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Abstract

In this paper we study the capacity of wireless ad hoc networks with infrastructure
support of an overlay of wired base stations. Such a network architecture is often referred
to as hybrid wireless network or multihop cellular network. Previous studies on this topic
are all focused on the two-dimensional disk model proposed by Gupta and Kumar in their
original work on the capacity of wireless ad hoc networks. We further consider a one-
dimensional network model and a two-dimensional strip model to investigate the impact
of network dimensionality and geometry on the capacity of such networks. Our results
show that different network dimensions lead to significantly different capacity scaling laws.
Specifically, for a one-dimensional network of n nodes and b base stations, even with a small
number of base stations, the gain in capacity is substantial, increaseing linearly with the
number of base stations as long as b log b ≤ n. However, a two-dimensional square (or disk)
network requires a large number of base stations b = Ω(

√
n) before we see such a capacity

increase. For a 2-dimensional strip network, if the width of the strip is at least on the
order of the logarithmic of its length, the capacity follows the same scaling law as in the 2-
dimensional square case. Otherwise the capacity exhibits the same scaling behavior as in the
1-dimensional network. We find that the different capacity scaling behaviors are attributed
to the percolation properties of the respective network models.

1 Introduction

A wireless ad hoc network allows nodes to communicate with each other over a common wireless
channel without support from fixed infrastructure. Recently there has been a growing interest in
understanding how the throughput capacity scales with the number of nodes in such a network.
In particular, the seminal work of Gupta and Kumar [1] has shown that the per-node capacity
decreases at a rate of 1/

√
n in a network of n optimally located nodes, as n goes to infinity.

Also, if the nodes are randomly located, the per-node capacity decreases by a factor of
√

log n
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to 1/
√

n log n. In a recent work by Franceschetti, Dousse, Tse, and Thiran [2], the authors
show that a per-node capacity of 1/

√
n is indeed achievable in a random wireless network, thus

providing a tight lower bound and closing the gap in the capacity of random wireless networks.

While some wireless ad hoc networks have no fixed infrastructure, other networks have
some amount of infrastructure (e.g., base stations connected by high bandwidth links) available.
These base stations neither produce data nor consume data. They support the underlying ad hoc
networks by relaying data packets through the infrastructure. In such a network, data packets
can be transported in a multi-hop fashion as in an ad hoc network or through the infrastructure
as in a cellular network. The resulting mix of ad hoc and cellular network architecture is
often referred to as hybrid wireless network or multihop cellular network [3, 4, 5, 6, 7]. The
hybrid network architecture combines the advantages of both types of networks. It offers the
local flexibility of ad hoc networks and efficient long-distance routing of infrastructure. An
interesting question then is: how much does the additional infrastructure improve the capacity
of pure wireless ad hoc networks.

In [8], the authors show the benefit of the infrastructure depends on the number of base
stations relative to the number of ad hoc nodes. For a two-dimensional hybrid network of n ad
hoc nodes and b base stations, the capacity only starts to increase effectively when the number of
base stations is sufficiently large, namely, b = Ω(

√
n). Otherwise, there is no significant capacity

increase. Similar results are also reported in [9, 10]. A more specific scenario where the number
base stations is on the same order as the number of nodes (i.e., b = Θ(n)) is considered in [11].
If the nodes are asymptotically connected even without infrastructure, the per-node capacity is
shown to scale as Θ (1/ log n). Moreover, when a less stringent requirement is imposed on the
network connectivity, even though the capacity can be further improved, a per-node capacity
arbitrarily close to Θ(1) cannot be achieved. This was further studied in [12], where the authors
show that by power control and properly choosing the number of nodes assigned to a base
station, it is possible to provide a capacity of Θ(1) to any fraction f , 0 < f < 1, of nodes.

In this paper we revisit the capacity of a hybrid wireless network. Our work differs from and
extends the previous work in the following critical ways.

First, in addition to the 2-dimensional network model considered in most of the previous
network capacity studies, we further study the capacity of 1-dimensional and 2-dimensional
strip hybrid wireless networks, which have not been studied before. The 1-dimensional network
can be used to model scenarios such as highway, while the 2-dimensional strip can be used to
model regions with a long extension in one particular direction such as valleys. In this work we
investigate the impact of network dimensionality on the capacity. Our results show interesting
different capacity scaling laws for these models.

Secondly, in most of the previous studies (e.g., [1, 8, 11, 12]), a node is assumed to transmit
at a fixed rate when the interference condition is satisfied. This fixed transmission rate model
does not capture the dependency of the achievable transmission rate of a point-to-point link on
the SINR at the receiver. More realistically, the transmission rate decreases as SINR decreases
in order to guarantee certain successful packet reception rate (e.g., rate control in IEEE 802.11).
In this work we adopt a more realistic communication model that takes all interference into
account and uses Gaussian channel capacity for achievable data rate between two nodes. Based
on this model, recent established tight bounds on the capacity of random wireless networks will
be used in our study [2].

The main results of this paper are summarized as follows. For a 1-dimensional network of
n nodes and b base stations, even with a small number of base stations, the gain in capacity is
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significant, increasing linearly with the number of base stations as long as b log b ≤ n. However,
this is not the case for a 2-dimensional square network, which requires a large number of base
stations b = Ω(

√
n) before we see such a capacity increase. An intuitive explanation is that

in a 2-dimensional network, due to percolation, nodes form a wireless backbone (also referred
to as percolation highway) to relay the traffic [2]. Therefore, the number of base stations has
to be sufficiently large to have significant effects. However, it is impossible for a 1-dimensional
network to percolate at finite node densities or emitting powers. As a result, wired base stations
do compensate for the lack of wireless highway backbone and the benefit of infrastructure is more
pronounced than the 2-dimensional case. For a 2-dimensional strip network, we find that if the
width of the strip is on the order of the logarithm of its length, the capacity behaves the same as
in the 2-dimensional square case. Otherwise, if the width of the strip is asymptotically smaller
than the logarithm of its length, the capacity is the same as for the 1-dimensional network case.
This is because only at this length to width ratio, the percolation highway, in this case horizontal
disjoint paths, start to emerge in the strip, resulting in the similarity between the 2-dimensional
strip and square cases.

The rest of the paper is organized as follows. Section 2 presents the network model and the
main results. The capacity of 1-dimensional interval, 2-dimensional square, and 2-dimensional
strip networks are obtained in Section 3, 4, and 5, respectively. Finally, Section 6 concludes the
paper.

2 Network model and Main Results

In this section, we describe the network model, summarize the main results, and provide expla-
nations on the results.

2.1 Network model

We make the following assumptions for the random wireless network model.

• We consider three different network scenarios, namely, 1-dimensional interval A1−dim =
[0, n], 2-dimensional square A2−dim = [0,

√
n]×[0,

√
n], and 2-dimensional strip A2-dim strip =

[0, n/w(n)]× [0, w(n)] for some C. Nodes are randomly distributed according to a Poisson
point process of unit density. The expected number of nodes is n for each of the network
models.

• A total number of b = b(n) base stations are regularly placed in the network. These base
stations neither produce data nor consume data. They act solely as relay nodes and only
engage in routing and forwarding data for normal wireless nodes. This scenario is often
referred to as hybrid or multi-cellular network. The base stations are connected by high
bandwidth long range links and there is no capacity constraint within the infrastructure.
Also, the base stations are line powered and can transmit at any power level. We assume
that the number b of base stations tends to infinity as n → ∞, possibly at a much slower
rate.

• Each node i can transmit with the same power P , and node j receives the transmitted
signal with power Pl(i, j), where l(·) indicates the path loss between i and j. Denote
the Euclidean distance between the two nodes as dij . In this paper we assume l(i, j) =

3



min{1, d−α
ij } with α > 1 for 1-dimensional case and α > 2 for 2-dimensional case, although

the results should readily extend to the case l(i, j) = min{1, d−α
ij e−γdij} with α > 0, γ > 0

for both 1-dimensional and 2-dimensional networks.

• Source-destination pairs are chosen uniformly at random so that each node is the destina-
tion of exactly one source.

• The wireless channel follows a Gaussian white noise model with noise N ∼ N (0, N0).
The achievable data rate from node i to node j is given by the channel capacity: Rij =
1
2 log(1+SINR) bps/Hz, where SINR = Pl(i, j)/(N +

∑
k #=i Pl(k, j)) represents the signal

to interference and noise ratio. Note that this channel model is more realistic than the
fixed transmission model used in many previous studies on the capacity of hybrid wireless
networks.

We say that an event occurs with high probability (w.h.p.) if its probability tends to 1 as
n → ∞. The per-node throughput capacity T (n) of the network is defined as the number of bits
per second that every node can transmit w.h.p. to its destination. The delay of a packet is the
time it takes for the packet to reach the destination from the source. Thus, the per packet delay
D(n, b) is the sum of the times a packet spends at each relay node. As in previous capacity and
delay studies [13, 2], we scale the packet size by the per-node capacity T (n, b) so the transmission
delay at each node is constant. Hence, the per-packet delay corresponds to the number of hops
needed to reach its destination. Due to scaling, the per-packet delay D(n, b) better captures the
dynamics of the network. Since the base stations are well connected by high-bandwidth and
long-range links, we do not account for the delay within the infrastructure.

2.2 Main results

The main results of this paper are summarized as follows.

Theorem 1 In a 1-dimensional network of interval [0, n], assuming a power attenuation func-
tion of l(i, j) = d−α

ij with α > 1, and a number of base stations b that goes to infinity as n → ∞,
a per-node capacity of

T1-dim(n, b) = Ω (min{b/n, 1/ log b}) bit/sec

is achievable w.h.p., with a corresponding average packet delay of at most

E1-dim[D(n, b)] = O(n/b log n).

Theorem 2 In a 2-dimensional square network of size [0,
√

n] × [0,
√

n], assuming a power
attenuation function of the type l(i, j) = d−α

ij with α > 2, and a number of base stations b that
goes to infinity as n → ∞, a per-node throughput capacity of

T2-dim(n, b) =
{
Ω (1/

√
n) bit/sec if b = O(

√
n)

Ω (min{b/n, 1/ log b}) bit/sec otherwise.

is achievable w.h.p., with a corresponding average packet delay of at most

E2-dim[D(n, b)] =
{

O(
√

n) if b = O(
√

n)
O(

√
n/b log n) otherwise.
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Theorem 3 In a 2-dimensional strip network of size [0, n/w(n)] × [0, w(n)], assuming a power
attenuation function of the type l(i, j) = d−α

ij with α > 2, and a number of base stations b that
goes to infinity as n → ∞. If w(n) = Ω(log n), the per-node capacity and average packet delay
are the same as those of a 2-dimensional square network presented above. if w(n) = o(log n)),
the per-node capacity and average packet delay are the same as those of a 1-dimensional network.

2.3 Discussions of results

For a 1-dimensional hybrid wireless network, our results show that even with a small number
of base stations, the gain in capacity is significant, increasing linearly with the number of base
stations b as long as b log b ≤ n. However, this is not the case for a 2-dimensional network, which
requires b = Ω(

√
n) before we see such an capacity increase. If the number of base stations is

not sufficiently large, i.e., b = O(
√

n), there is no capacity benefit from deploying infrastructure.
The likely explanation is the impossibility for a 1-dimensional network to percolate at finite
node densities or emitting powers, but not in the 2-dimensional network. As a result, in the
2-dimensional network, nodes can form a backbone highway to relay the traffic [2], without any
additional wired infrastructure. This is impossible in a 1-dimensional network, where wired
base stations do compensate for the absence of wireless highway backbone. We will also see that
contrary to the 2-dimensional setting, pure ad hoc transmission is never used for any value of
b in a 1-dimensional network. A similar observation on the influence of network dimensions on
the usefulness of fixed infrastructure was already shown for network connectivity in the simple
Boolean model [4]. We see that it carries on to capacity.

In fact, taking b = Θ(
√

n), we find that T1-dim(n, b) = Ω(1/
√

n), which is the same result
as the one that would be obtained in 2-dimensional networks. In the absence of infrastructure,
different network dimensions can lead to significant differences in capacity. The addition of
fixed infrastructure compensates for this difference between 1-dimensional and 2-dimensional
networks. We know that for pure ad hoc networks, in the 1-dimensional and 2-dimensional
cases,

T1-dim(n) = Θ(1/n) bit/sec, T2-dim(n) = Θ(1/
√

n) bit/sec.

whereas with b = Ω(
√

n), these values become identical

T1-dim(n, b) = T2-dim(n, b) = Ω(1/
√

n) bit/sec

For a 2-dimensional strip network, if the width of the strip is on the order of the logarithmic of
its length, the capacity exhibits the same scaling behavior as in the 2-dimensional square case.
Otherwise the capacity exhibits the same scaling behavior as in the 1-dimensional network.
This is because at this width to length ratio, the percolation highway, in this case, the horizontal
disjoint paths, emerges and provides wireless backbone for data transport, as in a 2-dimensional
square network. There is no percolation highway below this width to length ratio.

3 One-dimensional Network

For one-dimensional networks, we construct a data delivery scheme which consists of the follow-
ing three phases.
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1. Phase 1: Multi-hop access to the base station. Each source node sends packets in a
multiple-hop fashion to the nearest base station.

2. Phase 2: Infrastructure transport. Packets are transported via the infrastructure from the
ingress base station to the egress base station closest to the destination.

3. Phase 3: Cellular broadcast to the destination. The egress base station broadcasts the
data packets to the destinations in its cell.

n/b

cell

microintervals

Phase 2

Phase 3Phase 1

Figure 1: The 1-dimensional network is partitioned into cells of length n/b. Each cell is divided
into micro intervals of length c log n so that all micro intervals are occupied with high probability.
In Phase 1, packets are relayed along adjacent micro intervals to the nearest base station. In
Phase 2, packets are transported from the ingress base station to the egress base station that is
the closest to the destination. In Phase 3, packets are broadcast to destinations by the egress
base station or routed using the reverse scheme from that of Phase 1 in a multi-hop fashion.

Figure 1 illustrates the three phases of the delivery scheme. In the following we describe
each of the delivery phases in detail and derive the corresponding scaling laws for capacity and
delay. Finally, we summarize the results and prove Theorem 1.

Phase 1: Multi-hop access to the base station.

We adopt TDMA scheme and detail the number of time slots that are needed to move one
bit from every source towards the nearest base station in a cell, in a multiple hop fashion. We
do not use any result on the relay channel, but simply use the physical model defined by Gupta
and Kumar [1], which treats all interferences as noise.

We first divide the interval A = [0, n] into n/c log n micro intervals, of length c log n each,
with c > 1. By adjusting c, we can adjust the probability that a micro interval contains at least
one node (we will declare such a micro interval occupied). Indeed, this probability is

1 − exp(−c log n) = 1 − 1
nc

,

from which we find that the probability that all micro intervals are occupied is
(
1 − 1

nc

)n/c log n
,

which tends to 1 as n → ∞. We have thus the following lemma:

Lemma 1 Divide the network interval in micro intervals of length c log n, with c > 1. Every
micro interval is occupied w.h.p.
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We choose one node in each micro interval to relay traffic towards the nearest base station
from the source. For these nodes, we find a TDMA schedule that is able to serve one node in
each micro interval so that when a node transmits, other nodes that are sufficiently far away can
simultaneously transmit, without causing excessive interference. Lemma 2 makes this precise,
ensuring that a constant rate R, independent of n, can be achieved on all the simultaneous
transmissions as n → ∞. The proof is a straightforward extension of Theorem 4 in [2], and is
therefore omitted here.

Lemma 2 For any given integer d > 0 there exists a TDMA scheme with k = 2(d + 1) time
slots, such that one node per micro interval can transmit to any destination located within a
distance of d micro intervals with fixed rate R(d) independent of n.

The b base stations divide the network interval [0, n] in b cells, each of length n/b. The
following lemma gives an upper bound on the number of nodes in each cell.

Lemma 3 Suppose that there are b = b(n) base stations, with limn→∞ b(n) = ∞. Then each
cell contains at most 3max{n/b, log b} nodes w.h.p.

Let us denote by Xi the number of nodes in the ith cell, 1 ≤ i ≤ n/b. As it is a Poisson
random variable of parameter n/b, Chernoff’s inequality implies that for all s > 0

P (Xi > 3max{n/b, log b}) ≤ exp (−3s max{n/b, log b}) E
[
esX

]
, (1)

with E[esX ] = exp((es − 1)n/b). We can always write

(e − 1)n/b − 3max{n/b, log b} ≤ (e − 4) log b.

Plugging this inequality in (1) and taking s = 1, we find therefore that

P (Xi > 3max{n/b, log b}) ≤ be−4,

from which we get that

P (Xi ≤ 3max{n/b, log b} for all i) ≥
(
1 − be−4

)b
.

The right-hand-side of the above equation tends to 1 as n (and thus b) go to infinity. Hence,
the probability at the left-hand-side tends to 1 also.

All the nodes in a cell relay traffic to the base station located in it, in a multiple hop fashion.
Lemma 1 ensures that there is at least one relay node in every micro interval and Lemma 2
ensures that it is possible to have direct transmissions between adjacent micro intervals at a rate
R independent of n, using a given number, k, of time-slots, also independent of n. A node may
have to relay traffic for at most all the nodes that are in a cell, which is at most 3max{n/b, log b}
according to Lemma 3. Consequently, in at most 3k max{n/b, log b} time slots, every node will
have transmitted 1 bit towards a base station.

The length of each cell is n/b and the length of each micro interval is c log n. There are a total
number of n/b log n micro intervals in each cell. Since each packet is relayed along adjacent cells
to the base station in the same cell, the average number of transmission hops is O(n/b log n).
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Phase 2: Infrastructure transport.

Each packet is transported from the ingress base station to the egress base station closest to
the destination. As we assume an infinite capacity beween base stations, this can be considered
as incurring zero delay.

Phase 3: Cellular broadcast to the destination.

If we assume a cellular broadcast from the base station to every node in a cell (since the base
station emitting power is not limited), we can get from the base station to the destination in a
single hop. We adjust the power of the base station so that we can schedule transmissions in
non-adjacent cells. Replacing “micro interval” by “cell” in Lemma 2, we need only k = 2 time
slots to serve each node once per cell. As there are no more than 3max{n/b, log b} nodes in a
cell according to Lemma 3, we need at most 3k max{n/b, log b} time slots for this phase.

Alternatively, we can use a scheme that is the reverse of that of Phase 1, which requires also
3k max{n/b, log b} time slots, with k given by Lemma 5.

The proof of Theorem 1 follows directly from the above arguments.

Proof of Theorem 1. In Phase 1 and 3, every node can transmit one bit towards a base
station once in every 3k max{n/b, log b} time slots. There is no capacity constraint in Phase 2.
Hence, the capacity is

T1-dim(n, b) = 1/(3k max{n/b, log b}) = Ω (min{b/n, 1/ log b}) bit/sec.

Combining the number of transmission hops in Phase 1, 2, and 3, the average number of
transmission hops per packet from source to destination is D(n, b) = O(n/b log n).

!

4 Two-dimensional Network

In a two-dimensional square network with infrastructure, data packets can be delivered in the
following two ways.

1. Data can be delivered through a percolation highway as described in [2].

2. Data can be delivered through infrastructure via the base stations.

We first briefly review on the capacity of random wireless networks without infrastructure. In
such a network, when the density is above a certain threshold, nodes form an infinite connected
cluster that percolates the network. The authors of [2] show that due to percolation, the wireless
nodes form a rich wireless backbone (also referred to as percolation highway) that can carry
packets across the network at constant rate. For data delivery, a node first sends its packets to
the nearby entry point of the percolation highway, which carries the packets to the exit point
near the destination, and finally makes the delivery to the destination. The capacity of this
delivery scheme is proved to scale as Ω(1/

√
n) and average packet delay is

√
n. Note that this

delivery scheme achieves the capacity upper bound of 1/
√

n for an arbitrary wireless network
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[1], thus providing a tight lower bound for the capacity of random wireless networks. In the
following we will use this tight lower bound in our derivation of the capacity of two-dimensional
wireless networks with infrastructure support.

We divide the wireless channel frequency into two parts so that the two data delivery schemes
(via percolation highway and via infrastructure) use different sub-channels. Thus there is no
interference between these two delivery schemes. Assume the fraction of wireless channel band-
width allocated to the percolation highway delivery scheme is f . The capacity of the percolation
highway delivery scheme is known to be Ω(1/

√
n) [2]. We only need to derive the capacity of the

infrastructure delivery scheme, which is similar to that in the 1-dimensional case (illustrated in
Figure 2).

Figure 2: The 2-dimensional square network is partitioned into cells of size
√

n/b×
√

n/b. Each
cell is further divided into micro cells of size

√
c log n ×

√
c log n so that all micro cells are

occupied w.h.p. The delivery scheme is similar to that for 1-dimensional networks. Within a
cell, packets are relayed between adjacent micro cells alone the line from the source to the base
station.

Phase 1: Multi-hop access to the base station.

Lemma 4 Divide the network into micro cells of size
√

c log n ×
√

c log n, with c > 1. Every
micro cell is occupied w.h.p.

The proof is the same as in the 1-dimensional case. Data traffic from a node is relayed along
the micro cells that lie on the straight line from the node to the nearest base station (see Figure
2). We choose one node in each micro cell to relay the traffic going through the micro cell. For
these nodes, we use a TDMA schedule that is able to serve one node in each micro cell so that
when a node transmits, other nodes that are sufficiently far away can simultaneously transmit,
without causing excessive interference. The following lemma makes this precise, ensuring that
a constant rate R, independent of n, can be achieved on all the simultaneous transmissions as
n → ∞. The proof of this lemma is similar to that of Theorem 4 in [2], and therefore omitted
here.

Lemma 5 For any given integer d > 0 there exists a TDMA scheme with k = 2(d + 1) time
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slots, such that one node per micro interval can transmit to any destination located within a
distance of d micro intervals with fixed rate R(d) independent of n.

The b base stations divide the square [0,
√

n]× [0,
√

n] in b cells, each of size
√

n/b ×
√

n/b.
Since the number of base stations, b, tends to infinity as n → ∞, the following lemma yields an
upper bound on the number of nodes in each cell.

Lemma 6 Suppose that there are b = b(n) base stations, with limn→∞ b(n) = ∞. Then each
cell contains at most 3max{n/b, log b} nodes w.h.p.

The proof is the same as in the 1-dimensional case. All the nodes in a cell relay traffic to
the base station located in it, in a multiple hop fashion. Lemma 4 ensures that there is at least
one relay node in every micro cell and Lemma 5 ensures that it is possible to adjust the power
to have direct transmissions between adjacent micro cell at a rate R independent of n, using
a given number k of time-slots, also independent of n. A node will relay traffic for at most
all nodes in a cell, which is at most 3max{n/b, log b} according to Lemma 6. Consequently, in
at most 3k max{n/b, log b} time slots, every node will have transmitted one bit towards a base
station. The per-node capacity is thus min{b/n, 1/ log b}.

Each cell of size
√

n/b ×
√

n/b is divided into micro cells of size
√

c log n ×
√

c log n. Each
packet is relayed between adjacent micro cells along the line from source to the base station, the
average number of hops is O(

√
n/b/

√
c log n) = O(

√
n/b log n).

The arguments for Phase 2 (Infrastructure transport) and Phase 3 (Cellular broadcast to
the destination) remain the same as in the 1-dimensional network case. We are now ready to
complete the proof of Theorem 2.

Proof of Theorem 2. Per above, the capacity of the infrastructure delivery scheme is the
same as in the 1-dimensional case. From [2], the capacity of the delivery scheme through the
percolation highway is 1/

√
m. Therefore, the overall per-node capacity is

T2-dim(n, b) = f/
√

n + (1 − f)min{b/n, 1/ log b} (2)

If b = O(
√

n), the capacity is maximized if the whole channel bandwidth is allocated to
the delivery scheme through the percolation highway as in [2], i.e., f = 1. The corresponding
capacity is Ω(1/

√
n) bits/sec, and the delay is

√
n.

If b = ω(
√

n), the capacity is maximized if the whole channel bandwidth is allocated to
the delivery scheme through the infrastructure, i.e., f = 0. The corresponding capacity is
Ω (min{b/n, 1/ log b}) bit/sec. The average per-packet delay is D(n, b) = O(

√
n/b log n).

!

5 Two-dimensional Strip Network

The two previous sections show that the increase in capacity brought by the infrastructure net-
work strongly depends on the geometry of the area A where the network is deployed, and more
specifically, by the emergence of giant connected component at a finite node density (percola-
tion). This phase transition occurs in the plane, but not on the line. It is therefore interesting
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to further investigate the impact of the geometry of the area of deployment of network on the
lower bounds we can obtain for transport capacity, by considering a random network where
nodes are distributed on a 2-dimensional strip [0, n/w(n)]× [0, w(n)], where nodes are randomly
distributed according to a Point process of unit density. The strip has width 0 < w(n) ≤

√
n,

and the expected number of nodes in the interval is therefore n, as in the two other cases.

If w(n) ≥ C log n (in other words, if w(n) = Ω(log n)), with C > 1 large enough, then
according to [2], there exist a number of Ω(

√
n) disjoint connected horizontal paths (percolation

highway) in the strip, and the per-node capacity by routing packets through the percolation
highway is the same as that in a 2-dimensional square network, i.e., 1/

√
n. The capacity of the

delivery scheme through infrastructure can be obtained using the same arguments as for the
2-dimensional square case. Therefore, the per-node capacity and delay remain the same as in a
2-dimensional square case.

In contrast, if limn→∞ w(n)/ log n = 0 (in other words, if w(n) = o(log n)), then a simple
adaptation of Theorem 11.55 in [14], p. 304, establishes that the probability that there is a path
connecting the left and right sides of the strip is zero as n → ∞, and therefore excludes the
existence of the highway backbone. In this case, the only lower bound that we can use is the
1-dimensional bound.

6 Conclusions

In this paper we investigate the impact of network dimensionality and geometry on the capacity
of hybrid wireless networks. Our results show that the benefit of the infrastructure to the
network capacity mainly depends on the percolation properties of the network models. Different
network dimensions can lead to significantly different scaling laws in capacity.

7 Appendix

Proof of Lemma 2.

Let us label each micro interval with an integer coordinate, ranging from 1 to (n/c log n).
Consider micro intervals whose coordinate is a multiple of k. By translation, we can construct
k disjoint equivalent subsets. This allows us to build the following TDMA scheme: we define k
time slots, during which only nodes from a particular subset are allowed to emit. We assume
also that at most one node per micro interval emits at the same time, and that they all emit
with the same power P .

To find an upper bound on the interferences, we observe that with this choice, the emitters
in the 2 first closest micro intervals are located at a distance at least d + 2 (in the integer
coordinate of micro intervals) from the receiver. This means that the Euclidean distance between
the receiver and the 2 closest interferers is at least c(d + 1). The 2 next closest squares are at
distance at least 3d + 4 (in micro intervals), and the Euclidean distance between the receiver
and the 2 next interferers is therefore at least c(3d+3), and so on. The sum of the interferences
I(d) can be bounded as follows:

I(d) ≤
∞∑

i=1

2Pl(c(2i − 1)(d + 1)) ≤ 2P
∞∑

i=1

[c(2i − 1)(d + 1)]−α = 2P [c(d + 1)]−α
∞∑

i=1

(2i − 1)−α.
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The sum in I(d) clearly converges if α > 1.

Now we want to bound from below the signal received from the emitter. We observe first
that the distance between the emitter and the receiver is at most c(d + 1). The strength S(d)
of the signal at the receiver is therefore lower bounded by

S(d) ≥ Pl(c(d + 1)) = P min{1, [c(d + 1)]−α}.

Finally, we obtain a bound on the signal-to-interference ratio

SINR(d) =
S(d)

N0 + I(d)
≥ P min{1, [c(d + 1)]−α}

N0 + 2P [c(d + 1)]−α
∑∞

i=1(2i − 1)−α

which does not depend on n. The proof is concluded by noting that the capacity between two
nodes is 1

2 log(1 + SINR)) bps/Hz.
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