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Abstract—The connectivity and capacity of large ad hoc
networks have been studied extensively under standard point-
to-point physical layer assumptions. However, extensive recent
research has demonstrated the improvement in performance
possible when multiple radios concurrently transmit in the same
radio channel. In this paper, we consider how such physical
layer cooperation improves the connectivity in wireless ad hoc
networks. In particular, for noncoherent power summing of
signals on the physical channel, we consider conditions on
the node density λ (or, equivalently, the transmit power) for
full connectivity and percolation for large networks in various
dimensions and with various path loss exponents α. For the one-
dimensional (1-D) case, in contrast to noncollaborative networks,
we demonstrate that full connectivity can be realized for certain
conditions. In particular, for any node density with α < 1,
or for node density λ > 2 when α = 1, full connectivity
occurs with probability one in extended networks. Conversely,
we demonstrate that there is no percolation with probability
one when α > 1. In two-dimensional (2-D) extended networks,
for any node density with α < 2, or for node density λ > 5
when α = 2, full connectivity is achieved. Conversely, there
is no full connectivity with probability one when α > 2, but
we prove that, for α ! 4, the percolation threshold of the
noncoherent collaborative network is strictly less than that of
the noncollaborative network. Analogous results are presented
for dense networks. Hence, even relatively simple physical layer
collaboration in the form of noncoherent power summing can
substantially improve the connectivity of large ad hoc networks.

I. INTRODUCTION
Wireless ad hoc networks have been a topic of extreme in-

terest recently. Naturally, connectivity is one of the key issues
that requires significant study since few network services can
function properly if the network is disconnected. Although
wireless ad hoc networks are finite, of course, asymptotic
(in a large number of nodes) analyses have proven useful
for understanding the characteristics of large networks and
will be considered here. There are multiple definitions of
connectivity, but two have emerged as the most often studied
for large ad hoc networks. In extended networks, where nodes
are distributed across an infinite region according to a Poisson
point process with some density λ, connectivity is defined
as the existence of one cluster containing an infinite number
of connected nodes. In dense networks, where N nodes are
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distributed uniformly on a surface of fixed area, connectivity
is defined as all nodes being able to communicate with one
another.
Recently, physical layer researchers have extensively stud-

ied architectures that differ significantly from the traditional
point-to-point model [8]. In particular, the benefits of having
multiple radios simultaneously transmit on the same channel
to affect either distributed beamforming, distributed multiple-
input multiple-output (MIMO), or cooperative diversity have
been extensively studied in the last decade. Clearly, these
types of techniques have the potential to significantly impact
the capacity and connectivity of ad hoc networks. However,
the assumptions required for their employment in terms of
distributed synchronization can be quite onerous. For exam-
ple, to accomplish distributed beamforming, the cooperating
transmitters must be accurately phase-locked and essentially
tune to a location within a fraction of a wavelength.
To consider the potential gains achieved through coop-

eration in wireless ad hoc networks, we consider a very
simple form of cooperation that we denote noncoherent power
summing. In this case, cooperation consists of nodes placing
a frequency-shift keyed (FSK) signal on the channel roughly
simultaneously. On a Raleigh fading channel appropriate for
wireless networks, the result is that the power of the coop-
erating signals is effectively summed and, hence, the range
of the transmission is increased versus the nodes transmitting
individually.
Conventionally, only nodes within a distance less than some

r can directly communicate with each other. The transmission
radius r is determined by the required decoding threshold
signal-to-noise ratio (SNR) τ , the transmission power Pt, and
the path loss attenuation function. However, when a set of
already-connected nodes transmits simultaneously, collabora-
tion helps achieve the required received power, thus allowing a
node to be pulled into the connected component. This simple,
practical form of collaboration is not only easy to affect
but also tractable for analysis and presents a lower bound
for the gains possible through other more complex forms of
collaboration.
In Song, Goeckel and Towsley [1], such physical layer

collaboration was proposed and was shown to improve the
connectivity in both extended and dense networks through a
combination of simulation and analysis. For extended net-
works, only simulation results were provided. For dense



networks, analytical results were provided, but the power
required for full connectivity was only modestly reduced.
Here, we significantly extend the results from [1], and a
nearly complete set of necessary and sufficient conditions is
analytically established for both dense and extended networks.
For extended networks, continuum percolation with the

Poisson Boolean model has been the most common approach
to study connectivity. Nodes with identical range are dis-
tributed in an infinite two-dimensional space according to a
Poisson point process. In particular, for a given r, when the
node density λ exceeds a given threshold λc, there will be
one infinite cluster almost surely, whereas for node densities
less than λc there is no infinite cluster with probability one.
Although the concept of percolation has been applied to many
different fields, there is still no accurate analytical expression
for the threshold λc [6]. Previous work has also shown that
there is no percolation in noncollaborative 1-D networks,
and, through simulation, that the percolation threshold in
noncollaborative 2-D networks with πr2 = 1 is approximately
λc = 4.5 [9]. Through simulation, [1] showed that it can be
lowered to some extent with the help of collaboration. Hence,
there remains a need for analytical results on the existence of
percolation and the value of the percolation threshold for both
1-D and 2-D networks in the collaborative case.
For dense networks, Gupta and Kumar [2] [3] set up a

powerful framework for studying the connectivity of nonco-
operative 2-D dense networks. This framework makes use of
results from continuum percolation theory to demonstrate that
a power level that allows a node to connect with any other
node within an area of size (log N + c(N))/N is required
for full connectivity, with c(N) → ∞. Specifically, when the
transmission area of each single node is πr2 = log N+c(N)

N ,
whereN is the number of nodes in the unit area disc in #2 and
lim inf
N→∞

c(N) = ∞, the network is completely connected with
probability one as N → ∞. Otherwise, if lim inf

N→∞
c(N) < ∞,

there will be some isolated clusters with strictly positive
probability as N approaches infinity. Therefore, the expected
number of neighbors of each node has to be on the same
order of log N to maintain the network connectivity. The
work of [1] developed a communication model for cooperative
networks, and reduced the required coverage area of each node
to 4π(4 logN)α/(α+2)(log log N + log 2)2/(α+2)/N , where
α > 0 is the path loss exponent. It breaks the necessity
condition for full connectivity in [2], and conjectures that
any network with path loss exponent α ≤ 2 for which the
average number of neighbors approaches infinity is completely
connected. Unfortunately, the problem of how much the power
required for full connectivity can be further reduced, as well as
this key latter conjecture, remains unresolved in prior studies.
Our paper focuses on such cooperative wireless ad hoc

networks, and we are most concerned about the extent that
collaboration can help improve the connectivity in the 1-D
and 2-D cases. We adopt the previous collaborative framework
and develop new analytical approaches that apply to both 1-D
and 2-D, sparse and dense networks. Using these approaches,

TABLE I
MAJOR RESULTS

Extended Networks
1-D 2-D

α = 1 Percolation α = 2 Percolation
Full connectivity Full connectivity
%λ > 2, r = 1 %λ > 5, r = 1
%λ > 2/r, ∀r %λ > 5/r, ∀r

α < 1 Percolation α < 2 Percolation
Full connectivity Full connectivity
%∀λ > 0 %∀λ > 0

α > 1 No percolation α > 2 No full connectivity
%∀λ > 0 %∀λ > 0

α ! 4 Reduced percolation
threshold

Dense Networks
1-D 2-D

α ! 1 Full connectivity α ! 2 Full connectivity
%r = c/N %πr2 = c/N

we are able to obtain percolation and full connectivity results
with respect to node density λ for a given path loss exponent
α in the channel model. A summary of the results is shown
in Table I (c is a positive constant).
The rest of this paper is organized as follows. In Section II,

we first introduce some necessary background on percolation
and then precisely define the cooperation model. The extended
and dense cooperative wireless ad hoc networks are studied
in Section III and Section IV, respectively, which give the
main results. Finally, we conclude in Section V with some
comments on the problem considered and future work.

II. COOPERATION AND PERCOLATION
We extend the conventional noncooperative multi-hop

framework [2], which applies to the r-radius model; that is,
each node transmits the same constant power and is able to
communicate directly with others (namely neighbors) within
a distance of r, which is determined as follows. Let Pt be
the transmission power of a single node, α be the path loss
exponent, and τ be the decoding threshold (the minimum
average SNR required to decode a transmission). For two
nodes to communicate directly, they must be within distance
r where r must satisfy

Pt · r−α ≥ τ (1)

These neighbors within distance r can act like routers when
forwarding packets en route to their destinations.
Cooperation techniques allow clusters of nodes that have

already formed under a noncooperative model to pool their
resources together to further connect isolated nodes; thus, the
size of each cluster keeps growing until no more nodes can
be pulled into any current cluster, as shown in Figure 1.
There are a number of possible methods for realizing

physical layer cooperation. For example, at the high end of



Fig. 1. Noncooperative and cooperative networks

performance are techniques such as distributed beamforming,
which provides coherent voltage summing at the receiver
by precisely phasing transmissions; however, it requires an
extremely high system complexity to achieve phase synchro-
nization of the network and has a very long neighbor discovery
phase. Other techniques include cooperative diversity [4],
distributed multiple-input multiple-output (MIMO) [5], etc. As
discussed in the introduction, here we consider distributed
frequency-shift keying (FSK), which employs noncoherent
power summing to provide some limited performance gains.
However, it requires quite achievable complexity, and, as
will be shown later, results in significant improvements in
performance that serve as lower bounds to what can be
expected with other forms of collaboration.
In a noncoherent cooperative network, if a set of relay

nodes, Ω, transmits simultaneously, then the average power
received by node j is

Pt

∑

i∈Ω

(dij)−α

where dij is the distance between node i and node j. In
the worst case, all the transmission nodes in Ω are at the
same distance away from the receiver. Therefore, a sufficient
condition for a node to be able to connect a cluster of n
connected nodes is that the distance to the furthest node in
the cluster, namely dn,1, must satisfy

nPt · (dn,1)−α = τ (2)

Thus, (dn,1)α = nrα. Throughout this paper, we will also
assume collaboration in the reception by nodes within a
cluster; that is, the aggregate power received by the cluster
is used in determining whether information can be submitted
successfully to the cluster from a remote transmitter (or cluster
of transmitters). Although receiver collaboration is generally
more difficult to facilitate than transmitter collaboration, it
certainly can be done in systems where connectivity is the
critical goal, and has even been employed in systems where

capacity maximization is the goal [5]. Such receiver collabo-
ration makes all collaborative links symmetric; that is, if and
only if clusterX can successfully transmit to a node (or cluster
of nodes) Y , that node (or cluster of nodes) Y can successfully
transmit to the original cluster X . Thus, in the case of receiver
collaboration, if there are two clusters of size n1 and n2, a
sufficient condition for two clusters to be connected is that
the maximum distance between any two nodes in n1 and n2

respectively, namely dn1,n2 , must satisfy

n1Pt · (dn1,n2)
−α · n2 = τ (3)

Thus, (dn1,n2)α = n1n2rα.
Generally, a network is called “extended” if the area goes

to infinity while the expected number of neighbors of each
node remains constant. Similarly, a network is called “dense”
if the area is held constant and the number of nodes increases
to infinity. In the continuum percolation model, nodes are
assumed to be distributed according to a Poisson point process
with a given density λ in nodes per unit area. If there exists
at least one cluster containing an infinite number of connected
nodes in the network, we say that percolation occurs.

III. EXTENDED NETWORKS
In this section, we establish exact percolation results and

connectivity laws with respect to node density λ when the
path loss exponent α takes different values in 1-D and 2-D
networks. In fact, the results derived here apply to both ex-
tended and dense networks, yet the latter case will be discussed
in detail in Section IV. Throughout this part, we assume a
channel model with fixed average power attenuation function,
1/dα, where d is the distance between two nodes. We also
generally assume that each node has the same transmission
radius r = 1, and then note how the results can be extended
to the case when r (= 1 in a straightforward manner.

A) One-dimensional Networks
In 1-D networks, we discuss three different cases of the path

loss exponent: α = 1, α < 1 and α > 1. Per above, assume
r = 1 unless otherwise stated.

1) Path Loss Exponent α = 1
Lemma 1: For any segment of length L of the line, if there

are n " 2L nodes in this segment, cooperation guarantees that
all nodes are connected.

Proof: When L ! 1, a node can directly communicate
with any other node within the segment, thus the lemma is
obvious. As shown in Figure 2, when L > 1, divide the
original segment S0 in half, and one of the halves, call it
S1, contains n1 " L nodes.

n1 × rα " L × rα = L = Lα

The largest distance between any two nodes in S0 is L.
Thus, if all of the nodes in the segment S1 are connected,
which we will often term “S1 being fully connected”, it is
straightforward to observe that the total transmitted power
from its nodes is sufficient to allow it to connect to any



Fig. 2. An example of the dividing procedure

node in the other half of S0, which means that S0 is also
fully connected. Hence, we proceed to prove that S 1 is fully
connected.
Now, divide S1 in half, and similar to above, one of the

halves, namely S2, must contain n2 " L/2 nodes.

n2 × rα " L

2
× rα =

L

2
=

(
L

2

)α

The largest distance between any two nodes on the segment
S1 is L/2, and, if S2 is fully connected, the total power of
its connected nodes is sufficient for it to connect to any other
node in the other half of S1, which implies that S1 is also
connected. Hence, in turn, we proceed to prove that S 2 is
fully connected.
We continue halving the interval lengths as done twice

above, yielding the sequence:

lk = L/2k k=1,2,· · · · · ·
nk " L/2k−1 = 2lk

nk × rα " L/2k−1 = (lk−1)
α

where lk is the length of Sk. Repeating the argument employed
above, Sk is connected as long as Sk+1 is connected.
For any fixed finite L, there must exist some kc (kc " 0)

such that

lkc = L/2kc > 1
lkc+1 = L/2kc+1 ! 1
nkc+1 " 2lkc+1 = L/2kc > 1

Since lkc+1 ! 1 and the number of nodes within it satisfies
nkc+1 " 2, the nodes within Skc+1 are clearly connected.
Therefore, Skc is completely connected, which implies that
Skc−1 is completely connected, etc. Applying this argument
kc times, we conclude that S0, the original segment of length
L, is completely connected.
Remark 1: Generally, the transmission radius r does not

necessarily equal 1, but this is easily addressed. In this case,
we pick a segment of length rL instead of L. Also,

lk = rL/2k k=1,2,· · · · · ·
nk " L/2k−1

nk × rα " rL/2k−1 = (lk−1)
α

For any fixed finite r and L(L > 1), there must also exist
some kc (kc " 0) such that

lkc = rL/2kc > r

lkc+1 = rL/2kc+1 ! r

nkc+1 " L/2kc = lkc/r > 1

Since lkc+1 ! r and nkc+1 " 2, Skc+1 is clearly connected.
Thus, we also conclude that the nodes in the segment of length
rL are completely connected. Therefore, for any fixed finite r
and L, if there are n " 2L nodes in a segment of length rL,
cooperation guarantees that all nodes are connected.
Lemma 1 provides an explicit construction for how nodes

can collaborate to realize connectivity. This will be the basis
not only for the following key theorem, but also for its
analogous version in the 2-D case.
Theorem 1: In a 1-D extended network with α = 1 and

transmission radius r = 1, if the node density λ > 2,
percolation and full connectivity occur with probability one.

Proof: A one-dimensional network can be written as the
union of an infinite number of adjacent segments of length L.
According to Lemma 1, for any instantiation for which there
are at least 2L nodes in any segment of length L, cooperation
guarantees that all nodes within it are connected.
Let nk be the number of nodes in segment k, N be the

total number of segments, and node density λ = 2 + ε, where
ε > 0. The number of nodes in a segment nk is a Poisson
random variable of parameter µ = λL, thus for any δ ∈ (0, 1],
Chernoff’s bound yields

P (nk < (1 − δ)µ) < exp
(
−µδ2

2

)
(4)

where µ = E[nk] = λL = (2 + ε)L. Let δ = ε/(2 + ε), and
we have

P (nk < 2L) < exp
(
− ε2

2(2 + ε)
L

)
= exp(−βL)

where β = ε2/[2(2 + ε)]. Each segment is an independent
interval from an identical Poisson point process; therefore,

P (nk " 2L, all k) = (1 − P (nk < 2L))N " (1 − exp(−βL))N

Let L = 2 log N/β be a function of N , thus exp(−βL) =
1/N2, and

P (nk " 2L, all k) "
(

1 − 1
N2

)N
N→∞−−−−→ 1 (5)

As the number of segments tends to infinity, they cover the
whole line, and with probability one, every one of the segments
is completely connected (i.e. for any segment, all of the nodes
within that segment are connected).
Finally, when a segment of length L contains at least 2L

nodes, it is able to connect adjacent segments.

(2L) · rα = 2L = (2L)α

Thus, all of the nodes on the line are connected, which means
both percolation and full connectivity are achieved.



Remark 2: Generally, when the transmission radius r (= 1,
if the node density λ > 2/r, we have the same result as above.
Replace L with rL and λ = 2 + ε with λ = 2/r + ε in the

above proof. With probability one, all of the segments contain
at least 2L nodes; thus, every one of the segments is com-
pletely connected at the same time, according to Remark 1.
Also,

(2L) · rα = 2rL = (2rL)α

Therefore, both percolation and full connectivity are achieved
when α = 1, r (= 1 and λ > 2/r in 1-D networks.

2) Path Loss Exponent α < 1
Theorem 2: In a 1-D extended network with α < 1 and any

finite node density λ > 0, percolation and full connectivity
occur with probability one.

Proof: First, consider 2N − 1 segments of length L in a
1-D network, whereN is a positive integer. For any finite node
density λ > 0, define λ = θ+ε, where ε is an arbitrarily small
positive number; thus, λ > θ > 0. Let L = log log N/γ, and
C represent the event that such a segment is fully connected,
where γ = ε2/[2(θ + ε)].
For any finite θ > 0, we can always find some N that

is large enough to satisfy θ " 1/L1−α. If there are θL
nodes within a unit length of the segment, they are not only
completely connected themselves, but also able to connect all
of the other nodes within L.

(θL) · rα = θL " Lα

The nodes are uniformly distributed within each segment, thus,

P (C) " (1/L)θL

The probability that there exists at least one completely
connected segment of length L is

P (∃ fully connected segment of length L)
= 1 − P (there is no such connected segment)

= 1 − (1 − P (C))2
N−1

" 1 −
(
1 − (1/L)θL

)2N−1

= 1 −
(

1 −
(

γ

log log N

)(θ log log N/γ)
)2N−1

N→∞−−−−→ 1 (6)

Thus, we can find a fully connected segment of length L on
the line with probability one.
Suppose we start from such a segment and divide the net-

work into an infinite number of adjacent segments of exponen-
tially growing length in both directions, so that a listing of the
segment lengths would be · · · 8L, 4L, 2L, L, 2L, 4L, 8L · · · ,
where the L in the center corresponds to the fully connected
segment found above. We assign a number to a given segment
by the number of segments between it and the starting segment
of length L; hence, corresponding to the segment lengths
above, the numbers would be · · · 3, 2, 1, 0, 1, 2, 3 · · · . Let nk

Fig. 3. Dividing a 1-D network

be the number of nodes in segment k, with k representing the
sequence number, and lk the segment length, lk = 2kL, k =
0, 1, 2, . . . , (N − 1), as shown in Figure 3. N is the total
number of such segments.
Let δ = ε/(θ + ε) ∈ (0, 1]. Similarly, apply Chernoff’s

bound with µ = E[nk] = λ2kL = (θ + ε)2kL and we have,

P
(
nk < 2kθL

)
< exp

(
− ε2

2(θ + ε)
2kL

)
= exp

(
−γ2kL

)

where γ = ε2/[2(θ+ε)]. Also, each segment is an independent
interval of an identical Poisson point process; thus,

P
(
nk " 2kθL, all k

)
"

N−1∏

k=0

(
1 − exp(−γ2kL)

)

Since L = log log N/γ, exp(−γ2kL) = 1/(logN)2
k , thus

for all k,

P
(
nk " 2kθL, all k

)
"

N−1∏

k=0

(
1 − 1

(log N)2k

)
N→+∞−−−−−→ 1

(7)
The above result gives a lower bound on the node count in
every segment.
As N tends to infinity and the union of the segments covers

the whole line, the event that, for all k, the k th segment
contains at least 2kθL nodes occurs with probability one. In
order to connect the adjacent segments, nk must satisfy

nk " 2kθL "
(
2k + 2k+1

)α
Lα

θ " 3α

(2kL)1−α =
3αγ1−α

(2k log log N)1−α
N→+∞−−−−−→ 0

For any finite node density λ > 0, there exists one fully
connected segment of length L, and then, at each step, a
segment in the sequence is able to connect the next segment
in the sequence. Thus, all of the nodes are connected, and
percolation and full connectivity occur.
Remark 3: Generally, the above result also holds with trans-

mission radius r (= 1.

P (C) " (r/L)θL

The probability that there exists at least one completely
connected segment of length L is

P (∃ fully connected segment of length L)

" 1 −
(

1 −
(

rγ

log log N

)(θ log log N/γ)
)2N−1

N→∞−−−−→ 1



We can always find a fully connected segment of length L
to start from as well, and in order to connect the adjacent
segment, θ must satisfy

θ " 3α

rα (2kL)1−α =
3αγ1−α

rα (2k log log N)1−α
N→∞−−−−→ 0

For α < 1, any r > 0 and any finite node density λ > 0,
percolation and full connectivity occur simultaneously with
probability one.

3) Path Loss Exponent α > 1

Theorem 3: In a 1-D extended network with α > 1 and any
node density λ > 0, percolation never occurs.

Proof: Consider a 1-D network where nodes are dis-
tributed according to a Poisson point process of constant rate
λ. Pick a node x on the line, and let {xj}∞j=−∞ represent the
positions of all the other nodes. Assume all nodes except x are
connected and ρ is the maximum possible power x receives.
Thus,

ρ(x) = Pt

∞∑

j=−∞

1(
dx,xj

)α

This is an upper bound of transmission power for all co-
operating clusters. When α > 1, ρ(x) converges and its
probability density function fρ(y) is that of a Levy-stable
random variable [10]. Thus,

P (ρ(x) < τ) =
∫ τ

0
fρ(y) dy = P0 > 0 (8)

Therefore, node x cannot be reached with non-zero probability
even if all other nodes cooperate.
Consider a segment of length L on the line. Given the node

density λ > 0, let λ = λ0 + ε, where ε > 0 is an arbitrarily
small positive value. Let n and n0 represent the number of
total and isolated nodes in segment L respectively. Pick δ =
(λ− λ0)/λ ∈ (0, 1], apply Chernoff’s bound with µ = λL,

P (n " λ0L) = 1 − P (n < λ0L)

" 1 − exp
(
− (λ− λ0)2

2λ
L

)
L→+∞−−−−−→ 1

Define a Bernoulli random variable Xi for the connectivity
state of each node in segment L, where i = 1, 2, · · · , N ,

Xi =
{

1, isolated;
0, connected.

Then the expected number of isolated nodes is

E[n0] = E

[
n∑

i=1

Xi

]
=

n∑

i=1

P (Xi = 1)

"
n∑

i=1

P0 = nP0 " λ0LP0

Fig. 4. An example of the dividing procedure

Let δ = 1/2 and apply Chernoff’s bound with µ = E[n0],

P

(
n0 " 1

2
nP0

)
" P

(
n0 " 1

2
µ

)

" 1 − exp
(
−µ

8

)

" 1 − exp
(
−λ0LP0

8

)

L→+∞−−−−−→ 1 (9)

Divide the 1-D network into an infinite number of adjacent
segments of length L. Let N be the total number of such
segments, and let L = log N . As N → ∞ and the segments
cover the whole line, L also goes to infinity, and there are at
least λ0LP0/2 → ∞ isolated nodes with probability one in
each segment. Therefore, for α > 1, any r > 0 and any λ > 0,
percolation (and, hence, full connectivity) never occurs.

B) Two-dimensional Networks
1) Path Loss Exponent α = 2
In 2-D networks, we discuss three different cases: α = 2,

α < 2 and α > 2.
Lemma 2: For any area of size L×L, if there are n " 5L2

nodes in this area, cooperation guarantees that all the nodes
are completely connected.

Proof: Per above, assume each node’s transmission
radius is r = 1. When L ! 1/

√
2, a node can directly

communicate with any other node within the square, thus
the lemma is obvious. When L > 1/

√
2, divide the original

square, Q0, in the following manner, as shown in Figure 4:
1) Divide Q0 into two equal rectangles, one of which,
namely Q1, contains n1 " 5L2/2 > 2L2 nodes.

n1 × rα > 2L2 × rα = 2L2 =
(√

2L
)α

The largest distance between any two nodes in Q0 is√
2L. Thus, if all of the nodes in the square Q1 are



connected, which we will often term “Q1 being fully
connected”, it is straightforward to observe that the total
transmitted power from its nodes is sufficient to allow
it to connect to any node in the other half of Q0,
which means that Q0 is also fully connected. Hence,
we proceed to prove that Q1 is fully connected.

2) Continue to divide Q1 into two equal squares, one of
which, namely Q2, contains n2 " 5L2/4 nodes.

n2 × rα " 5L2

4
× rα =

5L2

4
=

(√
5L

2

)α

The largest distance between any two nodes in Q1 is√
5L/2, and, if Q2 is fully connected, the total power of

its connected nodes is sufficient for it to connect to any
other node in the other half of Q1, which implies that
Q1 is also fully connected. Hence, in turn, we proceed
to prove that Q2 is fully connected.

3) We continue dividing the squares/rectangles as done
twice above, yielding the sequence:

ak = L2/2k k=1,2,· · · · · ·
nk " 5L2/2k

where ak is the area of Qk. Define dk to be the diagonal
length of Qk, and we have

dk =






√
2L/2k/2, k is even;

√
5L/2(k+1)/2, k is odd.

Therefore,

nk × rα






"
(√

5L/2k/2
)2

= (dk−1)α, k is even;

>
(√

2L/2(k−1)/2
)2

= (dk−1)α, k is odd.

Obviously, the nodes in Qk are connected as long as the
nodes in Qk+1 are all connected. For any fixed finite L,
there must exist some kc (kc " 0) such that

dkc > 1
dkc+1 ! 1
nkc+1 " (dkc)

2 > 1

Since dkc+1 ! 1 and the number of nodes in Qkc+1

satisfies nkc+1 " 2, it is clearly all connected. Therefore,
we conclude that all the nodes in Q0, the original square
of size L × L, are connected.

Remark 4: Lemma 2 provides an explicit construction that
realizes the promised connectivity requirement in 2-D net-
works, which is the basis of the following key theorem, an
extension of the 1-D case.
Using similar arguments as in Remark 1, we can get the

general result as follows. For any fixed finite r and L, if there
are n " 5L2 nodes in the area of size rL × rL, cooperation
guarantees that all nodes are connected.

Theorem 4: In a 2-D extended network with α = 2 and
transmission radius r = 1, both percolation and full connec-
tivity occur with probability one when the node density λ > 5.

Proof: Similar to the 1-D case, a 2-D network can be
divided into an infinite number of adjacent squares of size
L×L. According to Lemma 2, if there are at least 5L2 nodes
in any square, cooperation guarantees the nodes within it are
all connected.
Let nk be the number of nodes in square Qk, N be the

total number of squares, and λ = 5 + ε be the node density,
where ε > 0. nk is a Poisson random variable of parameter
µ = E[nk] = λL2 = (5 + ε)L2. Let δ = ε/(5 + ε) ∈ (0, 1];
Chernoff’s bound yields

P
(
nk < 5L2

)
< exp

(
− (εL)2

2(5 + ε)

)
= exp

(
−βL2

)

where β = ε2/[2(5+ε)]. Each square is an independent section
of an identical Poisson process; therefore,

P
(
nk " 5L2, all k

)
=

(
1 − P (nk < 5L2)

)N

"
(
1 − exp

(
−βL2

))N

Let L =
√

2 log N/β be a function of N , thus
exp(−βL2) = 1/N2, and

P (nk " 5L2, all k) " (1 − 1
N2

)N N→∞−−−−→ 1 (10)

As the number of squares tends to infinity, they cover the
whole plane, and with probability one, every one of the squares
is completely connected (i.e. for any square, all of the nodes
within that square are connected).
When a square of size L × L contains at least 5L2 nodes,

it is able to connect all eight adjacent squares.

(5L2) · rα = 5L2 = (
√

5L)α

Thus all the nodes on the plane are connected, which means
both percolation and full connectivity are achieved.
Remark 5: Following the similar arguments as in Remark 2,

if node density λ > 5/r, we have the same result as above
when the transmission radius r (= 1.

2) Path Loss Exponent α < 2

Theorem 5: In a 2-D extended network with α < 2 and fi-
nite node density λ > 0, both percolation and full connectivity
occur with probability one.

Proof: First, consider 4N−1 squares of size L×L in a 2-
D network, where N is a positive integer. For any finite node
density λ > 0, define λ = θ + ε, where ε is an arbitrarily
small positive number. Let C represent the event that such
a square is fully connected, and L =

√
log log N/γ, where

γ = ε2/[2(θ+ ε)]. The nodes are uniformly distributed within
each square, thus,

P (C) "
(
1/2L2

)θL2



Fig. 5. Dividing a 2-D network

The probability that there exists at least one completely
connected square of size L × L is

P (∃ fully connected square of size L × L)

" 1 −
(

1 −
(

γ

2 log log N

)(θ log log N/γ)
)4N−1

N→∞−−−−→ 1 (11)

Thus, we can find a fully connected square of size L×L with
probability one.
Suppose we start from such a square and divide the network

into an infinite number of overlapping squares of exponentially
growing size, so that a listing of the square areas would be
L2, 4L2, 16L2 · · · , where the L × L corresponds to the fully
connected square found above. From this starting square, we
pick its upper left corner and draw a square to the lower right
of size 2L × 2L. Then, we jump to the lower right corner of
the second square and draw a square to the upper left of size
4L× 4L. Then, we jump to the upper left corner of the third
square and draw a square to the lower right of size 8L× 8L,
etc., as shown in Figure 5.
Let nk be the number of nodes in square k, with k

representing the sequence number and ak the area of square
k, ak = 4kL2, k = 0, 1, 2, . . . , (N −1). N is the total number
of such squares.
Let δ = ε/(θ+ε) ∈ (0, 1] and apply Chernoff’s bound with

µ = E[nk] = λ4kL2 = (θ + ε)4kL2,

P
(
nk < 4kθL2

)
< exp

(
− ε2

2(θ + ε)
4kL2

)
= exp(−γ4kL2)

where γ = ε2/[2(θ + ε)]. We apply Chernoff’s bound to the
kth and (k + 1)th square, yielding

P
(
nk+1 − nk < (4k+1 − 4k)θL2

)
< exp

(
−(4k+1 − 4k)γL2

)

Therefore,

P (nk " 4kθL2, all k)

" P (n0 " θL2)
N−1∏

k=1

P
(
nk − nk−1 " (4k − 4k−1)θL2

)

"
(
1 − exp (−γL2)

) N−1∏

k=1

[
1 − exp

(
−(4k − 4k−1)γL2

)]

Since L =
√

log log N/γ is a function of N , we have

P (nk " 4kθL2, all k)

"
(

1 − 1
log N

) N−1∏

k=1

(
1 − 1

(log N)3·4k−1

)

N→+∞−−−−−→ 1 (12)

When N tends to infinity and the union of the squares covers
the whole plane, the event that, for all k, the k th square
contains at least 4kθL2 nodes occurs with probability one.
In order to connect the following square, nk must satisfy

nk " 4kθL2 "
(
2kL ·

√
2
)α

θ " 2α/2

(2kL)2−α =
2α/2γ2−α

(2k log log N)2−α
N→+∞−−−−−→ 0

For any finite node density λ > θ > 0, there exists at least one
fully connected square of size L × L, and then, at each step,
a square in the sequence is able to connect the next square
in the sequence. Thus, all of the nodes are connected, and
percolation and full connectivity occur.
Remark 6: Theorem 2 and Theorem 5 provide both suffi-

cient and necessary condition for percolation and full connec-
tivity in 1-D and 2-D extended networks with α < 1 and α < 2
respectively. Similar to Remark 3, Theorem 5 also holds for
the case when transmission radius r (= 1.

3) Path Loss Exponent α > 2
Both percolation and full connectivity are important in

extended networks. First, we demonstrate that, for α > 2, full
connectivity does not occur with probability one. However,
even for the noncollaborative model, it has been proven that
there exists a percolation threshold. An infinite cluster appears
almost surely if the node density exceeds this threshold, and
there is no infinite cluster almost surely if the node density
is below this threshold [1] [6] [7]. Here, we demonstrate that
noncoherent collaboration results in a percolation threshold
strictly less than that for the noncollaborative case.
Theorem 6: In a 2-D extended network with α > 2 and any

node density λ > 0, full connectivity never occurs.
Proof: Pick a node (x, y) on the plane, and let

{(xj , yj)}∞j=−∞ represent the node position of all other nodes.
Assume the other nodes are all connected, in which case the
maximum possible power (x, y) receives is

ρ(x, y) = Pt

∞∑

j=−∞

1(
d(x,y),(xj,yj)

)α



This is an upper bound of transmission power for all cooperat-
ing clusters. When α > 2, ρ(x, y) converges and its probability
density function fρ(z) is also that of a Levy-stable random
variable [10]. Thus,

P (ρ(x, y) < τ) =
∫ τ

0
fρ(z) dz = P1 > 0 (13)

Therefore, for all cooperating clusters of any size, there
must exist some point that cannot be reached with non-zero
probability.
Consider a square of size L×L on the plane. Given the node

density λ > 0, let λ = λ1 + ε, where ε > 0 is an arbitrarily
small positive value. Let n and n1 represent the total and
number of isolated nodes in square L × L respectively. Pick
δ = (λ − λ1)/λ ∈ (0, 1]. Application of Chernoff’s bound
with µ = λL2 yields

P
(
n " λ1L

2
)

= 1 − P (n < λ1L)

" 1 − exp
(
− (λ− λ1)2

2λ
L2

)
L→+∞−−−−−→ 1

If we define a Bernoulli random variable X i corresponding to
the connectivity state of each node in square L × L, where
i = 1, 2, · · · , N ,

Xi =
{

1, isolated;
0, connected.

Thus, the expected number of isolated nodes is

E[n1] = E

[
n∑

i=1

Xi

]
=

n∑

i=1

P (Xi = 1)

"
n∑

i=1

P1 = nP1 " λ1L
2P1

Let δ = 1/2 and apply Chernoff’s bound with µ = E[n1],

P

(
n1 " 1

2
nP1

)
" P

(
n1 " 1

2
µ

)
" 1 − exp

(
−µ

8

)

" 1 − exp
(
−λ1L2P1

8

)

L→∞−−−−→ 1 (14)

As L → ∞ and covers the whole plane, there are at least
λ1L2P1/2 → ∞ isolated nodes with probability one. There-
fore, for α > 2, any r > 0 and any λ > 0, full connectivity
never occurs.
Note that there still exists percolation in some cases al-

though full connectivity never occurs. For the Poisson Boolean
model, denote by λc the critical intensity for percolation. We
consider r = 1, and normalize the power so that two nodes
connect if the received power is greater than 1/rα = 1.
Denote f(u,α) to be the function

f(u,α) ∆=
1
uα

+
1

(1 + u)α
(15)

and g(α) to be the value of u such that f(g(α),α) = 1. Since
f(·,α) is decreasing, f(1,α) > 1 and lim

u→∞
f(u,α) = 0 for

all α, g(α) is well defined. Actually, g(α) > 1, and it can be
observed that g(α) is decreasing as a function of α.
Theorem 7: In a 2-D extended network with 0 < α ! 4,

cooperation reduces the critical intensity by a factor 1− ε(α),
with ε(α) > 0.
We conjecture that the Theorem is actually true for all α.

Proof: It is sufficient to consider here a restricted form
of cooperation, where only pairs of node cooperate if they are
within distance 1 of each other.
Consider a point x of the underlying Poisson process. If x

has a neighbor y within distance 1, then x and y can jointly
connect with nodes further away. The power received by a
node z from the pair (x, y) is

1
dα

zx
+

1
dα

zy
" 1

dα
zx

+
1

(dzx + dxy)α

" f(dzx,α) (16)

by the triangular inequality, and since dxy ! 1. Thus, if dzx !
g(α), then the power received at z is greater than 1, and the
pair (x, y) can cooperate to connect with z.
A point x can hence connect to any point in the ring

centered at x of radius between 1 and g(α) if it has a neighbor
in the circle of radius one; that is, with probability that there
exists a point in the Poisson process within distance 1, namely
1 − exp(−λπ). It can also connect to a point in the circle of
center x and radius one with the same probability. Thus, with
probability 1 − exp(−λπ), x can connect to a node within
distance g(α).
This means that we can couple our pair-wise cooperative

model to a Poisson boolean model by removing nodes with
probability 1−exp(−λπ) from the underlying Poisson process,
and replacing the connection area at each remaining node by
a disk of radius g(α). Note that this new Poisson boolean
model will have a lesser connectivity than the cooperative
model, due to the inequalities in (16), and thus, if this Poisson
boolean model percolates for a given intensity λ, so does the
cooperative model. We now need to show the Poisson boolean
model percolates for λ < λc.
We have constructed a Poisson boolean model with intensity

λ(1 − exp(−λπ)) and fixed connectivity radius g(α). This
is equivalent to a Poisson boolean model with radius 1 and
intensity λ(1 − exp(λπ))g(α)2, as for any γ > 0, a Poisson
boolean model (λ, r) is equivalent to another one with parame-
ters (γ2λ, r/γ). Define h(λ,α) ∆= λ(1−exp(−λπ))g(α)2. Our
constructed Poisson boolean model percolates if h(λ,α) > λc.
Consider now α = 4. We need to show that for λ close

to λc, (1 − exp(−λπ)) g(α)2 > 1. If this is true, then by
continuity of the function h, we can choose ε(α) such that
h(λc(1 − ε(α)),α) > λc. Substituting in the value λcπ = 4.5
and g(4) = 1.0157 gives:

(1 − exp(−λπ))g(α)2 = 1.02 (17)

The value of λc is approximate, but (1 − exp(−λπ))g(α)2

is above 1.018 for all λπ taking value in (4.4, 4.6), which
does include λc. This proves the theorem for α = 4, taking



ε(4) = 0.01. Since g(α) is decreasing in α, the theorem is also
true for all lesser values of α ≤ 4. For α = 3, ε(3) = 0.06
can be chosen, and for α = 2, ε(2) = 0.19.

IV. DENSE NETWORKS
In dense networks, a fixed network of unit area (or unit

length) is generally assumed and the probability of complete
connectivity is considered [1] [2]. Assume there are totally
N → ∞ nodes in the network. In contrast to the case of
extended networks, the transmission radius of each node is no
longer constant, but decreases as N grows. Thus, the goal is
to find the smallest transmission power (as a function of N )
such that complete connectivity is maintained as N → ∞.
It is apparent that the majority of the results for extended

networks have analogs for dense networks, although the tech-
nical details are sometimes more complicated due to edge
effects. Here, because of space limitations, we focus on a pair
of sufficiency results that establish a conjecture from [1].
Theorem 8: In a 1-D dense network with α ! 1, there exists

a sequence of transmission ranges r of order O(1/N), where
N → ∞ is the total number of nodes within the unit segment,
such that full connectivity always occurs.

Proof: We consider a segment of unit length with N
nodes and perform the same division procedure as shown in
Figure 2. Assuming a transmission radius r = 2/N , we have

lk = 1/2k k=1,2,· · · · · ·
nk " N/2k = Nlk

where lk and nk are respectively the length and the node count
of the segment Sk. After a finite number of steps of dividing,
there exists a kc (kc " 0) such that

lkc = 1/2kc > r

lkc+1 = 1/2kc+1 ! r

nkc+1 " Nlkc+1 > 1

Since lkc+1 ! r and nkc+1 > 1, the nodes within Skc+1 are
clearly connected. For k = 1, 2, · · · , kc + 1,

nk · rα " Nlk(2/N)α = N1−α2α−k

Since α ! 1, N > 2kc+1 and k ! kc + 1,

N1−α2α−k · 2(k−1)α " 2(1−α)(kc+1−k) " 1

Thus, nk ·rα " (lk−1)α, and we conclude that all of the nodes
within S0, the original segment of unit length, are completely
connected with transmission range r = 2/N .
Theorem 9: In a 2-D dense network with α ! 2, there exists

a sequence of transmission areas of order O(1/N), where
N → ∞ is the total number of nodes within the unit area,
such that full connectivity always occurs.

Proof: We consider a square of unit area with N nodes
and perform the same division procedure shown in Figure 4.
Assume r2 = 5/N , and we have

ak = 1/2k k=1,2,· · · · · ·
nk " N/2k = Nak

ak is the area, dk is the diagonal and nk is the corresponding
node count. Similarly, there exists some kc (kc " 0) such that

dkc > r

dkc+1 ! r

nkc+1 " Nakc+1






>
(
r2/4

)
N > 1, kc is even;

>
(
r2/5

)
N = 1, kc is odd.

Since dkc+1 ! r and nkc+1 > 1, the nodes within it are clearly
connected. For k = 1, 2, · · · , kc + 1,

nk · rα " Nak(5/N)α/2 = 2−k5
α
2 N1−α

2

Since α ! 2, Nakc+1 > 1 and k ! kc + 1,





2−k5α/2N1−α/2 ·
(
2k/5

)α
2 > 1, k is even;

2−k5α/2N1−α/2 ·
(
2k−2

)α
2 > 1, k is odd.

Thus, nk ·rα " (dk−1)α, and we conclude that all of the nodes
within Q0, the original square of unit area, are completely
connected with transmission area πr2 = 5π/N .
Theorem 9 proves the conjecture raised in Song [1] indicat-

ing that any 2-D dense network with α ! 2 can be completely
connected with probability one with only a finite number of
average neighbors. Note that this sufficiency condition greatly
improves the performance and reduces the required power
given by Gupta and Kumar [2], and, in the α ! 2 case, Song
et al. [1].

V. CONCLUSION
In this paper, we have shown that physical layer cooperation

is able to significantly improve the connectivity in wireless
ad hoc networks. Consider large ad hoc wireless networks
with path loss exponent α, transmission range r, and node
density λ. For 1-D extended networks, percolation and full
connectivity can be achieved with probability one in the case
that α = 1, λ > 2/r, ∀r or α < 1, ∀λ, ∀r. There is no
percolation with probability one in the case when α > 1.
Similarly, for 2-D extended networks, percolation and full
connectivity can be achieved with probability one in the case
when α = 2, λ > 5/r, ∀r or α < 2, ∀λ, ∀r. There is no
full connectivity with probability one in the case when α > 2,
but we have shown that collaboration reduces the threshold
above which percolation occurs. For dense networks, we have
established the conjecture from [1] that O(1/N) transmission
area is sufficient for complete connectivity with probability
one when α ! 2 in the 2-D case.
In our future work, the effects of different channel models

and cooperation assumptions will be considered.
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