
eFlux: A Language and Runtime System for Perpetual Systems

Jacob Sorber Alexander Kostadinov Matthew Garber
Matthew Brennan Mark D. Corner Emery D. Berger

Department of Computer Science
University of Massachusetts, Amherst, MA

{sorber, akostadi, mgarber, mbrennan, mcorner, emery}@cs.umass.edu

Abstract
A key goal of mobile computing is untethering devices

from wires, making them truly portable. While mobile
devices can make use of wireless communication for net-
work connectivity, they are still dependent on an electri-
cal connection for continued operation. This need for
tethering to available electricity significantly limits their
range, usefulness, and manageability. Environmental en-
ergy harvesting—collecting energy from the sun, wind,
heat differentials, and motion—offers the prospect of un-
precedented, large-scale deployments of perpetual mo-
bile systems that never need to be recharged. However,
programming these systems presents new challenges:
perpetual systems must adapt dynamically to available
energy, delivering higher service levels when energy is
plentiful, while consuming less energy when energy is
scarce.
This paper presents eFlux, a high-level energy-aware

programming language and associated runtime system
that specifically targets perpetual mobile systems. eFlux
programmers build programs from components written
in C or NesC and label flows through the program with
different energy-states. The deployed program then
adapts to current energy levels by changing energy states,
turning flows on and off and adjusting their rates. We
demonstrate eFlux’s utility and portability with two per-
petual applications deployed on widely different hard-
ware platforms: a solar-powered web server for remote,
ad-hoc deployments, and a GPS-based location tracking
sensor that we have deployed on a threatened species of
turtle as well as on automobiles.

1 Introduction

A key goal of mobile computing is untethering devices
from wires, making them truly portable. As computing
moves from a handful of mobile devices per user to hun-
dreds of specialized devices, fully wireless operation will
become essential. While wireless networking has elim-
inated the need for wires for network communication,

nearly all devices depend on frequent wired connections
to electricity in order to recharge their batteries. The con-
tinual need for human involvement in power manage-
ment significantly limits the feasibility of having users
manage large numbers of mobile devices. The assump-
tion that a person will recharge batteries has also led to a
narrow class of solutions to mobile energy management.
Whether the system is implemented at the hardware, op-
erating system, or application layer, the goal has been
the same: maximize battery lifetime or target a particular
lifetime, while minimizing the impact on user-perceived
performance.
Environmental energy harvesting fundamentally

changes these assumptions. Solar, wind, heat differ-
ential, and motion-derived energy sources provide the
opportunity to build mobile systems that do not require
regular human intervention to charge batteries, thus
enabling large-scale deployments of mobile systems that
are completely untethered.
As two examples of perpetual systems, consider the

following: deploying remote outdoor access points and
tracking wildlife. In the first case, remote deployments
on volcanoes [23] and in forests, solar energy offers the
opportunity to cheaply deploy access points that require
no maintenance. The case for tracking wildlife is even
stronger: systems such as ZebraNet [11] have shown that
using solar cells to power portable sensors makes perpet-
ual wildlife tracking possible.
However, environmental energy sources also present

some unique challenges. The amount of available en-
ergy is often difficult to predict, and may change dramat-
ically with location, time of day, time of year, and current
weather. Traditional energy management, that merely
tries to minimize energy, does not consider these factors.
As an example of these variations consider two traces
shown in Figure 1. Each bar corresponds to the amount
of energy gathered by one of two mobile, solar-powered
devices over a two week period. Although both devices
show elements of the same general weather trend, the
two devices show significant variation in the amount of

gathered energy. Similarly, Figure 2 shows the amount
of energy that one device required to take a GPS reading
over that same two week period. Due to mobility, and
consequently the amount of time required to synchronize
with satellites, the amount of energy varies over an order
of magnitude. Even worse, comparing these two graphs
demonstrates times of plentiful energy do not necessarily
coincide with times of plentiful need.

Avg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

200

400

600

800

1000

Day

E
n

e
rg

y
 /

 D
a

y
 (

J
)

Figure 1: A histogram of the average amount of daily
energy gathered by two devices over a two week period.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

Time (days)

E
n

e
rg

y
 /

 r
e

a
d

in
g

 (
J

)

Figure 2: The amount of energy needed to take a GPS
reading over the same period shown in Figure 1.

It is crucial not only to avoid running out of energy,
but also to take advantage of available energy in order to
benefit the device’s users. For example, a solar-powered
tracking device could increase its sampling rate when en-
ergy is plentiful. A mobile data server could augment
text data with images, audio, and video as its energy bud-
get allows. Development of accurate measurement and
prediction of incoming and outgoing energy is essential
in implementing those policies. In any application where
adaptation is beneficial, managing harvested energy re-
quires an ongoing process of finding the best operating
state that the energy source will allow. The expression of
these adaptation policies, in conjunction with the logic of
the program, is difficult for programmers to implement
without extensive experimentation and data harvesting.

This paper presents the design and implementation of
a new language and runtime system, eFlux, for program-
ming perpetual computing systems. eFlux allows pro-
grammers to build programs from code written in a vari-
ety of different languages (e.g., NesC and C). By break-
ing eFlux flows into energy state-based paths, a program-
mer can easily write programs which provide different
service levels based on current available energy. The
eFlux runtime system then adapts to available energy on
the fly. Because eFlux operates at a high level of abstrac-
tion, it is portable: eFlux can generate code for a variety
of embedded platforms, including Linux and TinyOS.
To demonstrate eFlux’s utility and portability, we have

built and deployed two perpetual applications on embed-
ded platforms with very different hardware characteris-
tics. The first application is a solar-powered adaptive
web server capable of providing text, videos, and images
in a untethered deployment. The second, and more am-
bitious system, is a preliminary deployment of perpetual
location-tracking sensors on threatened turtles in West-
ern Massachusetts. Current attempts to protect these an-
imals have been limited by an inadequate understanding
of how they use their habitat. Researchers currently use
radio telemetry to track these turtles, which requires up
to three man-hours per location: this severely limits the
number of animals that can be studied. A tracking device
with a GPS receiver running eFlux records the turtle’s lo-
cation over time, providing a much finer granularity of
data. We demonstrate the efficacy of our perpetual loca-
tion tracking system both with an initial deployment on
turtles, and a large-scale deployment on automobiles.

2 eFlux Language Description

eFlux is a domain-specific language intended to sup-
port perpetual systems. These include a broad range
of energy-limited systems that follow an event-response
model of operation, such as devices that respond to ex-
ternal stimuli or to periodic, internally created interrupts.
eFlux combines both simplicity and elegance: its goals
are to make energy-adaptive systems simple to write and
easy to understand, and to enable the use of optimized
energy-aware runtime systems that automatically choose
the highest sustainable service level.
One method of building a language to support perpet-

ual systems is to start from scratch, incorporating energy
as a first-class concern, while trying to balance energy
adaptation with the features found in any programming
language. Such an approach would require programmers
to learn a new language while muddling basic constructs
such as loops and conditionals with policy. An alterna-
tive approach is to build a set of annotations to an ex-
isting language, thus easing the learning-curve for new
programmers, and leveraging existing analysis tools and
compilers. While this approach is frequently used to help

2

support legacy code bases, it does not translate well, as
the annotation syntax would have to be adapted to each
new language. More importantly, the resulting system
would still muddle the issues of adaptation with logic.
Instead, we have built eFlux as a coordination lan-

guage [7] that ties together code written in a conventional
programming language, like Java, C, or nesC [6]. This
approach provides programmers with a high level of ab-
straction that separates the concerns of energy adaptation
from program logic.
In addition to eFlux’s system for energy adaptation,

it is inherently portable between different languages
(Java/C/NesC) and operating systems (Linux/TinyOS/-
SoS). Porting an eFlux program from an XScale-based
device to a mote-class device requires only a modifica-
tion of any platform specific code used to implement
the program logic. This makes eFlux a natural candi-
date for use in mobile devices, given the wide variety of
platforms, operating systems, and languages currently in
use.

2.1 Flux
We have built eFlux using the Flux [4] programming lan-
guage as a starting point. While Flux was developed
for high-performance servers and to separate the con-
cerns of concurrency and logic, its programming model
is also a natural fit for many embedded devices. Like
servers, which respond to asynchronous requests, em-
bedded systems typically respond to events like timers,
sensed events, or packet arrivals. Before describing
eFlux, we provide a brief overview of the Flux language.
Flux is a declarative language that describes the

flow of program control from event sources through
event handlers. A Flux program is a directed acyclic
graph (DAG) consisting of the following elements: con-
crete nodes, abstract nodes, predicate types, error han-
dlers, and atomicity constraints. For compactness, in ex-
plaining Flux, we use examples from the eFlux program
shown in Figure 3. The additions for eFlux, explained
later in this section, are denoted in the source code com-
ments.
Concrete nodes correspond to code written in a con-

ventional programming language which performs a spe-
cific task. In Figure 3, GetGPS, LogGPSData, Log-
ConnectionEvent are all concrete nodes, and are imple-
mented by the programmer. Each concrete node takes a
set of input arguments and produces an output set of ar-
guments. For instance, GetGPS takes no input and pro-
duces two output variables: a GpsData t and a boolean.
A distinguished concrete node called a source node pro-
duces only output and initiates the execution of other
nodes. The Flux compiler combines these concrete nodes
into a single program targeted to a specific architecture.
Abstract nodes describe the flow of control and data

through multiple concrete or other abstract nodes. They

thus provide a modular way to build Flux programs. In
Figure 3, GPSFlow is an abstract node.
Conditional flows are implemented in Flux using pred-

icate types, programmer-defined Boolean functions that
are applied to a node’s output. In Figure 3, the StoreG-
PSData abstract node specifies multiple possible execu-
tion paths. By applying the full predicate to the output of
StoreGPSData, the Flux program decides the appropri-
ate path to take. Multiple paths in a Flux program have
semantics similar to those of switch statements in C.
Paths are tested in the order that they are listed in the
code, and the first matching path is chosen. Flux also
supports exception handling via error handlers, and al-
lows programmers to control concurrency with atomicity
constraints.

2.2 eFlux
The eFlux language comprises a set of extensions to the
basic Flux language. While Flux lets programmers de-
fine the sequence of operations that follow from events,
it lacks any method to express runtime adaptations. In
eFlux, we add constructs which let a programmer de-
scribe what runtime adjustments to make, as well as the
priority with which they should be applied. This applica-
tion is then mapped to an adaptive runtime system, which
continually adjusts the application in order to balance the
demands of fidelity and sustainability.
The keys to adaptation in an energy-limited system are

to understand: (i) the sequence of operations that follow
from external events, (ii) the probable costs of those op-
erations, (iii) the probable workload in the system, and
(iv) the probable amount of energy the system will ac-
quire, and (v) the adaptation policy. In each of these
cases, the eFlux programmer provides just enough infor-
mation to allow an adaptive runtime system to measure
the rest on-line. All five of these concerns are addressed
in two layers: the programming language and the run-
time system. Matters particular to a program, such as
the sequence of operations and the adaptation policy, are
relegated to the eFlux language, and matters that can be
automatically measured, or are particular to underlying
hardware and energy sources, are relegated to runtime
systems.
In providing language support for adaptation, our goal

is to balance the opposing goals of simplicity and ex-
pressibility. An overly simple mechanism would limit
the ability to express real adaptation policies. On the
other hand, the ability to express all possible adaptation
policies would likely negate the benefits of using Flux by
significantly increasing the complexity of the language
and underlying runtime system. Our goal is to allow
most real adaptation policies to be expressed with a min-
imal set of features.
In this section, we describe eFlux’s energy adaptation

features. We continue to use the application shown in

3

// Flux Concrete Source Node Declaration
ListenBeacon() => (msg_t msg);

// eFlux Timer Declaration
GPSTimer() => ();

// Flux Concrete Node Declarations
GetGPS() =>

(GpsData_t data, bool valid);
LogGPSData(GpsData_t data bool valid)

=> ();
LogGPSTimeout(GpsData_t data bool valid)

=> ();
LogConnectionEvent(msg_t msg) => ();

// Flux Abstract Node Declarations
HandleBeacon(msg_t msg) => ();
GPSFlow() => ();
StoreGPSData(GpsData_t data, bool gotfix)

=> ();

// eFlux States
// there is always an implicit BASE state
stateorder {HiPower};

// Flux Sources
source ListenBeacon => HandleBeacon;
source timer GPSTimer => GPSFlow;

// eFlux Adjustable Timer Limits
GPSTimer:[HiPower] = (1 hr, 10 hr);
GPSTimer:[*] = 10 hr;

// Flux Flows
GPSFlow = GetGPS -> StoreGPSData;
HandleBeacon:[*,*][HiPower]

= LogConnectionEvent;
StoreGPSData:[*,gotfix][*] = LogGPSData;
StoreGPSData:[*,*][*] = LogGPSTimeout;

Figure 3: A reduced version of eFlux source for the turtle
tracking application.

Figure 3 as an example.

Power states

Adaptation policies are often expressed as a set of utility
functions that describe the relative value of different op-
erations in a system. Both our own experience in build-
ing adaptive applications, as well as anecdotal evidence,
suggest that general utility functions are difficult for pro-
grammers to use or understand. A particular difficulty is
that of finding a common unit of measure between dif-
ferent components.
In contrast with previous approaches, we have found

that a simple partial ordering of service levels is suffi-

GPSTimer

GPSFlow

GetGPS

StoreGPSData

LogGPSData

ListenBeacon

HandleBeacon

LogConnectionEvent

LogGPSTimeout

HiPower State

Implicit
Error

Implicit Base State

Figure 4: A graph of a simplified turtle tracking applica-
tion

ciently expressive. While a utility function can express a
greater number of policies, such as non-monotonic val-
ues, and are amenable to a great number of interesting
analytical results, their usefulness is questionable while
severely complicating life for the programmer.
In an eFlux program, a programmer specifies an adap-

tation policy as a collection of behavior adjustments or-
ganized in a partial order, or lattice, called a state or-
dering. In a state order, adjustments are both declared
and assigned priority. An adjustment is declared simply
by listing it in the state ordering, and its priority corre-
sponds to the row in which it appears. All adjustments
on a given row are applied together.
Figure 5 shows how the sample application’s operat-

ing states are derived from the state ordering. An im-
plicit BASE state (S0) represents the program running
without applying any adjustments. Subsequent states are
defined recursively, by applying an additional level of ad-
justments to the previous state (i.e. Si = Si−1 + Li−1).
Also, a higher operating state is assumed to be more de-
sirable than all lower states.
The state ordering of an eFlux program defines which

operating states can be chosen by the runtime system.
In addition to declaring adjustments, the system designer
also must define what those adjustments are.

Adaptive Timers

One of the most common adjustments used to reduce
energy consumption is to periodically turn off energy-
hungry components, such as radios [20, 1] and storage
devices [9]. In the turtle tracking application described
in the introduction, the GPS receiver consumes two or-
ders of magnitude more power than all other compo-
nents combined. This cost makes the frequency of GPS
readings the most important factor in the life of the de-
vice. Adaptively adjusting the duty cycle of a component

4

GPS timer
1hr

Beacon
Logging

On

GPS timer
1.5hr

GPS timer
10hr

...

Beacon
Logging

Off

GPS timer
10hr

BASE State

HiPower State

Figure 5: Sample State Order.

or activity represents a trade-off between application fi-
delity and energy consumption.
Duty-cycle adaptation is implemented in eFlux us-

ing a special type of event source node called an adap-
tive timer. Adaptive timers differ from traditional Flux
sources in that they are not concrete nodes and are not
implemented by the programmer. Instead, the program-
mer specifies a range of acceptable timer intervals. For
example, the GPSTimer in the turtle application can fire
anywhere from every hour to once every 10 hours. The
interval is then set by the runtime system.

Energy-Based Service Levels

Another common way to trade value for energy is to
change the fidelity of data and the availability of services.
Lowering the quality of images, audio, or video reduces
the energy a device spends transmitting. Energy can be
conserved further by making some services unavailable.
For example, a device that answers queries for different
kinds of data might respond only to requests for text data,
while ignoring more expensive requests.
Fidelity and availability adaptation is provided in

eFlux using energy-state based paths. This concept is
akin to conditional execution in Flux, except that instead
of choosing paths based on output types, paths are cho-
sen based on the energy state set by the runtime system.
In the case of our turtle application, LogConnection is
called when HandleBeacon produces any type, and is in
a state labeled HiPower. If the node runs low on energy,
it may enter the implicit BASE state, and cease logging
beacons form other nodes to save energy. HandleBeacon
does not take inputs of the BASE state type, so the flow
ends in an implicit error that has no side-effects. In this
example, eFlux lets the programmer express this prefer-
ence for local operations over providing services to other
nodes when energy is low.

Discussion

One feature that we considered but rejected during the
development of Flux was to implement fine-tuned adjust-
ments in node fidelity. For instance, like timers, we could
have provided an explicit adjustment in the fidelity of a
node that performs an operation such as video encoding.
The runtime system would then have been able to adjust
this knob to adapt the fidelity of video encoding in a large
number of steps.
However, our experience with adaptive systems has

been that only gross levels of adjustment are used–video
is either high-fidelity, low-fidelity, or perhaps one more
level in between. While this is not true of eFlux’s
timers—they are finely adjustable—the semantics of a
timer, and the resulting energy cost is both simple to pre-
dict and effectively linear. For instance, firing a timer
twice as often will use approximately twice as much en-
ergy per unit time. However, the energy consumed by
a video codec would likely have a non-linear relation-
ship to its resolution. Tuning the fidelity would thus have
a corresponding non-linear effect on nodes downstream
that transmit that video. Recall that one of our goals is to
provide a language that is conducive to well-performing
runtime systems. Without an accurate prediction as to
what effect an adaptation will have, it is more difficult
to select the correct operating point. To find such non-
linear, and often noisy, relationships takes a great num-
ber of sample points, each of which may be consuming
too much or too little energy while the system runs.

3 Runtime System and Hardware Support

Mobile systems that depend on harvested energy are un-
usual in several ways. Harvesting energy presents the
prospect of very long-lived mobile systems that are lim-
ited primarily by the aging and decay of physical mate-
rials, rather than by energy consumption. However, in
order to successfully operate with harvested energy, it is
essential that these mobile systems gracefully adapt to
changes in energy. When running, an eFlux runtime sys-
tem must make predictions about the balance of incom-
ing and outgoing energy. By using the flow descriptions
in the program, on-line measurements of the cost of op-
erations and workload, and predictions about the amount
of incoming energy, the runtime system can adapt ac-
cording to the program’s policies.
One design goal in developing the runtime system was

to avoid any explicit training, such as measuring the sys-
tem under load in a lab. Not only is this process painful
for programmers, it is inherently fragile, possibly re-
quiring repeated measurement every time the program is
changed. Similarly, the system must be adaptive to dif-
ferent battery sizes and peripherals such as radios.
The runtime energy adaptation, takes as input a set

of measurements and predictions about consumption and

5

production, and makes a decision about the ideal state of
the system. Such a broad mandate leads to many possi-
ble runtime system designs. We have focused on build-
ing a single runtime system that is suitable for a broad
array of low-power platforms, such as Motes [19] and
Stargates [22], powered by solar energy. The Mote plat-
form in particular has a relatively small memory size,
constraining the runtime system to a small set of online
measurements. The use of solar energy leads to a partic-
ular set of energy prediction algorithms.

3.1 Energy Consumption Model
The energy consumption model of a program includes:
(i) the energy cost of each path through the program, (ii)
the rate at which each source node produces an event,
and (iii) the predicate probabilities in the system. Each
time an eFlux flow completes, the runtime system track
an exponentially weighted moving average (EWMA) of
the energy cost of the flow, the average frequency with
which the source fired, and the exact flow that the re-
quest followed. For instance, in the example in Figure 3,
there are three possible flows through the program, each
with a different energy cost and frequency. Measuring
the consumption of each path requires hardware support,
described later in the section.

3.2 Energy Source Model
Adapting to changing energy sources also requires a
model of how much energy the system is going to re-
ceive in the future. While eFlux is not tied to any par-
ticular energy production method, we have chosen to
concentrate on solar power. In the case of solar, the
amount of energy is highly variable, and is only semi-
predictable—predicting sun intensity is similar to pre-
dicting the weather. However, two EWMA models have
been previously proposed.
In the Environmental Energy Harvesting Framework,

the authors use an EWMA filter to predict future so-
lar energy production [12, 13]. This EWMA essentially
predicts that the energy production in the next day will
be largely similar to recent days. Further, the predictor
makes the same prediction for subsequent days as it does
for the next day.
While their work uses the prediction algorithm as part

of a larger cost function, we have extracted the prediction
filter for use in eFlux. The algorithm is as follows. The
system measures the energy production in a time period,
t, that is Te in duration, and assigns this value as E(t). It
then applies an EWMA to predict the expected value of
E(t + 1) as follows:

E(t + 1) = αE(t) + (1 − α)E(t − 1) (1)

The time period Te is taken as a whole day [12]. An al-
ternate method is to split the predictor across an array of
48, half-hour, slots that takes time of day effects into ac-
count [13]. The second method consumes more memory,
but is useful in certain scenarios—the evaluation demon-
strates the effective differences in these predictors.

3.3 Energy Adaptation
Using the measurements of consumption and production,
the adaptation system chooses the ideal state for the sys-
tem to use. The overriding goal in adaptation is to avoid
two states: an empty battery and a full battery, while
providing the highest fidelity to the application. In the
first case, an empty battery removes the ability to make
adaptation decisions altogether, even to run high priority
flows. In many devices, it also imposes a period of dead
time for the system to recover the battery from a fully-
discharged state—the battery must slowly charge up to a
minimal level before the device can turn on again. In the
case of a full battery, any additional energy that the sys-
tem gets is wasted, and could have been used for increas-
ing the fidelity of the application. Any state of the battery
between these two states is equivalent, and the system
makes adjustments to avoid an empty and full battery. In
an ideal sense, the particular size of the battery is irrele-
vant, as the system must consume energy at a rate equal
to the rate of energy production—-the battery only acts
as a buffer to ride out periods of low energy production
and to store excess energy.
Periodically, the runtime system makes a decision

about the ideal state for the system. The design of the
algorithm is primarily driven by simplicity, and we have
targeted eFlux to run on a variety of platforms, including
embedded, memory and CPU-limited microcontrollers.
For less constrained platforms, more complex algorithms
can be used.
To find the target state, eFlux starts by assuming the

system runs at the highest energy state in the lattice, with
the minimum frequency for all of the timers. It then reads
the capacity of the battery, and computes the state of the
battery at the end of a short interval of time Ti, using
the estimates of consumption and production over that
interval. If at the end of an interval, the battery is not
empty, eFlux computes the battery state at time 2n · Ti

for a horizon of n = {1..N} time intervals. If at any of
the intervals, the node exhausts its battery, the runtime
system starts over with a lower power state, and mini-
mum timers. Once it finds a sustainable state, it performs
a binary search of the space of possible frequencies, to
find a set of timers that is sustainable and maximal in
frequency. This process consumes just 100 ms of com-
putational time for our turtle tracking program with 31
flows and a time horizon of half a year.
Although our runtime system tracks path costs by EW-

MAs, it could capture more complete information with

6

histograms. A histogram yields adaptation solutions that
are tunable by the probability of running out of energy,
rather than by just the expected result. We leave this pos-
sibility as future work.

3.4 Hardware Requirements
As mobile computing hardware devices have prolifer-
ated, the need for accurate energy information has in-
creased. Most modern batteries sold with laptops and
PDAs contain an IC to measure and model the discharge
and charge characteristics. These are frequently referred
to as Gas-Gauge, or Fuel-Gauge chips; two popular
example include TI’s bq27000 and Maxim’s DS2770.
These chips include corrections for temperature, battery-
chemistry, and for aging and memory in batteries. How-
ever, they typically provide only a subset of information
needed for building effective runtime systems. The hard-
ware provides an averaged, large-grained view of the re-
maining energy in the battery, and the current rate of
charge or discharge—this is insufficient to tell the indi-
vidual rates of consumption and charge as both occur si-
multaneously.
Thus, in addition to a fuel-gauge chip, the runtime sys-

tem requires fine-grain current measurement to attribute
energy to individual program flows. For this purpose,
we have added a current sensor, a Maxim DS2751, to
our system, which separately measures the rate of con-
sumption. The current sensor measures current to within
0.6mA, which is accurate enough to measure differences
in current consumption due to radio, flash, or peripheral
use by individual flows on a variety of platforms. The
runtime system samples the current once every second.
To attribute energy to individual flows, we measure the
fraction of time that the flow was running during the pre-
vious second and assign it that portion of the previous
second’s energy consumption. The rest of the energy is
attributed to the runtime system and to the idle energy
consumption of the platform. Adaptation can only affect
the consumption of flows, not the overhead consumption.
Any errors in the system do not accumulate as the fuel-
gauge chip corrects eFlux’s notion of the battery capac-
ity. We quantify eFlux’s measurement accuracy in the
evaluation section.
Given the amount of energy consumed by the program

and runtime system, we can also estimate the energy pro-
duction rate. Adding the energy consumption over a pe-
riod to the loss or gain in battery capacity yields the en-
ergy production over that period. This quantity is then
fed into the energy prediction model as described previ-
ously.

4 Implementation and Deployment

eFlux brings together new hardware elements such as
charging control and solar power, a new compiler, two
runtime systems, as well as deployment. The designs for
the hardware, as well as a release of the application code,
compiler, and runtime system, are all available from our
website (prisms.cs.umass.edu).

4.1 Hardware
One of our goals for eFlux is portability to a wide variety
of hardware platforms and energy sources. Thus far, we
have implemented eFlux on two different hardware plat-
forms, a Mica2Dot mote, and an Intel/CrossBow Star-
gate, both powered by solar cells.
To support eFlux’s adaptation algorithms, we have

built a new charging and energy management board.
This board controls the solar charging of lithium ion
batteries, measures the capacity of the battery with a
Maxim DS2770, and measures the current consumption
using a Maxim DS2751. This board was designed to
accept a Mica2DOT mote as a drop-in module to the
board. We adapted some parts of the hardware design
from the Heliomote project [14]. As the hardware needs
of a Stargate-based system are similar, we connect the
board and Mica2DOT to the Stargate via serial to man-
age and measure the power consumption of the system.
The deployment platform for a turtle device, with board,
Mica2Dot, battery, and GPS is shown in Figure 6. This
board can handle a wide variety of solar cells, ranging
from a small, 25mA peak current cell up to an array
of 20-100mA cells, depending on component selection.
Additionally, eFlux requires no runtime changes when
changing the number of cells, since it only tracks the
amount of energy production, not how it was produced.

Figure 6: The energy measurement and charging board
with a Mica2Dot, GPS receiver, and battery.

4.2 Compiler
The eFlux compiler is a three-pass compiler imple-
mented in Java, using the JLex Lexer and the CUP LALR

7

parser generator. It is based on the original Flux com-
piler [4], extended with support for energy adaptation.
The first two stages of the compiler are the same as Flux:
it builds a graph representation of the program and then
decorates each edge with input and output types. The
third stage links this intermediate code with the eFlux
adaptive runtime system and user-supplied code that con-
tains the program logic.
eFlux can be ported to new languages and architec-

tures with minimal effort. Our current implementation
targets two different environments: (i) an XScale-based
Linux system, using nodes written in C, and (ii) an Atmel
microcontroller-based TinyOS system using nodes writ-
ten in nesC [6]. There are some key differences between
the two environments. In a C/Linux environment, the
programmer supplies C functions that accept the same
types as described in the eFlux program. The runtime
system then invokes these functions as blocking calls,
and waits for the return value to pass to the next node in
the graph. For programs that require concurrency, any of
the concurrency mechanisms, such as threads and events,
work just as they do in the Flux runtime system.
The implementation for the nesC/TinyOS environment

is less straightforward. As TinyOS is based on split-
phase, event-based operations, the programmer-supplied
function does not follow the blocking semantics that
eFlux depends on—the function that implements a node
returns before completion. In this case, programmers are
required to make a small change to their code to make
the modules work with eFlux. The start of each node is
called with a nesC command, which is akin to a function
call, and the node signals its completion with an asyn-
chronous event containing the return values.
One feature of Flux that we have not incorporated fully

into eFlux is atomicity constraints. Flux gives the pro-
grammer the ability to encode the atomic constraints into
the Flux program, making it easier to build highly con-
current runtime systems. As our embedded programs are
not highly concurrent, eFlux supports minimal atomicity
constraints by guaranteeing that a particular node will not
be run more than once simultaneously.

4.3 Runtime System
The eFlux runtime system measures and adapts to en-
ergy usage and production. At the start and end of every
flow, the code generated by the compiler invokes a set of
functions that interface with the hardware, perform pre-
dictions, and calculate a running state. The result then
informs the rest of the runtime system which state the
system will operate in.

4.4 Trace-Based Simulator
We also modified the compiler to automatically gener-
ate a trace-based simulator at compile time. By feeding

an energy trace and traces for external inputs, we can
test different solar predictors, workloads, programs, and
adaptation policies. During deployment, the eFlux node
collects measurements of solar energy, consumed energy,
battery state, estimated idle power draw, estimated per-
path energy costs, path probabilities, and source frequen-
cies. All of this information is then used as input to the
simulator.

4.5 Deployment
In order to evaluate eFlux, we have completed three
different deployments that span a range of power con-
straints. While these deployments are somewhat lim-
ited in their scale and duration, we have gathered suf-
ficient data to demonstrate eFlux’s utility in performing
energy adaptation. Perhaps more importantly, these de-
ployments have driven the development of eFlux, rather
than following as a consequence of it—the applications
inform which features to add to the language, runtime
system, and hardware support. We plan to significantly
lengthen and increase the range of the experimentation
with the language in the future.

Turtle Tracking

Figure 8: Photo of an eFlux node on a Turtle.

The first deployment is motivated by the efforts of con-
servation biologists to protect threatened turtles. The
Wood Turtle (Clemmys insculpta), is found throughout
the Northeast and Great Lakes regions and into Canada.
They live primarily in and along streams; however, they
are also terrestrial for about 4 months of the year. Wood
Turtles are of particular interest since their numbers are
rapidly declining. Unfortunately, conservation efforts
have been hindered by a general lack of data due to cur-
rent tracking methods. Researchers currently track tur-
tles manually using radio telemetry and are limited to
taking a single location fix every 2-3 days for each ani-
mal being studied. The turtles often travel up to 1 kilo-
meter between fixes and practical concerns preclude the

8

BeaconFlow

Beacon

CaseSelect

GetBundleMsg

[isGetBundleMsg, *, * | *]

DeleteAllBundlesMsg

[isDeleteAllBundlesMsg, *, * | *]

Finish

GPSFlow

GetGPS

StoreGPSData

[* | *]

Compress

[full | *]

AddToGPSStream

CollectData

CommitGPSData

StoreRTData

[* | *]

CompressRTData

[full | *]

ListenBeacon

ListenBeaconFlow

LogConnectionEvent

BeaconTimer

RTDataTimer

RTDataFlow

GPSTimer

AddToRTDataStream

Figure 7: Graph representation of the full turtle-tracking application.

collection of location information at night. In order to
accurately understand how these turtles behave and use
their habitat, new tracking methods are required to col-
lect data at finer granularity.
Much of the development of eFlux is inspired by this

particular problem. We have designed and built an eFlux
node and program to run on the Mica2DOT environ-
ment. The graph and code listing for the full eFlux pro-
gram are shown in Figures 7 and 9. The turtle node in-
cludes a SiRF Star III-based GPS Receiver, an Ultral-
ife UBC581730 250 mAh battery, and one or two 4.2V
PowerFilm flexible solar cells. The node is packaged in
shrink-wrap tubing and the ends are sealed with a water-
proof epoxy. The design of the node is primarily driven
by form-factor—the node must weigh less than 50 grams
and fit without protruding from the shell. Figure 8 shows
the eFlux node mounted on a turtle’s shell.
Unfortunately, as our deployment took place at the

very end of an unusually cool fall, the turtles prepared
for hibernation early, and spent a large amount of their
time immobile and underwater. We thus collected rela-
tively little data from the turtles: five days of solar traces
and a handful of GPS locations.

Despite this small amount of data, we learned new
facts about turtle behavior that were useful from a zo-
ological perspective and that have led to improvements
in our system. In particular, we discovered that the tur-
tles were underwater 98.5% of the time. Because GPS
does not work underwater, we added a water sensor to the
node that lets the programmer specify that no GPS read-
ings should take place if the turtle is underwater. In ad-
dition, we found that the turtles receive a great deal less
energy while underwater, so little that even our upper-
bound for the GPS timer was not sufficient to let the node
survive. The combination of these two fixes should allow
the node to survive long periods of time underwater.

Automobile Tracking

As a proxy for the turtles, we performed a second deploy-
ment using automobiles. We used the same hardware,
adaptation policy, and runtime system, and collected two
weeks of data from five devices mounted on the roofs of
cars. The weather for that two weeks was highly vari-
able, with several days of consecutive cloudy weather.
These traces can be extended by looping them, which

9

typedef full IsStreamFull;
typedef isGetBundleMsg IsGetBundleMsg;
typedef isDeleteBundleMsg IsDeleteBundleMsg;
typedef isDeleteAllBundlesMsg IsDeleteAllBundlesMsg;

platform MICA2DOT:

//Node definitions
//Beacon flow

BeaconTimer() => ();
BeaconFlow() => ();
Beacon() => ();

//Listen flow
ListenBeacon() => (uint16_t addr, uint8_t version);
ListenBeaconFlow(uint16_t addr, uint8_t version) => ();
LogConnectionEvent(uint16_t addr, uint8_t version) => ();

//Runtime data collection flow
RTDataTimer () => ();
RTDataFlow () => ();
AddToRTDataStream() => (uint32_t num);
StoreRTData(uint32_t num) => ();
CompressRTData(uint32_t num) => ();

//GPS Timer flow
GPSTimer() => ();
GPSFlow() => ();
GetGPS() => (GpsData_t data);
Compress(uint32_t num) => (stream_t stream);
CommitGPSData(stream_t stream) => ();
AddToGPSStream(GpsData_t data) => (uint32_t num);
StoreGPSData(uint32_t num) => ();
Finish(uint32_t num) => ();

// Data Collection flow
CollectData() => (int action, uint16_t bundle, uint16_t src_addr);
CaseSelect (int action, uint16_t bundle, uint16_t src_addr) => ();
GetBundleMsg(int action, uint16_t bundle, uint16_t src_addr) => ();
DeleteAllBundlesMsg(int action, uint16_t bundle, uint16_t src_addr) => ();

//eFlux states (implicit BASE state)
stateorder {HiPower};

//Sources
source ListenBeacon => ListenBeaconFlow;
source CollectData => CaseSelect;
source timer BeaconTimer => BeaconFlow;
source timer GPSTimer => GPSFlow;
source timer RTDataTimer => RTDataFlow;

//Flows
BeaconFlow = Beacon;
ListenBeaconFlow = LogConnectionEvent;
GPSFlow = GetGPS -> AddToGPSStream -> StoreGPSData;
RTDataFlow = AddToRTDataStream -> StoreRTData;

StoreRTData:[full][*] = CompressRTData;
StoreRTData:[*][*] = Finish;

CaseSelect:[isGetBundleMsg,*,*][HiPower] = GetBundleMsg;
CaseSelect:[isDeleteAllBundlesMsg,*,*][HiPower] = DeleteAllBundlesMsg;

StoreGPSData:[full][*] = Compress -> CommitGPSData;
StoreGPSData:[*][*] = Finish;

//Adjustable Timer Limits
BeaconTimer:[*] = (25 min, 25 min);
RTDataTimer:[*] = (1 hr, 1 hr);
GPSTimer:[*] = (1 hr, 10 hr);

Figure 9: The Full eFlux source for the turtle tracking application.

gives us a good idea of how eFlux adapts to changing
conditions. In addition, this automobile-based deploy-
ment has led to bug fixes and other improvements to the
runtime system. While we plan to redeploy the turtle
nodes in a large-scale experiment in the spring, the eval-
uation we present here is based on data gathered from the
automobile-based experiment. The introduction includes
two sample graphs of incoming solar energy and the en-
ergy required to take a GPS reading. Also, a sample map
of GPS locations is shown in Figure 10.

Solar-Powered Web Server

For a third deployment we built a solar-powered web-
server in eFlux. We adapted this program from a web-
server written for Flux, and extended it with an energy
adaptation policy. The eFlux webserver serves text, im-
ages, audio, and video. When energy runs low it priori-

tizes text over images, images over audio, and audio over
video. The full eFlux program graph and source listing
is shown in Figures 11 and 12. This deployment allowed
us to test several different elements of eFlux. First, it
demonstrates the portability of eFlux between platforms
of different characteristics. Second, it highlights eFlux’s
ability to adapt to a much larger solar cell—in this case,
one 80 times larger in area than the one deployed on the
turtles. Finally, it demonstrates the ease with which an
existing program can be adapted to eFlux.
The webserver consists of the same charge board and

Mica2Dot assembly used in the turtle deployment, an In-
tel/CrossBow Stargate with a LinkSys WCF12 802.11
card, and an array of 20 thin film solar cells. Since PSM
is not supported in ad-hoc or master mode when using the
hostap drivers, we reduce the idle power consumption by
operating at a 25% duty cycle—25% of the time the node
is active and accepting requests, and 75% of the time is

10

Reply

ReadRequest

Handler BadRequest

error

ReadWrite

[*, *, video | Video] [*, *, audio | Audio] [*, *, image | Image] [*, *, text | Text]

Unavailable

[*, *, * | *]

Listen

Page

FourOhFor

error

Figure 11: Graph representation of the full adaptive webserver application.

remains suspended. If there are any clients associated
with the base-station it remains active until they disasso-
ciate. This duty-cycle brings the idle power consumption
down to 400mW, from the active power consumption of
1600mW. We deployed the solar cell array on a few dif-
ferent days to collect adequate solar traces for simula-
tion, and then lengthened those traces using solar inten-
sity data from the US Climate Reference Network, Na-
tional Climate Data Center and NOAA. By computing a
model that maps solar intensities to the current produced
by the solar cells, we can extend the trace backwards for
years worth of data. Note that this process only works for
the stationary webserver; because the turtles and cars are
mobile, we cannot use a straightforward model to quan-
tify the greater variations in solar intensity that would
result.
One improvement that we hope to make in the web-

server is to incorporate techniques from Triage [2] to
significantly lower the idle power cost of the webserver.
The Stargate platform does not have as great of dynamic
range, limiting the range that adaptation has to work
with.

5 Evaluation

Our primary goal in eFlux is to provide the maximum
sustainable service level without sacrificing availability
and with minimal overhead to the program. In this sec-
tion we evaluate the effectiveness of eFlux against this
goal.

5.1 Adaptation
The experiments described in this section demonstrate
the differences between different adaptation policies.
In order to providing a fair comparison between ap-
proaches, we use trace-driven simulations, based on data
collected during the two week automobile deployment
described previously. During this deployment, each of
the five nodes collected hourly measurements that we
then feed into the simulator described in the previous sec-
tion.
In these experiments we compare static policies,

which do not adapt but try to take GPS readings at a fixed
frequency, and eFlux adaptive policies. We use ten static
policies which vary from 0.1-1.0 readings per hour—the

11

typedef text TestText;
typedef image TestImage;
typedef audio TestAudio;
typedef video TestVideo;

platform STARGATE:

//Node definitions

Listen () => (int socket);
Page (int socket) => ();
ReadRequest (int socket) => (int socket, bool close, char* file);
Handler (int socket, bool close, char* file) => ();
Reply (int socket, bool close, int length, char* content, char* output) => ();
ReadWrite (int socket, bool close, char* file)

=> (int socket, bool close, int length, char* content, char* output);
Unavailable(int socket, bool close, char* file) => ();

//eFlux Power States
stateorder {Video,

Audio,
Image,
Text
};

//eFlux Sources
source Listen => Page;

//Flows
Page = ReadRequest -> Handler;

Handler:[*,*,video][Video] = ReadWrite -> Reply;
Handler:[*,*,audio][Audio] = ReadWrite -> Reply;
Handler:[*,*,image][Image] = ReadWrite -> Reply;
Handler:[*,*,text][Text] = ReadWrite -> Reply;
Handler:[*,*,*][*] = Unavailable;

//Error Handlers
handle error ReadWrite => FourOhFor;
handle error ReadRequest => BadRequest;

Figure 12: Full eFlux source for the adaptive webserver application.

Figure 10: A sample GPS trace from an automobile
mounted node.

same dynamic range available to the adaptive policies.
We also evaluate eFlux using three different energy pre-
dictors: the default predictor which uses a EWMA fil-
ter to predict daily energy(T=1), an hourly EWMA pre-
dictor(T=24), and a hypothetical oracle predictor, which
represents system behavior given perfect energy predic-
tion. We simulate each of these 13 policies for all 5
collected traces. For the static policies we show them
as continuous lines, as intermediate values are also valid
static policies.
In order to avoid measuring transient behavior based

on initial battery state and to show long-term behavior,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Frequency (Readings/hr)

%
 A

v
a
il
a
b

il
it

y

Static

EWMA (T=1)

EWMA(T=24)

Oracle

Figure 13: System availability is shown with respect to
energy policy.

we loop the measured traces to extend our simulations
from two weeks to two months, and report only the re-
sults for the last month. These results are discussed in
the following paragraphs.
Figure 13 shows the resulting availability for a single

trace with respect to the frequency of taking GPS read-
ings; adaptive policies are shown with respect to their
average frequency. In the static policies when the fre-
quency exceeds what the energy source can sustain, the
device availability drops off sharply, resulting in large
gaps in the collected data. All three adaptive approaches

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

400

450

Frequency (Readings/hr)

G
P

S
 R

e
a
d

in
g

s

Static

EWMA (T=1)

EWMA(T=24)

Oracle

Figure 14: The number of GPS readings taken are shown
with respect to the sampling frequency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

400

Frequency (Readings/hr)

W
a
s
te

 E
n

e
rg

y
 (

J
)

Static

EWMA (T=1)

EWMA(T=24)

Oracle

Figure 15: The amount of wasted energy is shown with
respect to the frequency of taking GPS readings. Even
with simple energy source predictors, the eFlux runtime
system is able to effectively use all available energy.

closely approximate the best sustainable static policy.
In addition, both EWMA-based systems achieve perfor-
mance comparable to using an oracle, in spite of their
simplicity. In our deployment, none of the five devices
depleted their batteries at any time.
At first, we found that it surprising that the predictors

would do as well as the oracle. However, a closer look re-
veals that given the size of the battery in the system, and
the typical rate of consumption, a full battery will last
for five days. This means that the solar-power predic-
tion does not need to be extremely accurate day-to-day,
as long as it is accurate on average. In systems where the
ratio of consumption to battery size is higher, the predic-
tion algorithms will have more impact.
Similar results are shown in Figures 14 and 15 with

respect to total GPS readings and wasted energy. In Fig-

1 2 3 4 5

0

100

200

300

400

500

Trace

T
o

ta
l
G

P
S

 R
e
a
d

in
g

s

Best Static Policy

EWMA (T=1)

EWMA (T=24)

Oracle

Figure 16: The number of GPS readings taken are shown
for different energy policies and energy traces. Despite
large variations in energy supply, eFlux is able to accu-
rately approximate the best sustainable energy policy.

ure 14, the frequency of GPS readings increases linearly
until the rate is no longer sustainable. Figure 15 shows
the energy wasted by overly conservative policies–in this
case the battery fills and it can no longer store solar en-
ergy as reserves. The figure demonstrates that the adap-
tive systems successfully approximate the best sustain-
able static policy with respect to both of these metrics.
In the interest of space, Figures 13, 14, and 15 show

these results for a single trace. The corresponding fig-
ures for the other four traces are almost identical except
for a difference in scale. The bar graph in Figure 16
shows how the number of total GPS readings varies be-
tween traces. Even though all five traces were collected
concurrently, their individual mobility patterns result in
very different sustainable operating states. This further
strengthens our case for energy-adaptive systems, as us-
ing any one of the ”best” static policies for all of the
devices will perform much worse than the adaptive sys-
tems.

5.2 System Overhead
In this section we discuss the overhead incurred by using
eFlux on our turtle/automobile monitoring node.
Since the focus of eFlux is energy, the energy over-

head of the system must be kept to a minimum. Here
we measure the energy costs of several operations per-
formed by the runtime system. We measure current draw
using an Agilent 54621D oscilloscope—measuring the
voltage drop across a 1-Ohm sense resistor. We integrate
the trace to determine the energy cost of the operation.
Since the node expends a small amount of energy when
triggering task boundaries, these are, in fact, conserva-
tive estimates of the actual task costs. These energy mea-
surements are shown in Figure 17.

13

Energy Costs
Operation Energy Time
Path Init 0.6µJ 0.3ms
Edge 1.4µJ 0.8ms

Path Cleanup 5.4µJ 2.1ms
GPS Reading 1 − 100J 20 − 400s
Evaluate State 0.5 − 2.0mJ 50 − 100ms

Figure 17: Measurements of eFlux overhead in compari-
son to GPS readings.

Periodically reevaluating the energy state, which
presents the largest single energy cost, varies widely de-
pending on the structure of the application graph and the
state of the system. If, for example, the battery is low
and little energy is expected, the algorithm will quickly
rule out higher power states. More complex applications
will also take longer than simple applications since they
have more flows to consider. As shown in Figure 17 the
turtle tracking application requires up to 2.0mJ, in the
worst case, to choose a energy state; however, since state
evaluation happens only once per hour, this cost is eas-
ily amortized, resulting in an increase of only 2µW to
the average power of the device. Also, there is a fixed
overhead incurred every time a path is executed, which is
equal to (6.0∗1.4N)µ J whereN is the number of edges
in the given path. In comparison with the cost of taking a
GPS reading this overhead is insignificant—differing by
at least 6 orders of magnitude.
The memory and code overhead of our eFlux runtime

system is also reasonable. On the Mica2DOT it requires
only 750 bytes of RAM—including a 300-byte heap
which stores flow variables—and 8 bytes of additional
space for each path in the program graph. In the applica-
tions we have tested, the runtime system also increases
the ROM footprint by 25KB-35KB, which also depends
on the size of the eFlux program. This fits easily into the
Mica2DOT’s severely constrained memory (4KB RAM,
128KB ROM).

5.3 Measurement Accuracy
The runtime system’s ability to accurately estimate the
cost of individual paths in the program graph, is vital to
being able to make accurate adaptation decisions. We
evaluate this accuracy by comparing measured task costs
with the system’s corresponding estimate for tasks that
consume different amounts of energy. We vary the en-
ergy consumed by the tasks by changing the duration of
an operation with roughly constant power draw—in this
case, we turn the GPS unit on for a period of time which
we vary from 100ms to 30s.
Figure 18 shows the results of this experiment. The

line represents perfect estimation accuracy—when the
measured and estimated costs are equivalent—and a

0 500 1000 1500

0

500

1000

1500

Measured Energy (mJ)

E
s

ti
m

a
te

d
 E

n
e

rg
y

 (
m

J
)

Figure 18: The dots represent the node’s energy mea-
surements of a path, while the line represents the true en-
ergy cost. The system is accurate for larger energy flows.

point’s distance above or below the line represents the
estimation error. Note that the system accurately esti-
mates the cost of heavyweight tasks (>1J) such as GPS
readings, but underestimates smaller tasks. As a result
of averaging performed by the fuel gauge chips, much of
the energy consumed by these short tasks is attributed by
the system to its idle consumption.
In applications, such as turtle tracking, where heavy-

weight tasks largely determine the system’s lifetime, in-
accurate estimates of small tasks has no noticeable effect.
In an application with only low-energy tasks the sys-
tem’s estimate of its idle power consumption will likely
change due to adaptation decisions, causing its adapta-
tion choices to oscillate. We are currently working on
both on improving cost estimation for small tasks and ex-
ploring the consequences of inaccuracy for small tasks.

5.4 Impact of Battery Capacity
Our final experiment examines the impact that battery
capacity has on the ability to adapt and the cost of pre-
diction errors using our adaptive webserver. Recall that
the webserver reduces its energy consumption by deny-
ing requests for certain types of data, such as video and
images, that come at a high energy cost. For this ex-
periment we simulate application behavior for a 2-month
solar energy trace using measured per-path energy costs
for battery capacities varied from 1-4 Ahr. We compare
a webserver that answers all requires, Full Service, with
the three adaptive policies discussed earlier.
The results of this experiment are shown in Figure 19.

The non-adapting server is unable to sustain operation
with the given workload regardless of how large the bat-
tery is. Also, the ability to adapt and the impact of pre-
diction errors are also highly dependent on battery size.

14

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Battery Capacity (Ahr)

P
e
rc

e
n

t
D

e
a
d

ti
m

e

Full Service

EWMA (T=1)

EWMA (T=24)

Oracle

Figure 19: Webserver dead time is shown for different
energy policies and battery sizes. The ability to effec-
tively adapt is limited for small batteries; however, with-
out adaptation, no battery is large enough.

With a small battery both EWMA-based policies perform
significantly worse than the ideal; however, as battery
capacity increases this difference is no longer apparent.
With a small battery, prediction errors are magnified.
An additional benefit of the automatically generated

simulator is the ability to use it as a design tool when
determining what size battery or solar panel to choose
for a given deployment.

5.5 Programmer Experience
Our primary goal is to make writing adaptive software
simple and straightforward. While we have not yet con-
ducted usability studies to quantify this aspect of eFlux,
our experience has been positive. For example, an un-
dergraduate student, with no prior Flux or eFlux experi-
ence, took only 2 hours to convert the Flux web server—
written for the x86—into a working adaptive web server
which runs on the PXA-based Stargate platform. By dis-
tributing the compiler, runtime system, and node designs,
we hope to build a user-base to further develop the eFlux
code and to gather feedback on the language design.

6 Related Work

eFlux derives from a large body of work on energy adap-
tation in operating systems, as well as data-flow and co-
ordination languages.
Languages: To our knowledge, eFlux is the first sys-

tem that specifically targets energy adaptation at the pro-
gramming language level. Domain-specific languages
are a powerful technique to address the difficulty in ex-
pressing the same logic in a general-purpose language.

Coordination languages [7] typically allow separate
pieces of code to communicate with one another in or-
der to link code written in a language together in a new
way, or to marry two or more disparate languages. How-
ever, a coordination language, such as eFlux, can also be
used to incorporate modules from a second language to
implement the logic of the program.
eFlux is also a dataflow, or flow-based language [17,

10]. eFlux uses this dataflow abstraction to expose
just enough structure to make building an adaptive run-
time system possible. However, in contrast with many
dataflow languages, the focus is not on providing a vi-
sual programming language, although eFlux programs
are easily understood in their graphical form.
The closest language to eFlux is the recent Flask pro-

gramming language for sensors [16], which has been de-
veloped concurrently with eFlux [21]. Flask shares many
properties of eFlux: both are coordination languages that
can tie NesC [6] modules together in a graph. Flask is
based on the OCaml language, and at a high-level de-
scribes a directed acyclic data-flow graph, just as eFlux
does. The use of dataflow-based coordination languages
for embedded sensors is a natural response to the dif-
ficulty of programming event-based NesC code [6] that
takes advantage of the growing base of NesC and TinyOS
modules. However, Flask does not provide support for
energy adaptation, the primary contribution of the eFlux
language. Similarly, eFlux does not provide support for
the distribution of programs over multiple nodes in a net-
work, as Flask does.
eFlux and Flask are not the first languages to ap-

ply dataflow concepts to embedded programming. Syn-
chronous languages, such as Esterel [3] and Lustre [8],
use data flow to describe a completely deterministic or-
dering of events in real-time systems for use in safety-
critical systems. The environments we are targeting for
eFlux have much looser timing requirements, enabling
a much more expressive programming language to de-
scribe the logic of the program.
Energy Application Adaptation: There has been a

wealth of research on building systems that adapt to cur-
rent conditions, including energy. Odyssey provided the
seminal work in application-aware adaptation [18], while
later work extended the system to account for energy [5].
The Ecosystem project used application adaptation to
fairly attribute energy costs to applications and then en-
force a policy that contains applications to using the bat-
tery at a certain rate [25]. In each of these cases, energy-
aware adaptation trades application fidelity for energy
savings to target a particular lifetime in a device. eFlux
builds on this concept by targeting perpetual operation,
while expressing the adaptation policy as part of the pro-
gram. eFlux also targets a much tighter integration of
resources, programming language, and runtime system.
eFlux concentrates on measuring energy in-situ and mak-

15

ing adaptation decisions in concert with a predicted af-
fect on consumption.
Application-Driven Energy Management: Instead

of relying on the operating system to provide hints of
resource availability, new systems have emerged that
take a more cooperative approach to energy manage-
ment. By providing hints from the application, such as
in GraceOS [24], the application can provide enough in-
formation for the operating system to provide statistical
guarantees on performance while minimizing energy us-
age in the processor. In an even more direct approach, we
have opened interfaces to allow the application to directly
control to power management of the processor for the
duration of the application’s scheduling quantum [15].
Such an approach necessarily provides more control, at
the cost of programming effort.

7 Future Work and Conclusions

We plan to build up on this work in several key areas.
First, we plan to improve the measurement and model-
ing of energy both in production and consumption. In
particular, we would like to improve the attribution of en-
ergy for small flows to separate idle costs from adaptable
costs. Second, we hope to improve the language to incor-
porate the needs of new applications. For instance timer
sources take very little power, but receiving packets that
we later discard wastes energy. By turning off sources in
low-power modes, we will be able to avoid these costs
all together. Third, we plan to complete a full-scale de-
ployment on turtles next spring. Recent advances in GPS
receivers have yielded much more efficient chip sets that
should quadruple the number of GPS readings.
In conclusion, we have presented a new language and

run-time system for self-adapting perpetual systems. We
have designed eFlux to be both expressive and sim-
ple, easing the burden in building energy-adaptive ap-
plications. We have shown that we can build a well-
performing runtime system that bests static policies and
performs on-par with an oracular energy-harvesting sys-
tem that knows the future weather. As all sides of the en-
ergy equation improve, the mobile community will find
new uses for devices that operate continuously and au-
tonomously.

References
[1] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning

wireless network power management. In Proceedings of
the 9th ACM International Conference on Mobile Com-
puting and Networking (MobiCom’03), San Diego, CA,
September 2003.

[2] N. Banerjee, J. Sorber, M. D. Corner, S. Rollins, and
D. Ganesan. Triage: A Power-Aware Software Archi-
tecture for Tiered Microservers. Technical Report 05-

22, University of Massachusetts Amherst, Amherst, MA,
April 2005.

[3] G. Berry and G. Gonthier. The ESTEREL synchronous
programming language: design, semantics, implementa-
tion. Science of Computer Programming, 19(2):87–152,
November 1992.

[4] Brendan Burns, Kevin Grimaldi, Alexander Kostadinov,
Emery D. Berger, and Mark D. Corner. Flux: A language
for programming high-performance servers. In Proceed-
ings of USENIX Annual Technical Conference, May 2006.

[5] J. Flinn and M. Satyanarayanan. Managing battery life-
time with energy-aware adaptation. ACM Transactions on
Computer Systems (TOCS), 22(2), May 2004.

[6] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of Program-
ming Language Design and Implementation (PLDI), June
2003.

[7] David Gelernter and Nicholas Carriero. Coordination lan-
guages and their significance. Commun. ACM, 35(2):96,
1992.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September
1991.

[9] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dy-
namic disk spin-down technique for mobile computing.
In Proceedings of the Second ACM International Con-
ference on Mobile Computing and Networking (Mobi-
Com’96), Rye, NY, November 1996.

[10] Wesley M. Johnston, J. R. Paul Hanna, and Richard J.
Millar. Advances in dataflow programming languages.
ACM Comput. Surv., 36(1):1–34, 2004.

[11] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with Ze-
braNet. In ASPLOS, October 2002.

[12] Aman Kansal, Jason Hsu, Mani B Srivastava, and Vijay
Raghunathan. Harvesting aware power management for
sensor networks. In 43rd Design Automation Conference
(DAC), July 2006.

[13] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B Sri-
vastava. Power management in energy harvesting sensor
networks. ACM Transactions on Embedded Computing
Systems, May 2006.

[14] Kris Lin, Jason Hsu, Sadaf Zahedi, David C Lee,
Jonathan Friedman, Aman Kansal, Vijay Raghunathan,
and Mani B Srivastava. Heliomote: Enabling long-lived
sensor networks through solar energy harvesting. In Pro-
ceedings of ACM Sensys, November 2005.

[15] Xiaotao Liu, Prashant Shenoy, and Mark D. Corner.
Chameleon: Application controlled power management
with performance isolation. In Proceedings of ACM Mul-
timedia 2005, Singapore, November 2005.

16

[16] Geoffrey Mainland, Matt Welsh, and Greg Morrisett.
Flask: A language for data-driven sensor network pro-
grams. Technical Report TR-13-06, Harvard Univer-
sity, Division of Engineering and Applied Sciences, May
2006.

[17] J. Paul Morrison. Flow-Based Programming: A new ap-
proach to application development. Van Nostrand Rein-
hold, 1994.

[18] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton,
J. Flinn, and K. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM Sympo-
sium on Operating System Principles, St. Malo, France,
October 1997.

[19] J. Polastre, R. Szewczyk, C. Sharp, , and D. Culler. The
mote revolution: Low power wireless sensor networks. In
Proceedings of the 16th Symposium on High Performance
Chips (HotChips), August 2004.

[20] Joseph Polastre, Jason Hill, and David E. Culler. Versatile
low power media access for wireless sensor networks. In
SenSys, pages 95–107, 2004.

[21] J. Sorber, A. Kostadinov, M. Brennan, M. Corner, and
E. Berger. eFlux: Simple automatic adaptation for en-
vironmentally powered devices. (poster/demo). In Proc.
IEEE workshop on Mobile Computing Systems and Ap-
plications (HotMobile/WMCSA), April 2006.

[22] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar,
and J. Light. The Personal Server - Changing the way we
think about ubiquitous computing. In Proceedings of Ubi-
comp 2002: 4th International Conference on Ubiquitous
Computing, Goteborg, Sweden, September 2002.

[23] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson,
Jonathan Lees, and Matt Welsh. Fidelity and yield in a
volcano monitoring sensor network. In Proceedings of the
7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2006), Seattle, WA, Novem-
ber 2006.

[24] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In Pro-
ceedings of the Symposium on Operating Systems Princi-
ples, pages 149–163, Bolton Landing, NY, October 2003.

[25] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: Managing energy as a first class operating
system resource. In Proceedings of the Tenth interna-
tional conference on architectural support for program-
ming languages and operating systems, San Jose, CA,
October 2002.

17

