
Reliability Benefit of Network Coding

Majid Ghaderi, Don Towsley and Jim Kurose

Department of Computer Science

University of Massachusetts Amherst

{mghaderi,towsley,kurose}@cs.umass.edu

Abstract

The capacity benefit of network coding has been extensively studied in wired and wireless networks.

Moreover, it has been shown that network coding improves network reliability by reducing the number

of packet retransmissions in lossy networks. However, the extent of the reliability benefit of network

coding is not known. In this work, we characterize the reliability benefit of network coding for reliable

multicasting. In particular, we show that the expected number of transmissions using link-by-link ARQ

compared to network coding to send a packet from the multicast source to K receivers scales as

Θ( log K
log log K ).
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Reliability Benefit of Network Coding

I. INTRODUCTION

We study the performance of different error control techniques in tree-based reliable multi-

casting. We make the following simplifying assumptions although it is straightforward to extend

our results to more general cases:

1) Each node has exactly K children,

2) The loss probability over all links is independent and equal to p,

3) There is reliable and instantaneous feedback.

In the following subsections, we study the performance of end-to-end and link-by-link error

control techniques based on ARQ and FEC1. As the measure of performance, we compute the

expected number of transmissions of a packet until the packet is received by all nodes of the

multicast tree.

The rest of the paper is organized as follows. In sections II and III, we analyze end-to-

end and link-by-link error control techniques, respectively, and derive exact expressions for the

expected number of transmissions at source and in multicast tree. While these expressions can

be numerically evaluated, they do not provide any particular insight about the scaling behavior

of different error control techniques. Hence, section IV is devoted to the asymptotic analysis of

error control techniques based on order statistics. In section V, we provide numerical examples

to show the exact behavior of different error control techniques by evaluating the expressions we

derive in sections II and III. Our conclusions as well as future work are discussed in section VI.

II. END-TO-END ERROR CONTROL

A. Probability Distribution of the Number of Transmissions

Let Nr denote the number of transmissions of a packet to the root of a subtree of height r

(from its parent) until the packet is received by all nodes of the subtree. For the source of a

multicast tree of height h, we interpret Nh as the number of packet transmissions at the source

until the packet is received by all the multicast receivers (see Figure 1).

1We refer to the case of link-by-link FEC as network coding.
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Fig. 1. Tree topology for reliable multicast.

Define Fr(i) as follows:

Fr(i) = P {Nr ≤ i} , 0 ≤ r ≤ h, i ≥ 0 (1)

where, Fr(0) = 0 according to the definition.

Similar to [1], we develop recursive equations to compute Fr(i) in the case of ARQ and FEC

error control. First, consider the case of r > 0 and denote the root of the subtree by s. The

probability that j packets out of i packets that have been transmitted to node s are received by

node s is given by a binomial distribution expressed as

P {j|i} =

(
i

j

)
(1 − p)jpi−j, 0 ≤ j ≤ i . (2)

Note that for the root of the multicast tree the error probability is zero, i.e., p = 0, and hence

P {j|i} = 1, if j = i, and P {j|i} = 0, otherwise. If node s receives j packets, it will broadcast

the j received packets to its children. For each child, the probability that all nodes of the subtree

rooted at that child receive a packet is given by Fr−1(j). Since the children of a node have

independent packet losses, the probability that all the nodes of the subtrees rooted at children

of node s receive a packet is given by {Fr−1(j)}K , which we denote by F K
r−1(j) for notational

simplicity. Therefore, by summing over all possible values of j, it is obtained that

Fr(i) =
i∑

j=0

(
i

j

)
(1 − p)jpi−jF K

r−1(j), 0 < r < h . (3)

Hence, we have a recursive equation for computing Fr(i) for r > 0. Interestingly, computing

Fr(j) for r > 0 is independent of the end-to-end error control technique.
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Next, we compute F0(i) for the leaves of the multicast tree as follows:

1) End-to-End ARQ:

The probability that a (leaf) node does not receive any packet out of i transmitted packets

is given by pi. Therefore, with probability 1 − pi the node receives at least a copy of the

packet. Therefore,

F0(i) = 1 − pi . (4)

2) End-to-End FEC:

We assume that block size for coding is B. Clearly, F0(i) = 0 for i < B. Hence, we

consider i ≥ B in the following. The probability that a node receives at least B coded

packets out of i transmitted packets is given by a binomial distribution. Therefore,

F0(i) =
i∑

j=B

(
i

j

)
(1 − p)jpi−j, i ≥ B . (5)

So far, we have determined Fr(i) for all subtrees of height r. As mentioned before, for the

source of the multicast we have P {i|i} = 1. Hence, the expression Fh(i) can be simplified as

follows

Fh(i) = F K
h−1(i) . (6)

where, Fh−1(i) is given by (3).

B. Expected Number of Transmissions

For the source of the multicast, the expected number of transmissions until a packet is received

by all receivers is expressed as follows.

1) End-to-End ARQ:

E [Nh] =
∞∑

i=0

(1 − Fh(i)) = 1 +
∞∑

i=1

(1 − Fh(i)) . (7)

2) End-to-End FEC:

E [Nh] =
1

B

∞∑

i=0

(1 − Fh(i)) = 1 +
1

B

∞∑

i=B

(1 − Fh(i)) . (8)

Next, we compute the expected number of transmissions in the multicast tree (not just at the

source) until a packet is received by all receivers. Let Th denote the total number of transmissions
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in the multicast tree until a packet is received by all receivers. First, we compute the expected

number of transmissions in the tree per each transmission at the source of the muticast. Let Xr

denote the number of transmissions in a subtree of height r per each transmission at the root of

the subtree. Then,

Xr = 1 +
K∑

j=0

(
K

j

)
(1 − p)jpK−j

(
jXr−1

)

= 1 + K(1 − p)Xr−1,

(9)

where,

X0 = 0 . (10)

It is therefore obtained that

Xr =
(Kq)r − 1

Kq − 1
. (11)

where q = 1 − p. Therefore, the expected number of transmissions per packet in the multicast

tree is given by

E [Th] = XhE [Nh]

=
(Kq)h − 1

Kq − 1
E [Nh] .

(12)

Note that if Kq = 1 then it is simply obtained that

E [Th] = hE [Nh] . (13)

III. LINK-BY-LINK ERROR CONTROL

For link-by-link error control, we consider a simple topology as depicted in Figure 2 in which

a source s broadcasts a packet to all its K children. Let N denote the number of transmissions

of a packet by the source until the packet is received by all K children. Define F (i) as follows:

F (i) = P {N ≤ i} , (14)

where F (0) = 0.
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Fig. 2. Model for link-by-link error control.

A. Probability Distribution of the Number of Transmissions

Interestingly, F0(i) from previous section can be used to compute the expected number of

transmissions in the case of link-by-link error control. In particular, we obtain the following

expressions.

1) Link-by-Link ARQ:

The probability that a child does not receive any packet out of i transmitted packets is

given by pi. Therefore, with probability 1 − pi the child receives at least a copy of the

packet. All K children of a node are independent, therefore, the probability that all children

receive at least a packet is given by

F (i) = (1 − pi)K . (15)

2) Network Coding:

We assume that block size for coding is B and i ≥ B. Clearly, F (i) = 0 for i < B. The

probability that a child receives at least B coded packets out of i transmitted packets is

given by a binomial distribution. Therefore, the probability that every child receives B

packets is given by

F (i) =

{
i∑

j=B

(
i

j

)
(1 − p)jpi−j

}K

. (16)

B. Expected Number of Transmissions

Similar to the previous section, the expected number of transmissions at the source of the

multicast is simply given by



6

1) Link-by-Link ARQ:

E [N ] =
∞∑

i=0

(1 − F (i)) = 1 +
∞∑

i=1

(1 − F (i)) . (17)

2) Network Coding:

E [N ] =
1

B

∞∑

i=0

(1 − F (i)) = 1 +
1

B

∞∑

i=B

(1 − F (i)) . (18)

Next, consider a multicast tree of height h. At height r, there are Kh−r nodes. For each of

them, the expected number of transmissions is given by E [N ] because of the link-by-link error

control mechanism. Let Th denote the total number of transmissions in the tree. It is obtained

that

E [Th] = E [N ]
h∑

r=1

Kh−r =
Kh − 1

K − 1
E [N ] . (19)

Note that for K = 1, we have

E [Th] = hE [N ] . (20)

IV. ASYMPTOTIC ANALYSIS

In previous sections, we derived expressions for the expected number of transmissions for

reliable multicasting. However, the exact expressions do not provide insight about the scaling of

the number of transmissions with respect to K, B and h. In this section, using order statistics,

we derive asymptotic expressions for the expected number of transmissions at the source and in

the multicast tree.

A. Link-by-Link Error Control

Consider node s of the tree with K children as depicted in Figure 2. We note that link-by-link

ARQ is a special case of network coding in which B = 1. We use asymptotic results from order

statistics to compute bounds on the expected number of transmissions for both ARQ and coding

techniques.

1) Link-by-Link ARQ:

Consider child k of node s and let Xk denote the number of transmissions to child k until

it receives the packet. Clearly, Xk has a geometric distribution, that is

P {Xk = i} = (1 − p)pi−1 . (21)
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We are interested in finding

E
[

max
1≤k≤K

Xk

]
. (22)

Define Q = 1
p and log x = ln x

ln Q , where ln denotes the natural logarithm. Using the

asymptotic analysis of the maximum statistics of geometric variables [2], we have

XARQ = E
[

max
1≤k≤K

Xk

]
= Θ(log K) . (23)

2) Network Coding:

In this case, Xk has a negative binomial distribution, that is

P {Xk = i} =

(
i − 1

B − 1

)
(1 − p)Bpi−B . (24)

This meas that B−1 packets have been received until packet i−1, and packet i is received

too. Using the asymptotic analysis of the maximum statistics of negative binomial random

variables [3], we have

E
[

max
1≤k≤K

Xk

]
= Θ(log K + (B − 1) log log K) . (25)

By dividing both sides of the equation by B, we obtain the expected number of transmis-

sions per packet:

XCoding =
1

B
E

[
max

1≤k≤K
Xk

]
= Θ(

1

B
log K + log log K) . (26)

For B = ω(logK), the above asymptotic expression reduces to:

XCoding = Θ(log log K) . (27)

Using (19) and the above asymptotics, we get the following bounds for the number of

transmissions in the tree.

1) Link-by-Link ARQ:

TARQ = Θ(Kh−1 log K) . (28)

2) Network Coding:

TCoding = Θ(Kh−1 log log K) . (29)
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B. End-to-End Error Control

Let Nr denote the number of transmissions at the root of a subtree of height r until each

receiver in the subtree receives the packet. From the asymptotic analysis of negative binomial

distribution we have

Nr = Θ(log K + Nr−1 log log K), (30)

where, N1 = Θ(log K+B log log K). This simply states that each child of the root of the subtree

needs to receive Nr−1 packets. Therefore, the root has to transmit Θ(log K + Nr−1 log log K)

packets until every child has received Nr−1 packets. By expanding the recursive equation (30),

it is obtained that

Nr ∼ log K
(
1 + · · ·+ (log log K)r−2

)
+ N1(log log K)r−1

= log K
(log log K)r − 1

log log K − 1
+ B(log log K)r

= Θ
(

log K(log log K)r−1 + B(log log K)r
)

.

(31)

Therefore, for B = ω(log K), the expected number of transmissions at the source is given by

1) End-to-End ARQ:

NARQ = Θ
(

log K(log log K)h−1
)

. (32)

2) End-to-End FEC:

NFEC = Θ
(
(log log K)h

)
. (33)

Using (12) and the above asymptotics, we can derive the following bounds for the number of

transmissions in the tree.

1) End-to-End ARQ:

TARQ = Θ
(
Kh−1 log K(log log K)h−1

)
. (34)

2) End-to-End FEC:

TFEC = Θ
(
Kh−1(log log K)h

)
. (35)
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C. Convolutional Coding

In previous sections, we assumed the use of block codes for network coding. We showed that

as K → ∞ for B = Ω(log K), the expected number of transmissions scales as Θ(log log K).

Intuitively, for a block code with block length B, every packet is useful to all the receivers until

one of the receivers receives B packets. From that time until the time the last receiver receives

B packets, each transmitted packet is only useful to a subset of the receivers and not all of them.

In particular, at the beginning, each transmitted packet is useful to K receivers; after one of the

receivers receives B packets, each transmitted packet is only useful to K − 1 receivers; and so

on.

However, if assume the use of convolutional codes that operate on streams of packets instead

of blocks of packets, then every transmitted packet is useful to all the receivers. Hence, for

each receiver, the expected number of transmissions per packet is simply given by 1
1−p . In this

case, the reliability gain of network coding compared to link-by-link ARQ scales as Θ(log K)

as K → ∞.

V. NUMERICAL EXAMPLES

We have numerically evaluated the exact expressions for the expected number of transmissions

at the source and in the multicast tree for different tree heights and error probabilities. A summary

of our numerical results are presented in this section. For FEC-based error control techniques,

i.e., end-to-end FEC and network coding, we have assumed the use of block codes with block

length B = 16. We have also generated results for larger values of B which show the same

behavior in the number of transmissions, and hence are not presented here.

As a base for comparison, in Figure 3, we have plotted the expected number of transmissions

for h = 1. This is the case of having a source transmitting packets to K receivers in its

transmission range. Since feedback overhead is ignored, ARQ is indeed the optimal error control

technique in a non-coded case. Nevertheless, network coding outperforms ARQ in both low-loss

and high-loss regimes as shown in Figures 3(a) and 3(b), respectively.

Next, we look at multicast trees with h ∈ {2, 4}. In both cases network coding outperforms all

the other techniques. Interestingly, link-by-link ARQ and end-to-end FEC show different behavior

with different tree heights. Figures 4 and 5 depict the expected number of transmissions for a

tree of height h = 2 and error probabilities p ∈ {0.05, 0.5}. It can be seen from the figures
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(a) p = 0.05
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(b) p = 0.5

Fig. 3. No. of transmissions at source for h = 1.
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(a) No. of transmissions at source
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(b) No. of transmissions in tree

Fig. 4. P = 0.05 and h = 2.

12 4 8 16 32
0

5

10

15

20

25

30

Number of children (K)

Ex
pe
ct
ed
 n
um
be
r 
of
 t
ra
ns
mi
ss
io

ns

 

 
End−2−End ARQ
End−2−End FEC
LinK−by−Link ARQ
Network Coding

(a) No. of transmissions at source
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(b) No. of transmissions in tree

Fig. 5. P = 0.5 and h = 2.
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(a) No. of transmissions at source
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(b) No. of transmissions in tree

Fig. 6. P = 0.05 and h = 4.

that, in some cases, end-to-end FEC has better performance than link-by-link ARQ although the

difference is not significant. Interestingly, there is a significant difference between end-to-end

ARQ (dominant error control technique in Internet) and network coding. In particular, in p = 0.5

representing a high-loss regime, the difference in the number of transmissions at source is huge.

Figures 6 and 7 show the number of transmissions for a tree of height h = 4. Interestingly,

link-by-link error control techniques always outperform end-to-end techniques. Moreover, the

difference between end-to-end ARQ and network coding is significant even for small values of

K. Again, in high-loss regimes, there is a huge difference between end-to-end ARQ and Network

coding.

VI. CONCLUSION

In this paper, we studied the reliability benefit of network coding for tree-based reliable

multicasting. Four types of error control techniques, namely, end-to-end ARQ, end-to-end FEC,

link-by-link ARQ and network coding were considered. We analyzed the expected number of

transmissions at source and in multicast tree as the measure of the performance of different error

control techniques. We derived exact expressions for the expected number of transmissions.

Furthermore, using results from order statistics, asymptotic bounds for the performance of

difference error control techniques were derived. In particular, it was shown that the reliability

benefit of network coding compared to link-by-link ARQ is Θ( log K
log log K ) where K is the fan-

out degree of the nodes of the tree. Our results can be readily utilized to compute exact and



12

12 4 8 16 32
0

50

100

150

200

250

Number of children (K)

Ex
pe

ct
ed

 n
um

be
r 

of
 t

ra
ns

mi
ss

io
ns

 

 
End−2−End ARQ
End−2−End FEC
LinK−by−Link ARQ
Network Coding

(a) No. of transmissions at source
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Fig. 7. P = 0.5 and h = 4.

asymptotic delay benefit of network coding as studied in [4]. In the future, we would like to

extend our analysis to more complicated multicast topologies such as a grid with significant

amount of path diversity.
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