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Abstract

A multi-graph G on n vertices is (k, !)-sparse if every subset of n′ ≤ n vertices spans
at most kn′ − ! edges. G is tight if, in addition, it has exactly kn − ! edges. For
integer values k and ! ∈ [0, 2k), we characterize the (k, !)-sparse graphs via a family
of simple, elegant and efficient algorithms called the (k, !)-pebble games.
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1 Introduction

A multi-graph G = (V, E) with n = |V | vertices and m = |E| edges is (k, !)-
sparse if every subset of n′ ≤ n vertices spans at most kn′ − ! edges. If,
furthermore, m = kn − !, G is called tight. A (k, !)-spanning graph is one
containing a tight subgraph that spans the entire vertex set V . For brevity,
we will refer to G as a graph instead of as a multi-graph (even though it may
have loops and multiple edges) and will abbreviate (k, !)-sparse as sparse.

Historical overview. Sparse graphs first appeared in Loréa (18), as exam-
ples of matroidal families. Classical results of Nash-Williams (20) and Tutte
(28) identify the class of graphs decomposable into k edge-disjoint spanning
trees with the (k, k)-tight graphs. Tay (26)relates them to generic body-and-
bar rigidity in arbitrary dimensions. The (2, 3)-tight graphs are the generic
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minimally rigid (or Laman) graphs for bar-and-joint frameworks in the plane
(16), and the spanning ones correspond to those which are rigid.

A (k, a)-arborescence is defined as a graph where adding any a edges results in
k edge-disjoint spanning trees. Results of Recski (22) and Lovasz and Yemini
(19) identify Laman graphs with (2, 1)-arborescences. For ! ∈ [k, 2k), this is
extended by Haas (9) to an equivalence of (k, !)-sparse graphs and (k, !− k)-
arborescences. Whiteley (29; 30) surveys several rigidity applications where
sparse graphs appear, some having non-integer parameters associated to them.
Frank, Szegő and Fekete (6; 24; 5) study inductive constructions for various
subclasses of sparse graphs, motivated by the so-called Henneberg sequences
appearing in Rigidity Theory (13), and Bereg (1) computes them with an
O(n2) algorithm for the minimally rigid (Laman) case.

There exist many algorithms for decomposing a graph into edge-disjoint trees
or forests (4; 7; 8; 25; 23). A variation on the O(n2) time matching-based
algorithm of (11) for 2-dimensional rigidity became the simple and elegant
pebble game algorithm of Jacobs and Hendrickson (14), further analyzed in
(2). Practical applications in studies of protein flexibility led Jacobs et al.
(15) to pebble game heuristics for special cases of three-dimensional rigidity.
However, intriguingly, we have not found anywhere algorithms applicable to
(k, a)-arborescences or to the entire class of (k, !)-sparse graphs.

Our results. In this paper, we describe a family of algorithms, called the
(k, !)-pebble games, and prove that they recognize exactly the (k, !)-sparse
graphs, for the entire range ! ∈ [0, 2k).

In our terminology, Jacobs and Hendrickson’s is a (2, 3)-pebble game. We ex-
hibit here the full extent to which their algorithm can be generalized, and
characterize the recognized classes of graphs. We study the following funda-
mental problems.

(1) Decision: is G a tight (or just sparse) graph?
(2) Spanning: does G span a tight subgraph?
(3) Extraction: extract a maximal sparse subgraph (ideally, spanning) from

a given graph G.
(4) Optimization: from a graph with weighted edges, extract a maximum

weight sparse subgraph.
(5) Components: given a non-spanning graph G, find its components (max-

imal tight induced subgraphs).

The pebble game algorithms run in time O(n2) using simple data structures
and induce good algorithmic solutions for all the above problems. They exhibit
the same complexity as Hendrickson’s matching-based algorithm (10; 11) for 2-
dimensional rigidity. For the special case of graphs decomposable into disjoint
unions of spanning trees and pseudo-forests, corresponding to the range ! ∈
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[0, k] of (k, !)-sparse graphs, we remark that there are O(n3/2) algorithms due
to Gabow and Westerman (7). But no better algorithms than the pebble games
are known for the entire range of (k, !)-sparse graphs.

2 Properties of Sparse Graphs

We start by showing why it is natural to restrict the range of the integer
parameter ! to [0, 2k). Then we identify a dual property related to a well-
known theorem of Nash-Williams and Tutte (20; 28) on tree decompositions.
Finally, we define components and give a detailed characterization of their
main structural properties.

All graphs G = (V, E) in this paper have n = |V | vertices and m = |E|
edges. For subgraphs E ′ ⊂ E induced on subsets V ′ ⊂ V , we use n′ = |V ′|
and m′ = |E ′|. The complete multi-graph on n vertices, with multiplicity a
on loops and b on edges, is denoted by Ka,b

n , and the loopless version by Kb
n.

The degree of a vertex is the number of incident edges, including loops. The
parameters k and ! are integers.

Matroidal sparse graphs. The following Lemma justifies the choice of
parameters and points to a small correction to the informal definition of sparse
graphs we gave in the introduction: because for the range ! ∈ (k, 2k) and for
n′ = 1, kn′−! becomes negative, we should require that every subset of n′ ≤ n
vertices spans at most max{0, kn′ − !} edges.

Lemma 1 Properties of sparse graphs.

(1) If ! ≥ 2k, the class of sparse graphs contains only the empty graph.
(2) If ! < 0, the union of two vertex disjoint sparse graphs may not be sparse.
(3) Loops and parallel edges A sparse graph may contain at most k − !

loops per vertex. In particular, the sparse graphs are loopless when ! ≥ k.
The multiplicity of parallel edges is at most 2k − !.

(4) Single vertex graphs In the upper range ! ∈ (k, 2k), there are no tight
graphs on a single vertex.

(5) Small tight graphs (Szegő (24)) If ! ∈ [32k, 2k) (called the Szegő range),
there are no tight graphs on small sets of n vertices, for n ∈ (2, !

2k−!).
(6) Smallest tight graphs When ! ∈ [32k, 2k), the smallest non-trivial tight

sparse graphs have & !
2k−!' vertices. For integer values of !

2k−! , there is
only one tight graph on the minimum number of vertices: the complete
multi-graph K2k−!

!
2k−!

; otherwise, there will be several.
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Proof (1) For ! ≥ 2k, any subset of n′ = 2 vertices would span at most 2k−! ≤
0 edges. (2) If we take the vertex disjoint union of two tight sparse graphs on n1,
resp. n2 vertices, the union has n = n1+n2 vertices and k(n1+n2)−2l > kn−!
edges, therefore it is not sparse. (3) Apply the sparsity condition m′ < kn′− !
for n′ = 1 and n′ = 2. (4) Indeed, kn − ! < 0 for n = 1, and the number of
edges cannot be negative. (5) Assume ! ≥ k. A vertex may not span a negative
number of edges, so n ≥ 2. By part (3) above, a tight graph with kn− ! edges
is a subgraph of the complete, loopless (2k − !)-multi-graph K2k−!

n ; therefore

kn − ! = m ≤ (2k − !)
(

n
2

)
. The inequality between the extremes leads to

the condition f(n) ≥ 0 for the quadratic function f(n) = an2 + bn + c, with
a = 2k − !, b = ! − 4k and c = 2!. The two roots of f(n) = 0 are n1 = 2
and n2 = !

2k−! . The open interval between the roots is non-trivial when it
contains at least one integral value, i.e. when n2 ≥ 3. This happens exactly
when ! > 3

2k. For values of n within this interval, all the subgraphs of K2k−!
n

are (k, !)-sparse, but none is tight. (6) Direct corollary of (5).

The range of values ! ∈ [0, k) is called the lower range and ! ∈ [k, 2k) is
the upper range: the threshold case ! = k will occasionally be relevant for
properties holding in either range (so we will specify when the lower and
upper range intervals need to be taken as open or closed). The upper range
is further subdivided into two, of which the Szegő range requires special care
in applications such as Henneberg sequences. This phenomenon, of having to
deal with special cases depending on the range of !, is symptomatic for sparse
graphs and impacts the choice of data structures for our algorithms. At the
upper bound ! = 2k − 1, the smallest tight graphs are complete graphs. For
example, when k = 3 and ! = 5, the smallest tight graph is K5. For other
values of k and !, there may be several smallest tight graphs. For example,
when k = 7 and ! = 11, there are 6 smallest tight graphs: all the multi-graphs
on 4 vertices with a total of 17 edges and edge-multiplicity at most 3.

For values of the parameters k, ! and n in these ranges, we show now that
the tight graphs form the set of bases of a matroid. The proof relies on a very
simple property of blocks given below on page 6. White and Whiteley, in the
appendix of (30), observed that the matroid circuit axioms are satisfied.

Theorem 2 (The (k, !)-sparsity matroid) Let n, k and ! satisfy: (1) ! ∈
[0, k] and n ≥ 1; (2) ! ∈ (k, 3

2k) and n ≥ 2; (3) ! ∈ [32k, 2k) and n = 2 or
n ≥ !

2k−! . Then the collection of all the (k, !)-tight graphs on n vertices, is the
set of bases of a matroid whose ground set is the set of edges of the complete
multi-graph on n vertices, with loop multiplicity k − ! and edge multiplicity
2k − !.

Proof We verify the three axioms of a basis system. Equal cardinality holds
by definition. To prove Non-emptiness, we construct canonical tight graphs
as follows. Let V = {1, . . . , n}. For ! ∈ [0, k), n ≥ 1, place k − ! loops per
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vertex; connect the vertices with ! trees (e.g. ! copies of the same tree). For
! ∈ [k, 3

2k), n ≥ 2, place 2k − ! parallel edges between vertices 1 and 2. For
each vertex i > 2, place 2k − ! parallel edges between vertices i and 1, and
! − k < 2k − ! edges between vertices i and 2. Finally, consider the case
! ∈ [32k, 2k). For n = 2, there is only one tight graph, the (2k − !)-multi-edge.
For n ≥ !

2k−! , start with an arbitrary minimum-size tight graph on the set of

vertices indexed from 1 to & !
2k−!'. For all vertices of larger index i > & !

2k−!',
place k edges between i and some of the vertices of index ≤ & !

2k−!' − 1,
saturating the multiplicity 2k − ! of a vertex of index i before moving on to
the next vertex of index i + 1.

To prove the Basis exchange axiom, let Gj = (V, Ej), j = 1, 2, be two tight
graphs and e2 ∈ E2 \E1. We must show that there exists an edge e1 ∈ E1 \E2

such that (V,E1 \ {e1} ∪ {e2}) is tight. Let e2 = uv (this includes the case
u = v when e2 is a loop). Consider all the tight induced subgraphs (called
blocks) Hi = (Vi, Ei) of G1 containing vertices u and v. Let V ′ =

⋂
i Vi and

H ′ = (V ′, E ′) be the subgraph of G1 induced on V ′. By Theorem 5(1) proved
below in Section 2, H ′ is a block of G1. Not all the edges in H ′ are in G2, i.e.
H ′ cannot be a block of G2, since V ′ also spans e2 in G2 and then the subgraph
E ′∪{e2} ⊂ E2 would violate the sparsity of G2. Therefore, H ′ contains at least
one edge e1 ∈ E1 \E2. We are done if we show that H3 = (V ′, E1 \{e1}∪{e2})
is sparse. Indeed, H ′ is the minimal subgraph of G1 such that the addition of
e2 violates sparsity: any other subset would have been one of the Vi, and V ′

is contained in it. Since V ′ is contained in any subset on which sparsity was
violated in G1 ∪ {e2}, the removal of e1 restores the counts.

In Theorem 2, the ground set Kk−!,2k−!
n was chosen to produce all the interest-

ing bases. We may enlarge the ground set, by adding extra loops and parallel
edges, or delete edges from it, by working with a subgraph of Kk−!,2k−!

n , and
we still obtain a matroid. In the first case, the bases will still be restricted to
the number of edges required by the sparsity conditions; in the second case,
the bases are maximal sparse subgraphs of G. This allows us later to refer to
the matroidal property of sparse graphs as reason for the correctness of the
arbitrary order of edge insertion in the pebble game algorithms, and of the
greedy algorithm for the Optimization Problem (see (3), p.345 and (21)).

Partitioning. Nash-Williams (20) and Tutte (28) gave an alternative defi-
nition of (k, k)-tight graphs using vertex partitions and trees: a graph contains
k edge-disjoint spanning trees if and only if every partitioning of the vertex
set into p parts has at least k(p− 1) edges between them. If, moreover, it has
kn − k edges, it is the edge-disjoint union of k spanning trees and a (k, k)-
tight graph. We describe now a slight generalization of one direction of their
criterion, for all (k, !)-tight graphs.
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Lemma 3 Let G = (V, E) be a (k, !)-tight graph and P = {V1, . . . , Vp} a
partition of V . In the upper range ! ∈ (k, 2k), further assume that each |Vi| ≥
2. Then there are at least !(p − 1) edges between the partition sets Vi.

Proof Let Ei be the edge set induced by Vi in G and ni = |Vi|,mi = |Ei|. By
sparsity and the assumption on the size of Vi, mi ≤ kni − !,∀i and Σimi ≤
Σi(kni − !) ≤ kn − p!. The number of edges between the partition sets is
m − Σimi ≥ kn − !− (kn − p!) ≥ !(p − 1).

Lemma 4 Let G = (V, E) be a tight graph. Then every vertex has degree ≥ k.
Moreover, if ! > 0, then there is at least one edge between a vertex v and the
rest of the vertices V \ {v}.

Proof If v ∈ V had degree d < k, the induced subgraph on V \{v} would have
kn− !− d > kn− !− k = k(n− 1)− ! edges, contradicting the sparsity of G.
This already implies the second part of the theorem for ! ∈ (k, 2k), because
sparse graphs in this range have no loops. The other case ! ∈ (0, k] follows
from Lemma 3.

As a simple corollary, when ! > 0, a tight graph is connected. We will make
use of this small observation in Theorem 5 (4). Also, as a consequence of the
theorem of Nash-Williams and Tutte we have that, for ! ∈ (0, k], a (k, !)-tight
graph contains ! edge-disjoint spanning trees.

Blocks, Components and Circuits. In a sparse graph, a subset of vertices
V ′ ⊂ V may span exactly kn′ − ! edges, where n′ = |V ′|. In this case, the
induced subgraph is called a block. A maximal block (with respect to the set
of vertices) is called a component. We describe now basic properties of blocks
and components.

We start with a decomposition theorem for a sparse graph into components,
free vertices (not part of any component) and free edges (not spanned by
any block, and hence component). In rigidity applications, the components
correspond to rigid clusters. This decomposition will be used later in speeding
up the pebble game. For this section, denote the range ! ∈ [0, k] as the lower
range and ! ∈ (k, 2k) as the upper range.

Theorem 5 (Decomposition into Components) Let G be a sparse graph.

(1) Block intersection: if two blocks intersect in at least: (a) one vertex,
for the lower range [see Fig. 1a]; (b) two vertices, for the upper range
[see Fig. 1b], then their intersection and union (with respect to the vertex
sets) induce blocks.

(2) Component interaction: sparse components are edge-disjoint. In the
lower range, the components are vertex-disjoint [see Fig. 2a]. In the upper
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(a) Lower range example (k = 3, ! = 1):
two blocks overlapping in one vertex.

(b) Upper range example (k = 3, ! = 4):
two blocks overlapping in three vertices.

Fig. 1. Block intersection: two overlapping blocks whose union and intersection are
also blocks.

range, they overlap in at most one vertex [see Fig. 2b].
(3) Component connectivity:

(a) When ! = 0, there is at most one component, which may not be
connected [see Fig. 2c].

(b) When ! > 0, blocks (and therefore components) are connected [see
Fig. 1, 2a, 2b, and 2d].

(4) Decomposition: G is decomposed into components, free vertices and
free edges. More specifically:
(a) Lower range: a single vertex induces a block if and only if it has k− !

loops. In this case, if ! = 0, the block may be a disconnected piece of
a larger component, otherwise it is a component in itself [see Fig. 2c].
A vertex with fewer than k − ! loops in the lower range, or a vertex
in the upper range is either free or part of a larger block (and hence
component). When ! = 2k− 1, there are no free vertices: each vertex
is part of some block (and hence component), but it is never a block
in itself.

(b) ! = k: a single vertex is loop-free and is always a block. Thus, there
are no free vertices, and V is partitioned into components (possibly
connected by free edges)[see Fig. 2a].

(c) ! = 2k − 1: there are no loops or parallel edges. A single vertex is
free only when it is an isolated vertex of the graph. A single edge is
always a block, thus there are no free edges, and E is partitioned into
components [see Fig. 2b].

Proof (1) Let Bi = (Vi, Ei), i = 1, 2, be two blocks of a sparse graph G =
(V, E); they span mi = kni−! edges, i = 1, 2. Let G∩ and G∪ be the subgraphs
of G induced on the intersection V1 ∩ V2 (with n∩ vertices and m∩ edges),
resp. union V1∪V2 (with n∪ vertices and m∪ edges), of their vertex sets. Then
m∪ = m1 + m2 −m∩ = (kn1 − !) + (kn2 − !)−m∩ = k(n1 + n2)− 2!−m∩ =
k(n∩ + n∪) − 2! − m∩ = kn∪ − ! − (m∩ − (kn∩ − !)). Since G is sparse,
m∪ ≤ kn∪ − !; thus, m∩ − (kn∩ − !) ≥ 0, i.e., m∩ ≥ kn∩ − !.

If ! ∈ [0, k], assume n∩ ≥ 1, and if ! ∈ (k, 2k), assume n∩ ≥ 2. Since G is
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(a) A (3, 3)-sparse
graph decomposed
into components
and free edges.

(b) A (2, 3)-sparse
graph decomposed
into components.

(c) A (2, 0)-sparse
graph whose com-
ponent is not con-
nected.

(d) A (3, 1)-sparse
graph with 2
components, a free
vertex and 3 free
edges.

Fig. 2. Decomposition into components.

sparse, m∩ ≤ kn∩−!; therefore it follows that m∩ = kn∩−! and m∪ = kn∪−!
and thus, both the induced intersection and union are blocks.

(2) Follows from the same calculations used in part (1).

(3) Lemma 4 implies that when ! > 0, tight graphs are connected. For (k, 0)-
sparse graphs, assume there exist several vertex-disjoint tight sparse subgraphs
(blocks). A simple application of the sparsity counts shows that the union is
also (k, 0)-tight.

(4) Take n = 1 and n = 2 in the definition of (k, !)-sparsity, and analyze each
case.

A reminder that, in matroid theory terminology, a set of elements of the ground
set E of a matroid is independent if it is a subset of a basis. An element e of
the ground set is independent with respect to a given independent set I ⊂ E
if I ∪ {e} is an independent set. Thus, sparse graphs are independent, and
independent edges may be added to a sparse graph until it becomes tight.
The obstructions to adding further edges in a sparse graph are the blocks, as
stated in the following straightforward corollary to Theorem 2.

Corollary 6 An edge is independent with respect to a sparse graph G if and
only if its endpoints do not belong to some block of G.

A minimal subset (of vertices and edges) violating sparsity is called a circuit.
An edge which is not independent of a given sparse graph G violates the
sparsity condition on some subset of vertices and induces a unique circuit,
which can be identified using the criterion below.

Corollary 7 Let G be a tight graph and let e = uv be an edge not in G. The
intersection of all the blocks containing u and v is a block H of G, called the
minimal block spanning e. Furthermore, H ∪ {e} is a circuit in G ∪ {e}.
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3 The basic (k, !)-Pebble Game Algorithm

We turn now to the description of our generalized (k, !)-pebble game for multi-
graphs. Fig. 3 illustrates an example. We start with the simplest version, called
the Basic Pebble Game. Later, we will extend it to a more efficient version
which takes components into account. The correctness of the pebble game as
a decision algorithm for sparse graphs is proven in the next section.

The algorithm depends on two parameters, k and !: k is the initial number
of pebbles on each vertex, and ! + 1 is a lower bound on the total number of
pebbles present at the two endpoints of an edge which is accepted during the
execution of the algorithm.

(a) A Well-constrained (3, 3)-pebble
game output, with the final orienta-
tion and distribution of the remaining
3 pebbles on the input graph.

(b) An Under-constrained (3, 3)-
pebble game output: note the 4
remaining pebbles. If the dotted edge
was part of the input, it could not be
inserted: the pebble game would fail.

Fig. 3. Final state of the (3, 3)-pebble game on two graphs.

The algorithm is built on top of a single-person game, played on a board
consisting of a set of n nodes, initialized with k pebbles each. The player
inserts edges between the nodes and orients them. The rules of the game
indicate when an edge will be accepted (and therefore inserted) or rejected,
and when the player can move pebbles and reorient already inserted edges.
We give no rules for when this generic “game” should be stopped, nor do we
specify what it means to win or to lose it: indeed, we do not analyze the game
per se, but rather the algorithm built on top of it.

The algorithm takes a given graph as input, and considers its edges in an
arbitrary order. It performs the moves of the game for the insertion or rejection
of each edge. When all the edges have been considered, the algorithm ends with
a classification of the input graph into one of four categories. The first two,
Well-constrained and Under-constrained, correspond to success in accepting
all the edges of the input graph; the other two, Over-constrained and Other,
indicate the failure to fully accept the input graph. In Section 4 we prove
that these categories correspond exactly to the input graph being tight, sparse,
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spanning and neither sparse nor spanning. The algorithm is described in Fig. 4.

Algorithm 1 Basic (k, !)-Pebble Game.
Input: A graph G = (V, E), possibly with loops and multiple edges.
Output: Well-constrained, Under-constrained, Over-constrained or
Other.
Setup: Maintain, as an additional data structure, a directed graph D, on
which the game is played. Initialize D to be the empty graph on V , and
place k pebbles on each vertex.

Rules:
(1) Pebbles. No more than k pebbles may be present on a vertex at any

time.
(2) Edge acceptance. An edge between two vertices u and v is accepted

for insertion in D when a total of at least ! + 1 pebbles are present
on the two endpoints u and v.

Allowable moves:
(1) Pebble collection. An additional pebble may be collected on a vertex

w by searching the directed graph D, e.g., via depth-first search. If a
pebble is found, the edges along the directed path leading to it are
reversed and the pebble is moved along the path until it reaches w.

(2) Edge insertion. If an edge between two vertices u and v is accepted,
then at least one of the vertices (say, u) contains a pebble. The edge
is inserted in D as a directed edge u → v and a pebble is removed
from u.

Algorithm: The edges of G are considered in an arbitrary order and the
edge acceptance condition is checked. Let e = uv be the current edge. If
the acceptance condition is not met for edge e, the algorithm attempts to
collect the required number of pebbles on its two endpoints u and v using
the following strategy: (a) Mark vertices u and v as visited for the depth-
first-search algorithm (so they will not be searched, and their pebbles are
protected from being moved); (b) Perform pebble collection using depth-
first-search. If one fails to collect ! + 1 pebbles, the edge e is rejected,
otherwise it is accepted. An accepted edge is immediately inserted into D
as specified by the edge insertion move.
The algorithm ends when all the edges have been processed. If exactly !
pebbles remain in the game at the end, the output is Well-constrained
if no edge was rejected, and Over-constrained otherwise. If more than
! pebbles remain, the output is Under-constrained if there was no edge
rejection, or else Other.

Fig. 4. Basic (k, !)-pebble game algorithm.

Complexity analysis. Let ma be the number of accepted edges in the final
state of the game. Since each accepted edge requires the removal of one peb-
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ble, ma = O(kn). The only data structure used by the pebble game is the
additional digraph D, whose space complexity is O(ma + n) = O(kn). Each
edge is considered exactly once and requires at most !+1 depth-first searches
through D, for a total of O(!mn) time. For constant parameters k and !, and
dense input graphs with O(n2) edges, this algorithm has worst case O(n3)
time and O(n) space complexity. The time will be improved in Section 5.

4 Pebble Game Graphs coincide with Sparse Graphs

We are now ready to prove the main theoretical result of the paper, relating
pebble games to sparse graphs.

Theorem 8 (Pebble Game Graphs and Sparse Graphs) The class of
Under-constrained pebble game graphs coincides with the class of sparse graphs,
Well-constrained ones coincide with tight graphs, Over-constrained coincide
with spanning ones and Other are neither sparse nor spanning.

Corollary 9 The basic Pebble Game solves the Decision, Extraction, Span-
ning and, with the slight modification of inserting the edges in sorted order of
their weights, the Optimization problems for sparse graphs.

The proof follows from the sequence of lemmas given below. For a vertex v
in the directed graph D at some point in the execution of the pebble game
algorithm, denote by peb(v) the number of free pebbles on v, span(v) the
number of loops and by out(v) its out-degree, i.e. the number of edges starting
at v and ending at a different vertex (i.e. excluding loops). We extend these
functions to vertex sets in a natural way: for V ′ ⊂ V , peb(V ′) =

∑
v∈V ′ peb(v),

span(V ′) is the number of edges spanned by V ′ (including loops) and out(V ′)
is the number of edges starting at a vertex in V ′ and ending at a vertex in the
complement V \ V ′.

Lemma 10 (Invariants of the Pebble Game) During the execution of the
pebble game algorithm on a graph G with n vertices, for every vertex v and for
every subset V ′ ⊂ V on n′ vertices, the following invariants are maintained
on D. We assume that n, n′ ≥ 1 for ! ∈ [0, k] and n, n′ ≥ 2 for ! ∈ (k, 2k).

(1) peb(v) + span(v) + out(v) = k
(2) peb(V ′) + span(V ′) + out(V ′) = kn′

(3) peb(V ′) + out(V ′) ≥ !. In particular, there are at least ! free pebbles in
the digraph D.

(4) span(V ′) ≤ kn′ − !
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Proof (1) The invariant obviously holds when the game starts. When an edge
is inserted into D and is oriented away from v, a pebble is removed from v;
this is true for loops as well, so the total sum is maintained. During a pebble
search, if v lies along a path that is reversed to bring a pebble to the path’s
source, out(v) remains unchanged. If v is the source of a path reversal, out(v)
is decreased by 1 and peb(v) is increased by 1; if v is the target of a path
reversal, out(v) is increased by 1 and peb(v) is decreased by 1. Hence the sum
peb(v) + span(v) + out(v) remains constant throughout the game.

(2) If m1 is the number of non-loop edges spanned by V ′, then out(V ′) =
Σv∈V ′out(v) − m1 and span(V ′) = m1 + Σv∈V ′span(v). Therefore peb(V ′) +
span(V ′)+out(V ′) = peb(V ′)+(m1 +Σv∈V ′span(v))+((Σv∈V ′out(v))−m1) =
Σv∈V ′peb(v)+Σv∈V ′span(v)+Σv∈V ′out(v) = Σv∈V ′(peb(v)+span(v)+out(v)) =
kn′ (by Invariant (1).

(3) When the game starts, there are no outgoing edges from V ′ and peb(V ′) =
kn′ ≥ !. Consider now the last time an edge incident to V ′ was inserted or
reoriented by the pebble game algorithm. Four cases have to be analyzed: if
the edge had both endpoints in V ′, if it went between V ′ and V \ V ′ and
oriented away from or towards V ′, or if it was an edge reorientation. In the
first case, at least ! pebbles must be present on the endpoints of the edge after
the insertion, so peb(V ′) ≥ !. In the second case, the invariant was true before
the insertion, and it is true after the insertion: if the edge was inserted away
from V ′, a pebble was consumed from V ′ but an outgoing edge was inserted;
in the other case, the number of pebbles and outgoing edges was not modified.
Finally, if the last move was an edge reorientation, it was either bringing in a
pebble from the outside to the inside of V ′, and decreasing by 1 the number
of outgoing edges, or vice-versa, when it was decreasing the number of inside
pebbles by one and increasing the number of outgoing edges.

(4) Straightforward, since span(V ′) = kn′−(peb(V ′)+out(V ′)), and peb(V ′)+
out(V ′) ≥ !.

The following corollaries follow directly from Invariant 4.

Corollary 11 For any subset V ′ ⊆ V , V ′ spans a block if and only if peb(V ′)+
out(V ′) = !.

Corollary 12 Under-constrained pebble game graphs are sparse, Well-constrained
ones are tight, Over-constrained ones are spanning.

This completes the proof of one direction, characterizing the sparsity of the
graphs classified by the algorithm. We move now to prove the other direction,
that the algorithm classifies correctly sparse, tight and spanning graphs. De-
note by Reach(v) the reachability region of a vertex v (at some point during
the execution of the algorithm): the set of vertices that can be reached via
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directed paths from v in D. For example, in Figure 3b, Reach(d) = {a, c, d, e}.

Lemma 13 If e = uv is independent (but not yet inserted) in D, and strictly
fewer than !+1 pebbles are present on u and v, a pebble can be brought to one
of u or v without changing the pebble count of the other vertex.

Proof Let V ′ = Reach(u)∪Reach(v); e is independent, so span(V ′) < k|V ′|−
!. Since V ′ is a union of reachability regions, out(V ′) = 0. By Lemma 10,
Invariant 3, peb(V ′) > !. By assumption, peb(u) + peb(v) < ! + 1. Then there
exists w ∈ V ′ such that w -= u and w -= v with at least one free pebble. If
w ∈ Reach(u), bring the pebble from w to u. Otherwise, w ∈ Reach(v); bring
the pebble from w to v.

Lemma 14 An edge is inserted by the pebble game if and only if it is inde-
pendent in D.

Proof Let e = uv be an edge of G, not yet inserted into D, the current state
of the directed graph pebble game data structure. By applying Lemma 13
repeatedly, it follows that ! + 1 pebbles can be gathered on the endpoints u
and v; thus, e will be inserted into D by the pebble game.

Fig. 5. A (3, 5)-pebble game where no edge parallel to uv can be inserted.

It is instructive to notice that it does not suffice to require that ! + 1 pebbles
be present in the reachability regions of u and v. In Fig. 5, an example of
a (3, 5)-pebble game is shown. The reachability region for the pair u and v
contains 6 pebbles, but not all can be collected on the two vertices u and v.
No edge parallel to uv can be inserted. Note also that the reachability region
of a vertex may change after a pebble move; the previous proof requires the
independence of e at each application of Lemma 13.

Lemma 15 The pebble game returns Under-constrained for sparse, but not
tight graphs, Well-constrained for tight ones, Over-constrained for spanning
graphs and Other for graphs that are neither spanning nor sparse.

Proof Let G be a sparse graph with n vertices and m edges. Because sparse
graphs form a matroid (Theorem 2), the order in which the edges are consid-
ered can be arbitrary. By Lemma 14, every independent edge is inserted by
the pebble game. Thus, the pebble game is successful on sparse graphs.
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If G is sparse, but not tight, m < kn − !. By Lemma 10, Invariant 3, the
number of free pebbles in the final game graph must be > ! and the result is
Under-constrained. If G is tight, m = kn − ! and the number of free pebbles
is exactly !; the game returns Well-constrained. If G is spanning, it contains
a tight subgraph which will be accepted, after which there won’t be enough
pebbles and the remaining edges will be rejected; the result is Over-constrained
in this case. If G is neither spanning nor sparse, there must be > ! pebbles in
the final game as well as at least one dependent (and thus rejected) edge.

Corollary 12 and Lemma 15 prove Theorem 8.

5 Component Pebble Games

The graph D maintained by the basic pebble game algorithm is sparse. It can
therefore be decomposed into components. We now present a modification of
the basic pebble game that maintains and uses these components to obtain
an algorithm one order of magnitude faster.

Pebble Game with Components. Its input, output and additional directed
graph D are the same as for the basic Pebble Game. We give first the over-
all structure of the algorithm in Figure 6; additional subroutines and some
implementation details will be described next.

Algorithm 2 Component Pebble Game.
Input: A graph G = (V, E), possibly with loops and multiple edges.
Output: Well-constrained, Under-constrained, Over-constrained or
Other.
Method: Play the basic pebble game with the following modifications.
Maintain components throughout the game. When considering edge e = uv,
first check if u and v are in some common component or if u = v (i.e., e
is a loop) and ! ∈ [k, 2k). If so, reject and discard e. Otherwise, perform
pebble searches to gather ! + 1 pebbles on u and v, and insert edge e. De-
tect new component, if one is formed, and perform necessary component
maintenance.

Fig. 6. Component pebble game algorithm.

If the endpoints of an edge do not belong to a component, the pebble searches
are guaranteed to succeed, so the edge will be accepted. A newly inserted edge
may be a free edge or lead to the creation of a new component (possibly by
merging some already existing ones). We present next two different algorithms
for computing the vertex set of the new component. Algorithm 3, shown in
Figure 7, generalizes the approach of (14) and works similarly to breadth-first
search on in-coming edges of an already detected block. An example is shown

14



in Figure 8; notice that vertex f , although it has an edge directed towards
Reach(a, c), contains a pebble and is not added to the component.

Algorithm 3 Component detection I
Input: Directed pebble game graph D = (V, E ′), into which edge e = uv
has just been inserted. At least ! pebbles are present on u and v. If ! = 0,
the vertex set V0 (which may be empty) of the single component of D \{e}
is also given.
Output: The vertex set V ′ of the new component induced by e, if one was
formed; ∅, otherwise.
Method:
(1) If more than ! pebbles are present on u and v, return ∅: the new

edge is free.
(2) Otherwise, compute Reach(u, v) = Reach(u) ∪ Reach(v).

(a) If any w ∈ Reach(u, v) has at least one free pebble, return ∅.
(b) Otherwise, initialize V ′ = Reach(u, v). Initialize queue Q, and

enqueue all vertices in V \ V ′ with an edge into V ′.
While Q has elements
(i) Dequeue vertex w from Q.
(ii) Compute Reach(w).
(iii) If all vertices in Reach(w) (other than u and v) have no free

pebbles
(A) Set V ′ = V ′ ∪ Reach(w).
(B) Enqueue all vertices (that have not been previously en-

queued) with an edge into Reach(w).
(3) If ! = 0, merge into V ′ the vertices of the existing component of G

(if it exists).
(4) Return V ′.

Fig. 7. Component detection algorithm I.

(a) Edge ac is successfully
inserted.

(b) Reach(a, c) is de-
tected to have exactly 3
pebbles.

(c) Component
{a, b, c, d, e} is detected.

Fig. 8. (3, 3) component detection after edge ac has just been inserted. First,
Reach(a, c) = {a, c, d} is detected as a block as it contains exactly 3 pebbles; then,
component {a, b, c, d, e} is detected.

Figure 9 describes the second component detection algorithm, which gener-
alizes (2). It works by finding the complement of the vertex set of the newly
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formed component, and does not require special treatment for ! = 0.

Algorithm 4 Component detection II
Input: Directed pebble game graph D = (V, E ′), into which edge e = uv
has just been inserted. At least ! pebbles are present on u and v.
Output: The vertex set V ′ of the new component induced by e, if one was
formed; ∅, otherwise.
Method:
(1) If more than ! pebbles are present on u and v, return ∅: the new

edge is free.
(2) Otherwise, compute Reach(u, v) = Reach(u) ∪ Reach(v).

(a) If any w ∈ Reach(u, v) has at least one free pebble, return ∅.
(b) Otherwise, let D′ be the directed graph obtained from D by re-

versing the direction of every edge. For all vertices w ∈ V \
Reach(u, v) with at least one free pebble, perform a depth-first
search in D′ from w. Return V ′, the set of non-visited vertices
from all these searches.

Fig. 9. Component detection algorithm II.

Component maintenance. Maintaining components requires additional book-
keeping. By Theorem 5, we must take the range of ! into account. When ! = 0,
there is at most one component, which is maintained by a simple marking
scheme: a vertex is marked if and only if it lies in the component. When
! ∈ (0, k], the components are vertex disjoint. Their maintenance is accom-
plished with a simple labeling scheme: each vertex is labeled with an id of the
component to which it belongs. In the upper range, when ! ∈ (k, 2k), compo-
nents may overlap in a single vertex. We maintain a list of the components,
represented by their vertex sets, as well as an n × n matrix. The matrix is
used to provide constant time queries for whether two vertices belong to some
common component; there is a 1 in entry [i, j] if such a component exists and
a 0 otherwise.

When a new component on V ′ has been detected, we must perform the nec-
essary bookkeeping to update the data structures. When ! ∈ [0, k] (the lower
range), we simply update the marks or labels of vertices in V ′ to record the
newly detected component. For the upper range, we first mark all vertices in
V ′. Then, for each previous component Vi, all of whose vertices have been
marked, delete Vi from the list of components and update the matrix.

We are now ready to state and prove that component pebble games correctly
solve most of the fundamental problems presented in the Introduction: Deci-
sion, Spanning, Extraction, Optimization and Components.

Theorem 16 The graphs recognized by component pebble games are the same
as graphs recognized by basic pebble games, and components are correctly com-
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puted.

Proof The component pebble game differs from the basic pebble game by
maintaining components and rejecting edges precisely when both endpoints
lie in a component. Thus, by Corollary 6, the component pebble game accepts
an edge if and only if it is independent.

To show that the component pebble games correctly maintain components,
observe that Algorithm 3 detects a maximal connected subgraph (with respect
to the vertices) with no outgoing edges in which exactly ! pebbles are present.
By Lemma 10, Invariant 2, this subgraph must be a block. When ! > 0,
by Theorem 5(3b), components are connected; thus, Algorithm 3 detects a
component. When ! = 0, there may be at most one component by Theorem
5(3a) since the union of two blocks is a block, and the algorithm computes it.

The visited vertices in Algorithm 4 are those that can reach a pebble (in
the original orientation) on a vertex other than u and v, and thus form the
complement of the unique component containing e.

The time complexity on the algorithm is now O(n2) as dependent edges
are rejected in constant time. Component detection and resulting updating
of the data structures can be accomplished in linear time. More specific,
implementation-related details on how to actually achieve this for the upper
range are given in (17) using a similar data structure called union pair-find;
while union pair-find maintains edge sets, the pebble game algorithm does
not need to do it explicitly, and thus the associated implementation details
for edge sets can be ignored.

Space complexity is linear for the lower range and O(n2) in the upper range,
due to its additional matrix. An alternative solution to union pair-find pre-
sented in (17) uses only O(n) space, though it requires the edges to be con-
sidered in a specific order and does not solve the Optimization problem.

6 Applications

Henneberg Sequences. Originating in (13) (see also (27)), these are induc-
tive constructions for Laman graphs and other classes of rigid structures. We
extend the concept to tight graphs: at the base case, start with a small tight
graph; each inductive step would create a tight graph with an additional ver-
tex by specifying b edges for removal before adding the new vertex of degree
k + b. In addition, b can be chosen to be small b ∈ [0, k].

We remind the reader of the matroidal conditions on tight graphs: (1)
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! ∈ [0, k] and n ≥ 1, or (2) ! ∈ (k, 3
2k) and n ≥ 2, or (3) ! ∈ [32k, 2k) and

n ≥ & !
2k−!'. We refer to the smallest values of n as the base-case conditions;

when n is strictly larger, we call them the non-triviality conditions. The
following lemma is the key to proving the existence of a Henneberg reduction:
given a tight graph, remove vertices one at a time until a base case is reached.
This leads to an quadratic algorithm for computing the entire sequence.

Lemma 17 Let v be a vertex of degree k+b > k in a tight graph G. Then, after
the removal of any edge e = uv, there exists a new edge whose insertion results
in a tight graph. If ! ∈ [0, 3

2k), this edge can be found among the neighbors of
v; otherwise, it is found in a larger set containing the neighbors of v whose
size satisfies the base-case conditions.

Proof Consider the sparse graph after the removal of e; it is broken into
components, free edges and free vertices. Let V ′ be the neighbors of v (but
not v itself). If ! ∈ [32 , 2k), add enough vertices to V ′ to satisfy the base-case
conditions.

We claim that the vertex set V ′ cannot form a block; in fact, it cannot span
more than k|V ′| − ! − b edges. Indeed, suppose, for a contradiction, that V ′

spanned more than k|V ′|− !− b edges. Since the degree of v is k + b, the size
of the induced set of edges in G on V ′∪{v} is more than k|V ′|−!−b+k+b =
(k|V ′|− !)+k = k(|V ′|+1)− ! = k|V ′∪{v}|− !. This contradicts the sparsity
of G.

Since V ′ does not form a block and its number of vertices satisfies the base-
case conditions, it is not saturated with edges. Therefore, because of the
matroidal property of base extension, there exists an edge not already spanned
by V ′, which can be added to restore tightness.

It is a simple exercise to show the existence of a vertex with bounded degree
in [k, 2k]: indeed, the average degree in a sparse graph is at most 2k, and each
vertex v has degree at least k (or else sparsity would be violated on V \ {v}).
We can then apply Lemma 17 O(k) times repeatedly to compute a single
Henneberg reduction step. The Henneberg sequence is obtaining by iterating
the Henneberg reduction step until we reach a base case.

This leads directly to an O(n2) algorithm for solving the Henneberg reduction
problem by using the pebble game. Figure 10 describes one step of the algo-
rithm. Each edge removal puts back one pebble and searches in a constant-size
vertex subset for at most O(k2) possibilities of edge-insertion, taking a total
of O(n) time in the necessary pebble searches.

Circuits and redundancy. A graph G is said to be (k, !)-redundant if it is
spanning and the removal of any edge produces a graph which is still spanning.
A circuit is a special type of redundant graph, where the removal of any edge
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Algorithm 5 Henneberg reduction step.
Input: The directed graph produced by the pebble game, played on a tight
graph G satisfying the non-triviality conditions.
Output: A Henneberg reduction step for G.
Method: Find a vertex of degree k + b, with b ∈ [k, 2k). If ! = 0, b may
also be k. Compute the neighbor set Vv of v. If ! ∈ [32k, 2k), let V ′ be any
set of size & !

2k−!' that includes Vv, else V ′ = Vv.
Repeat b times:
Use the pebble game to find an edge with endpoints in V ′ which is not already
spanned by V ′ and not in a component. Insert it.

Fig. 10. Henneberg reduction step algorithm.

produces a tight graph.

We can detect a circuit associated with a dependent edge e = uv with respect
to D during the pebble game by collecting ! pebbles on u and v and com-
puting Reach(u, v), which is done in linear time; the edges in D spanned by
Reach(u, v) along with e comprise the circuit.

To decide redundancy of the input graph G, simply detect circuits during the
game and mark all the edges in circuits, as they are computed; if all edges are
marked at the end of the game, the graph is redundant. If the graph is not
redundant, unmarked edges are bridges; after their removal, the vertex sets
of the sparsity components in the resulting graph correspond to the vertex
sets of redundant components: induced subgraphs that are redundant. These
algorithms run in O(mn) time.
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