
1

Maximizing the Data Utility of a Data Archiving &
Querying System through Joint Coding and

Scheduling
Junning Liu , Zhen Liu , Don Towsley and Cathy H. Xia

Dept. of Computer Science, University of Massachusetts, Amherst, MA
Email: liujn,towsley @cs.umass.edu

IBM Thomas J. Watson Research Center, Hawthorne, NY, USA
Email: zhenl,cathyx @cs.umass.edu

Abstract

We study a joint scheduling and coding problem for collecting multi-snapshots spatial data in a resource
constrained sensor network. Motivated by a distributed coding scheme for single snapshot data collection [7], we
generalize the scenario to include multi-snapshots and general coding schemes. Associating a utility function with
the recovered data, we aim to maximize the expected utility gain through joint coding and scheduling.

We first assume non-mixed coding where coding is only allowed for data of the same snapshot. We study
the problem of how to schedule (or prioritize) the codewords from multiple snapshots under two classes of utility
models: an archiving model where data from all snapshots are of interests with additive utilities; and a staleness
model where the most recent data of each sensor location is desired with non-additive utilities. For the archiving
model, we formalize the scheduling problem into a Multi-Armed Bandit (MAB) problem. We derive the optimal
solution using Gittins Indices, and identify conditions under which a greedy algorithm is optimal. For the staleness
model, the scheduling problem is a Restless Bandit (RB) problem. We show that a greedy scheduling policy is
optimal when the inter-arrival time between snapshots is not too short.

We then consider random mixed coding where data from different snapshots are randomly coded together. We
generalize the growth codes in [7] to arbitrary linear-codes-based random mixed coding and show that there exists
an optimal degree of coding. Various practical issues and the buffer size impact on performance are then discussed.

I. INTRODUCTION
In many distributed data streaming systems, we need to deal with two basic issues: the random environment and

resource constraints. The random environment view is normally due to the lack of perfect information in a dynamic
environment, e.g. random changing source and sink topologies in Delay Tolerant Networks (DTN) [5], random
nodes failures in disaster monitoring networks [7], random fluctuations of link qualities in wireless networks, etc.
This environment randomness motivates the employment of network coding [2], [1], [7]. Essentially, network coding
helps to alleviate the coupon collector effect1 [12]. On the other hand, we often have limited processing resources
(communication, computation, storage, energy, time etc.), thus we are only able to recover some fraction of all
the temporally and spatially labelled data. This raises the problem of resource allocation or scheduling among the
sensed data.
In this paper, we study the interplay between coding and scheduling to improve data efficiency. We associate

a utility function with the recovered data2and analyze the coding & scheduling schemes that maximize the total

1Coupon collector effect refers to the long tail phenomena in collecting distinct coupons by random sampling, it needs samplings on average.
2We refer to the data decoded by the sink as recovered data and using recovering interchangeably with decoding.

2

utility associated with the recovered data subject to a limited communication resource budget. In general, the data
is generated at multiple time stamps with different user specified utilities.
Our problem of maximizing data utilities through joint coding and scheduling is motivated by many real time

data collecting & querying networks. One typical setting is that a number of sensor nodes are randomly deployed
in a region to monitor disaster events such as earthquakes, fires, floods, etc. When a disaster happens, nodes may
fail at any time. There are randomly deployed base-stations (sinks) in the network to collect the data. The sinks’
number is much less than that of the sensors and their locations are unknown to the sensor nodes due to the random
failures of both the nodes and transmissions. Thus, sensors have to use random gossiping type of routing. The goal
is to recover as much data as possible before the whole network goes down.
Another setting common in practice is in the context of querying/stream-processing networks, where various

types of data streams are generated online and transmitted to the backend base-stations for further processing or
storage. Data are associated with different spatial & temporal labels and have different utilities to the application.
For example, some applications may request data of all time stamps within a particular time window for archiving
purposes, although the utilities of data from different time stamps may not be weighted uniformly. Some other
applications may favor the most recent data, a more recent data for the same spot may cause the old one to become
useless. Also data generated in a particular region at a particular time may have high utilities due to purposes such
as event monitoring or target tracking.
In all above settings, the rate at which the network generates data may greatly exceed the communication

capacity of the network. We assume the data samples are independent either by nature or pre-compressing. In
wireless networks, for example, the bandwidth is often limited due to the wireless medium contention. The funnel
effect [16][11] of bottleneck links around the sinks due to the “many to one” type of communication patterns
causes the effective capacity to be even lower. The energy power is also limited especially for low cost cheap
sensor networks. One other scenario in e.g. disaster monitoring networks, is that the network is not stable, nodes
are prone to fail thus the communication resources left keep shrinking as time goes on. Another typical scenario
is military communications in the combat field, parties want to turn on their radios as less as possible to reduce
the chances of exposure to the adversaries. For all these applications, with the limited resource budget, there is a
need to prioritize the forwarding of data of multiple time stamps, and decide what subset of data can be encoded
together so as to maximize the data utility gain.
Without loss of generality, we assume all actions (sensing and transmitting) are taken in discrete time slots. A

snapshot refers to the collection of data samples that are generated in the same time slot. To account for the various
needs of different applications, we consider two generic data utility models: one is an archiving model where
data of all snapshots are of interests with additive utilities, in other words, data of two snapshots about the same
location both have utilities independent of each other; the other one is a staleness model where the most recent
data is desired for each sensor location and the utilities are non-additive across different snapshots since obtaining
an earlier snapshot data brings less utility if more recent snapshot data from the same location has already been
recovered.
The most general setup that allows arbitrary coding and scheduling is a very complex open problem. In the

presence of multiple locations and multi-snapshots, there is a huge number of possible spacial and temporal snapshot
combinations to choose from. The coding and scheduling operations can be entangled together and it becomes
difficult to determine the optimal solution. A greedy policy that simply delivers the current most “valuable”3piece
of data to the base-stations may not be optimal. As a first step, we focus on two generic coding schemes for
simplicity of analysis. Namely, we consider non-mixed coding, where coding is only allowed for data of the same

3The utility may not be associated with any particular piece of data but rather a nonlinear function of a collection of data, also the random environment
of such data retrieval system prevent precise control of which data is actually recovered (e.g. with random network coding).

3

snapshot, and a random mixed coding where data from different snapshots are randomly coded together.
Under an arbitrary non-mixed coding scheme, there is a need to schedule (or prioritize) the codewords from

multiple snapshots so as to maximize the total utility gain. We show that under the archiving model, the scheduling
problem can be modelled as a Multi-Armed Bandit (MAB) problem [17] and solved optimally using Gittins
Indices [6], we also give an algorithm to calculate the indices specific to our underlying Markov process. We
further show that greedy is optimal when a monotonicity property of the product of decoding probability and utility
holds. Under the staleness model, the scheduling problem is a Restless Bandit (RB) problem [13] which is in
general NP-hard (P-Space Hard [14]). We show that when the data arrival rate is not so large such that newer data
will have at least twice the ‘utility’4of the older data, a greedy algorithm that always favor the most recent snapshot
is the optimal policy.
For random mixed codings, there is no scheduling issue since different snapshots data is drawn randomly. For

linear codes based random mixed coding, we characterize the optimal coding degree (number of original data
symbols to code together) to maximize the decoding probability at all the times. Based on this, we show that a
greedy algorithm that always chooses the optimal coding degree is optimal. This is a generalization of [7]’s work
where they characterize the optimal coding degree code called growth code (GC) within a class of random linear
network codes for the single snapshot case.
In reality low cost sensors often have a constrained memory size to apply the joint coding & scheduling operations.

So we also analyze the buffer size’s impact on the sensors’ coding strategies. We claim that the non-mixed coding
is appropriate for sensors with relatively large buffer size while the random mixed-coding is good for low cost
sensors with very limited buffer size and computation power. For growth codes applied in the single snapshot case,
we show that performance is not sensitive to the buffer size in terms of the number of packets exchanged to recover
the whole snapshot. The total expected number of packets to recover the whole snapshot for growth code is
while for the non-coding approach it is with as the total number of data items in that snapshot. Our
simulation shows that the expected number of packets is less than even for sensors with very small buffers.

II. BACKGROUND AND RELATED WORK

The most relevant work to this paper is [7]. It considers a distributed sensor network environment for the purpose
of disaster monitoring. Sensors are prone to fail at any time and have no knowledge of the sink location. [7] studies
the data collection of a single snapshot with a max data persistence goal, aiming at maximizing the fraction of data
that eventually reaches the sink. Without coding, data collection corresponds to a coupon collector process [12]
where it takes in total number of packets in order to recover original data packets. Coding can help to
combat the heavy tail coupon collector effect. Existing techniques include Reed-Solomon codes [8], Luby Transform
Codes [9], Digital Fountain [4], Turbo Codes [3] and other LDPC codes [10]. However, all these traditional channel
codes require accumulating a large number of initial codes before decoding, which is not desirable when resource is
limited and nodes are subject to failure at anytime. The key idea of Growth Codes [7] is to intelligently control the
coding degree (the number of symbols to code together) to maximize the decoding probability for each additional
symbol reaching the sinks. In the beginning, data is not coded, when half of the original symbols are recovered,
symbols are coded together with a degree , and the degree keeps increasing as the recovered fraction increases.
The optimal coding degree is derived under a simplified centralized encoder model and then implemented in a
distributed fashion.
There are two issues not considered in [7] that we want to address. First, they consider only a single snapshot;

second, the spatial and temporal heterogeneity of the data is not considered, there is no notion of utilities associated
with the data. In reality, events being monitored could happen across different times and each of them has some

4This is an ‘absolute utility’ we defined later for convenience of analysis.

4

application defined utilities to the end users. Even for one snapshot, different locations may be associated with
different utilities depending on the users’ interests. For such a data collection process with multi-snapshots and
multiple utility levels, there is a need to combine coding and scheduling so as to maximize the systems utility.
One technique that we borrow is from the rich literature of classical Multi-Armed Bandit(MAB) problems. Details

on the methologies relavant to this class of problems can be referred to, e.g. [6], [18], [15], [13], etc. We will
review necessary results along the discussion when they become needed.
The rest of the paper is organized as follows. The model under consideration is formalized in Sec. III. The

scheduling problem under the archiving model and staleness model are studied in much detail respectively in
Sec. IV and V. The optimal random mixed coding is explored in Sec. VI where the objective is to maximize the
immediate return for next transmission. The buffer size impact on performance is addressed in Sec. VII. Some
practical implementation issues are discussed in Sec. VIII. Concluding remarks and future works are finally given
in Sec. IX.

III. MODEL FORMALIZATION

Throughout the paper we assume time is descretized into equal length slots, indexed . There are
sensor nodes independently and randomly distributed in a connected region. Sensors are assumed to be synchronized,

and at time , each sensor generates observation (also referred to as data sample) of the
field at its location. We assume the data samples are independent and refer to the collection of all observations

at time as the -th snapshot of the field. We assume the interarrival times between two
snapshots () are i.i.d. random variables.
Each data sample has bits. We refer to this -bit data unit as a symbol (or a packet), the original -bit data

sample as an original symbol, and a coded data of -bits as a coded symbol (or a codeword). Each node has a
buffer of size that can store at most data symbols.
There are sinks that are randomly distributed in the network with their locations unknown to the sensor nodes.

There are communication links among neighboring sensors with constrained bandwidths. The sinks aim to maximize
the total utility (define concretely later) of the collected data for further processing. The majority of the nodes cannot
transmit directly to the sink, and hence other nodes must act as intermediate forwarding agents of data. We assume
the network is ‘zero-configuration’, the only topology information available to a node is its set of neighbors with
whom it can communicate directly. At each time slot, a node can transmit -bits to a randomly chosen neighbor. It
can transmit to a neighbor either one original data symbol, or an encoded version of some subset of the symbols
in its buffer. The sinks are assumed to be either wired up using high speed networks or have very large capacity
links among them so that once the data reach any of the sinks it is considered being collected by a central server.
We assume that each sink receives one packet per time slot on average. Upon receiving the encoded packets, the
sinks may be able to decode a subset of the original symbols with certain probability depending on the amount of
data that has already been recovered.
Since the rate at which the network generates data may greatly exceed the communication capacity of the network,

there is a need to prioritize the forwarding of the multiple snapshots, and to decide what subset of data can be
encoded together so as to increase delivery efficiency. We define a joint coding and scheduling scheme as a
uniform operation scheme for all sensor nodes that tells a node what to encode and which snapshot to send to its
neighbors. In general, can use any possible coding scheme, e.g., a node can select symbols from snapshot
, symbols from snapshot , , symbols from snapshot and coded them together.

Denote is decoded to be the set of symbols recovered by the sinks at time
, and its sample path . We assume there is a utility function associated with the sample

5

path of the recovered data set . The goal is to find a joint coding and scheduling scheme to maximize
the expected total utility within a given time period , i.e.

In general can be specified arbitrarily by the underlying user/application. In this paper, we focus on two specific
utility models: archiving model and staleness model. In the archiving model, we assume users are interested in all
data belong to a specific subset of snapshots, where different snapshots may have different importance (utilities)
and data utilities of different snapshots are additive (independent). Such a scenario is typical in many archiving
and querying applications, where all data of different time stamps within a given time window are of interests.
The staleness model is also desired in many applications for purposes such as prediction. In this case, users would
like to obtain the most recent observation of each location in the sensor network, thus the utilities are no longer
additive. A piece of data may bring less utility if there is more recent snapshot data of the same location already
recovered.
The most general setup that allows arbitrary coding and scheduling is a very complex problem. As a first step,

we assume coding is only permitted for symbols from the same snapshot and call it as non-mixed coding. Under
any non-mixed coding scheme, we study the problem of how to schedule (prioritize) the transmission of codewords
from multiple snapshots so as to achieve the max system utility over a fixed time window. The archiving problem
and staleness problem are studied respectively in the next two sections. We also apply these general results to the
GC based non-mixed coding and discuss the specific solutions in Sec. .

IV. ARCHIVING PROBLEM
In this section we consider the archiving problem where users are interested in all snapshots with additive data

utilities. We assume new snapshots & queries keep arriving and the problem is how should we schedule the data
gathering to adapt to the dynamic utility map caused by the new snapshots & query updates. For example, an
emergent query may ask for the three most recent snapshots’ data in the next ten minutes, possibly with different
utility preferences. We model this problem by the classic MAB problem and obtain the optimal scheduling policy.

A. Additive Utility Goal

Under an arbitrary non-mixed coding scheme, the utility gain at time depends on the number of symbols one
can decode at time and the number of already recovered symbols before , denoted respectively by and

for snapshot . In general, is a random variable dependent on the coding & scheduling scheme , and
is a random variable dependent on and . We use to represent the utility gain of decoding a

snapshot symbol when of them has been recovered. We further model the time influence on utilities using a
time discounting factor to model the decay of data utility along with time. That is, all snapshot data’s
utility drops out exponentially after generated.5 Based on above, we can associate each snapshot symbol decoded
at time a marginal utility gain where is the time the snapshot symbol is first generated. In other
words, a new decoded symbol’s contribution on utility is simply a function of the number of decoded symbols of
that snapshot multiplying a discount factor. Therefore, if schedules to transmit only codewords of snapshot at

time , the expected utility gain for this time slot is: , where is the th snapshot generating

time, is the number of recovered symbols of snapshot by time .

5Note that when there is no decaying.

6

As we mentioned earlier, the general scheme with arbitrary codings is hard to analyze, we focus on incremental
decoding that is also considered in [7] where a packet will not be kept for later use if the sinks can not decode a
new symbol out of it immediately. 6It is easy to see that for incremental decoding, the sinks either decode nothing
or decode one symbol from one received packet. Denote the probability of decoding one symbol as , it is
merely a function of the number of recovered symbols. W.l.o.g., we assume time is slotted fine grained enough s.t.
in each slot , any scheme simply choose to schedule one of the snapshots . Since each sink receive
one packet per time slot, , or simply . Note that this is a conditional expectation

conditioned on which is also a random variable dependent on . For later convenience, we further absorb
the term into as a parameter. Based on above, for an arbitrary non-mixed coding scheme, we are interested
in the best scheduling policy that maximizes the long-run average utility, i.e.

(1)

where is the undiscounted utility of decoding a snapshot symbol and is the index of the snapshot
scheduled for time by .

B. Multi-armed Bandit Solution
A multi-armed bandit (MAB) problem is a scheduling problem for the operations among a number of machines.

Each machine has an initial state and we denote the th machine’s initial state as . At any time , we can
choose one of the machines to execute and obtain a reward , which is a function of the machine’s state.
As we mentioned earlier in general there is also a discount factor s.t. the actual reward we collect
for operating machine at time is . If a machine is chosen to be executed on, then its state evolves
following some stationary Markov process. If not, the state remains unchanged . The goal is to
schedule the operations s.t. the expected reward collected within a time window is maximized. The optimal policy
is to, at each time step, execute the machine with the maximum Gittins index[6]. The Gittins Index is defined as:

(2)

where is the machine ’s current state. In the case of , we just need to recalculate every step the index
of the machine that has been just operated because other machines’ indices remain unchanged.
Our archiving and querying problem can be modelled as a MAB in the following way. Each snapshot corresponds

to a machine, to execute on a machine corresponds to exchange packets coded with symbols from that snapshot
for one time step. Thus if at time we have snapshots not finished retrieving, then we have machines
to choose to operate. Let the arrival time of snapshot be , as mentioned earlier in (1) we absorb the term
into the utility before discounting term , then every snapshot virtually starts discounting from the same time,
bring a actual utility gain as . When there are query updates that changes the utilities, we can always adjust

appropriately to reflect them.

6Even though in general it is possible to apply complex techniques to use cached packet to do joint decoding, for the simplicity of the analysis and the
assumption of limited computation capability for the sensors, we assume those packets that are not decodable right away will be discarded. Also the benefit
of keeping those packets is expected to be negligible compared to the effect of the degree optimization.

8

Otherwise

Proof: The proof follows the same spirit of Lemma and Theorem in [15]. Let

where is the optimal stopping time that achieves the index value of state , it is a random variable conditioned
on the initial state.
Our Markov process is different from the normal MAB problem where the reward is a deterministic function of

the state. In our problem, the reward is a deterministic function of the transitions; when we transit from state to
, or to say when we decode a new symbol, we gain utility associated with the symbol. By the one step

memoryless property of a Markov process and the special structure of our state process, we derive

Then apply Theorem in [15] and we prove the theorem.
Queries are modelled by updates of the utility vector . For example, in a military sensor application,

at time a General may want get as much data of snapshot to as possible in the next ten minutes, and
also specifies the relative preference level of to as . This emergent query is carried
out by setting all for and . In addition to
this, when calculating the Gittins index, instead of finding an optimal stopping time of infinite horizon, we need
to find an optimal stopping time within ten minutes.
In some applications we may have some knowledge of the snapshot arrival process. We may know the arrival

rate through past experience or some online learning/estimation techniques. And because of this, if the scheduling
algorithm is searching the maximum index that could have its stopping time that achieves that index anywhere in
the future, it may not be an optimal algorithm conditioned on the knowledge of the arrival process. For example,
if we know some high utility snapshot is going to arrive within minutes, then at current time we should not
choose a snapshot with a max index achieved at time hour later over a snapshot with the second largest index
achieved within minutes. However, if the product of the decoding probability and the utility is monotonically
non-increasing, the following Lemma tell us a greedy algorithm is optimal.
Lemma 1: If is monotonically non-increasing as increases for all snapshot , then for

all and no matter what the new snapshots arriving process is, the optimal scheduling policy will be a greedy one
that always chooses the current maximum index of .

Proof: If there are no arrivals, by [17] the optimal policy will be the greedy policy. If there are arrivals, the
only possible impact of the arrivals to the current machines’ indices is to influence their time ranges to choose a
stopping time to maximize the index. When the decoding probability is monotonically decreasing, the stopping time

9

that achieves the index is the minimum possible, one step. Thus, no matter what the arrival process is, a greedy
policy will always produce an optimal performance incrementally.
The monotonicity property of the decoding probability is often true in reality, because in general the more symbols
recovered, the more difficult it is to decode new symbols. For example in the growth codes case, even though the
decoding probability may not be monotonically decreasing all the way to the end for the ideal case of growth codes
with large buffer sensors, it is true for the recovered fractions between to under growth codes. Since the
resources are limited, very often actually we are not able to recover more than fraction of any snapshots due to
new arrivals and limited-time queries. For many applications, the marginal utility gain is also non-increasing
for most of .
Thus, greedy is in fact optimal for many real applications. We can also claim that greedy achieves the optimal

max data persistence goal for lots of applications.

V. STALENESS PROBLEM
As mentioned earlier, applications may favor more recent data for purposes such as prediction or event monitoring.

In this case, older data becomes useless once we have a more recent value for any spatial point. We model the
data utility for such applications using a notion of staleness. The staleness of such data increases as time passes,
but whenever we obtain fresher data, the staleness is reduced.
Now the utilities of various snapshots are no longer independent, the possible utility of an exchanged coded

packet of a snapshot will not only depend on the recovered fraction of this snapshot, but also depend on the
recovered fractions of other snapshots. When the machines’ states are not independently evolving, this is a restless
bandit problem rather than MAB problem. RB is in general NP-hard so there is no efficient solution. Nevertheless,
we show that greedy is optimal under certain conditions of the decoding probability and inter-arrival times between
adjacent snapshots.

A. Formulation of Staleness Problem

For the staleness problem, we use utility to quantify the staleness reduction of the spatial cells being monitored.
The staleness of a sensor reading is a monotonically non-decreasing function of the time , denoted by . Thus
we can associate an absolute utility value to each snapshot as:

(3)

can be interpreted as the staleness reduction of obtaining snapshot ’s data at time on that cell if that is the
first symbol recovered for that cell.
Denote by the fraction of snapshot symbols that are already decoded by the sinks. For simplicity of

presentation, let equals , the current number of available snapshots. Then, for an arbitrary location, its

staleness at time is with probability . That is, the data sample of snapshot

must have been decoded for that location, but the data of more recent snapshots have not been decoded yet for that
location.
Combine further with the time discounting factor , the staleness minimization can then be written as

(4)

We call this the min integrated staleness problem. Another possible goal is to minimize the final staleness at the
stopping time , i.e.

10

(5)

we call this the min staleness problem.
For the min integrated staleness problem, when is a constant value independent of time (some

function of). (4) can be equivalently written as

(6)

where is specified by (3). This is a specific Restless Bandit (RB) problem which is in general NP-hard.

B. Optimal Solution

Definition 1: A non-mixed coding satisfies monotonic decoding if its decoding probability is monotonically
non-increasing (i.e. for all) and for all possible .7

Definition 2: We call a snapshot arriving process infrequent if for all and .
Theorem 2: For the min staleness problem, a greedy scheduling of always exchanging coded bits from the most

recent unfinished snapshot is optimal for any monotonic decoding non-mixed coding schemes with infrequent arrival
snapshots.
To prove Theorem 2, we need to first prepare some lemmas. We will derive these lemmas based on a simplified

scenario for simplicity of presentation then generalize them. Assume is a constant of and there are only
two snapshot and with . Denote a policy that sticks to snapshot all the time as , and denotes the
corresponding final staleness of a policy as .
Lemma 2:
Proof: The one step expected staleness reductions for and at time are

(7)

(8)

At time zero, , , so . Since when is a constant,

, we just need to show that for all . This is true for the following three
cases:

7Note that is the naive non-coding approach’s probability of decoding a new symbol.

11

a) When , the two policy and have for any . b) When , easy

to see for all . c) When , since is monotonically non-increasing and we

have increases with , thus .

Combined with (7),(8) and we show for all cases and any thus finish the proof.

Lemma 3: Any scheduling policy that switches the snapshot exactly once can not perform better than .
Proof: Denote a scheduling policy that starts with snapshot then switch to snapshot as and one that

starts with switches to later as .
By Lemma 2, we immediately see because after the switching point is consistently better than
while before that they are the same.

For , denote the switching time as , then we construct another policy that operates with snapshot first
from time to then switches back to snapshot till . Since the coding operations between the two snapshots
are independent in non-mixed coding, their orders do not affect the final and . Thus .
Compare with , by the same argument for and above, we conclude
Lemma 4: Any scheduling policy that has more than one switchings performs no better than .
Proof: We shows this by recursively applying Lemma 3. Starting from the second last switching time, by

Lemma 3, we can improve the performance from this point to , by removing at least the last switching (possibly
together with the second last switching). Work backward in time till time . By induction, we remove all the
switchings and the performance only improves. Also by Lemma 3, after the last removing the policy has to be .

Lemma 5: Generalization of Lemma 2, 3 and 4 to snapshots case.
Proof: When we have multi-snapshots, the expected one step staleness reduction for snapshot and are:

(9)

(10)

Where is the fraction of cells that have recovered at least one symbol from snapshot and
is a common constant need to be subtracted from both due to recovered fractions of earlier snapshots .

Compare (9) and (10) we can see that if . This can be

shown in the exactly same way as in Lemma 2. Based on this, we can show the same results for Lemma 3 and
Lemma 4 in the same way. 8

Finally we generalize all these results to the non-constant case. This can be done by repeatedly use the
non-decreasing property of . First, Lemma 2 is still true because if then . Then
after any time step, ’s staleness reduction is bigger than , which means its staleness curve is dragged behind

8Note now the switching can be between any two snapshots.

12

averagely, and for each step it is dragged more. So has a smaller staleness than at any time step. Based on
Lemma 2, the no switching and other lemmas can be proved in the exact same way.
Based on the above results, we have proved Theorem 2.
Theorem 3: For the min integrated staleness problem, a greedy scheduling of always exchanging coded bits

from the most recent unfinished snapshot is optimal for any monotonic decoding non-mixed coding schemes with
infrequent arrival snapshots.

Proof: Since by Theorem 2, greedy is optimal for the min staleness problem under the same conditions, then
a greedy algorithm achieves the minimum staleness at any time step, thus also achieves the minimum integration
of the staleness with any possible discounting factor .

VI. RANDOM MIXED CODING
A random mixed coding (RMC) randomly mixes up data symbols from all snapshots. RMC is primarily motivated

by the scenario of small buffer sensors for which the delay of non-mixed coding can be non-negligible. While RMC
does not control the fraction of coding symbols from any snapshot, in other words, it cannot choose to select
symbols from snapshot , symbols from snapshot and symbols from snapshot , it can only choose the total
number of distinct symbols to select and the fraction of each snapshot in the selected symbols will be decided by
their distributions. This random drawing of symbols from all snapshots without differentiating them is the simplest
algorithm for the low cost sensors.
In this section, we analyze one type of RMC based on growth codes type of random linear codes with incremental

decoding, we call it RMC-GC. We model this using the following procedure similar to [7]. That is, when encoding,
a sensor node choose a degree and then randomly draw symbols from a central pool of original symbols from
all available snapshots and them together. The central pool model is a good abstraction of the collective
effect of the distributed behavior of the sensors drawing symbols randomly from their own buffers, assuming the
sinks are uniformly randomly distributed in the field and the original symbols are spatially uniformly mixed up
after a short initial period.
Based on this model and strategy, we derive the optimal coding degree at each time step. Before which, we give

some further notations.

A. Notations
More generally, in this section we allow different snapshots to have different number of total symbols. The th

snapshot contains symbols. The total symbols of all snapshots at time is . For each snapshot
, denote the fraction of symbols currently recovered by the sinks as . Denote the probability of randomly

drawing a symbol of snapshot from the pool as . Then . In case that ,

we have . For each snapshot , there is a utility associated with each symbol as .9

B. Optimal Degree

Under RMC, the only thing a node can control is the coding degree. The question is whether there exists an
optimal degree to achieve the max utility goal and the max data persistence goal. We answer the question in the
following theorem.
Theorem 4: The optimal coding degree that achieves both the max utility and max data persistence goals for

RMC is

(11)

9Note that here we use to represent the final utility gain after possible time decaying.

13

When , we have

(12)

where The corresponding maximum decoding probability is

(13)

Proof: Since the total number of symbols is normally much larger than the coding degree , the random
drawing of symbols can be approximated as a drawing with replacement procedure 10.
For each symbol in a packet, the probability that it is already recovered by the sinks is

(14)

the probability that the symbol is new to the sinks is . Since the symbols are independently randomly
drawn, for each received packet encoded in degree , the probability of decoding it is

one new symbol recovered symbol

(15)

The expected utility gain for one packet equals the decoding probability multiplies the expected utility gain
conditioned on decoding. The expected utility gain conditioned on decoding is the same for any degree encoding
(independent of) as below:

decoding (16)

This also means that no matter what is, the follows the same sample path
expectedly. Thus, to achieve the max utility and max data persistence goal, we simply need to choose to
maximize the decoding probability.

Let , we have . Since is monotonically increasing, is monoton-

ically decreasing. Thus the maximum is achieved at

(17)

Apply it to (15) we get the decoding probability of the optimal RMC (13). When , we

have for all , then , apply it to (17) we have (12).

Theorem 4 includes [7]’s optimal degree as a special case, when we have one snapshot as in [7], simply replace
all with a common and Theorem 4 tells us the optimal degree of coding is , this is consistent with
[7]’ result but we derive it in a simpler way and with a more general setup.

10The precise argument of using the selecting without replacement will result in the same conclusion.

14

VII. BUFFER SIZE AND GROWTH CODES PERFORMANCE
The random mixed coding is a good strategy for very cheap sensors with very constrained memory and compu-

tation budget. For sensors with relatively larger buffers and more computation power, they are able to afford the
higher cost to control the scheduling between multi-snapshots data and thus also to enjoy the more query-adaptive
freedom provided by such control. Namely, these sensors are able to manage a non-mixed way of coding the
symbols such that symbols from different snapshots are kept separate and coding only happens within symbols of
the same snapshot. This will not induce much overhead when the buffer size is relatively large because with large
buffers it is not hard to gather a number of symbols of the same snapshot in a short time and encode them together
with a desired degree.
Since GC is a simple and efficient random linear code that recently attracts a lot of interest especially due to its

good data persistence performance, in this section we will analyze its performance under different buffer sizes and
also discuss the specific solutions of the archiving and staleness problem for GC based non-mixed coding.

A. Large Buffer Case

Before solving the optimal scheduling for GC, we need a better understanding of the individual snapshot coding.
In this subsection, we first present an approximate formula of the decoding probability for the coding of a single
snapshot. Then with the help of this formula, we derive a lower bound for the minimum decoding probability and
thus an upper bound for the maximum number of packets needed for decoding the whole snapshot using growth
codes.
[7] assumes there is a central pool to draw the symbols and the sensor node is able to select any number of

distinct symbols from the pool with zero overhead. Based on this, they show that the optimal degree is
where is the fraction of recovered symbols. Then by Theorem 4 the probability of decoding with the best coding
degree is a function of the recovered fraction

(18)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovered fraction delta

pr
ob

ab
ilit

y
of

 d
ec

od
in

g

Growth codes

Fig. 2. Decoding probability vs. recovered symbols (approximate: drawing with replacement)

15

Fig.2 shows the curve of as a function of (the same shape with simple scaling if use the number of recovered
symbols as the axis). When increases to close to , this formula is not accurate, it should be updated with the
selecting without replacement procedure [7].

(19)

where is the number of symbols already recovered, is the total number of symbols, is the best coding degree
.

0 50 100 150 200 250 300 350 400 450 5000.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovered symbol r

pr
ob

ab
ilit

y
of

 d
ec

od
in

g

Growth codes

Fig. 3. Decoding probability (drawing without replacement) vs. recovered symbols

Fig.3 shows this curve of the decoding probability as a function of the symbols recovered (the same shape with
simple scaling if use the recovered symbol fraction).
Comparing these two curves, we can see that (18) is a very good approximation of (19) for almost all values

of . For , (18) is almost the same as (19), only for the last about of values when we almost
recover the whole snapshot, (19) starts to increases drastically to while (18) keeps decreasing. We analyze (18)
first because it simplifies analysis and is a very good approximation for most part of the data retrieving process,
especially for the situations when the bandwidth is constrained s.t. we never recover more than data for any
snapshot.
In addition to this, we also observe that there is a minimum decoding probability about for both curves.

More specifically , we show that the minimum decoding probability for both curves is indeed lower bounded
by in Lemma 6. In fact, is the exact minimum value for (18) and a lower bound for (19). For large , it
is approximately the minimum value of (19) as well. So for (19) the decoding probability decreases from to
approximately before a point about , and after the point, the decoding probability increases drastically
to within a very short window. Since the decoding probability decides the speed of data recovering, qualitatively
speaking, if we assume the same number of packets exchanged in every time slot then the data recovering speed
keeps decreasing for the majority part of the data recovered fractions, and in the big scale it decreases slower and
slower (roughly convex).

16

Lemma 6: The expected total number of packets that has to be exchanged for growth codes to decode a complete
snapshot is upper bounded by for large buffer size networks.

Proof: Between (18) and (19), we first show that (). This is because a packet can be decoded
iff there is one new symbol and recovered symbols in the randomly selected coding symbols, a selecting
without replacement process of (19) certainly have a higher or at least equal chance than (18)’s selecting with
replacement.
Next we show a lower bound for (18) and automatically a lower bound for (19) as well. Observe that in

(18) is a continuous function and derivable almost anywhere except a finite set of points. These points divide
into a set of sections. Within each section, where is a constant. Since ,

. Thus, we know in (18) is monotonically non-increasing and

Then, we know that minimum decoding probability for both (18) and (19) satisfies . Consequently,
is an upper bound of the expected total packets exchanged for decoding symbols of a snapshot.
We define the Data Efficiency of a coding scheme as the expected total number of packets for decoding the whole

snapshot. [7] proposes growth codes but provides no quantitative characterization of its data efficiency. We show
here that its data efficiency is actually , in other words, order better than the non-coding coupon
collector process which on average needs packets to decode a snapshot. In reality, our simulation
shows that a snapshot is recovered with about packets using growth codes.
This behavior of data gaining dynamics models accurately the case of infinite buffer size when we can merge

packets in the buffer to any desired coding degree instantaneously at any time. We call this type of growth codes
Instantaneous Growth Coding (IGC). For it to be accurate, we need a buffer size in the order of at least

. However, generally non-mixed coding performs quite well for networks with relatively large buffer
sensors and sparse sinks. This is because the size buffer requirement is to guarantee a INC at all the
times. In reality the coding degree only start to jump in the last of so a relatively large buffer works fine for
most of the time or even all the times (if we never reach that region due to bandwidth constraint).
Lemma 7: The minimum buffer size to support IGC is .
Proof: By the coupon collector process we know in order to cover distinct symbols with independent

random drawings, we need at least random drawn symbols with high probability. Using growth codes, at
the time that the th symbol is recovered, the maximum degree of any packets in any node’s buffer is ,
from here on the degree needs to increase to instantaneously. To be able to do this, each node’s buffer should

already cover all symbols, thus the buffer size has to be at least .

B. Small Buffer Case

For sensors with a very small buffer, they can not increase the coding degree instantaneously when needed,
especially when that snapshot’s data is almost all recovered and the optimal degree needs huge jumps in a short
time. In this case, the sensors have to increase the degree as they exchange packets with neighbors and add in new
symbols from the exchanging.
In this case, there is a discrepancy between the ideal coding degree and the actual possible coding degree thus

the decoding probability will be lower than the one with the ideal degree. Fig.4 shows the simulation result of this
scenario, decoding probability vs. number of received symbols, we can see that for sensors of small buffers the
decoding probability is mostly a monotonically decreasing function.

17

0 100 200 300 400 500 6000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received symbols

pr
ob

ab
ilit

y
of

 d
ec

od
in

g

Growth codes with degree changing dynamics modelled

Fig. 4. Simulation result of Decoding probability vs received symbols for small buffer sensors

In addition, Fig.4 has and a data efficiency less than . In fact, our simulation consistently shows
that the average number of packets exchanged to decode a whole snapshot with small buffers is less than . Thus,
combined with the large buffer analysis of Lemma 6, we know buffer sizes do not change the order of GC’s data
efficiency. The simulation result shows that the large buffer case has a data efficiency of about , thus small
buffer causes a increase about . From the analysis and simulation result we conclude that GC’s data efficiency
performance is not sensitive to buffer sizes.
More than that, the delay for decoding the whole snapshot actually mainly comes from the recovering of the

last of the snapshot. For the first of the retrieval, small buffers have very little impact since the optimal
degree increases very slowly anyway.

C. Archiving and Staleness Problem with Growth Codes

Given growth code’s advantage on data efficiency and low computation cost, it is worth analyzing the archiving
problem on a growth code based non-mixed coding. To do so, we just need to apply Theorem 1’s general result
plugging in the decoding probability for growth codes we derived in this section. Further, if we assume there is a
utility value associated with each original symbol independent of the symbols already recovered or , then
we replace every in Theorem 1 with . For large buffer sensors, replace the in Theorem 1’s with (19).
Since (19) is not monotonically non-increasing, the optimal scheduling is not a greedy approach. If for all
, we can say that the optimal policy will favor either the least recovered snapshot or the most recovered snapshot

within all the unfinished snapshots. For small buffers or the case of very limited bandwidths, is approximately
monotonically decreasing in the working range, then by Lemma 1, a greedy scheduling algorithm that always favor
the snapshot with the maximum is optimal. When for all , the greedy algorithm will always
choose the maximum at each step, or equivalently the minimum , the least recovered snapshot to exchange
packets.
For the staleness problem, as we discussed earlier, GC mostly satisfies the monotonic property thus when the

inter-arrival is infrequent, greedy is optimal for minimizing the data staleness under GC based non-mixed coding.
[7] already shows that for random linear codes with incremental decoding, GC is optimal for max utility and data

18

persistence of the single snapshot case, in other words, GC provides a uniform largest decoding probability at all
times within such codings. Since scheduling is orthogonal to coding for non-mixed coding, we can see that GC is
also the optimal one within such codings to provide the best performance. Because for the archiving problem, GC
gives higher index value for all snapshots, thus the final scheduling policy will result in a higher value as well. For
the staleness problem, when greedy is optimal, GC also gives larger staleness reductions due to higher decoding
probability than other codings of the same category.

VIII. IMPLEMENTATION ISSUES
To implement the optimal scheduling algorithm in a real distributed random network, a key issue is how the

sensors can obtain the optimal schedule. The sinks need to inform the sensors either the utility information or the
final scheduling decisions. While one may argue that if there is a channel between the sinks and the sensors, then
the sensor might learn the sinks’ locations through it and use routing instead of random coding after it. In fact,
we do aim at those applications that the sinks either use separate channels or the same channels among the sensor
nodes to deliver query/scheduling information to the sensor nodes. However, since we assume the channels are not
stable because both the sensor nodes and the sinks are prone to fail in a fairly dynamic environment, it will be too
costly to maintain some path information for location based routing. In addition, since there are multiple sinks and
we assume the sinks are uniformly distributed among the sensor nodes and fail independently, on average, random
gossiping type of routing is not too bad compared with the shortest path routing.
We expect that the sinks do not need to transmit a lot of information to the sensor nodes. According to the

optimal scheduling they compute, they just need to transmit the index of the snapshot that is scheduled to all the
sensor nodes whenever the schedule changes. This broadcast task can be achieved through ad hoc transmissions
from the sinks. The control level is adjustable between coarse scheduling (big chunks of data) and fine (packet
level), even we schedule in the packet level, the snapshot index does not change for every packet transmitted (the
coding degree can be decided based on an estimation of the retrieved fraction without frequent communication with
the sinks), thus in general the control traffic is relatively small compared to the large volume of data transmissions.

IX. CONCLUSION AND FUTURE WORKS

We introduced a utility-based framework with joint scheduling and coding decisions for collecting multi-snapshots
spatial data in a resource constrained sensor network. We investigated the problem of how to schedule (or prioritize)
the codewords from multiple snapshots under the archiving model and the staleness model. For the archiving model,
we mapped the scheduling problem into a Multi-Armed Bandit (MAB) problem, and derived the optimal solution
using Gittins Indices. We also derived an efficient algorithm to calculate the indices based on the underlying Markov
process. The scheduling problem under the staleness model was formulated as a Restless Bandit(RB) problem. A
greedy scheduling policy was presented and proved to be optimal when the inter-arrival time between snapshots is
not too short.
We then studied the optimal coding scheme when random mixed coding (for data in different snapshots) is

allowed. We generalized the growth codes in [7] to arbitrary linear-codes-based random mixed coding and showed
that there exists an optimal degree of coding. Various practical issues and in particular the buffer size impact on
performance were also discussed, where we showed through both analysis and simulation that the expected number
of packets to retrieve all data is less than twice the total number of data items.
One possible future work is to look at the implementation issues in practice and simulate the optimal scheduling’s

performance based on the model proposed in Sec. VIII. Particularly, check out the control overhead influence on
the total data utility retrieved.

19

X. ACKNOWLEDGMENTS
This research is continuing through participation in the International Technology Alliance sponsored by the

U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the U.S.
Government, the UK Ministry of Defense, or the UK Government. The US and UK Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] V. P. A. Dimakis and K. Ramchandran. Decentralized erasure codes for distributed networked storage. IEEE Transactions on Information
Theory, 2006.

[2] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204–1216,
July 2000.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding and decoding: Turbo-codes. In Proceedings
of IEEE International Communications Conference, 1993.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk data. In SIGCOMM,
pages 56–67, 1998.

[5] K. Fall. A delay tolerant network architecture for challenged internets, 2003.
[6] J. Gittins and D. Jones. A dynamic allocation index for the sequential design of experiments. Progress in Statistics, 1, 1972.
[7] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Growth codes: Maximizing sensor network data persistence. In Proceedings of

ACM Sigcomm, 2006.
[8] S. Lin and D. Costello. Error Control Coding: Fundamentals and Applications. Prentice Hall, 1982.
[9] M. Luby. Lt codes. In The 43rd Annual IEEE Symposium on Foundations of Computer Science, pages 271–282, 2002.
[10] D. J. MacKay and R. M. Neal. Near shannon limit performance of low density parity check codes. In Electronics Letters, 1996.
[11] D. Marco, E. Duarte-Melo, M. Liu, and D. L. Neuhoff. On the many-to-one transport capacity of a dense wireless sensor network and

the compressibility of its data. In IPSN, 2003.
[12] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.
[13] J. Nino-Mora. Dynamic allocation indices for restless projects and queueing admission control: A polyhedral approach. Math. Program,

2002.
[14] C. Papadimitriou and J. Tsitsiklis. The complexity of optimal queuing network control. Math. of Operations Research, 1999.
[15] P. Varaiya, J. Walrand, and C. Buyukkoc. Extensions of the multiarmed bandit problem: The discounted case. IEEE Transactions on

Automatic Control, 1985.
[16] C. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft. Siphon: overload traffic management using multi-radio virtual sinks in

sensor networks. In SenSys, 2005.
[17] J. Warland. An introduction to queueing networks. Prentice Hall, 1988.
[18] P. Whittle. Arm-acquiring bandits. The Annals of Probability, 9, 1981.

