
DieHard: Efficient Probabilistic Memory Safety
EMERY D. BERGER
University of Massachusetts Amherst
and
BENJAMIN G. ZORN
Microsoft Research

Applications written in unsafe languages like C and C++ are vulnerable to memory errors such as
buffer overflows, dangling pointers, and reads of uninitialized data. Such errors can lead to program
crashes, security vulnerabilities, and unpredictable behavior. We present DieHard, a randomized
runtime system that tolerates these errors while probabilistically maintaining soundness. DieHard
uses randomization to achieve probabilistic memory safety by approximating an infinite-sized heap.
DieHard’s memory manager randomizes the location of objects in a heap that dynamically adapts
to be a constant factor larger than required. In exchange for this increased space consumption
and a modest degradation in performance (geometric mean 6%), DieHard both prevents heap
corruption and provides probabilistic guarantees of avoiding memory errors like dangling pointers
and heap buffer overflows.

For additional safety, DieHard can operate in a replicated mode where multiple replicas of the
same application are run simultaneously. By initializing each replica with a different random seed
and requiring agreement on output, this replicated version of DieHard increases the likelihood
of correct execution because errors are unlikely to have the same effect across all replicas. We
present analytical and experimental results that show DieHard’s resilience to a wide range of
memory errors, and report on a broad deployment of DieHard to the general public.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Dynamic storage management; D.2.0
[Software Engineering]: Protection mechanisms; G.3 [Probability and Statistics]: Probabilistic algorithms

General Terms: Algorithms, Languages, Reliability

1. INTRODUCTION
Most software applications are written in C and C++, two unsafe languages. These lan-
guages let programmers maximize performance but are error-prone. Memory management
errors, which dominate recent security vulnerabilities reported by CERT [US-CERT], are

Emery Berger was supported by NSF CAREER Award CNS-0347339 and CNS-0615211, a grant from Intel
Corporation, and a gift from Microsoft Research. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation or other sponsors.
Authors’ addresses: E. Berger, Department of Computer Science, University of Massachusetts Amherst, Amherst,
MA 01003; email: emery@cs.umass.edu; B. Zorn, Microsoft Research, One Microsoft Way, Redmond, WA
98052; email: zorn@microsoft.com.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2007 ACM 0123-4567/89/1011-1213 $05.00

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year, Pages 1–??.

2 · E. Berger and B. Zorn

especially pernicious. These errors fall into the following categories:

Dangling pointers. If a program mistakenly frees a live object, the allocator may over-
write its contents with a new object or heap metadata.

Buffer overflows. Out-of-bound writes can corrupt live objects on the heap.
Heap corruption. An out-of-bound write can corrupt any heap metadata stored near

heap objects.
Uninitialized reads. Reading values from newly-allocated or unallocated memory leads

to undefined behavior.
Invalid frees. Passing illegal addresses to free can corrupt the heap or lead to unde-

fined behavior.
Double frees. Repeated calls to free of objects that have already been freed cause

freelist-based allocators to fail.

Tools like Purify [Hastings and Joyce 1991] and memgrind (part of Valgrind) [Nethercote
and Seward 2007; Nethercote and Fitzhardinge 2004; Seward and Nethercote 2005] allow
programmers to pinpoint the exact location of these memory errors (at the cost of a 2-
25X performance penalty), but only reveal those bugs found during testing. Deployed
programs thus remain vulnerable to crashes or attack. Conservative garbage collectors can,
at the cost of increased runtime and additional memory [Detlefs 1993; Hertz and Berger
2005], disable calls to free and eliminate three of the above errors (invalid frees, double
frees, and dangling pointers). Assuming source code is available, a programmer can also
compile the code with a safe C compiler that inserts dynamic checks for the remaining
errors, further increasing running time [Austin et al. 1994; Avots et al. 2005; Dhurjati and
Adve 2006; Dhurjati et al. 2006; Necula et al. 2002; Xu et al. 2004; Yong and Horwitz
2003]. As soon as an error is detected, the inserted code aborts the program.

While this fail-stop approach is safe, aborting a computation is often undesirable, since
users are rarely happy to see their programs suddenly stop. In order to prolong execution in
the face of memory errors, some systems sacrifice soundness [Qin et al. 2005; Rinard et al.
2004]. For example, failure-oblivious computing builds on a safe C compiler but drops
(or caches) illegal writes and manufactures values for invalid reads. Unfortunately, these
systems provide no assurance to programmers that their programs are executing correctly.

This article makes the following contributions:

(1) It introduces the notion of probabilistic memory safety, a probabilistic guarantee of
avoiding memory errors.

(2) It presents DieHard, a runtime system that provides probabilistic memory safety. We
show analytically and empirically that DieHard eliminates or avoids all of the memory
errors described above with high probability.

This article builds on our prior work [Berger and Zorn 2006], which introduced Die-
Hard. The most important change is a new, adaptive randomized memory management
algorithm that forms the core of DieHard (Section 4). The original algorithm required an a
priori static heap size that was at least 24 times larger than the maximum amount required
for any object size. This large virtual memory requirement severely limited the range of
applications that could run with DieHard in 32-bit address spaces.

By contrast, the adaptive algorithm presented here adjusts to application memory usage
and increases memory consumption only by the required heap expansion factor M, where
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 3

M ≥ 1 (e.g., 3/2 or 2). This algorithm thus dramatically reduces space consumption and
runtime overhead by reducing TLB and L2 misses (Section 7.2), while preserving the
probabilistic memory safety guarantees of the original algorithm.

1.1 Outline
The remainder of this article is organized as follows. Section 2 provides an overview of
how DieHard provides probabilistic memory safety. Section 3 formalizes the notions of
probabilistic memory safety and introduces infinite-heap semantics, which probabilistic
memory safety approximates. Section 4 then presents DieHard’s fast, randomized memory
allocator that forms the heart of the stand-alone and replicated versions. Section 5 describes
DieHard’s replicated variant. Section 6 presents analytical results for both versions, and
Section 7 provides empirical results, measuring overhead and demonstrating DieHard’s
ability to avoid memory errors. Sections 8 discusses related work, and Section 9 concludes
with a discussion of future directions.

2. OVERVIEW
DieHard provides two modes of operation: a stand-alone mode that replaces the default
memory manager, and a replicated mode that runs several replicas simultaneously. Both
rely on a novel randomized memory manager that allows the computation of the exact
probabilities of detecting or avoiding memory errors.

DieHard uses a bitmap-based, fully-randomized memory manager to provide probabilis-
tic memory safety. It allocates from a heap sized M times larger than the maximum needed
for the application. Allocation randomly probes the bitmaps associated with the given size
class for a free bit: this operation takes O(1) expected time (see Section 4.2). Freeing a
valid object resets the appropriate bit.

DieHard’s use of randomization across an over-provisioned heap makes it probabilisti-
cally likely that buffer overflows will land on free space, and unlikely that a recently-freed
object will be reused soon, making dangling pointer errors rare. DieHard also improves
application robustness by segregating all heap metadata from the heap (avoiding most heap
metadata overwrites) and ignoring attempts to free already-freed objects. Despite its
degradation of spatial locality, we show that the DieHard memory manager’s impact on
performance is small for many applications (average 6% across the SPECint2000 bench-
mark suite).

While the stand-alone version of DieHard provides substantial protection against mem-
ory errors, DieHard can optionally use replication (Figure 1) to further increase the prob-
ability of successful execution in the face of errors. It broadcasts inputs to a number of
replicas, each of which is a copy of the application process equipped with a different ran-
dom seed. A voter intercepts and compares outputs across the replicas, and only actually
generates output agreed on by a plurality of the replicas.

The independent randomization of each replica’s heap makes the probabilities of mem-
ory errors independent. With high probability, whenever any two programs agree on their
output, they have executed safely. In other words, in any agreeing replicas, any buffer
overflows only overwrote empty space or dead data, and dangling pointers were never
overwritten. Replication thus exponentially decreases the likelihood of a memory error af-
fecting output, since the probability of an error striking a majority of the replicas is low. In
addition, if an application’s output depends on uninitialized data, because these data will
be different across the replicas, DieHard will detect them.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

4 · E. Berger and B. Zorn

replica3seedbroadcast vote

input output

replica1seed

replica2seed

execute
randomized

replicas

Fig. 1. The replicated DieHard architecture. Input is broadcast to multiple replicas, each equipped with a different,
fully-randomized memory manager. Output is only committed when at least two replicas agree on the result.

Since replacing the heap with DieHard significantly improves reliability, it is suitable
for broad deployment, especially in scenarios where increased reliability is worth the
space cost. For example, a buggy version of the Squid web caching server crashes on
ill-formed inputs when linked with both the default GNU libc allocator and the Boehm-
Demers-Weiser garbage collector, but runs correctly with DieHard (see Section 7.3.2).
Section 7.3.2 also describes our experience with a broad public deployment tailored to the
Mozilla Firefox web browser.

Using additional replicas further increases reliability. While additional replicas would
naturally increase execution time on uniprocessor platforms, we believe that the natural
setting for using replication is on systems with multiple processors. It has proven difficult
to rewrite applications to take advantage of multiple CPUs in order to make them run faster.
DieHard can instead use the multiple cores on newer processors to make legacy programs
more reliable.

3. PROBABILISTIC MEMORY SAFETY
We define a program as being fully memory safe if it satisifies the following criteria: it
never reads uninitialized memory, performs no illegal operations on the heap (no invalid/-
double frees), and does not access freed memory (no dangling pointer errors).

By aborting a computation that might violate one of these conditions, a safe C compiler
provides full memory safety. However, an ideal execution environment would allow such
programs to continue to execute correctly (soundly) in the face of many of these errors.

We can define such an idealized, but unrealizable, runtime system. We call this run-
time system an infinite-heap memory manager, and say that it provides infinite-heap
semantics. In such a system, the heap area is infinitely large, so there is no risk of heap
exhaustion. Objects are never deallocated, and all objects are allocated infinitely far apart
from each other (that is, they can be thought of as boundless memory blocks [Rinard et al.
2004]).

From the standpoint of a correct C execution, a program that does not deliberately seek
to exhaust the heap cannot tell whether it is running with an ordinary heap implementation
or an infinite heap. However, infinite-heap semantics allows programs to execute safely
that would be rejected by a safe C compiler. Because every object is infinitely far from
every other object, heap buffer overflows are benign — they never overwrite live data. The
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 5

4 3 6 521
8

16

allocation space

bitmap

1

object size

2
inUse

4
inUse

1
inUse

6
inUse

1
inUse

miniheaps

Fig. 2. The adaptive (new) DieHard heap layout. Objects in the same size class are allocated randomly from
separate regions (“miniheaps”), each of which holds M times more memory than required (here, M = 2).

problems of heap corruption and dangling pointers also vanish because frees are ignored
and allocated objects are never overwritten. However, uninitialized reads to the heap re-
main undefined. Unlike Java, the contents of newly-allocated C and C++ objects are not
necessarily defined. 1

3.1 Approximating infinite heaps
While an infinite-heap memory manager is unimplementable, we can probabilistically ap-
proximate its behavior. We replace the infinite heap with one that is M times larger than the
maximum required to obtain an M-approximation to infinite-heap semantics. By placing
objects uniformly at random across the heap, we get a minimum expected separation of
E[minimum separation] = M−1 objects, making overflows smaller than M−1 objects be-
nign. In addition, by randomizing the choice of freed objects to reclaim, prematurely-freed
objects are highly unlikely to be overwritten.

3.2 Detecting uninitialized reads
This memory manager approximates most aspects of infinite-heap semantics as M ap-
proaches infinity. By filling the heap with random values, DieHard can detect reads to
uninitialized objects by simultaneously executing at least two replicas with different ran-
domized allocators and comparing their outputs. An uninitialized read will return different
results across the replicas, and if this read affects the computation, the outputs of the repli-
cas will differ.

4. RANDOMIZED MEMORY MANAGEMENT
This section describes the randomized memory management algorithm that approximates
the infinite heap semantics given above. We first describe the heap layout, and then de-
scribe the allocation and deallocation algorithms. We use interposition to replace the allo-
cation calls in the target application; see Section 5.1 for details.

4.1 Heap Layout
Figure 2 depicts DieHard’s heap layout. While the original version of DieHard used a fixed,
statically-sized heap, the version described here is adaptive: it dynamically increases the
amount of memory as needed. We first describe the new, adaptive allocator in detail. We
then briefly present the original, static DieHard allocation algorithm.

1ISO C++ Standard 5.3.4, paragraph 14A.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

6 · E. Berger and B. Zorn

The adaptive version of DieHard dynamically sizes its heap to be M times larger than the
maximum needed by the application, where M can be any fraction greater than or equal
to 1. It allocates memory from increasingly large chunks that we call miniheaps. Each
miniheap contains objects of exactly one size.

DieHard allocates miniheaps and objects larger than 64K directly using mmap, and
places guard pages without read or write access on either end of these regions. Object re-
quests are rounded up to the nearest power of two. Using powers of two speeds allocation
by allowing expensive division and modulus operations to be replaced with bit-shifting. It
also adds resilience to buffer overflows when objects are smaller than the next power of
two, although we ignore this effect in our analyses.

Separate regions are essential to making the allocation algorithm practical. If objects
were instead randomly spread across the entire heap area, fragmentation would be a cer-
tainty, because small objects would be scattered across all of the pages. Restricting each
size class to its own region eliminates this external fragmentation. We discuss DieHard’s
memory efficiency further in Section 4.5. This organization also allows DieHard to ef-
ficiently prevent heap overflows caused by unsafe library functions like strcpy, as we
describe in Section 4.4.

One aspect that makes this layout robust to errors and security vulnerabilities is its com-
plete separation of heap metadata from heap objects. Many allocators, including the Lea
allocator that forms the basis of the GNU libc allocator, store heap metadata in areas imme-
diately adjacent to allocated objects (“boundary tags”). A buffer overflow of just one byte
past an allocated space can corrupt the heap, leading to program crashes, unpredictable be-
havior, or security vulnerabilities [Kaempf 2001]. Other allocators place such metadata at
the beginning of a page, reducing but not eliminating the likelihood of corruption. Keeping
all of the heap metadata separate from the heap protects it from buffer overflows.

The heap metadata includes a bitmap for each miniheap, where one bit always stands
for one object. All bits are initially zero, indicating that every object is free. Additionally,
DieHard tracks the total number of objects allocated across all the miniheaps (inUse);
this number is used to add a new miniheap when the number of objects would exceed the
threshold factor of 1/M.

For the replicated version only, DieHard fills the heap with random values. Each replica’s
random number generator is seeded with a “true” random number. For example, the Linux
version reads from /dev/urandom, which uses various system-specific measures to
compute a number that is effectively random. DieHard’s random number generator is an
inlined version of Marsaglia’s multiply-with-carry random number generation algorithm,
which is a fast, high-quality source of pseudo-random numbers [Marsaglia 1994].

4.2 Object Allocation
When an application requests memory from DieHard’s malloc, the allocator first checks
to see whether the request is for a large object (larger than 64K); if so, it allocates memory
directly via mmap. Otherwise, it computes the size class for the allocation request (#log2$−
3; the smallest allocation size is eight bytes). As long as the corresponding set of miniheaps
is not already full, it then looks for space.

If an allocation request would cause the total number of objects in use in all miniheaps
for a particular size class to exceed 1/M of allocated space, DieHard first allocates a new
miniheap that is twice as large as the previous largest miniheap.

Next, DieHard allocates memory by searching for a free slot in all miniheaps in the re-
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 7

quested size class. It repeatedly chooses a random miniheap to allocate from, and checks
whether a random slot within that miniheap is free. Upon finding a free slot, the allocator
sets the appropriate bit in the bitmap to mark it as allocated and increments the number
of objects in use. For the replicated version, it also fills the object with randomized val-
ues; DieHard relies on this randomization to detect uninitialized reads, as we describe in
Section 5. Finally, the allocator returns the address corresponding to this slot.

The fact that the heap can be at most 1/M full bounds the expected runtime of allocation
to a small constant. Each search for an unused slot is a Bernoulli trail with worst-case odds
of success p = (M − 1)/M. The expected number of attempts until one success is then

1
1−(1/M) . In particular, for M = 2, the expected worst-case number of probes is 2.

It is important to ensure that the odds of choosing any given free object are equally
likely, regardless of which miniheap they may be in. The allocator converts a random
number from 1 to n into an appropriate miniheap index by computing its log base 2. This
conversion makes it twice as likely that we will choose miniheap index i+1 over miniheap
i, reflecting the fact that each miniheap is twice as large as the previous one.

4.3 Object Deallocation
To defend against erroneous programs, DieHard’s free implementation takes several
steps that ensure that any object given to it is in fact valid. First, it checks to see if the
address to be freed is inside a miniheap by iterating through the miniheaps associated with
each size class. If the object is inside a miniheap and currently allocated, DieHard resets
the bit corresponding to the object’s location in the bitmap and decrements the count of
allocated objects for the given size class.

If DieHard does not find the object in any of the miniheaps or size classes, the object
is either a large object (allocated with mmap) or it is invalid. DieHard checks a table of
allocated large objects to ensure that this object was indeed returned by a previous call to
mmap. If so, it munmaps the object; otherwise, it ignores the request.

When freeing an object, DieHard rounds the address down to the nearest allocatable
address in that miniheap. For example, a free call to a pointer 4 bytes beyond the start
of an object is equivalent to a free call to the start of the object. This policy has few
disadvantages and several advantages over the alternative, which would be to ignore such
free calls. First, if the object was unintentionally passed to free, the resulting dangling
pointer error will likely have little impact due to DieHard’s protection against such faults
(see Section 6.1). If, however, the object was intended to be freed, ignoring it would cause
a memory leak. This policy also simplifies DieHard’s implementation of memalign, a
variant of malloc that returns a pointer aligned to a given block size. DieHard simply
returns an aligned pointer within an appropriately-sized malloc’d chunk. When the client
invokes free on the aligned pointer, DieHard’s rounding down causes the malloc’d
chunk to be freed.

While this iteration through size classes and miniheaps may seem costly, it is efficient
both in theory and in practice. The number of size classes a constant, and the use of
power-of-two size classes makes this number small. DieHard heuristically iterates from
smaller to larger size classes, taking advantage of the fact that in most programs, the most
frequently-used object sizes are small.

In addition to this heuristic, DieHard’s deallocator orders its iteration in a way that re-
duces its expected asymptotic complexity. Within each size class, the number of miniheaps
is O(log2 n), where n is the maximum number of objects allocated from that size class. Die-

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

8 · E. Berger and B. Zorn

Hard’s deallocation routine iterates from the largest miniheap to the smallest. While the
worst-case cost of DieHard’s deallocation is O(log2 n), the expected number of iterations
to free a valid object is O(1).

To illustrate this analysis, consider a program that has already allocated some threshold
number of miniheaps, and then performs a sequence of n deallocations and allocations.
The allocated objects will be randomly spread throughout the miniheaps. If M = 2, ap-
proximately 1/2 of the objects will be in the largest miniheap, and these objects will be
deallocated in one iteration with probability 1/2. Likewise, 1/4 of the objects will be in
the second-largest miniheap, so the cost will be two iterations with probability 1/4. The
expected cost to deallocate any of these n objects will thus be ∑∞

i=1
i

2i = 2. Thus, both
DieHard’s allocation and deallocation routines run in expected O(1) time.

4.4 Limiting Heap Buffer Overflows
Not only does DieHard’s heap layout provide probabilistic protection against heap buffer
overflows (see Section 6.2), it also makes it efficient to prevent overflows caused by un-
safe library functions like strcpy. DieHard replaces these unsafe library functions with
variants that do not write beyond the allocated area of heap objects. Each function first
checks if the destination pointer lies within the heap using the logic described above for
deallocation (expected O(1) operations). If the pointer is within the heap, DieHard finds
the start of the object by bitmasking the pointer with its size (computed with a bitshift)
minus one. DieHard then computes the available space from the pointer to the end of the
object (one subtractions). With this value limiting the maximum number of bytes to be
copied, DieHard prevents strcpy from causing heap buffer overflows.

In addition to replacing strcpy, DieHard also replaces its “safe” counterpart, strncpy.
This function requires a length argument that limits the number of bytes copied into the
destination buffer. The standard C library contains a number of these checked library func-
tions in an attempt to reduce the risk of buffer overflows. However, checked functions are
little safer than their unchecked counterparts, since programmers can inadvertently specify
an incorrect length. As with strcpy, the DieHard version of strncpy checks the actual
available space in the destination object and uses that value as the upper bound.

We note that this approach is not specific to the DieHard allocator. We have implemented
similar functionality for a modified version of the PHKmalloc allocator (used in FreeBSD)
and demonstrated its speed and efficacy at avoiding library-based heap overflows [Berger
2006]. The approach could be applied to any allocator that uses a BiBoP (big bag-of-pages)
allocation scheme, which permit rapid location of an object’s metadata given any pointer
within the object [Hanson 1980]. Allocators using this layout include Hoard [Berger et al.
2000a] and the Boehm-Demers-Weiser collector [Boehm and Weiser 1988].

4.4.1 The Static Allocator. Unlike the adaptive allocator, which allocates from increas-
ingly large miniheaps, the static allocator allocates from a large, statically-sized heap
whose size is set at compile time (see Figure 3). The heap is evenly divided into 12 regions
(one for each power-of-two size class from 8 bytes to 16 kilobytes), so the heap must be
at least 12M as large as the maximum amount of memory needed in any size class. While
the heap itself is lazily allocated so that unused partitions do not consume physical mem-
ory, its address space requirements limit its use on 32-bit platforms to applications whose
footprint is no more than 90MB in any size class (231/24).

Each heap region has an associated but separate bitmap, where one bit stands for one
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 9

!"

8 16

!""#$!%&#'()*!$+

,&%-!*

"

#,.+$%()&/+

!
&'0)+

"
&'0)+

Fig. 3. The static (original) DieHard heap layout. A single statically-sized heap is divided into separate regions
for each size class, within which objects are laid out randomly.

object. All bits are initially zero, indicating that the objects are all free. Allocation proceeds
by rounding up the size request to the nearest power of two, and repeatedly choosing a
random bit for the appropriate size class until it finds a zero bit. As Section 4.2 shows,
this operation takes expected constant-time. Deallocation locates the appropriate bit by
bit-masking, and then resets it, making the cost of deallocation O(1) in the static variant
(versus expected O(1) for the adaptive algorithm).

4.5 Discussion
The design of DieHard’s allocation algorithm departs significantly from previous memory
allocators. In particular, it makes no effort to improve locality and can increase space
consumption.

Locality: Many allocators attempt to increase spatial locality by placing objects that
are allocated at the same time near each other in memory [Chilimbi et al. 1999; Feng
and Berger 2005; Lea 1997; Wilson et al. 1995]. DieHard’s random allocation algorithm
instead makes it likely that such objects will be distant. This spreading out of objects has
little impact on L1 locality because typical heap objects are near or larger than the L1
cache line size (32 bytes on the x86). However, randomized allocation leads to a large
number of TLB misses in one application (see Section 7.2), and leads to higher resident set
sizes because it can induce poor page-level locality. To maintain performance, the in-use
portions of the DieHard heap should fit into physical RAM.

Space consumption: DieHard generally consumes more memory than conventional
memory allocators. This increase in memory is caused by two factors: rounding up objects
to the next power of two, and requiring that the heap be M times larger than necessary,
although this is a tuneable parameter.

The rounding up of objects to the next power of two can, in the worst-case, increase
memory consumption by up to a factor of two. Wilson et al. present empirical results sug-
gesting that this policy can lead to significant fragmentation [Wilson et al. 1995]. Nonethe-
less, such an allocator is used in real systems, including FreeBSD’s PHKmalloc [Kamp],
and is often both time and space-efficient in practice [Feng and Berger 2005].

Any increase in memory consumption caused by rounding is balanced by two features
of DieHard that reduce memory consumption. First, unlike conventional allocators like
the GNU libc allocator, DieHard’s allocator has no per-object headers. These headers
typically consume eight bytes, but DieHard’s per-object overhead is just one bit in the al-

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

10 · E. Berger and B. Zorn

location bitmap. Second, although coarse size classes can increase internal fragmentation,
DieHard’s use of segregated regions eliminates external fragmentation. The Lea alloca-
tor’s external fragmentation plus per-object overhead increases memory consumption by
approximately 20% [Feng and Berger 2005].

A more serious concern is the requirement of a factor of M additional space, multiplied
by the number of replicas. We note that approaches like conservative garbage collection
can impose an additional space overhead of 3X-5X over malloc/free [Hertz and Berger
2005; Zorn 1993]. DieHard also increases physical memory requirements and reduces
available address space. These effects may make DieHard unsuitable for applications with
large heap footprints running on 32-bit systems. We expect the problem of reduced ad-
dress space will become less of an issue as 64-bit processors become commonplace. We
also believe that DieHard’s space-reliability tradeoff will be acceptable for many purposes,
especially long-running applications with modest-sized heaps.

5. REPLICATION
While replacing an application’s allocator with DieHard reduces the likelihood of memory
errors, this stand-alone approach cannot detect uninitialized reads. To catch these errors,
and to further increase the likelihood of correct execution, we have built a version of Die-
Hard (currently for UNIX platforms only) that executes several replicas simultaneously.
Figure 1 depicts the architecture, instantiated with three replicas.

The diehard command takes three arguments: the path to the replicated variant of
the DieHard memory allocator (a dynamically-loadable library), the number of replicas to
create, and the application name.

5.1 Replicas and Input
DieHard forks off replicas as separate processes, each with the LD PRELOAD environ-
ment variable pointing to the DieHard memory management library libdiehard r.so.
This library interposition redirects all calls to malloc and free in the application to Die-
Hard’s memory manager. Because the memory manager picks a different random number
generation seed on every invocation, all replicas execute with different sequences of ran-
dom numbers.

DieHard uses both pipes and shared memory to communicate with the replicas. Each
replica receives its standard input from DieHard via a pipe. Each replica then writes its
standard output into a memory-mapped region shared between DieHard and the replica.
After all I/O redirection is established, each replica begins execution, receiving copies of
standard input from the main DieHard process.

While the stand-alone version of DieHard works for any program, the replicated Die-
Hard architecture is intended for programs whose output is largely deterministic. The cur-
rent implementation is targeted at standard UNIX-style commands that read from standard
input and write to standard output. Also, while we intend to support programs that modify
the filesystem or perform network I/O, these are not supported by the current version of the
replicated system. We leave the use of DieHard replication with interactive applications as
future work.

5.2 Voting
DieHard manages output from the replicas by periodically synchronizing at barriers. When-
ever all currently-live replicas terminate or fill their output buffers (currently 4K each, a
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 11

pipe’s unit of transfer), the voter compares the contents of each replica’s output buffer. If
all agree, then the contents of one of the buffers are sent to standard output, and execution
proceeds as normal.

However, if not all of the buffers agree, it means that at least one of the replicas has
an error. The voter then chooses an output buffer agreed upon by at least two replicas
and sends that to standard out. Two replicas suffice, because the odds are slim that two
randomized replicas with memory errors would return the same result.

Any non-agreeing replicas have either exited abnormally before filling their output buffers,
or produced different output. Whenever a replica crashes, DieHard receives a signal and
decrements the number of currently-live replicas. A replica that has generated anomalous
output is no longer useful since it has entered into an undefined state. Our current im-
plementation kills such failed replicas and decreases the currently-live replica count. To
further improve availability, we could replace failed replicas with a copy of one of the
“good” replicas with its random seed set to a different value.

5.3 Discussion
Executing applications simultaneously on the same system while both providing reason-
able performance and preserving application semantics is a challenge. We address these
issues here.

In order to make correct replicas output-equivalent to the extent possible, we intercept
certain system calls that could produce different results. In particular, we redirect functions
that access the date and system clock so that all replicas return the same value. We discuss
a generalization of this approach in Section 9.

While it may appear that voting on all output might be expensive, it is amortized because
this processing occurs in 4K chunks. More importantly, voting is only triggered by I/O,
which is already expensive, and does not interfere with computation.

One disadvantage of the barrier synchronization employed here is that an erroneous
replica could theoretically enter an infinite loop, which would cause the entire program to
hang because barrier synchronization would never occur. There are two approaches that
one can take: use a timer to kill replicas that take too long to arrive at the barrier, or ignore
the problem, as we currently do. Establishing an appropriate waiting time would solve the
problem of consensus in the presence of Byzantine failures, which is undecidable [Fischer
et al. 1985].

6. ANALYSIS
While DieHard is immune to heap corruption caused by double frees, invalid frees, and
heap metadata overwrites caused by overflow, it is probabilistically resilient to other mem-
ory errors. In this section, we quantify the probabilistic memory safety provided by both
the stand-alone and replicated versions of DieHard. We derive equations that provide lower
bounds on the likelihood of avoiding buffer overflow and dangling pointer errors, and de-
tecting uninitialized reads. We assume that heap metadata, which is placed randomly in
memory and protected on either side by guard pages, is not corrupted.

We use the following notation throughout the analyses. Recall that M denotes the heap
expansion factor that determines how large the heap is relative to the maximum application
live object size. We use k for the number of replicas, H for the maximum heap size, L for
the maximum live size (L ≤ H/M), and F for the remaining free space (H − L). When
analyzing buffer overflows, we use O to stand for the number of objects’ worth of bytes

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

12 · E. Berger and B. Zorn

Probability of Avoiding Buffer Overflow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 4 5 6

Replicas

Pr
ob

ab
ili

ty

1/8 full 1/4 full 1/2 full

(a) Probability of tolerating single-object buffer over-
flows for varying replicas and degrees of heap fullness.

Probability of Avoiding Dangling Pointer Error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

8 16 32 64 128 256

Object size (bytes)

Pr
ob

ab
ili

ty

100 allocs 1000 allocs 10,000 allocs

(b) Probability of tolerating dangling pointer errors us-
ing the stand-alone version of DieHard, for varying ob-
ject sizes and intervening allocations.

Fig. 4. Probabilities of tolerating buffer overflows and dangling pointer errors.

overflowed (e.g., a nine byte overflow could overwrite O = 2 eight byte objects). For
dangling pointer errors, we use A to denote the number of allocations that have taken place
after a premature call to free.

We also assume conservatively that all object requests are for a specific size class. This
approach is conservative because the separation of different size classes improves the odds
of avoiding memory errors. We also assume that there is either one replica or at least three,
since the voter cannot decide which of two disagreeing replicas is the correct one.

Note that the analyses below quantify the probability of avoiding a single error of a
given type. One can calculate the probability of avoiding multiple errors by multiplying the
probabilities of avoiding each error, although this computation depends on an assumption
of independence that may not hold. Also, these results only hold for objects smaller than
16K in size, because larger objects are managed separately as described in Section 4.1.

6.1 Tolerating Dangling Pointers
A dangling pointer error occurs when an object is freed prematurely, its address is reused
for a subsequent allocation, and its contents are overwritten when it is returned by a subse-
quent call to malloc. Suppose that the object should have been freed A allocations later
than it was; that is, the call to free should have happened at some point after the next A
calls to malloc but before the A +1th call. Avoiding a dangling pointer error is thus the
likelihood that some replica has not overwritten the object’s contents after A allocations:

THEOREM 1. Let Overwrites be the number of times that a particular freed object of
size S gets overwritten by one of the next A allocations. Then the probability of this object
being intact after A allocations, assuming A ≤ F/S and k &= 2, is:

P(Overwrites = 0) ≥ 1−
(

A
F/S

)k

.

PROOF. The prematurely freed object is indexed by one of the Q = F/S bits in the
allocation bitmap for its size class. The odds of a new allocation not overwriting that object
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 13

are thus (Q−1)/Q. Assume that after each allocation, we do not free an object, which is
the worst case. After the second allocation, the odds are (Q− 1)/Q ∗ (Q− 2)/(Q− 1) =
(Q− 2)/Q. In general, after A allocations, the probability of not having overwritten a
particular slot is (Q−A)/Q.

The probability that no replica has overwritten a particular object after A allocations is
then one minus the odds of all of the replicas overwriting that object, or 1− (1− (Q−
A)/Q)k = 1− (A/(F/S))k.

This result shows that DieHard is robust against dangling pointer errors, especially for
small objects. For example, when M = 2 and 16MB 8-byte objects have been allocated,
the stand-alone version of DieHard has a 99% chance of tolerating an 8-byte object freed
10,000 allocations too soon. Figure 4(b) graphically presents the probabilities of avoiding
dangling pointer errors for different object sizes and numbers of intervening allocations.

6.2 Tolerating Buffer Overflows
We next derive the probability of tolerating buffer overflows. A buffer overflow can be
tolerated if the following conditions hold in at least one replica: (1) the overflow does not
overwrite any live data, and (2) the overflowed data is not overwritten by a subsequent
allocation.

While buffer overflows are generally writes just beyond an allocated object, for our
analysis, we model a buffer overflow as a write to any location in the heap. The following
formula gives the probability that an overwrite satisfies condition (1), i.e., that it does not
overwrite any live data.

THEOREM 2. Let OverflowedObjects be the number of live objects overwritten by a
buffer overflow. Then for k &= 2, the probability of tolerating a buffer overflow is

P(OverflowedObjects = 0) = 1−
[
1−

(F
H

)O
]k

.

PROOF. The odds of O objects overwriting at least one live object are 1 minus the odds
of them overwriting no live objects, or 1− (F

H)O. Tolerating the buffer overflow requires
that at least one of the k replicas not overwrite any live objects, which is the same as 1
minus all of them overwriting at least one live object = 1− (1− (F

H)O)k.

In addition to not overwriting any live data, tolerating a buffer overflow requires that
condition (2) also hold: its contents must not be overwritten by a subsequent allocation be-
fore the overflowed data dies. This probability is the same as that of tolerating O dangling
pointer errors.

Because dangling pointer protection is so effective, the likelihood of tolerating a buffer
overflow is determined primarily by the live fraction of the heap. For example, when the
heap is no more than 1/8 full, DieHard in stand-alone mode provides an 87.5% chance
of tolerating a single-object overflow, while three replicas avoids such errors with greater
than 99% probability. Figure 4(a) shows the probability of protecting against overflows for
different numbers of replicas and degrees of heap fullness.

6.3 Detecting uninitialized reads
We say that DieHard detects an uninitialized read when the read causes all of the replicas
to differ on their output, leading to termination. An uninitialized read is a use of memory

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

14 · E. Berger and B. Zorn

obtained from an allocation before it has been initialized. If an application relies on values
read from this memory, then its behavior will eventually reflect this use. We assume that
uninitialized memory reads are either benign or propagate to output.

The odds of detecting such a read thus depend both on how much use the application
makes of the uninitialized memory, and its resulting impact on the output. An application
could widen the uninitialized data arbitarily, outputting the data in an infinite loop. On the
other end of the spectrum, an application might narrow the data by outputting just one bit
based on the contents of the entire uninitialized region. For example, it could output an ‘A’
if the first bit in the region was a 0, and ‘a’ if it was 1.

If we assume that the application generates just one bit of output based on every bit in
the uninitialized area of memory, we get the following result:

THEOREM 3. The probability of detecting an uninitialized read of B bits in k replicas
(k > 2) in a non-narrowing, non-widening computation is:

P(Detect uninitialized read) =
2B!

(2B − k)!2Bk .

PROOF. For DieHard to detect an uninitialized read, all replicas must disagree on the
result stemming from the read. In other words, all replicas must have filled in the uninitial-
ized region of length B with a different B-bit number. There are 2B numbers of length B,
and k replicas yields 2Bk possible combinations of these numbers. There are (2B)!/(2B −
k)! ways of selecting different B-bit numbers across the replicas (assuming 2B > k). We
thus have a likelihood of detecting an uninitialized read of (2B!)/(2B − k)!2Bk.

Interestingly, in this case, replicas lower the likelihood of memory safety. For example,
the probability of detecting an uninitialized read of four bits across three replicas is 82%,
while for four replicas, it drops to 66.7%. However, this drop has little practical impact
for reads of more data. The odds of detecting an uninitialized read of 16 bits drops from
99.995% for three replicas to 99.99% for four replicas.

DieHard’s effectiveness at finding uninitialized reads makes it useful as an error-detecting
tool during development. During experiments for this article, we discovered uninitialized
reads in several benchmarks. The replicated version of DieHard typically terminated in
several seconds. We verified these uninitialized read errors with Valgrind, which ran ap-
proximately two orders of magnitude slower.

7. EXPERIMENTAL RESULTS
We first measure the runtime impact of the DieHard memory manager on a suite of bench-
mark applications. We then empirically evaluate its effectiveness at avoiding both injected
faults and actual bugs.

7.1 Benchmarks
We evaluate DieHard’s performance with both the full SPECint2000 suite [Standard Per-
formance Evaluation Corporation] running reference workloads, as well as a suite of
allocation-intensive benchmarks. These benchmarks perform between 100,000 and 1.7
million memory operations per second (see Berger, Zorn and McKinley [Berger et al.
2001] for a detailed description). We include these benchmarks both because they are
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 15

1.5

2

2.5

ru
nt
im

e

Runtime on Linux

malloc GC DieHard (static) DieHard (adaptive)

alloc intensive general purpose

0

0.5

1

1.5
cf

ra
c

es
pr

es
so

lin
ds

ay

ro
bo

op

G
eo

.M
ea

n

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

G
eo

.M
ea

n

N
or
m
al
iz
ed

Fig. 5. Performance of the default malloc, the original version of DieHard, and the new adaptive version (all
executing stand-alone), across a range of allocation-intensive and general-purpose benchmark applications.

widely used in memory management studies [Berger et al. 2000b; Grunwald et al. 1993;
Johnstone and Wilson 1997] and because their unusually high allocation-intensity stresses
memory management performance.

We run our benchmarks on two different platforms: Linux and Solaris. The Linux plat-
form is a dual-processor Intel Xeon system with each 3.06GHz processor (hyperthreading
active) equipped with 512K L2 caches and with 3 gigabytes of RAM. All code on Linux
is compiled with g++ version 4.0.2. The Solaris platform is a Sun SunFire 6800 server,
with 16 900MHz UltraSparc v9 processors and 16 gigabytes of RAM; code there is com-
piled with g++ 3.2. All code is compiled at the highest optimization level on all platforms.
Timings are performed while the systems are quiescent. We report the average of three
runs. Observed variances are below 1% for all experiments except for one, 300.twolf with
DieHard, where the variance is 12%.

7.2 Overhead
We compare the adaptive and static versions of DieHard to both the Boehm-Demers-Weiser
collector (version 6.8) and the default GNU libc allocator (glibc version 2.3.4), a variant
of the Lea allocator [Lea 1997]. We run these experiments on our Linux platform. For the
adaptive DieHard, the heap multiplication factor M is set to two unless stated otherwise;
the static version uses a fixed heap size of 384 megabytes (32 megabytes per size class),
the minimum required to run all of the benchmarks with the same heap configuration. The
Boehm-Demers-Weiser collector is included for comparison because it represents an alter-
native trade-off in the design space between space, execution time, and safety guarantees.
In particular, the BDW collector prevents dangling pointer errors, while DieHard proba-
bilistically avoids them. However, the BDW collector provides no protection against buffer
overflows.

For all experiments, we disable the replacement of unsafe library functions (see Sec-
tion 4.4) for these experiments to isolate the protection that randomization and replication

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

16 · E. Berger and B. Zorn

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

13
41

14
08

14
75

15
42

16
09

16
76

17
43

18
10

18
77

19
44

%
of

hi
ts

Memory (Kbytes)

253.perlbmk miss curve
GNU libc DieHard adaptive DieHard static

Fig. 6. Miss curve for 253.perlbmk with the default malloc, the original version of DieHard, and the new
adaptive version (all executing stand-alone).

provide.

Runtime overhead
Figure 5 presents runtime overhead results. For the allocation-intensive benchmarks, Die-
Hard suffers a performance penalty ranging from 2.5% to 53.8% (geometric mean: 31.9%),
improving over the original (from 16.5% to 61.3% (geometric mean: 39%). Its overhead
is somewhat lower than that suffered by the Boehm-Demers-Weiser collector (2.4% to
59.7%, geometric mean 33.7%).

However, DieHard’s runtime overhead is substantially lower for most of the SPECint2000
benchmarks. The geometric mean of DieHard’s overhead is 6%. As before, adaptive Die-
Hard outperforms the static version, whose geometric mean overhead is 12%. DieHard per-
forms somewhat worse than the Boehm-Demers-Weiser collector (geometric mean 2.5%).
This average excludes the 175.vpr benchmark, because the Boehm-Demers-Weiser col-
lector fails with a segmentation fault.

For two applications, DieHard degrades performance substantially, although adaptive
DieHard reduces this overhead over the static version: 253.perlbmk (48.8% static, 20%
adaptive) and 300.twolf (109% static, 67% adaptive). The 253.perlbmk benchmark is
allocation-intensive, spending around 12.5% of its execution doing memory operations.
This allocation intensity is responsible for both DieHard’s and Boehm-Demers-Weiser’s
runtime overhead (12.7%). However, 300.twolf’s overhead is due not to the cost of alloca-
tion but to TLB misses. 300.twolf uses a wide range of object sizes. In DieHard, accesses
to these objects are spread over separate memory regions. The adaptive variant yields
fewer TLB misses because it grows memory adaptively, while the static version spreads all
objects over a larger heap.

Space overhead: To further explore the effect of the variants of DieHard on page-
level locality, we gather page-level references using a tool that intercepts system memory
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 17

allocation calls (brk, sbrk, mmap, etc.) to track heap pages, and traps memory references
by page protection. We use the SAD (Safely-Allowed-Drop) algorithm to reduce the trace
to a manageable size [Kaplan et al. 2003]. We then run these traces through an LRU
simulator to generate page miss curves that indicate the number of misses (page faults)
that would arise for every possible size of available memory.

Figure 6 shows the miss curves for one of the outlier benchmarks, 253.perlbmk. Each
point on the graph corresponds to the amount of memory (on the x-axis) required to hold
a given percentage of page references (on the y-axis). The GNU libc allocator is effective
at maintaining a small footprint, rising steeply until it hits a plateau, after which it rises
again to reach its full footprint. The large memory space required by the static version
of DieHard, combined with its random access pattern, gives it a low curve with a long
tail. This kind of curve interacts poorly with virtual memory systems, because additional
memory provides little benefit. However, by controlling its memory consumption, the
current version of DieHard exhibits a miss curve closer in shape to that of the libc allocator.

7.2.1 Solaris: Replicated Experiments. To quantify the overhead of the replicated frame-
work and verify its scalability, we measure running time with sixteen replicas on a 16-way
Sun server. We ran these experiments with the allocation-intensive benchmark suite, ex-
cept for lindsay, which has an uninitialized read error that DieHard detects and terminates.
Running 16 replicas simultaneously increases runtime by approximately 50% versus run-
ning a single replica with the replicated version of the runtime (libdiehard r.so).
Part of this cost is due to process creation, which longer-running benchmarks would amor-
tize. This result shows that while voting and interprocess communication impose some
overhead, the replicated framework scales to a large number of processors.

7.3 Error Avoidance
We evaluate DieHard’s effectiveness at avoiding both artificially-injected bugs and actual
bugs in two real applications, the Squid web caching server and the Mozilla Firefox web
browser.

7.3.1 Fault Injection. We implement two libraries that inject memory errors into unal-
tered applications running on UNIX platforms to explore the resilience of different runtime
systems to memory errors including buffer overflows and dangling pointers.

We first run the application with a tracing allocator that generates an allocation log.
Whenever an object is freed, the library outputs a pair, indicating when the object was al-
located and when it was freed (in allocation time). We then sort the log by allocation time
and use a fault-injection library that sits between the application and the memory alloca-
tor. The fault injector triggers errors probabilistically, based on the requested frequencies.
To trigger an overflow, it requests less memory from the underlying allocator than was
requested by the application. To trigger a dangling pointer error, it uses the log to invoke
free on an object before it is actually freed by the application, and ignores the subsequent
(actual) call to free this object. The fault injector only inserts dangling pointer errors for
small object requests (< 16K).

We verified DieHard’s resilience by injecting errors in both the espresso and cfrac
benchmarks, running each one hundred times with the default allocator and with DieHard.
The large number of allocations in both benchmarks make them particularly vulnerable to
memory errors: espresso allocates approximately 4.5 million objects, while cfrac allo-
cates almost 11 million objects [Berger et al. 2001].

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

18 · E. Berger and B. Zorn

Dangling pointer errors: We first introduce dangling pointers of frequency of 0.5%
with distance 10: one out of every two hundred objects is freed ten allocations too early.
This high error rate prevents both espresso and cfrac from running to completion with
the default allocator in any run. With DieHard, espresso runs correctly in 81 of the 100
runs, while cfrac runs successfully 36% of the time.

Buffer overflows: We then injected buffer overflow errors at a 1% rate (1 out of every
100 allocations), under-allocating object requests of 32 bytes or more by 4 bytes. With the
default allocator, espresso crashes or enters an infinite loop in every run. With DieHard,
it runs successfully 66% of the time. Similarly, cfrac also fails to complete successfully in
every attempt with the default allocator, but with DieHard, it runs successfully 97% of the
time.

Discussion: The resilience of these benchmarks to injected faults is substantially higher
than what one would expect given the analytical lower bounds from Section 6. Both exper-
iments inject hundreds of thousands of dynamic errors. In particular, the analytical lower
bounds for correct execution in the face of this number of buffer overflows errors is near
zero. These results suggest that certain aspects of the analysis, especially the modeling of
overflows as writes to arbitrary areas of the heap, may be too conservative. Internal char-
acteristics of each benchmark also play a difficult to quantify but important role in making
them resilient to faults.

7.3.2 Real Faults. We also tested DieHard on two actual buggy applications. Version
2.3s5 of the Squid web cache server has a buffer overflow error that can be triggered by
an ill-formed input. When faced with this input and running with either the GNU libc
allocator or the Boehm-Demers-Weiser collector, Squid crashes with a segmentation fault.
Using DieHard in stand-alone mode, the overflow has no effect.

We also used DieHard with several versions of the Mozilla web browser. While the
Mozilla suite is a mature and extensively tested program, heap-based security vulnerabil-
ities continue to be discovered. We test vulnerable versions of Mozilla or Firefox with an
HTML file that contained two separate overflow errors: with version 1.0.2, bug number
307259 (an IDN heap overflow) and with version 1.7.2, bug number 251381 (an overflow
in PNG image processing). 2 We perform ten experiments loading this HTML file, and
then attempting to load a complex web page from a popular news site.

Without DieHard, both variants of Mozilla fail to run successfully in all ten attempts.
Because Mozilla is a multithreaded program, the allocation sequence varies from run to
run, so the effect of the overflows varies: in some cases, Mozilla crashes immediately,
while in others, it crashes when entering a URL. DieHard prevents Mozilla 1.0.2 from
crashing 7 out of 10 runs, and protects Mozilla 1.7.2 60% of the time. However, in the
latter case, DieHard’s protection is not entirely complete: in three of the successes, while
program execution continues successfully, an error window appears when closing Mozilla.

Public deployment experience: To increase the potential user base of DieHard, we
developed a version for the Windows operating system. Unlike UNIX-based operating
systems, Windows makes it relatively difficult to replace memory allocation functions in

2Detailed information on these bugs, including proofs-of-concept, is available at https://bugzilla.mozilla.org/
show bug.cgi?id=〈bugnumber〉.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 19

Error glibc BDW GC CCured Rx Failure-oblivious DieHard
heap corruption ⊥ ⊥ abort ! ⊥ !
invalid frees ⊥ ! ! ⊥ ⊥ !
double frees ⊥ ! ! ! ⊥ !
dangling pointers ⊥ ! ! ⊥ ⊥ !∗

buffer overflows ⊥ ⊥ abort ⊥ ⊥ !∗

uninitialized reads ⊥ ⊥ abort ⊥ ⊥ abort∗

Table I. This table compares how various systems handle memory safety errors: !denotes
correct execution, ⊥ denotes an undefined result, and abort means the program termi-
nates abnormally. See Section 8 for a detailed explanation of each system. The DieHard
results for the last three errors (marked with asterisks) are probabilistic; see Section 6 for
exact formulae.

compiled Windows executables. We used a publicly-available “hooking” tool called Mad-
CodeHook that enables this functionality [Mathias Rauen], and targeted it specifically for
the Mozilla Firefox web browser.

We chose Firefox as our target first because it is a widely-used web browser, and browsers
are especially at risk if they have security vulnerabilities. As described above, DieHard
protects Firefox from the effects of several previous vulnerabilities. Second, the memory
footprint of a browser is modest with respect to usual memory configurations (on the order
of 50MB). In our tests, DieHard roughly doubled memory consumption (in one scenario,
Firefox consumed 5198 total pages without Mozilla, and 11327 total pages with DieHard),
making it likely to remain in physical RAM for most users. Finally, unlike other widely-
used applications (notably those from Microsoft), which statically link to their memory
management libraries or employ custom memory allocators, Firefox makes extensive use
of the memory allocator directly via the standard malloc interface.

We publicly announced this version of DieHard at the end of December 2006. Shortly
afterward, a news story covering DieHard was picked up by various press outlets, resulting
in a large number of visits to the web site. Many of these visitors subsequently downloaded
the software (over 10,500 downloads during January 2006). We view this as anecdotal
evidence that, for many, the additional reliability and security that DieHard provides out-
weighs its impact on memory consumption. User reports have been positive: the two most
requested features are coverage of more applications, and the ability to have DieHard run
all the time (it currently requires activation after every re-boot).

8. RELATED WORK
This section describes related work in software engineering, fault tolerance, memory man-
agement, approaches to address security vulnerabilities, fail-stop, debugging and testing.
Table I summarizes how DieHard and the systems described here handle memory safety
errors.

Our approach is inspired by N-version programming, in which independent program-
mers produce variants of a desired program [Avizienis 1985]. Whereas N-version program-
ming relies on a conjecture of independence across programmers to reduce the likelihood
of errors, DieHard provides hard analytical guarantees.

Fault tolerance: DieHard’s use of replicas with a voter process is closely related to
Bressoud and Schneider’s hypervisor-based system, which provides fault tolerance in the

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

20 · E. Berger and B. Zorn

face of fail-stop executions [Bressoud and Schneider 1995]. In addition to supporting
replication and voting, their hypervisor eliminates all non-determinism. This approach
requires hardware support or code rewriting, while DieHard’s voter is less general but
lighter weight.

Rinard et al. present a compiler-based approach called boundless buffers that caches
out-of-bound writes in a hash table for later reuse [Rinard et al. 2004]. This approach
eliminates buffer overflow errors (though not dangling pointer errors), but requires source
code and imposes higher performance overheads (1.05x to 8.9x).

Several researchers have proposed unsound techniques that can prevent programs from
crashing [Dhurjati et al. 2003; Qin et al. 2005; Rinard et al. 2004]. Automatic pool allo-
cation segregates objects into pools of the same type, thus ensuring that dangling pointers
are always overwritten only by objects of the same type [Dhurjati et al. 2003]. While
this approach yields type safety, the resulting program behavior is unpredictable. Failure-
oblivious systems continue running programs by ignoring illegal writes and manufactur-
ing values for reads of uninitialized areas [Rinard et al. 2004]. These actions impose
as high as 8X performance overhead and can lead to incorrect program execution. Rx
uses checkpointing and logging in conjunction with a versioning file system to recover
from detectable errors, such as crashes. After a crash, Rx rolls back the application and
restarts with an allocator that selectively ignores double frees, zero-fills buffers, pads ob-
ject requests, and defers frees [Qin et al. 2005]. Because Rx relies on checkpointing and
rollback-based recovery, it is not suitable for applications whose effects cannot be rolled
back. It is also unsound: Rx cannot detect latent errors that lead to incorrect program
execution rather than crashes.

Memory management approaches: Typical runtime systems sacrific robustness in fa-
vor of providing fast allocation with low fragmentation. Most implementations of malloc
are susceptible to both double frees and heap corruption caused by buffer overflows. How-
ever, some recent memory managers detect heap corruption, including version 2.8 of the
Lea allocator [Lea 1997; Robertson et al. 2003], while others (Rockall [Ball et al. 2001],
dnmalloc [Younan et al. 2005], Heap Server [Kharbutli et al. 2006]) fully segregate meta-
data from the heap like DieHard, preventing heap corruption.

Garbage collection avoids dangling pointer errors but requires a significant amount of
space to provide reasonable performance (3X-5X more than malloc/free) [Hertz and
Berger 2005; Swamy et al. 2006; Zorn 1993]. DieHard ignores double and invalid frees
and segregates metadata from the heap to avoid overwrites, but unlike the Boehm-Demers-
Weiser collector, its avoidance of dangling pointers is probabilistic rather than absolute.
Unlike previous memory managers, DieHard provides protection of heap data (not just
metadata) from buffer overflows, and can detect uninitialized reads.

Security vulnerabilities: Previous efforts to reduce vulnerability to heap-based secu-
rity attacks randomize the base address of the heap [Bhatkar et al. 2003; PaX Team] or
randomly pad allocation requests [Bhatkar et al. 2005]. Base address randomization pro-
vides little protection from heap-based attacks on 32-bit platforms [Shacham et al. 2004].
Although protection from security vulnerabilities is not its intended goal, DieHard makes
it difficult for an attacker to predict the layout or adjacency of objects in any replica.

Fail-stop approaches: A number of approaches that attempt to provide type and mem-
ory safety for C (or C-like) programs are fail-stop, aborting program execution upon de-
tecting an error [Austin et al. 1994; Avots et al. 2005; Necula et al. 2002; Xu et al. 2004;
Yong and Horwitz 2003]. We discuss two representative examples: Cyclone and CCured.
ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 21

Cyclone augments C with an advanced type system that allows programmers direct but safe
control over memory [Jim et al. 2002]. CCured instruments code with runtime checks that
dynamically ensure memory safety and uses static analysis to remove checks from places
where memory errors cannot occur [Necula et al. 2002]. While Cyclone uses region-based
memory management and safe explicit deallocation [Grossman et al. 2002; Swamy et al.
2006], CCured relies on the BDW garbage collector to protect against double frees and
dangling pointers. Unlike DieHard, which works with binaries and supports any language
using explicit allocation, both Cyclone and CCured operate on an extended version of C
source code that typically requires manual programmer intervention. Both abort program
execution when detecting buffer overflows or other errors, while DieHard can often avoid
them.

Debugging and testing: Tools like Purify [Hastings and Joyce 1991] and Valgrind [Nether-
cote and Seward 2007] (with the Memcheck tool [Seward and Nethercote 2005; Nethercote
and Fitzhardinge 2004]) use binary rewriting or emulation to dynamically detect mem-
ory errors in unaltered programs. However, these often impose prohibitive runtime over-
heads (2-25X) and space costs (around 10X) and are thus only suitable during testing.
SWAT [Hauswirth and Chilimbi 2004] uses sampling to detect memory leaks at runtime
with little overhead (around 5%), and could be employed in conjunction with DieHard.

9. CONCLUSION AND FUTURE WORK
DieHard is a runtime system that effectively tolerates memory errors and provides prob-
abilistic memory safety. DieHard uses randomized allocation to give the application an
approximation of an infinite-sized heap, and uses replication to further increase error tol-
erance and detect uninitialized memory reads that propagate to program output. DieHard
allows an explicit trade-off between memory usage and error tolerance, and is useful for
programs in which memory footprint is less important that reliability and security. We
show that DieHard adds little CPU overhead to many of the SPECint2000 benchmark pro-
grams, while the CPU overhead in allocation-intensive programs is larger.

We show analytically that DieHard increases error tolerance, and confirm our analytic
results by demonstrating that DieHard significantly increases the error tolerance of an app-
lication in which faults are artifically injected. We also describe experiments in which
DieHard successfully tolerates known buffer-overflow and dangling pointer errors in the
Squid web cache server and the Mozilla Firefox web browser.

The DieHard runtime system tolerates heap errors but does not prevent safety errors
based on stack corruption. We believe that with compiler support, the ideas proven suc-
cessful in DieHard could be used to improve error tolerance on the stack and also in object
field references. We plan to investigate the effectiveness of this approach in future work.

One limitation of the replicated form of DieHard is its inability to work with programs
that generate non-deterministic output or output related to environmental factors (e.g.,
time-of-day, performance counters, interactive events, etc.) We are developing a “Deter-
minator” that enforces the following invariant: the nth system call returns the same value
across all replicas. The Determinator consists of two parts: a Determinator service and a
set of replacement system calls that communicate with the Determinator service. When
a DieHard replica executes a system call, it turns into a socket communication with the
service. If this execution of the given system call has not yet been executed by any replica,
the Determinator executes it on that replica’s behalf. It communicates back the results to
the replica, and caches them to provide in response to calls from the other replicas. We

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

22 · E. Berger and B. Zorn

also plan to incorporate mechanisms to ensure that non-determinism due to scheduling of
multithreaded programs does not affect execution [Pool et al. 2007].

Improving the security and reliability of programs written in C and C++ is recognized
by the research community as an important priority and many approaches have been sug-
gested. In this article, we present a unique and effective approach to soundly tolerating
memory errors in unsafe programs without requiring the programs be rewritten or even re-
compiled. Like garbage collection, DieHard represents a new and interesting alternative in
the broad design space that trades off CPU performance, memory utilization, and program
correctness.

ACKNOWLEDGMENTS

The authors would like to thank Mike Barnett, Mike Bond, Mark Corner, Trishul Chilimbi,
Ted Hart, Mike Hicks, Daniel Jiménez, David Jensen, Scott Kaplan, Brian Levine, Andrew
McCallum, David Notkin, and Gene Novark for their helpful comments. Thanks also to
Shan Lu and Yuanyuan Zhou for providing us the buggy inputs for Squid.

DieHard is publicly available at http://www.diehard-software.org/.

REFERENCES

AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. 1994. Efficient detection of all pointer and array access
errors. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming language design
and implementation. ACM Press, New York, NY, USA, 290–301.

AVIZIENIS, A. 1985. The N-version approach to fault-tolerant systems. IEEE Transactions on Software Engi-
neering 11, 12 (Dec.), 1491–1501.

AVOTS, D., DALTON, M., LIVSHITS, V. B., AND LAM, M. S. 2005. Improving software security with a C
pointer analysis. In ICSE ’05: Proceedings of the 27th international conference on Software engineering.
ACM Press, New York, NY, USA, 332–341.

BALL, T., CHAKI, S., AND RAJAMANI, S. K. 2001. Parameterized verification of multithreaded software li-
braries. In 7th International Conference on Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 2031. 158–173.

BERGER, E. D. 2006. Heapshield: Library-based heap overflow protection for free. Tech. Rep. UMCS TR-2006-
28, Department of Computer Science, University of Massachusetts Amherst. May.

BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND WILSON, P. R. 2000a. Hoard: A scalable memory
allocator for multithreaded applications. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA, 117–128.

BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND WILSON, P. R. 2000b. Hoard: A scalable memory
allocator for multithreaded applications. In ASPLOS-IX: Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems. Cambridge, MA, 117–128.

BERGER, E. D. AND ZORN, B. G. 2006. Diehard: Probabilistic memory safety for unsafe languages. In Pro-
ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). ACM Press, New York, NY, USA, 158–168.

BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. 2001. Composing high-performance memory allocators.
In Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2001). Snowbird, Utah.

BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. 2003. Address obfuscation: An efficient approach to combat
a broad range of memory error exploits. In Proceedings of the 12th USENIX Security Symposium. USENIX,
105–120.

BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. 2005. Efficient techniques for comprehensive protection
from memory error exploits. In Proceedings of the 14th USENIX Security Symposium. USENIX, 271–286.

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative environment. Software Practice
and Experience 18, 9, 807–820.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

DieHard: Efficient Probabilistic Memory Safety · 23

BRESSOUD, T. C. AND SCHNEIDER, F. B. 1995. Hypervisor-based fault tolerance. In SOSP ’95: Proceedings
of the fifteenth ACM symposium on Operating systems principles. ACM Press, New York, NY, USA, 1–11.

CHILIMBI, T. M., HILL, M. D., AND LARUS, J. R. 1999. Cache-conscious structure layout. In Proceedings of
SIGPLAN’99 Conference on Programming Languages Design and Implementation. ACM SIGPLAN Notices.
ACM Press, Atlanta, 1–12.

DETLEFS, D. L. 1993. Empirical evidence for using garbage collection in C and C++ programs. In OOPSLA/E-
COOP ’93 Workshop on Garbage Collection in Object-Oriented Systems, E. Moss, P. R. Wilson, and B. Zorn,
Eds.

DHURJATI, D. AND ADVE, V. 2006. Backwards-compatible array bounds checking for c with very low overhead.
In ICSE ’06: Proceeding of the 28th international conference on Software engineering. ACM Press, New York,
NY, USA, 162–171.

DHURJATI, D., KOWSHIK, S., AND ADVE, V. 2006. Safecode: enforcing alias analysis for weakly typed lan-
guages. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language design
and implementation. ACM Press, New York, NY, USA, 144–157.

DHURJATI, D., KOWSHIK, S., ADVE, V., AND LATTNER, C. 2003. Memory safety without runtime checks or
garbage collection. In ACM SIGPLAN 2003 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’2003). ACM Press, San Diego, CA.

FENG, Y. AND BERGER, E. D. 2005. A locality-improving dynamic memory allocator. In Proceedings of the
ACM SIGPLAN 2005 Workshop on Memory System Performance (MSP). Chicago, IL.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2, 374–382.

GROSSMAN, D., MORRISETT, G., JIM, T., HICKS, M., WANG, Y., AND CHENEY, J. 2002. Region-based
memory management in Cyclone. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation. ACM Press, New York, NY, USA, 282–293.

GRUNWALD, D., ZORN, B., AND HENDERSON, R. 1993. Improving the cache locality of memory allocation.
In Proceedings of SIGPLAN’93 Conference on Programming Languages Design and Implementation. ACM
SIGPLAN Notices, vol. 28(6). ACM Press, Albuquerque, NM, 177–186.

HANSON, D. R. 1980. A portable storage management system for the Icon programming language. Software
Practice and Experience 10, 6, 489–500.

HASTINGS, R. AND JOYCE, B. 1991. Purify: Fast detection of memory leaks and access errors. In Proc. of the
Winter 1992 USENIX Conference. San Francisco, California, 125–138.

HAUSWIRTH, M. AND CHILIMBI, T. M. 2004. Low-overhead memory leak detection using adaptive statistical
profiling. In ASPLOS-XI: Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM Press, New York, NY, USA, 156–164.

HERTZ, M. AND BERGER, E. D. 2005. Quantifying the performance of garbage collection vs. explicit memory
management. In Proceedings of the 20th annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA). San Diego, CA.

JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W., CHENEY, J., AND WANG, Y. 2002. Cyclone: A
safe dialect of C. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference. USENIX
Association, Berkeley, CA, USA, 275–288.

JOHNSTONE, M. S. AND WILSON, P. R. 1997. The memory fragmentation problem: Solved? In OOPSLA ’97
Workshop on Garbage Collection and Memory Management, P. Dickman and P. R. Wilson, Eds.

KAEMPF, M. 2001. Vudo malloc tricks. Phrack Magazine 57, 8 (Aug.).
KAMP, P.-H. Malloc(3) revisited. http://phk.freebsd.dk/pubs/malloc.pdf.
KAPLAN, S. F., SMARAGDAKIS, Y., AND WILSON, P. R. 2003. Flexible reference trace reduction for VM

simulations. ACM Trans. Model. Comput. Simul. 13, 1, 1–38.
KHARBUTLI, M., JIANG, X., SOLIHIN, Y., VENKATARAMANI, G., AND PRVULOVIC, M. 2006. Comprehen-

sively and efficiently protecting the heap. In ASPLOS-XII: Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems. ACM Press, New York, NY, USA,
207–218.

LEA, D. 1997. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html.
MARSAGLIA, G. 1994. yet another RNG. posted to the electronic bulletin board sci.stat.math.
MATHIAS RAUEN. madCodeHook. http://www.madcodehook.com.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

24 · E. Berger and B. Zorn

NECULA, G. C., MCPEAK, S., AND WEIMER, W. 2002. Ccured: type-safe retrofitting of legacy code. In POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM Press, New York, NY, USA, 128–139.

NETHERCOTE, N. AND FITZHARDINGE, J. 2004. Bounds-checking entire programs without recompiling. In
SPACE 2004. Venice, Italy.

NETHERCOTE, N. AND SEWARD, J. 2007. Valgrind: a framework for heavyweight dynamic binary instrumen-
tation. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming language design
and implementation. ACM Press, New York, NY, USA, 89–100.

PAX TEAM. PaX address space layout randomization (ASLR). http://pax.grsecurity.net/docs/aslr.txt.
POOL, J., SIN, I., AND LIE, D. 2007. Relaxed determinism: Making redundant execution on multiprocessors

practical. In Proceedings of the 11th Workshop on Hot Topics in Operating Systems (HotOS 2007).
QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. 2005. Rx: Treating bugs as allergies: A safe method

to survive software failures. In Proceedings of the Twentieth Symposium on Operating Systems Principles.
Operating Systems Review, vol. XX. ACM, Brighton, UK.

RINARD, M., CADAR, C., DUMITRAN, D., ROY, D. M., AND LEU, T. 2004. A dynamic technique for eliminat-
ing buffer overflow vulnerabilities (and other memory errors). In Proceedings of the 2004 Annual Computer
Security Applications Conference.

RINARD, M., CADAR, C., DUMITRAN, D., ROY, D. M., LEU, T., AND WILLIAM S. BEEBEE, J. 2004. En-
hancing server availability and security through failure-oblivious computing. In Sixth Symposium on Operating
Systems Design and Implementation. USENIX, San Francisco, CA.

ROBERTSON, W., KRUEGEL, C., MUTZ, D., AND VALEUR, F. 2003. Run-time detection of heap-based over-
flows. In LISA ’03: Proceedings of the 17th Large Installation Systems Administration Conference. USENIX,
51–60.

SEWARD, J. AND NETHERCOTE, N. 2005. Using Valgrind to detect undefined value errors with bit-precision.
In Proceedings of the USENIX’05 Annual Technical Conference. Anaheim, California, USA.

SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU, N., AND BONEH, D. 2004. On the effective-
ness of address-space randomization. In CCS ’04: Proceedings of the 11th ACM conference on Computer and
Communications Security. ACM Press, New York, NY, USA, 298–307.

STANDARD PERFORMANCE EVALUATION CORPORATION. SPEC2000. http://www.spec.org.
SWAMY, N., HICKS, M., MORRISETT, G., GROSSMAN, D., AND JIM, T. 2006. Experience with safe manual

memory management in cyclone. Science of Computer Programming. Special issue on memory management.
Expands ISMM conference paper of the same name. To appear.

US-CERT. US-CERT vulnerability notes. http://www.kb.cert.org/vuls/.
WILSON, P. R., JOHNSTONE, M. S., NEELY, M., AND BOLES, D. 1995. Dynamic storage allocation: A survey

and critical review. In Proceedings of the International Workshop on Memory Management. Lecture Notes in
Computer Science, vol. 986. Springer-Verlag, Kinross, Scotland, 1–116.

XU, W., DUVARNEY, D. C., AND SEKAR, R. 2004. An efficient and backwards-compatible transformation
to ensure memory safety of C programs. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering. ACM Press, New York, NY, USA,
117–126.

YONG, S. H. AND HORWITZ, S. 2003. Protecting C programs from attacks via invalid pointer dereferences. In
ESEC/FSE-11: 11th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM
Press, New York, NY, USA, 307–316.

YOUNAN, Y., JOOSEN, W., PIESSENS, F., AND DEN EYNDEN, H. V. 2005. Security of memory allocators for
C and C++. Tech. Rep. CW 419, Department of Computer Science, Katholieke Universiteit Leuven, Belgium.
July. Available at http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.pdf.

ZORN, B. 1993. The measured cost of conservative garbage collection. Software Practice and Experience 23,
733–756.

ACM Transactions on Computers, Vol. TBD, No. TBD, Month Year.

