traffic for each node
drops linearly, while the spatial multiplexing drops quadratically, and thus the joint effect on throughput will be
decreasing linearly on . However, for , as we increase , the spatial multiplexing also drops linearly;
thus, there is no order difference effect on throughput no matter what we choose, and the factor can be
eliminated.

In [2], percolation theory is employed to construct a lower bound of the throughput in that removes the
factor. Essentially, this is achieved by using smaller for the majority of the transmissions. For , the

percolation result does not hold, but our result shows that the percolation technique is not required to remove the
factor.

3) 3D case: The case is similar to the situation. Applying the same technique as in , similar results
follows as below.

Theorem 4: The throughput of the coding scheme on a random network is upper bounded by

. More specifically, where .

Proof: The proof uses the same technique as in the and cases. One difference is now that, when

, each transmission occupies at least a volume of , i.e. one eighth of a sphere of radius ;

when , each transmission will occupy at least one fourth of a circle with radius on the cut plane.

Another difference is that ensuring connectivity in requires that . The rest of the argument

is the same.
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Theorem 5: The throughput benefit ratio is upper bounded by a constant:

Proof: Gupta&Kumar have already shown a constructive lower bound for the throughput of flow schemes in
[15], . Combined with Theorem 4, we get .

In general, we can show that for a random network in an abstract ( ) Euclidean space, the coding scheme
provides no order different benefit on throughput. More specifically, the coding throughput is upper bounded by

, and there exists a flow scheme achieving the same order throughput.

C. Bounds on the throughput benefit ratio

Now we bound the constant as tight as we can. The technique we used is similar to those we used in Subsection
III-B, but now we want to derive tighter bounds for the coding scheme and the flow scheme. We do this for the

and case.
1) 1D throughput improvement: The situation is different from or . Traffic either goes left or right

along one line. Also in the transmission radius does not affect order of the throughput. For , we derive
a tight bound, which is an upper bound as well as a lower bound, for the coding scheme throughput and a tight
bound for the flow scheme throughput, thus a tight bound for the throughput benefit ratio . The reason that we
are able to do this is because the simpler geometry of node deployment and we can choose larger transmission
radius in without sacrificing throughput.

From Theorem 3, we already know an upper bound of at least for . This is actually a quite loose bound. To
get a tighter bound, we first present two tighter upper bounds for the flow scheme and coding scheme, then show
that there exist corresponding schemes achieve these two bounds asymptotically w.h.p., thus make them also lower
bounds.

Theorem 6: The throughput of the flow scheme on a random network is upper bounded by

Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .
We use the same method as in Lemma 2. Additionally now we show for large , the usage rate of capacity of

a sparsity cut is at most for almost all the traffic crossing the cut in any flow scheme.

As argued in Lemma 2, w.h.p. there are at least sources need to cross the sparsity cut from left to right,
and the same for the other way around. Of all these sources, w.h.p. of them are from sources
that are more than away from the cut. We evaluate the cut capacity usage for traffic from these sources.

We first look at the case when . As shown in Fig. 6, the top transmission is a transmission
across the sparsity cut and the traffic is originally from sources away from the cut. Since the sender is
a relaying node, there has to be some supporting transmission to satisfy the flow conservation constraint.
Due to the wireless interference, the spatial gap between and another transmission to its right is at least

. Since there are at most sources within from the cut w.h.p., the transmission to pair up with
will be a transmission of traffic from sources away from the cut as well w.h.p.. More specifically,

for of bits per second cross the sparsity cut, the pair up transmission sent to
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also need to be supported by other transmission (to be forwarded in this case). And this pattern continues, we will
see that there is a drifting spatial gap of size at least between transmissions(see Fig. 6). In the end, this gap
will hit the cut and there will be a zero bits crossing period (silent period) for the cut, and the length of the silent
period equals the time slot length for .

From Fig. 6, we can easily see that there will be one silent slot for the cut at most every slots. When

is not an integer, we can actually approach its value arbitrarily close using arbitrarily large periodic patterns.
So we have shown that averagely for bits traffic that cross the sparsity cut every

second, the time needed is at least seconds. The rest of the traffic that needs to

cross the cut is the part, and it needs at least seconds. On average, the two parts
traffic has to cross the cut in one second, so , then we get w.h.p.. The

component will get absorbed in , thus we have for arbitrarily small , thus

.

For the case, the proof is almost the same. The only difference is now the gap is bigger and we are
drifting the transmissions to fill the gap. The cut usage will be bounded as one transmission across it at least every

slots, or equivalently at most one transmission can across it every slots. Again, this means a usable

bandwidth of across the sparsity cut.
Theorem 7: The throughput of the coding scheme on a random network is upper bounded by

where is an arbitrary small constant.
Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .
The proof differs from Theorem 6 in only one regard. For the coding scheme, one transmission could deliver

information to both directions. Thus as we can see in Fig. 7, the gap drifting pace is decreased, and so is the
frequency of the silent slot. Now we have one gap cross the cut at most every when . Arguing in

the same way as in Theorem 6 we derive . Similarly we can derive the same bound for the

case of .
Another subtle issue for the coding scheme is the flow conservation argument. Since the source data are

independent and by the throughput of the coding scheme we mean the throughput of the optimal coding scheme,



13

)(nr"%

Cut
& r(n)











"
&

12

Silent slot
Gap across the cut

S1 R1

R3

R3R4

S1

Fig. 7. Tighter Bound of coding scheme

there should be no redundancy in messages of the coding scheme. At the same time, any source information
delivers to that is not originally from has to be received by beforehand, and since information are all
maximally compressed, the receiving will consume an equal amount of time slots as the transmission of .
The difference from the flow scheme is that now the pairing is rather between the time fraction of receiving and
sending of a node than between transmissions. The actual receiving of the information forwarded could be more
than one transmissions from different senders, but the time fraction is still the same so the argument still holds.

Next we will show w.h.p. there exist schemes that can achieve a throughput arbitrarily close to the above two
bounds and thus the ratio of the above two bounds is a tight bound for the throughput benefit ratio.

Theorem 8: The throughput of the flow scheme on a random network is lower bounded by

Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large . We use the same binning technique as in Lemma 3 with the same bin size of but a larger

.
Since w.h.p. there are at least one node in each bin, we randomly choose a node in each bin as a representative

relaying node, which we refer as bin relaying node.
The flow scheme that we construct has two phases, the scheduling phase and the routing phase. Every second

will be split for the two phases. The first phase’s goal (scheduling) is to deliver the traffic generated by all the
nodes within this second to their corresponding bin relaying nodes using one hop transmissions, we denote the
time assigned to this phase as . The second phase (routing) is to relay traffic mostly among bin relaying nodes,
denote the time assigned as . The only exception in the second phase is when the destination is in the same bin
as the scheduled bin relaying node, we will route to the destination node directly in this case.

We design the routing phase to pack the transmissions in a pattern as shown in Fig. 6 but a bin approximating
version. What we want ideally is each transmission travels a distance of and there is a gap of exactly

between two adjacent transmissions. Here we tolerate a small disturbing of twice the bin size, . Thus in our

routing each transmission travels a distance in the interval of , each gap is in the interval of

.
By Lemma 3, there are at most source nodes in each bin w.h.p.. Also for the scheduling phase, each

transmission has a degree of confliction with other bins as due to the increasing of . Thus by the
vertex coloring argument as in Lemma 3, we know there is a scheduling scheme that can achieve the scheduling
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phase’s goal in time .
For the routing phase, also by Lemma 3, we know w.h.p. there are at most bits/second of data

that needs to cross any cut. By the bin approximation of the scheduling as in Fig. 6, the cut capacity usage is

at least where . Thus w.h.p. this scheme can support any throughput that satisfies

. Applying yields .

Again, the component gets absorbed in the term. Thus we get for large any throughput of
is achievable w.h.p. where is an arbitrary small constant.

Theorem 9: The throughput of the flow scheme on a random network is

Proof: This follows directly from Theorem 6 and 8.
Theorem 10: The throughput of the coding scheme on a random network is lower bounded by

Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .
Use the same technique as in Theorem 8. Schedule the flows as Fig. 7. Simply choose ‘XOR’ as the coding

operation. Each transmission will then broadcast to two receivers on both sides a ‘XOR’ result of the two flows
relayed at the sender going to opposite directions.

Theorem 11: The throughput of the coding scheme on a random network is

Proof: This follows directly from Theorem 7 and 10.
Theorem 12: The throughput benefit ratio on a random network is .

Proof: This is a straightforward conclusion from Theorem 9 and 11.
2) 2D throughput improvement: The case is harder to derive a tight bound for . The reason is two fold:

we do not have the flexibility of choosing arbitrary large transmission radius without sacrificing throughput;
packing non-conflict transmissions is more complex in the case than . We will first give a tighter upper
bound for the capacity of the sparsity cut and thus the coding scheme throughput , then we construct a tighter
lower bound for the flow scheme throughput .

We first define a two way cut capacity which differs from the previous cut capacity in that it evaluates the
maximum possible bits that can cross the cut concurrently, regardless of in which of the two directions. Note that
an upper bound for the two way cut capacity is automatically an upper bound for the one way cut capacity. In
fact, being able to bound the maximum packing of two-way instead of one-way transmissions across the cut makes
all the upper bounds we derived for the throughput a factor of tighter. Before we describe the upper bound, we
derive some basic properties for a transmission across a cut.
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Lemma 4: For any two transmissions across a cut, and 3, the line segments and
have no intersection point and can not be vertical to the cut line.

Proof: The first property is actually universally true for any two transmissions, not necessarily only for
transmissions across a cut.
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Fig. 8. Geometric properties of transmissions across a cut

As shown in Fig. 8, connect , draw the perpendicular bisector of . By the protocol communication
model, we know and . Thus and lie on one side of and and
lie on the opposite side. So there can never be an intersecting point between and . The middle case in
Fig. 8 can not occur.

Also if is vertical to the cut line, as we see in Fig. 8, is parallel to the cut line. Then one of the
transmissions could never cross the cut, contradicted with the assumption. Thus this is impossible for any two
transmissions across a cut.

Next, we construct a coordinate system for a cut . Let be the origin, the line of be the axis, and
a line vertical to be the axis (see Fig. 9). We denote a node ’s coordinates by . Order all of the
simultaneous transmissions across the cut by their intersecting points with the axis (the cut line), from small

coordinates to big ones. Label the sender-receiver pair of the ordered transmissions as , ,
, , where is the total number of scheduled simultaneous transmissions across the cut. Denote

for and .
Lemma 5: for all .

Proof: W.l.o.g., consider the first two consecutive transmissions in the ordered list and .
By Lemma 4, we know ; otherwise the ordering should be switched.

Senario : We first consider scenario as shown in Fig. 9 that the senders are on one side of the cut and
receivers on the other side. Within this, Fig. 9 shows the case for . There are two possibilities for

: either or .
When , from the facts that , , and

we can easily get thus .
When as shown in Fig. 9, we look at the triangle . By the protocol model,

, . From draw and intersect at , then
. Note that has to be between and because (because ). Then from

draw a line parallel to the axis, from draw vertical to and intersect with it at . Easy to see
. Since , . Thus we get , then

and .
3Note that each transmission could have multiple receivers, we just pick any one of them.



16

X

R1

S1 S2

)()1( nr""%

& r(n)

R2

'

Cut line
E

F

(

Y

A

Fig. 9. Tighter bound for packing transmissions across a cut: Scenario

Combining these two cases, we have shown for the situation when . Then,
apply two transformations, both separately and simultaneously: mirror mapping the two transmissions by the cut
line; reverse the sender receiver role of the two transmissions. We automatically show for all
situations of two senders at one side and two receivers at the other side.

Senario : The other scenario is when senders are on different sides. There are two cases for this scenario as
well.

Case a): When we have as shown in Fig. 10, using the same triangle technique we can get
thus .
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Fig. 10. Tighter bound for packing transmissions across a cut: Scenario case a

Case b): Fig. 11 shows the other case when . As it shows that now we have

.
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Fig. 11. Tighter bound for packing transmissions across a cut: Scenario case b)

Also by the axis symmetry of the cut line and sender-receiver symmetry we show for this
scenario. Combining these two scenarios, and noting that and can be an adjacent pair of transmissions
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anywhere in the ordered list , , the Lemma is proved.
Lemma 6: The two way capacity of a cut for a region has an upper bound of

Proof: Applying Lemma 5 to the fact that yields this.
Theorem 13: The throughput of the coding scheme on a square random network is upper bounded by

Proof: The proof is almost the same as Theorem 1, except that now we use the tighter bound for cut
capacity in Lemma 6, and We prove this by showing that for any given constant that is arbitrarily small,

for large .

Theorem 14: The throughput of the flow scheme on a square random network is lower bounded by

where
Proof: We prove this by showing that for any given constant that is arbitrarily small,

for large .

For the case of , we choose a larger for the actual transmission radius according to the given

which already ensures connectivity as . Then divide the square region into grid cells with

each cell as a square of size . Then is a valid transmission radius, by the same union bound
argument as in [13], w.h.p. each square cell contains at least one node.

Define a axis as one direction of the square edge, as the other dimension. We construct a scheme that is a
natural extension of the scheme in Theorem 8. Set the transmission radius to , route along cells that lies
in a line parallel to either the axis or axis. The scheduling and routing within one line is the same as the
case. To deal with the interference between lines, assign half of the time routing along lines in , half along ;
also schedule the transmissions along the lines or lines as every other line works simultaneously while the
other half of lines keep silent. Each source routes its data along axis first until it reaches a cell that is in the
same line as the destination cell, then it starts to route along the line.

By Chernoff bound and union bound, the load among lines is asymptotically balanced(equally loaded), more
specifically, w.h.p. the ratios of the load between lines is arbitrarily close to for large . Thus based on Theorem
8 we can evaluate the cut capacity usage level and derive the a lower bound as for

large .
For the case of , we choose and now schedule one line to transmit every lines

instead of every two lines. Thus for this case a throughput of is achievable. Combining

these two cases we prove the theorem.
Theorem 15: The throughput improvement of the flow scheme on a square random network is upper bounded

by

for large , where
Proof: From Theorem 13 and Theorem 14 we get this result.
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IV. PHYSICAL MODEL

In this section we extend our constant benefit ratio results for the protocol model to the physical model.
Denote the coding scheme throughput and flow scheme throughput under the physical model as and
correspondingly.

A. case:

Observation 3: Under the physical model, for any cut in the line, there can be at most one transmission
across the cut (including both directions) at any given point in time.

Theorem 16: The coding scheme throughput of the random network under the physical model is upper
bounded as:

Proof: As shown in [1], (1) implies that

(2)

for all , . Since , we always have . Also Observation 3 still holds, thus, our previous
result for the throughput upper bound holds.

Theorem 17: For any wireless medium with , the flow scheme throughput of the random network under
the physical model is lower bounded as:

Proof: Normally wireless mediums satisfy , then converges to some constant . The binning
technique that we used for the protocol model also works for the physical model, and we just need to schedule
the bin transmissions so as to guarantee the signal to noise ratio. This can be done by the following: first use

the previous protocol model schedule for a mapped protocol model from the physical model with ,

and then make this schedule a constant factor - - sparser. This guarantees the SNR with a constant factor lower
throughput but achieves the same order throughput as the upper bound.

Theorem 18: The throughput benefit ratio of coding schemes for the random network under the physical
model is a constant factor.

and

Proof: This follows from Theorems 16 and 17.4

B. case:

Before we derive the throughput bounds under the physical model, we show some geometric properties that
the transmissions across a cut under the physical model need to satisfy.

Under the physical model, Lemma 4 is only partially true: receivers could lie in a line vertical to the cut line.
However, the no crossing property for any two transmissions is still valid, and two senders of transmissions across
the cut in one direction cannot be in a line vertical to the cut line for the physical model. We have the following
lemma, which is actually also true under the protocol model.

4Implicitly, we also use the fact that because any flow scheme is also a coding scheme in the trivial sense.
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Lemma 7: Under both the physical and the protocol model, for any two transmissions across a cut,
and 5, the line segments and have no intersection point and can not be vertical to the
cut line.

Proof: The proof is similar to the proof of Lemma 4. Now we connect , draw the perpendicular bisector
of . For any communication model, protocol or physical, is always true.

Thus and lie on one side of and and lie on the opposite side. So there can never be an intersecting
point between and 6. Also if is vertical to the cut line, is parallel to the cut line. Then one of
the transmissions could never cross the cut, because if both cross the cut line, one of them has to cross as well
which is impossible from above. Thus this is impossible for any two transmissions across a cut.

Theorem 19: The coding throughput of a random network under the physical model is upper bounded by

for large .
Proof: We show that the maximum number of simultaneous transmissions across a sparsity cut in one direction

under the physical model is upper bounded by , and then use the same argument as in Theorem 13 to derive
the upper bound.

Under the physical model, nodes could transmit with any hop distance so long as the signal to noise ratio is
satisfied.

We order all the transmissions across the cut in one direction in the same way as in Lemma 5. Now, senders
are on one side since we focus on the one way capacity (crossing the cut in one direction). By Lemma 7, we can
argue in a similar way as Lemma 6 and apply (2), we have for
where is the total number of transmissions across the cut in that direction and . The sparsity cut
line has unit length; thus, we have

(3)

Consider a band region of size with the cut line in the center; by the Chernoff bound, we know that

w.h.p. there are less than or equal to nodes in this band region; thus, there are at most transmissions
with a radius less than across the cut. Then there are at least transmissions crossing the cut such that

any one of them has satisfying . Then, by (3), we have

Thus we obtain an order upper bound for the sparsity cut capacity, and then derive an upper bound for the coding
throughput in the same way as we did for the protocol model in Theorem 13.

Theorem 20: Franceschetti et al. [2] The flow throughput of a physical random network is lower bounded
by

5Note that each transmission could have multiple receivers, we just pick any one of them.
6Thus this is in general true for any two transmissions, not necessarily two across a cut.
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for large .
Theorem 21: The throughput benefit ratio of a physical random network is a constant, and

Proof: This follows from Theorem 19 and Theorem 20.
In summary, we have extended the constant throughput improvement of coding schemes over flow scheme to

physical communication models.

V. BOUNDS ON GAINS IN ENERGY CONSUMPTION

In this section, we evaluate the coding benefit from a different perspective, and ask the question of how much
the coding gain is in terms of the total energy consumption. We assume the COPE [10] type of coding is applied.
More precisely, in this section we consider the type of coding where the coded bits that each node sends out can
and will be decoded before recoding at the next hop, i.e., a node will not send out some information from other
nodes that it can not decode, refer to this type of coding as point to point coding. We assume packets are decoded
at the receiver side based on all its possessed information which includes all the overhearing information.

We define the coding gain as the ratio of minimum total energy cost of the flow scheme to that of the coding
scheme. Since nodes are uniformly randomly distributed, the expected per hop distance is uniformly the same across
the deployed region. We assume transmissions use the same power then the total energy cost is the total number
of transmissions multiplied by a constant depending on the transmission power but is the same for both coding
and flow scheme, so the coding gain equals the ratio of the total number of transmissions of the flow scheme to
the coding scheme7. In [10], the coding gain is bounded for the case of no opportunistic listening is allowed, we
now derive bounds for the general case when opportunistic listening is allowed, which is the major benefit that the
opportunistic coding relies on.

Before presenting the result, we define the overhearing range of the node as . Since is the
one hop range, characterizes the real signal transmission range. In other words, even though nodes may
choose a smaller distance for one hop, they could potentially use a much stronger transmission power (or much
larger than ) to increase overhearing range and opportunities for overhearing. We first analyze the case
when . We define the degree of a coded packet as the number of original source packets it combines
(coded into one packet)8, this coded packet aids the decoding of the original packets at their corresponding next
hop receivers.9

Lemma 8: The coding gain is lower bounded by .
Proof: A coding gain of is achievable even without overhearing. [10] shows that when traffic is going in

opposite directions along a path, the number of transmissions can be cut in half. Here we argue that w.h.p. there
exists a scheme that reduces the number of transmissions by half. First, the optimal flow scheme uses shortest path
routing (in terms of energy cost); second, because the nodes are uniformly random distributed, by the Chernoff
bound the traffic load ratio will be asymptotically one between the two opposite directions of any path. Thus we
can reduce the total number of transmissions of the whole network by one-half.

Lemma 9: The coding gain is upper bounded by when .
Proof: For any transmission of the coding scheme from to of degree , by the definition of point to

point coding, the information sources combined in this packet all come from points that lie on a circle of radius
7This is the definition of coding gain in [10].
8This is defined in the context of point to point coding, the non-coding packet has a degree of .
9Receivers may not decode only based on this coded packet but can rely on all history data.



21

centered at . Since , the original flow is uniformly distributed, and packets are still following

the shortest path route of the flow scheme, averagely, could overhear at most packets of information of the

sources coded in 10. Since the unicast sources are mutually independent, in order to decode this degree
packet at , it has to receive at least packets sent from . Thus, to deliver the original packets outgoing from

, it has to send at least packets, leading to a coding gain of at most for . Thus, the coding
gain of 2 is the upper bound.

Next, we study the case when the overhearing range is larger than the actual one hop distance. We show that
the overhearing gain can not compensate much of the loss due to higher transmission power. We assume a node
can decode everything it overhears, since coding is based on the underlying flow routing which is decided by the
randomly chosen source/destination pairs thus random paths, we expect in practice if a node can decode in this
random environment, it must be that the distributed random coding is designed to guarantee that the expected
number of overheard bits exceeds or equals the expected entropy of overheard sources.

Lemma 10: The coding gain is upper bounded by for , and when .
Proof: Let the total number of sources that is overheard (in any coded format) by a node and does not

originate from be . We draw a circle of radius centered at . Denote the average intersection length
between the circle and the path for any of the sources as . Then by point to point coding, on average, each of the

sources is involved in transmissions overheard by . Then the total number of original flow transmissions
that are overheard by is . Let the average degree of the replacing coding transmissions be ; at best,
each coded packet will involve one packet that originated from itself. Thus, in order for to decode all of the

sources, we need

Let . This means . Since is also the expected ratio of the number of original flow

transmissions to the number of coding transmissions, with consideration of the energy efficiency loss because of
using small to go multiple hops when the nodes can actually make one hop with the same power,

the overall coding gain for all the transmissions overheard by is upper bounded by . Noting

that ,11 the coding gain is less than when ; in general, it is less than . Since this is true for
any node picked in the network and this is a uniform sampling for the flow transmissions, we know on average
the coding gain for the whole network is upper bounded by .

Theorem 22: The coding gain in terms of total energy cost in a random network in Euclidean space (
) is upper bounded by .

Proof: This follows from Lemma 10 and 22.
In fact, If the deployed region is a sphere surface, then , the coding gain then has an tighter upper
bound as . If we do not assume the sphere surface or other torus type surface, then we have to deal with

the boundary effect. Even in this case, can be tighter bounded by , thus a tighter bound for coding gain as
. Certainly, for any situation, including other dimensional spaces, is always right, and thus is a

general bound of coding gain for any dimension and any type of regions.
10Packets are still following the shortest path route as in the flow scheme.
11Each source traverses the network along the shortest path.



22

VI. DISCUSSIONS

Our work, combined with the previous work of [4] on the throughput benefit of network coding for wired
undirected networks, seems to be not positive about network coding’s utility for improving network capacity, while
we believe this does not damage network coding’s overall benefit to improve the performance of information
networks in general. In the future, to improve the performance of any information networks, we still should check
if network coding will help. From previous successful/unsuccessful examples of network coding and our work, we
believe that what we learned is not that network coding is not helpful but rather better guidance on where network
coding’s true advantage lies. In fact, we think the key benefit of network coding lies in its ability to blur the
information’s identities. So where there is a need for information blurring, network coding can have much utility.
For example, communication in lossy, unstable, dynamic environments (e.g. Delay/Disruption Tolerant Networks
(DTN)), distributed storage/recoveries in disaster, fault-tolerant situations (e.g. growth codes [16]) etc. For these
scenarios, network coding’s ability to blur the information identities can help to balance out the risks and redistribute
them uniformly across all packets, which could benefit the delay, reliability and robustness of the system. Also,
the benefit factor is often in the order of because of the coupon collector effect. If we think about the
capacity benefit of network coding on directed graphs, the benefit also essentially comes from its ability to blur
the information identity. For our case of bidirectional wireless networks modelled as using lossless communication
channels without a random unreliable factor, even though network coding is able to blur the information identities,
the overall information content cannot be compressed with network coding and the capacity gain for this case is
thus limited.

The techniques that we used to bound the throughput benefit ratio, is to match the order of the upper bound
of coding throughput with a lower bound of the flow scheme throughput. We derive the upper bound for coding
throughput by analyzing the information flow across the sparsity cut of the network, bounding the maximum number
of transmissions from the receiving constraint and bounding the throughput by the coding constraint.

The well known Li&Li conjecture [4] on the benefit of network coding for undirected pint to point link networks
(no broadcasting) is related to our problem, it conjectures that network coding provides no throughput benefit for
such networks. There has been no counter examples found yet, people tend to believe it is true and there has been
some approach trying to prove it [17] but until today we only know it can be reduced to a long-standing open question
in Input/Output (I/O) complexity [18]. Also inspired by the coding scheme proposed in Katti etc.’s paper [8], we
conjecture that the only possible network coding scheme that could improve the throughput for wireless networks
is to do point-by-point coding, packets are decoded at the receiver side based on all the overhearing. Proving this
may involved solving the hardcore of Li&Li’s conjecture, but assuming this is true, it is possible that we can get
tighter constant upper bound for the throughput benefit ratio based on point-by-point coding.

VII. CONCLUSION AND FUTURE WORK

We study the benefit of network coding & broadcasting on the many to many throughput of wireless networks
under the framework proposed by Gupta and Kumar [1]. We show that the benefit is upper bounded by a constant
both for the protocol model and the physical model. Further, we develop tight bounds for these constants. We also
show that the energy saving factor in such unicast random networks is upper bounded by .

The tighter constant bound that we find for the throughput benefit ratio of the random network is still
loose, and we suspect that the constant factor is even smaller; specifically, we conjecture it is , and proving it even
partially may involve solving the well known Li&Li conjecture [4], which is still open. Thus, part of the future
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work is to develop tighter constant bounds for the coding throughput and flow throughput. The future work also
includes studying possibilities of improving the throughput with other forms of coordination among the wireless
nodes and studying the impact of network coding on delay and buffer size.
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