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Abstract

Graph clustering has become ubiquitous in
the study of relational data sets. We ex-
amine two simple algorithms: A graphical
adaptation of the k -means algorithm and the
Girvan-Newman method based on edge be-
tweenness centrality. We show that they
can be effective at discovering the latent
groups or communities that are defined by
the link structure of a graph. However, both
approaches rely on prohibitively expensive
computations given the size of modern re-
lational data sets. Network structure in-
dices (NSIs) are a proven technique for in-
dexing network structure and efficiently find-
ing short paths. By incorporating NSIs into
these graph clustering algorithms, we can
overcome these complexity limitations. We
also present promising quantitative and qual-
itative evaluations of the modified algorithms
on synthetic and real data sets.

1. Introduction

Clustering data is a fundamental task in machine
learning. Given a set of data instances, the goal is
to group them in a meaningful way, with the interpre-
tation of the grouping dictated by the domain. In the
context of relational data sets — that is, data whose
instances are connected by a link structure represent-
ing domain-specific relationships or statistical depen-
dency — the clustering task becomes a means for iden-
tifying communities within networks.

For example, in the bibliographic domain, we find net-
works of scientific papers. Interpreted as a graph, ver-
tices (papers) are connected by an edge when one cites
the other. Given a specific paper (or group of pa-
pers), one may try to find out more about the subject
matter by pouring through the works cited, and per-
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haps the works they cite as well. However, for a suffi-
ciently large network, the number of papers to inves-
tigate quickly becomes overwhelming. By clustering
the graph, we can identify the community of relevant
works surrounding the paper in question. Note that
this community is not limited to the works cited by the
initial paper, nor does it necessarily include the works
that are cited. In the sections that follow, we discuss
methods for clustering such graphs into groups that
are solely determined by the network structure (e.g.,
co-star relations between actors or citations among sci-
entific papers).

Some of the simplest approaches to graph clustering
are also very effective. We consider two algorithms
in the following sections: a graphical version of the
k -means data clustering algorithm (MacQueen, 1967)
and the Girvan-Newman algorithm (2002). While
both techniques perform well, they are computation-
ally expensive to the point of intractibility when run
on even moderately-sized relational data sets. Using
the indexing methods described by Rattigan, Maier,
and Jensen (2006), we can drastically reduce the com-
putational complexity of these algorithms. Surpris-
ingly, this increase in scalability does not hinder per-
formance.

2. Graph clustering algorithms

2.1. Evaluating clustering performance

Before examining the details of the graph clustering
algorithms, we introduce a framework for analyzing
and evaluating clustering performance. We evalu-
ate candidate algorithms on randomly generated uni-
form clustered graphs (Brandes et al., 2003; Delling
et al., 2006), whose link structure defines communi-
ties of nodes. The data generator constructs a graph
G = (V,E) as follows: given a set of nodes V , ran-
domly assign each node to one of j clusters, such that
the final cluster sizes are normally distributed about
mean µ. Pairs of nodes in the same cluster are con-
nected by a link with probability pin, and pairs of
nodes in different clusters are linked with probabil-
ity pout. By varying these parameters, we can adjust
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the expected number of intra- and inter-cluster links
for each node, and in turn, control the level of sep-
aration between clusters. The degree of difficulty for
the clustering task can be captured by the expected
inter-cluster linkage for each node v ∈ V :

inter-cluster linkage = E

[
degreeinter(v)

degree(v)

]

where degree(v) is the total number of links incident
to v, and degreeinter is the number of links connecting
v to nodes outside its cluster.

We gauge clustering performance with two measures.
Pairwise intra-cluster accuracy (Aintra) is the propor-
tion of all pairs of nodes in the same cluster that are
predicted to be in the same clusters. Similarly, pair-
wise inter-cluster accuracy (Ainter) is the proportion
of all pairs of nodes in different clusters that are pre-
dicted to be in separate clusters. These measures are
formally defined as follows:

Aintra =
∑

u,v∈Vintra
f(u, v)

|Vintra|

Ainter =
∑

u,v∈Vinter
(1 − f(u, v))

|Vinter|

where

f(u, v) =
{

1 u and v in same predicted cluster;
0 otherwise

and Vintra and Vinter are the sets of intra- and inter-
cluster pairs of nodes, respectively.

Both values measure our effectiveness at reproducing
the natural clusters found in the graph. We can view
clustering as a classification task in which the class
labels correspond to cluster memberships. From this
perspective, Aintra is equivalent to cluster recall, while
Ainter is equivalent to the arithmetic complement of
fallout (Tague-Sutcliffe, 1992). Furthermore, for the
results reported in this paper, the accuracy measures
are approximated by sampling 10,000 pairs of nodes.

2.2. Graph k-means

The k -means algorithm is one of the simplest and most
widely applied data clustering techniques found in the
literature. The inputs to the algorithm are k, the num-
ber of clusters to form, and D : (x, y) → $, a distance
measure that maps pairs of instances to a real value.
The procedure is as follows: (1) randomly designate
k instances to serve as “seeds” for the k clusters; (2)
assign the remaining data points to the cluster of the
nearest seed using D; (3) calculate the centroid of each
cluster; and 4) repeat steps 2 and 3 using the centroids
as seeds until the clusters stabilize.

We extend the above procedure to the network domain
as the graph k-means algorithm. In graphs, we have
an intuitive measure for D: the graph-theoretic dis-
tance, or number of “hops,” between nodes (referred
to herein as graph distance). As in conventional k -
means, we initialize our clusters by randomly select-
ing k data points (in this case nodes in the graph) as
seeds and assigning all nodes to the cluster of the near-
est seed node. We choose centroids by computing the
local closeness centrality (Freeman, 1979) among the
nodes in each cluster and selecting the node with the
greatest closeness score. This process terminates when
the cluster centroids stabilize.

There are subtle differences between the graphical ver-
sion of k -means and its data-clustering counterpart.
For example, graph distance is highly sensitive to the
edges that exist in the graph. Adding a single “short-
cut” link to a graph can reduce the graph diameter, al-
tering the graph distance between many pairs of nodes.
Additionally, since graph distances are integers, it is
common for nodes to be equidistant to several cluster
centroids. We resolve conflicts by randomly selecting
a cluster; however, this can result in clusterings that
do not converge. We consider a clustering to be sta-
ble if the number of cluster centroids that change be-
tween iterations is below a certain threshold, typically
1-3%. Finally, in a data-clustering context, centroids
are defined on a continuous space while in a relational
domain the centroids are restricted to a discrete set of
nodes. Thus, it is possible for several nodes to have
identical closeness centrality, forcing the algorithm to
select centroids randomly. To evaluate the clustering
ability of graph k -means, we generated 10 data sets
of 1,000 nodes with mean cluster sizes of 10, 20, and
50 (and standard deviations of 2, 4, and 10, respec-
tively), and averaged the performance of 10 runs of
graph k -means per structure to reduce variance. In
Figure 1, we see that Aintra decreases as inter-cluster
linkage increases, becoming unacceptably low for even
modestly challenging clustering tasks. Additionally, as
the expected size of clusters increases, the performance
continues to drop. In contrast, graph k -means scored
adequately in terms of inter-cluster accuracy, always
maintaining Ainter scores above 0.99, 0.98, and 0.95
for clusters of size 10, 20, and 50, respectively.

Upon examination, most of the errors associated with
graph k -means involve nodes lying on the periphery of
clusters, resulting from the use of the integral-valued
graph distance within an algorithm that prefers con-
tinuity. Figure 2 below illustrates this primary source
of error. In this example, node A’s connections clearly
place it in the light shaded cluster. However, A is di-
rectly linked to two centroids, and graph k -means ran-



Graph clustering with network structure indices

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

inter!cluster linkage

pa
irw

is
e 

in
tra
!c

lu
st

er
 a

cc
ur

ac
y

size=10
size=20
size=50

Figure 1. Clustering performance of graph k -means for
synthetically generated data sets with mean cluster sizes
of 10, 20, and 50. As inter-cluster linkage increases, the
structural separation between clusters decreases, and the
clustering task becomes more difficult. We omit pairwise
inter-cluster accuracy, which for all runs ranged between
0.95 and 0.99.

domly (and incorrectly) assigns A to the white cluster.
Nodes B and C are incorrectly clustered in a similar
manner. For this small example, the clustering has a
Aintra = 0.611 and Ainter = 0.845. Given the nature

A

C

B

Figure 2. An illustrative example of typical graph k -means
clustering errors. Nodes A, B, and C are equidistant from
multiple centroids (enlarged nodes) and are erroneously
clustered.

of the clustering errors depicted in Figure 2, we can
improve performance through a novel post-processing
step called modal reassignment (MRA). For each node
in the graph, we examine the cluster membership of
each one of its immediate neighbors. Then, we assign
the node to the modal cluster of its neighbors. While

this additional step takes O(|E|) operations, the per-
formance improvements are dramatic. Figure 3 com-
pares graph k -means with and without MRA on syn-
thetic data. This revision to the clustering algorithm is
entirely separate from the graph k -means process and
can be applied to a graph clustering generated by any
algorithm. Furthermore, this simple technique illus-
trates the power of utilizing network structure in ways
that are not applicable in traditional independent and
identically distributed data contexts.
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Figure 3. Clustering performance of k -means using modal
reassignment

2.3. The Girvan-Newman algorithm

The Girvan-Newman algorithm (Girvan & Newman,
2002) is a divisive clustering technique based on the
concept of edge betweenness centrality. Betweenness
centrality is the measure of the proportion of shortest
paths between nodes that pass through a particular
link. Formally, betweenness is defined for each edge
e ∈ E as:

B(e) =
∑

u,v∈V

ge(u, v)
g(u, v)

,

where g(u, v) is the total number of geodesic paths be-
tween nodes u and v, and ge(u, v) is the number of
geodesic paths between u and v that pass through e.
The algorithm ranks the edges in the graph by their
betweenness and removes the edge with the highest
score. Betweenness is then re-calculated on the modi-
fied graph, and the process is repeated. At each step,
the set of connected components of the graph is con-
sidered a clustering. If the desired number of clusters
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is known a priori (as with k -means), we halt when the
desired number of components (clusters) is obtained.
The Girvan-Newman algorithm has been shown to per-
form well on a variety of graph clustering tasks (New-
man, 2004a), but as we describe below, its complexity
can severely limit its applicability.

3. Network structure indices

The main problem with graph k -means as described
above is its complexity. As relational data sets be-
come larger, the scalability of the algorithm becomes
an issue. Calculating (and storing) pairwise node dis-
tances (an O(|V |3) operation requiring O(|V |2) space)
may be intractable for large graphs1. Similarly, the
Girvan-Newman algorithm can be hampered by com-
plexity. Calculating the edge betweenness for the links
in a graph is a O(|V ||E|) operation, and the prob-
lem can become intractable for graphs with many
nodes. Tyler, Wilkinson, and Huberman introduced
a sampling-based approach to estimating betweenness
centrality, which allowed for the approximation of the
betweenness ranking with arbitrary levels of precision
(2005). Even with these improvements, however, find-
ing the geodesic paths through the graph to calculate
betweenness can be a prohibitively expensive set of op-
erations. However, these limitations can be alleviated
through the use of a network structure index.

A network structure index (NSI) is a scalable tech-
nique for capturing graph structure (Rattigan et al.,
2006). The index consists of a set of node annotations
combined with a distance measure. NSIs enable fast
approximation of graph distances and can be paired
with a search algorithm to efficiently discover short
paths between nodes in the graph. For use in the clus-
tering algorithms described in Section 2, we employed
a distance to zone (DTZ) index as described in (Ratti-
gan et al., 2006). The DTZ indexing process creates d
independent sets of random partitions (referred to as
dimensions) by stochastically flooding the graph. Each
dimension consists of z random partitions (referred to
as “zones”). DTZ’s annotations store the distance be-
tween each node and all zones across each dimension.
Figure 4 illustrates an NSI with a single dimension and
three zones. The distance between two nodes u and v
is defined as:

DDTZ(u, v) =
∑

d

distd(u, zone(v)) + distd(v, zone(u))

where distd(u, zone(v)) is the length of the shortest
path between u and the closest node in the same zone

1To be precise, the most efficient algorithm is currently
O(|V |2.376) (Coppersmith & Winograd, 1987)

as v. Creating the DTZ index requires O(|E|zd) time
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Figure 4. A DTZ annotation for a single dimension and
three zones. The annotations store the graph distance be-
tween each node and the closest node in each zone. For
example, the node in the extreme lower-left of the graph
stores values of [0, 2, 4], corresponding to the distances to
the white, black, and gray colored zones. The distance be-
tween this node and the node in the extreme lower-right is
4 + 5 = 9.

and O(|V |zd) space. Since typical values of z and d
are % |V |, a DTZ index can be created and stored
in a fraction of the time and space it takes to calcu-
late exact graph distances for all pairs of nodes in the
graph.

Both graph k -means and the Girvan-Newman meth-
ods can be modified to take utilize an NSI. For graph
k -means, we substitute the DTZ annotation distance
for exact graph distance when assigning nodes to clus-
ters and calculating closeness centrality to determine
centroids. For the Girvan-Newman algorithm, we
use NSI-guided best-first search to approximate edge
betweenness centrality, a technique demonstrated by
Rattigan et al. (2006). This method estimates be-
tweenness by sampling pairs of nodes and perform-
ing searches between them; since we only need to de-
termine the edge with the highest betweenness score
(rather than a rank order of all the edges), it is only
necessary to sample a very small number of pairs. Ad-
ditionally, we can use the index constructed on the en-
tire graph to perform searches throughout the clusterin
process rather than building indices on the individual
connected components. Whereas the Girvan-Newman
algorithm requires O(|E|2|V |), our NSI-based version
takes only O(|E|).

4. Results

4.1. Synthetic data sets

We evaluated the NSI-based version of graph k -means
in the same manner as described in Section 2.2. Since
the distances provided by the NSI are approximate,
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one may expect the clustering performance of graph
k -means to suffer. As shown in Figure 5, however,
the NSI-based clustering actually outperforms the ex-
act method, often by a sizable margin. The effect is
most pronounced in graphs with inter-cluster linkage
between 0.2 and 0.6. At higher levels, the effect disap-
pears, as these graphs have so few intra-cluster links
that the link structure no longer encapsulates commu-
nities. Even after applying the modal reassignment
post-processing, the DTZ clustering still consistently
outperforms graph k -means with exact distances.
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Figure 5. Graph k -means performance using exact and
DTZ-based distances. The index consists of 20 zones and
10 dimensions (larger values of z and d slightly increases
performance).

To understand the performance benefit, we must ex-
amine the DTZ index more closely. The annotations
contain the distances between each node and other sets
of nodes (zones). To estimate the distance between a
pair of nodes, the distance measure sums the distance
from one node to the other node’s zone and vice verse.
For example, consider the distance calculation from
node a1 to node b1, given an index with a single di-
mension. In this example, if a1’s zone (A) consists of
nodes{a1, a2, a3}, and b1’s zone (B) has {b1, b2}, we
have:

distDTZ(a1, b1) = dist(a1, B) + dist(b1, A)
= min[dist(a1, b1), dist(a1, b2)] +

min[dist(b1, a1), dist(b1, a2), dist(b1, a3)]

Thus, for a single dimension, DTZ distance is guar-
anteed to underestimate actual graph distance. It fol-

lows that for multiple dimensions, distDTZ(a1, b1) ≤
d × dist(a1, b1). If there are many intra-cluster paths
between a given node and its true centroid, there is a
greater probability of having a smaller estimated dis-
tance to the centroid, resulting in a correct assignment.
Lowering the value of z (the number of random parti-
tions) effectively increases the effect of underestimat-
ing graph distance since each zone will contain more
nodes (i.e., the number of terms in the minimization
above increases). There is a tradeoff, though: too low
a z and nodes will appear to be closer to many cen-
troids; too high a z, and DTZ distance estimates will
approach exact graph distance.

It is important to note that the DTZ performance
improvement is not due to random estimation error
alone. Figure 6 illustrates this this fact by depict-
ing the intra-cluster accuracy of a version of graph
k -means that utilizes a distance function whose out-
puts have been perturbed with varying levels of Gaus-
sian noise. As the level of noise increases, performance
worsens, even if the perturbations are restricted to un-
derestimate graph distance (reflecting the approximate
nature of DTZ). Clearly, the performance-enhancing
errors of DTZ’s distance measures are correlated with
graph structure rather than entirely stochastic.
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Figure 6. The effect of random distance perturbations on
graphk -means clustering performance. Distance estima-
tion error that is generated randomly greatly decreases ac-
curacy. This contrasts with the accuracy-enhancing error
associated with DTZ depicted in Figure 5.

As with graph k -means, the NSI-based version of the
Girvan-Newman algorithm performs extremely well.
Figure 7 depicts pairwise intra-cluster accuracy over a
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range of graph types. The accuracy value stays above
0.8 for graphs with inter-cluster linkage up to 0.4. The
accuracy drops off as the structural separation be-
tween clusters starts to lessen. Like graph k -means,
the inter-cluster accuracy remains over 0.95 across the
range. Here MRA increases the performance some-
what, though not as dramatically as before.
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Figure 7. Girvan-Newman clustering performance with a
DTZ NSI of 50 zones, 10 dimensions. MRA improves the
accuracy slightly and is most pronounced at higher levels
of inter-cluster linkage.

4.2. Real data sets

We tested k -means on two real relational data
sets. The first was a network of over 16,000
actors drawn from the Internet Movie Database
(http://www.imdb.com). Actors are connected by
links when they have acted together in at least two
films or television shows produced between 1970 and
2000. Using graph k -means with a DTZ NSI, the al-
gorithm consistently coverged in less than five itera-
tions for k = 300 clusters. Table 1 below shows three
examples of well-formed actor communities. The left-
most group consists of actors from the various Star
Trek movies and television series. The middle group
is comprised of players from the television series Satur-
day Night Live, while the third group represents actors
from various Kevin Smith films.

The second domain we examined was a citation net-
work generated by the Cora project (McCallum et al.,
1931). In the Cora dataset, the nodes of the graph rep-
resent over 30,000 scientific papers, connected by over
130,000 links. Two papers are connected by a link if

one cites the other. In addition, each paper is assigned
to one of 71 topics learned from the text of their titles
and abstracts. Using graph k -means, we attempted to
recover the topic groups by clustering the papers with
their link structure. A visual representation of the re-
lationships between topic groups and clusters can be
seen in Figure 8. To evaluate our clustering, we ran
Pearson’s Chi-squared test on the predicted clusters
and their associated topic distribution. When running
k -means to find 71 paper clusters, we achieve a χ2

value of 399,530 (with 4,900 degrees of freedom), for a
p-value less than 2.2 × 10−16.
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Figure 8. Visual representation of the relationship between
cora topic groups and the predicted clusters procuced by
graph k -means. The dots are sized relative to the number
of papers for each topic in each cluster. The lack of rows
or columns with more than one dominant circle indicates
highly correlated relationships between topics and clusters.

Frakes, Jonathan Lovitz, Jon Adams, Joey Lauren
Shatner, William Sandler, Adam Affleck, Ben
Warner, David Schneider, Rob Ewell, Dwight
Dorn, Michael Farley, Chris Lee, Jason
Spiner, Brent Covert, Allen Damon, Matt
Stewart, Patrick Macdonald, Norm Suplee, Ethan
Schuck, John Farley, John Smith, Kevin
Nimoy, Leonard Nealon, Kevin Mewes, Jason
Doohan, James Dante, Peter Flanagan, Walter
Koenig, Walter Clark, Blake Rock, Chris
Overton, Rick Smigel, Robert OHalloran, Brian
Takei, George Titone, Jackie Mosier, Scott

Table 1. Three example clusters of actors (the Star Trek,
Saturday Night Live, and Kevin Smith clusters). The actor
in boldface was selected to be the cluster centroid.
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5. Related work

Graph clustering has been studied in numerous sci-
entific communities, ranging from physics (Newman,
2004b) to social networking analysis (Freeman, 1979)
to computer science (Flake et al., 2004). Newman pro-
vides an excellent overview of some of the most well
known techniques for clustering graphs (2004). Most
approaches fall into one of two main algorithmic cate-
gories, detailed below.

The procedures in the first set follow the agglomera-
tive clustering paradigm. For these algorithms, each
node starts off in its own cluster. A pair of clusters
is selected according to some set of criteria and then
merged into a single cluster. The process is repeated
until the desired number of clusters is achieved, or
the threshold for some graph measurement is reached.
Among these methods are Newman’s algorithm (New-
man, 2004b). King presents a cost-based algorithm
for assembling a clustering via agglomerative (or di-
visive) movement of nodes between clusters (King,
2004). While these types of methods can be effec-
tive in specific situations, their objective functions are
fairly ad hoc.

The second main group of graph clustering algorithms
relies on edge removal to achieve a clustering among
the connected components of the graph. The Girvan-
Newman technique mentioned above and our approxi-
mation fall into this category. Van Dongen presents an
edge removal algorithm that is based on network flow
simulation (van Dongen, 2000) . Flake, Tarjan, and
Tsioutsiouliklis (2004) present an algorithm based on
finding the minimum cut tree of a graph. While these
methods yield encouraging results, they are not scal-
able to large graphs.

As far as we know, the k -means algorithm has not
been applied in a graph clustering context. This is
surprising, to say the least, given the algorithm’s ubiq-
uity in the related field of data clustering. Hlaoui &
Wang present a version of k -means for graphs; how-
ever, in their domain the data consist of IID subgraphs
that must be clustered together, rather than individual
nodes in the same graph (Hlaoui & Shengrui, 2004).

6. Conclusions and future work

In spite of their simplicity, the graph k -means and
Girvan-Newman algorithms are surprisingly effective
at clustering graphs. Unfortunately, their compu-
tational complexities are prohibitively large for even
moderately sized graphs. We have shown how a net-
work structure index can be utilized within these al-
gorithmic frameworks to overcome these limitations,

achieving equal or better performance results.

There are several future research directions for the
current work on NSI-based graph clustering methods.
While we found the DTZ NSI to be effective at finding
clusters, there is certainly room for improvement in
terms of the time and space required to calculate and
store the index. Additionally, an NSI for weighted
graphs could perhaps improve the clustering perfor-
mance on highly-connected domains such as the IMDb
actor graph. The NSIs utilized by graph k -means was
multipurpose; that is, the same index can be used to
effectively estimate centrality measures. It is possi-
ble that a more specialized type of index, tailored to
the clustering task, could produce better results. In
addition to a defined link structure, many relational
data sets contain attribute information on the links
and objects. Another future direction for this work
is to adapt it to domains with attributes, and devise
a principled way to incorporate them into graph k -
means. Finally, our work entirely ignored the issue
of choosing the proper k, or number of clusters, when
applying the algorithms. It may be possible to use
NSI-based measures to choose k in a principled man-
ner.
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