
 

 

 

  

Abstract—Consisting of a tightly meshed network of short 

range Doppler weather radars, Distributed Collaborative 

Adaptive Sensing (DCAS) represents a new paradigm in 

meteorological sensing. Rather than sensing everything in a sit-

and-spin manner, a DCAS system is an end-user driven sensor 

network that uses targeted sector scans to sense only those 

volumes that the end-users have indicated are important to 

their data needs. The advantage is that by limiting what is 

sensed, higher quality measurements are possible due to the 

ability to dwell longer, scan more elevations, obtain better 

multi-Doppler coordination, and sample at higher rates. This 

paper describes the Meteorological Command & Control 

(MC&C) component in the first prototype DCAS system 

recently fielded by the National Science Foundation sponsored 

Engineering Research Center for Collaborative Adaptive 

Sensing (CASA-ERC). 

I. INTRODUCTION 

HE Engineering Research Center for Collaborative 

Adaptive Sensing of the Atmosphere (CASA-ERC) 

seeks to revolutionize our ability to observe, understand, and 

predict hazardous weather by creating distributed 

collaborative adaptive sensing (DCAS) networks that sample 

the atmosphere where and when end-user needs are greatest 

[20]. Configuration-wise, DCAS refers to the use of large 

numbers of short-range Doppler weather radars 

appropriately spaced to achieve extensive overlapping 

coverage. Short range reduces resolution degradation due to 

beam spreading and by avoiding blockage due to the 

curvature of the Earth allows the radars a clear view of the 

bottom 1km of the troposphere (80% of which is blocked 

from the view of today’s NEXRAD weather observing 

network) where tornados and other weather hazards form. 

Operations-wise, extensive overlapping coverage allows the 

radars to cooperatively and collaboratively share 

responsibility for detecting and tracking the weather passing 

through the network. Specifically, instead of sensing 

everything in a sit-and-spin manner as is done in most of 

today’s weather sensing networks, a DCAS network uses 

targeted sector scanning to sense only those volumes of the 

atmosphere that are most important to the information needs 
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of its end-users. That is, unlike most sensor networks that 

“push” the same data to all end-users, DCAS networks 

feature data “pull” where end-user preferences and 

information needs drive the allocation of the sensing 

resources [16, 28]. By limiting what is sensed it is possible 

to obtain higher sample rates, cover more elevations, and get 

improved sensitivity [8]. 

A series of testbeds, known as Integrative Projects (IPs), 

are being fielded by the CASA-ERC to demonstrate and test 

the DCAS concept. The first, the four-radar IP1 network, 

became operational in August 2006. Strategically located in 

southwestern Oklahoma’s “tornado alley” in a region that 

receives a yearly average of 4 tornado and 53 thunderstorm 

warnings, a major goal of IP1 is to understand the impact 

DCAS can have on the ability of the IP1 end-users to 

anticipate, detect, track, and respond to these severe weather 

hazards. End-users of the IP1 data include the National 

Weather Service (NWS) forecast office in Norman 

Oklahoma whose role is to issue severe weather watches and 

warnings; a group of regional Emergency Managers (EMs) 

in and downstream of the testbed whose role is to alert the 

public and coordinate first responders; and CASA 

researchers working on a variety of projects including 

improved forecast models, detection algorithms, radar 

technologies, and sensor allocation algorithms [23]. Some of 

these users will be interpreting the radar data through visual 

displays. Other “users” are numerical algorithms that will be 

performing signal processing operations on the data. Thus, at 

any given instant, each group of end-users will have 

different, potentially conflicting, requirements for what 

volumes of the atmosphere they need to have scanned. 

The purpose of this paper is to describe the 

Meteorological Command and Control (MC&C) component 

in the IP1 Oklahoma testbed. As the main control loop of the 

IP1 network, the MC&C is responsible for adapting and 

configuring the radar beam steering commands to sense 

where and when the dynamically changing information 

needs of the end-users are greatest [16, 23, 28]. The control 

challenge of DCAS targeted sector scanning is that time 

bounds on how fast a volume can be scanned – in general 

the slower we sweep a radar beam the better the data quality 

[9] – introduces both intra-user and inter-user resource 

conflicts. Such resource conflicts arise for example when 

one user requires scanning a large volume while another 

requires two or more radars to collaborate to pinpoint 

narrowly on a wind event passing through a region of the 

network where multiple of its radars overlap to obtain 

triangulated velocity vector measurements. Given the 
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coverage pattern of the IP1 network – see Fig. 2, also [3, 21] 

– this type of resource conflict would be particularly acute in 

the event of a confirmed tornado passing through the center 

of the network. For EMs, it is critical to obtain specific 

information about the tornado’s location, the path it has 

taken so far, and its anticipated future track. In this 

unprecedented case of a tornado passing through a four radar 

multi-Doppler coverage region, CASA’s researchers would 

demand a multi-Doppler scan with as many radars as 

possible at the maximum sample rate the network can 

provide. Depending on factors such as attenuation, this may 

require focusing all four of the IP1 radars on the volume 

containing the tornado [2]. In contrast, the NWS – once they 

have issued a warning on the tornado – will need to scan the 

structure of the potentially very large volume of the 

tornado’s parent storm as well as the volumes of any other 

surrounding storms to assess the chance additional tornados 

might be forming elsewhere in the network. In this case the 

conflict is clear, depending on how the radars are allocated, 

the data quality provided to one or even all groups of end-

users can suffer. For additional details regarding the IP1 

end-users and their needs see Section III and [23]. 

To handle resource conflicts such as the one above, the 

IP1 MC&C employs an approach that combines expert rules 

to represent end-user scanning requirements with multi-

attribute utility/score functions to turn the rules into a 

mathematical form that we can optimize over to make the 

tradeoffs necessary to preferentially allocate the sensing 

resources towards those scanning tasks that the end-users 

have collectively agreed are the most important to satisfy. 

Rules have long been a standard way to represent expert 

knowledge (in our case here, what to scan and how to scan 

it) [10]. Scoring is a common way to assess tradeoffs and 

rank options in combinatorial optimization problems (in our 

case here the ranking of the alternative scanning options) 

[24, 27]. And as a systematic method for decision problems 

involving multiple-users with multiple competing 

preferences and objectives multi-attribute utility theory 

(MAUT) [15] is becoming increasingly popular for 

allocating resources in sensor networks, cf. [1, 7, 17]. 

The remainder of this paper is organized as follows. 

Section 2 describes the closed-loop IP1 Command & 

Control architecture. Section 3 presents rules that represent 

the scanning preferences and needs of the IP1 end-users. 

Section 4 details the algorithms in the MC&C that map the 

end-user rules into radar sector scans. Performance results 

collected during a storm event in the IP1 testbed are 

presented in Section 5. The paper concludes with a summary 

and discussion of on-going work in Section 6. 

II. IP1 COMMAND & CONTROL ARCHITECTURE 

Fig. 1 shows a schematic of the IP1 Meteorological 

Command & Control (MC&C) architecture. As the main 

control loop, the MC&C is responsible for mapping end-user 

needs and past radar observations into a configuration of 

radar sector scans that optimally trades off resource conflicts 

to maximize end-user satisfaction [5, 16, 28]. The IP1 

MC&C can be described as discrete-time control system 

operating on a 30 second “heartbeat.” Every 30 seconds the 

system goes through a process of data ingest, meteorological 

feature detection, task generation, and optimization to 

choose the sectors the radars will scan during the next 

heartbeat. 

A. Data Ingest and Feature Detection 

Starting with the radars, the IP1 testbed consists of four 

mechanically steered, parabolic dish, X-band Doppler radars 

spaced nearly equidistantly 25 km apart in Cyril, Chickasha, 

Rush Springs, and Lawton Oklahoma. With an approximate 

30 km range each, this spacing was chosen to maximize the 

amount of overlapping coverage [3, 21]. 

Each of the IP1 radars generates about 100 Mbit of raw 

time-series data each second. A Fourier transform is 

performed at each radar node to extract the spectral moments 

(moment data) from the time series data; reducing the data 

output from each radar to about 4 Mbit of data each second. 

For Doppler weather radars, the 0
th

 moment (the reflectivity) 

is related to the water content in the atmosphere, the 1
st
 

moment gives the wind speed toward or away from the 

radar, and the 2
nd

 moment gives the velocity dispersion 

which measures the wind sheer or turbulence [9]. 

The moment data are transmitted from the radar nodes to 

the IP1 Systems Operation and Control Center (SOCC) at 

the Univ. of Oklahoma in Norman, where it is processed by 

meteorological feature detection algorithms to identify such 

meteorological features as storms (regions of high 

reflectivity), strong winds (regions of high velocity), and 

rotations (correlated velocity vectors) [12]. The moment data 

along with the detected weather features are transformed 

from the polar coordinates of the radars to a common lat-

long coordinate system, merged with other GIS data (e.g., 

manually entered locations of reported tornado sightings), 

and posted on a blackboard architecture known as the 

feature repository, where it is made available to the end-

users The use of a blackboard architecture for the feature 

repository was chosen to make the system tolerant to data 

ingest problems (e.g., radar failures and communication 

losses) and to make the system scalable (by distributing the 

feature repository) as additional radars are added to the 

network [6, 14]. 



 

 

 

 
B. Task Generation 

The features in the feature repository are clustered (via K-

means) based on similarity metric that combines lat-long 

location and feature type (storm, wind, rotation). To make 

the cluster centers stable from one heartbeat to the next, we 

use the cluster centers from the previous heartbeat to 

initialize the K-means algorithm. The feature clusters output 

from the clustering algorithm are defined by a type and a 

polygon in 2-d lat-long coordinates formed by taking the 

convex hull of the features that make up the cluster. 

Scanning tasks are generated by matching the feature 

clusters against a set of “if-then” rules that define the end-

user requirements for what to scan, when to scan it, and how 

to scan it (see Section III). For each feature cluster matching 

the “if” part of a rule we generate a unique scanning task. 

Thus, we note that each end-user rule can generate several 

scanning tasks each located at a different place in the 

network. Moreover, different end-user rules can require the 

same feature cluster be scanned in different ways, e.g., using 

different scan rates. A scanning task is a tuple consisting of 

the 2-d area in lat-long coordinates where the task is located 

and the rule that tells when and how to scan the task. In 

addition to the “tracking” tasks generated by feature 

detections, each user may also have one or more periodic 

time based rules that generate, for example, periodic 360 

degree surveillance tasks to look for emerging weather. 

C. Optimization 

As mentioned, an innovation of a DCAS network is its use 

of targeted sector scans. In the IP1 network, the radars are 

mounted on mechanically steered pedestals that rotate at 28 

degrees/second in azimuth and can be pointed to 7 discrete 

elevation angles. With every 30 second heartbeat, each radar 

is commanded to scan a single sector, where a sector is a 

wedge in azimuth of a certain angular width and compass 

orientation. Each radar will start with a horizontal sweep of 

its sector at its lowest elevation tilt and will sweep back and 

forth, working up through as many discrete elevation tilts as 

it can in the 30 second sampling interval. Hence, while a 

radar can scan its complete 360 degree area at the lowest two 

elevations in a 30 second heartbeat, it is limited to sectors of 

no more than 120 degrees if required to obtain a full 7 

elevation scan of a volume. An IP1 radar can thus only scan 

1/3 of its surrounding volume in single heartbeat. 

To determine the optimal configuration of sectors for the 

four radars to scan, the MC&C uses a utilities/score based 

approach. Two utilities are assigned to each scanning task – 

a utility score U telling how important the task is to the end-

users, and a scan utility function Q-function that relates how 

well a particular configuration of sectors meets the scanning 

requirements of the rules associated with the tasks. 

Optimization of an overall utility function, called the MC&C 

equation, combines these two factors of how important with 

how well to determine the configuration of sectors that can 

be expected to satisfy the maximum number of the highest 

value tasks (see Section IV). 

 

Fig. 2 shows a screen shot of the IP1 operator’s interface; 

detected features are in yellow, scanning tasks are in brown, 

the sectors scanned are in green (the rings along the sector 

edge denote the number of elevations scanned). 

III. REPRESENTING END-USER DATA NEEDS 

Table I shows the current set of “if-then” rules 

representing the data needs of the IP1 end-users – National 

Weather Service (NWS) forecasters, Emergency Managers 

(EMs), and CASA Researchers. In the table, the “trigger” 

column is the “if” part of the rule, indicating the event that 

invokes the rule. Time based rules are invoked with the 

expiration of a timer; storm, wind, and rotation rules are 

invoked by the detection of the indicated type of feature 

cluster in the feature repository (recall Section II). The 

remaining columns in the table are the “then” part of the rule 

identifying the scanning constraints that must be met in 

order to satisfy the rule. The “sector” column identifies a 

coverage constraint that specifies how much of a task must 

be covered in order to satisfy a task. This is a hard 

 
Fig. 2.  IP1 operators interface showing weather features (yellow 

polygons), scanning tasks (brown polygons), and sectors (shown in 

green, with the rings along the sector edge denoting the number of 
elevation angles in the scan). 
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Fig. 1. Schematic showing the flow of data and control within IP1. 

 



 

 

 

constraint, a task is not satisfied if it is not completely 

covered in azimuth. This constraint (combined with the 

minimum 60 degree sector width) ensures that the complete 

context of storms, including their boundaries, are included in 

the scan data. This is particularly important for visual 

interpretation of radar data [23]. The “elevations” column 

identifies an elevation constraint. This is a soft constraint; 

task satisfaction increasing with the number of elevations 

scanned relative to the number required by the rule. Multiple 

elevations are needed to understand a storm’s vertical 

structure, such as the helical rotations in tornados. The 

“#radars” column indicates a constraint on the number of 

radars that need to be assigned to the task. Generally, 

reflectivity can be adequately measured with a single radar. 

However, because a single radar can only measure velocity 

in a single direction, accurate velocity vector estimation 

requires triangulating multi-Doppler views from two or more 

linearly independent directions. The #radars constraint is a 

soft constraint; scan satisfaction for tasks requiring more 

than one radar increasing as more radars are assigned to the 

task. Finally, the “revisit” column indicates a sample rate 

constraint. This is based on the typical dynamics of various 

weather features – their horizontal movement, evolution in 

size, and evolution of internal structure. 

The rules in Table I were elicited from the IP1 end-users 

through a process involving a review of historical best 

practices, in-depth interviews with subject matter experts, 

and table-top demonstrations with simulated data [23]. NWS 

rule N2 for example indicates that storms should be scanned 

at all elevations with a sector that covers the entire storm at a 

sample rate of once every 2.5 minutes. This rule addresses 

the NWS forecaster need to analyze vertical storm structures 

as they are determining whether to issue warnings. The 

Researcher Rule R3 to execute a complete scan of the entire 

volume covered by the IP1 network reflects a need for data 

to initialize numerical weather prediction models. Recalling 

that a radar can only scan 1/3 of its surrounding volume in a 

single 30 second heartbeat, Researcher Rule R3 will require 

several heartbeats to complete. To accommodate this rule, 

we partition the volume around each radar into three 7 

elevation, 120 degree sector scanning tasks, each with a once 

per 10 minute sample rate requirement. Regarding the 

system operator rules, O1 is for data assimilation to maintain 

a history of the weather passing through the network (this 

rule becomes necessary only when the user 360 rules (N1 

and E1) are “turned off”, e.g., by zeroing the user priority 

weight as described in Section IV); O2 provides a two-way 

interface through which an operator can manually insert 

scanning tasks, define their sizes and specify their scanning 

requirements (e.g., to scan an area where a tornado has been 

spotted). 

IV. THE MC&C EQUATIONS 

Looking at the rules in the previous section we can reduce a 

scanning task into one of four basic types – tracking tasks 

requiring single radar, multiple elevation sector scans; 

tracking tasks requiring multiple radar, multiple elevation 

sector scans for velocity vector triangulation; 360 

surveillance tasks of the lowest two elevations; and data 

assimilation tasks to scan of the entire 360 degree 7 

elevation volume around each radar. Given that a radar can 

only scan 1/3 of its surrounding volume in any single system 

heartbeat, resource conflicts will be determined by the 

number and location of these different types of tasks. 

Specifically, while a sector can be widened to cover more 

tasks, this can reduce scan quality by reducing the number of 

elevations that can be covered (conflict between the 

coverage and elevations constraints). Alternatively, while 

the individual radars can coordinate to point in different 

directions to maximize the number of single radar tasks they 

can collectively satisfy, where they point is constrained to 

certain compass directions when collaboration is required on 

multiple radar tasks (conflict between single and multiple 

radar tasks, recall the radar coverage map in Fig. 2). This 

section describes the five step process of – time since last 

scanned determination, task utility score assignment, task 

scan quality function assignment, utility optimization, and 

task satisfaction updating – that maps the end-user scanning 

requirements into the radar sector assignments. 

A. Time Since Last Scanned Determination 

A rule’s “revisit” column gives a task’s desired sample 

rate. To determine if a task needs to be scanned during the 

next heartbeat, we first need to determine the time since it 

was last successfully scanned. For the periodic “360” tasks 

(those associated with rules N1, R3, E1, and O1) keeping 

track of the time since the task was last satisfied is trivial – 

TABLE I 

END-USER RULES FOR IP1. 

Rule Trigger Sector Elevations #Radars Revisit 

NWS – issue watches and warnings. 

N1 Time 360 Lowest 2 1 1 / min 

N2 Storm task All 7 1 1 / 2.5 min 

Researchers – numerical weather prediction, algorithm, model, radar 

development 

R1 Rotation task All 7 2+ 1 / 30 sec 

R2 Storm task All 7 1 1 / min 

R3 Time 360 All 7 1 1/ 10 min 

Emergency Managers – public notification, spotter/first responder 

deployment. 

E1 Time 360 Lowest 2 1 1 / min 

E2 Storm task All 7 1 1 / min 

E3 Wind task All 7 2+ 1/ 2.5 min 

System Operator – data assimilation, resource allocation experiments 

O1 Time 360 Lowest 2 1 1 / 5 min 

O2 GUI input Task User defined, 

Lowest 2 or all 

7 

User 

defined, 1 

or 2+ 

Scan once 

 



 

 

 

just keep track of the last time each radar did a 360 degree 

scan of the lowest two elevations. For tasks generated by the 

feature detection algorithms (those associated with rules N2, 

R1, R2, E2, and E3), the process is not so simple. For these 

tasks, we maintain a rolling history of successfully scanned 

tasks, which includes the 2-d polygon scanned, the rule that 

was satisfied, and the heartbeat ks when the task was last 

successfully scanned. To account for storm movement and 

growth, we use a lightweight “storm tracker” that works by 

simply moving the corners of the polygons outward from 

their geometric centers at a rate of 55km/hr. A newly 

generated task is considered an old one if it falls inside the 

expanded polygon of a previously scanned task associated 

with the same rule, and we set its time last scanned to ks. 

Otherwise the task is a new one and we set ks to minus 

infinity (to indicate that this task has not yet had a successful 

scan). While this tracker has so far proven adequate for our 

purposes, it can be upgraded if needed with, for example, 

[19]. 

B. Task Utility Score Assignment 

With g the index of the user group whose rule generated 

the scanning task and k the current heartbeat, we next assign 

to each task t a task utility score Ug(t,k-ks) that depends on 

the number of heartbeats since the task was last scanned k-ks 

relative to the “revisit” interval rt (in heartbeats between 

scans) required by the task’s rule. Specifically, we set the 

task utility score to one of three values, 

1. Ug(t,k-ks) = 0.3 if (k-ks) < rt (i.e., the task does not need 

to be scanned at the next heartbeat); 

2. Ug(t,k-ks) = 0.8 if (k-ks) = rt (i.e., the task needs to be 

scanned at the next heartbeat); 

3. Ug(t,k-ks) = 1.0 if (k-ks) > rt (i.e., the task is overdue for 

scanning). 

A task utility of 0.3 ensures the system does something even 

when there are no tasks immediately in need of scanning. 

The idea behind raising the utility of overdue tasks to 1.0 is 

the following.  Because of the relatively slow dynamics of 

weather, only tornados need to be sampled at the maximum 

twice per minute sample rate of the IP1 system. All other 

tasks can be sampled at much lower rates. Thus, by raising 

the utility of unsatisfied tasks to 1.0 we can force the system 

to try to deconflict competing tasks by scheduling them to be 

scanned on interleaving heartbeats. This idea is inspired by 

PD (proportional plus derivative) control – use feedback to 

track a task’s required sample rate. An extension being 

considered would introduce an “integral” term for a PID-like 

scheme that decreases the U-value for tasks that are being 

oversampled, and increases it for those that are being 

undersampled. The main advantage of this simple feedback 

approach is that it addresses what is otherwise a very hard 

multistage optimization problem (see for example [11, 26] 

for a treatment of acquisition and tracking in sensor 

networks). See [18] for a stochastic dynamic programming 

treatment of the CASA DCAS problem. 

To get the “community” utility U(t) for each task we 

weight it by, wg, the “priority” of the user group whose rule 

generated the task, 

( ) ( )sgg kktUwtU != ,  (1) 

Taking values between 0 and 1, wg determines the relative 

“effort” the system will make to satisfy the tasks generated 

by user group g. Setting wg = 0 gives user group g zero 

priority in the system by effectively turning off the group’s 

rules. Larger values of wg give the user’s rules increasing 

influence on the scans the system selects. Although priority 

weights are a common way of combining user needs in 

multi-user systems, getting users to agree on what their 

individual priority weights should be can be a contentious 

process, since no one wants to be considered a low priority 

user. We view (1) as a mechanism for setting user priorities. 

An on-going research project to relate the value of each user 

group to reducing the public socioeconomic impact of 

hazardous weather will ultimately be used to develop a 

procedure for setting priorities [23]. 

C. Task Scan Quality Function Assignment 

To measure the degree to which different sector scan 

configurations satisfy the  “coverage,” “elevations,” and 

“#radars” constraints of a task’s rule, we assign a scan 

quality function. The construction of this function is a two 

step process: first the scan quality is determined for each 

radar acting individually; then the aggregated scan quality is 

determined by combining the individual scan quality values. 

Individual scan quality – The individual scan quality 

q(t,r,sr) gives the degree to which the sector sr scanned by 

radar r satisfies coverage and elevations constraints of task 

t’s rule. Specifically, let us define: w(sr) = the azimuthal 

width (in degrees) of radar r’s sector; a(r,t) = the minimal 

azimuthal angle that would allow radar r to just cover task 

t’s 2- area; h(r,t) = the distance from the radar to the 

geometric center of the task; and hmax(r) = the range of radar 

r. Then let us define, 

q(t,r,sr) = Fc(c(t,r,sr))[!Fe(e(w(sr))/er(t) + (1- !)Fd(d(r,t))](2) 

where, in terms of the above definitions, c(t,r,sr)  = w(sr) / 

a(r,t) is the coverage of task t by radar r with sector sr; 

e(w(sr)) = 840 / w(sr) is the number of elevations a radar 

scanning a sector w(sr) degrees in azimuth at an angular 

rotation rate of 28 degrees / second can do in a 30 second 

heartbeat; er(t) = the number of elevations required by task 

t’s rule; d(r,t) = h(r,t) / hmax(r) is the normalized distance 

from radar r to the geometric center of task t; ! " [0,1] is a 

tunable parameter (set to 0.9 in the current implementation); 

and Fc, Fe, and Fd are the step functions defined in Fig. 3a-c 

respectively. 

The rationale for Equation (2) is as follows. The first term 

Fc(c(t,r,sr)) accounts for how well the task is covered in 

azimuth. Noting that this term multiplies the other terms in 



 

 

 

equation (2) we see that if the task is not entirely covered in 

azimuth, the scan quality is zero as per the hard coverage 

constraint. The second term Fw(w(sr)) reflects the soft 

elevation constraint by penalizing scans that don’t get all of 

the elevations requested by the task’s rule. The third term 

Fd(d(r,t)) is a soft range constraint included to decide which 

radar(s) to use when the task is in the coverage area of more 

than one radar. According to Fd(d(r,t)), radars closer to a 

task tend to result in better scan quality due to considerations 

such as intervening attenuation and resolution degradation 

caused by increased angular beam spreading with distance 

(see also [2, 25]). 

 
Combined Scan Quality – The combined scan quality 

gives the degree to which a scan configuration C = 

{sr:r=1,…,4}, where sr is the sector scanned by radar r, 

satisfies the “#radars” constraint of a task’s rule. For tasks 

that require only one radar the combined scan quality is 

obtained by taking the maximum of the individual scan 

qualities, 

Q(t,C | #radars = 1) = ( )[ ]rsrtq
r

,,max
4,3,2,1=

 (3) 

For tasks that require multiple radars we combine the 

individual scan qualities according to, 

Q(t,C | #radars = 2+) = ( )!!
"

#
$$
%

&
'
= 4,3,2,1

,,

r

pp r
srtqF  (4) 

where the function Fpp( ) is as defined in Fig. 3d. Noting that 

q(t,r,sr) ! [0, 1] for each radar r, the interpretation of 

equation (4) is to give increasing utility for each additional 

radar that scans the task – the more radars scanning the task, 

the better the ability to resolve velocity vectors. 

D. Utility Optimization 

Given U(t) and Q(t,C), the scan configuration C to be used 

during the next heartbeat is the one that maximizes the 

objective function, 

( ) ( ) ( ) ( )[ ]! "=
t

tQCtQItUCJ
max

6.0,  (5) 

where I[ ] is the indicator function (=1 if its argument is true; 

0 otherwise), and Qmax(t) is the maximum scan quality the 

system could achieve if task t were the only task in the 

system. Qmax(t) is easily computed from the task location, its 

2-d area, and its associated rule. We call equation (5) the 

MC&C equation. The first term U(t) reflects the collective 

end-user preference for scanning the volume represented by 

scanning task t at heartbeat k, and letting C* be the argument 

that maximizes (5), we say that a task t is satisfied if Q(t,C*) 

" 0.6Qmax(t), where 0.6 is an adjustable parameter. 

Optimizing (5) can thus be interpreted as the preferential 

allocation of the sensor resources to satisfy those scanning 

tasks that the end-users have collectively agreed are the most 

important to satisfy. 

E. Time Last Scanned Updating. 

After each scan we update the task history. For tasks 

satisfied under C* (i.e., tasks for which Q(t,C*) / Qmax(t) " 

0.6), we set the time last scanned ks = k. For tasks not 

satisfied under C* (i.e., tasks for which Q(t,C*) / Qmax(t) < 

0.6), we leave ks unchanged. 

V. PERFORMANCE ANALYSIS 

Preliminary experiments were conducted to assess how well 

the IP1 MC&C design is able to satisfy end-user needs by 

evaluating how well the system is able to satisfy the rules 

that define those needs. Data for the experiments was 

obtained from actual scans of a severe storm that passed 

through the IP1 testbed between 2:30AM and 5:00AM on 16 

August 2006. See [4] for a system level discussion of 

network operations during the August storm event. This 

storm was of sufficient severity for the NWS to issue one 

thunderstorm warning and several severe wind reports. 

During the experiments velocity data was not available, so 

feature detection was limited to using only reflectivity. The 

experiments reported here thus only evaluate the MC&C’s 

ability to satisfy the reflectivity-based rules (N1, N2, R2, R3, 

E1, E2, and O1 in Table I). The IP1 network is continuously 

being updated, and the final paper will provide an analysis 

with the complete set of end-user rules operating. 

A. DCAS Sector Scanning Algorithm Performance 

Over the 2.5 hours of the experiment there were a total of 

2943 tasks submitted to the optimization for scanning, for an 

average of 10.3 tasks per heartbeat. Of these a total of 1221 

tasks, or an average of 4.3 per heartbeat, could not be 

satisfied during a typical heartbeat due to resource conflicts. 

As expected, the tasks that the system had difficulty 

satisfying were those requiring 7 elevation volume scans of 

spatially isolated sectors, i.e., tasks associated with rules N2, 

R2, R3, E2, and O1. Specifically, of the average 8.9 such 

tasks generated per heartbeat, an average of 4.3 (48%) were 

not satisfied. All of the time based 360 tasks generated by 

rules N1, E1, and O1 were satisfied at the same heartbeat 

they were submitted. Thus, over the period of the 

experiment, there was a 100% chance a 360 task submitted 

to the system would be satisfied, but only a 52% chance a 

Fig. 3. Definitions of the step functions used in equations (2) and (4). 

 



 

 

 

full 7 elevation sector scanning task would be satisfied at the 

heartbeat it was submitted. 

On the other hand, recall that if a task due to be scanned at 

a particular heartbeat is not satisfied we increase its utility 

and continue to resubmit it for satisfaction until such time as 

it is either satisfied or moves out of the network. A 

consequence of this strategy, however, is that unsatisfied 

tasks could begin to accumulate and overwhelm the system. 

The plot in Fig. 4 shows that this is not happening, meaning 

that although the system is not able to satisfy every task 

immediately when it is due to be scanned, the system does 

eventually satisfy all tasks submitted to the system. In fact, 

because we record the total delay between the time a task is 

submitted and the time it is scanned we can estimate the 

sample rate performance of the system. For tasks associated 

the with 7 elevation sector scans (N2, R2, E2, and O1), the 

average sample rate was 55.26 seconds between scans (thus 

satisfying the once per minute required sample rate of R2 

and E2, and more than satisfying the once per 2.5 minute 

sample rate requirement of N2 and the once per 5 minute 

requirement of O1). For tasks associated with numerical 

weather prediction rule R3, the average sample rate was 3.55 

minutes between scans, thus beating the once per 10 minute 

sample rate requirement. The reason rules such as R3 are 

oversampled is that time-triggered rules are always active, 

i.e., even when they are not due for scanning they are given 

a small but non-zero utility score (recall Section IVb). 

Hence, when there are no high utility tasks due for scanning 

at a given heartbeat, the system will not sit idle, but will 

generate scans of these low utility tasks. 

B. Sit-and-Spin Algorithm Performance 

To show the advantages of the DCAS approach of targeted 

sector scanning we compared its performance to the so-

called sit-and-spin scanning algorithm. Sit-and-spin 

scanning can be viewed as the no control case – the sit-and-

spin strategy simply repeating 360° sweeps of the lowest 2 

elevations with every heartbeat. The results were obtained 

by replaying the tasks generated during the 16 August 2006 

storm event through the MC&C while we operated it in sit-

and-spin mode. Except for the fact that we did not use the 

output of the optimization to generate the beam steering 

commands, sit-and-spin went through all the same steps of 

task generation, task utility assignment, and resubmission of 

unsatisfied tasks as used by our sector scanning algorithm. 

Over the 2.5 hours of the storm, 8287 tasks – or an 

average of 28.1 tasks per heartbeat – were submitted to the 

sit-and-spin algorithm for satisfaction. Of these, only 7% 

were satisfied at any given heartbeat. As expected, only the 

360 tasks (rules N1, E1, and O1) were satisfied. Because sit-

and-spin never tilts beyond the second elevation, no task 

requiring a scan of all 7 elevations could be even partially 

satisfied (due to the elevation constraint in Section IV). The 

resubmission of these unsatisfied tasks from one heartbeat to 

the next explains why sit-and-spin had so many more tasks 

than the sector scanning algorithm. 

 
VI. CONCLUSIONS 

This paper described an architecture and algorithms for 

distributed collaborative adaptive sensing (DCAS) of the 

atmosphere. The architecture is a closed-loop feedback 

design that combines the real-time context (feature 

detections and other GIS inputs) with expert defined 

knowledge (rules) to generate an optimization problem on-

the-fly. Solving the optimization problem gives a 

preferential allocation of the sensor resources to get the best 

scans of the tasks that the end-users have indicated are the 

most important to scan. This is one of the primary 

advantages of DCAS sensing – rather than sensing 

everything in a sit-and-spin manner, sense only those 

phenomena that the end-users have indicated are important 

to their data needs. By limiting what is sensed, higher 

quality measurements are possible due (e.g., due to the 

ability to dwell longer, scan more elevations, obtain better 

multi-Doppler coordination, and sample at higher rates). 

The MC&C design described in this paper deals primarily 

with the problem of deciding where to point the radars in a 

DCAS network. Exciting ongoing work within the CASA 

MC&C group includes distributing the optimization which is 

currently centralized; adding sensing criteria such as signal-

to-noise (SNR) feedback to pick the least attenuated radar(s) 

for a scanning task; incorporation of other sources of GIS 

information such as NEXRAD detections; adding 

nowcasting for short term predictive capabilities; addition of 

dual-PRF capabilities to the radars for improved detection 

performance; and the ability to adapt dwell time (via varying 

azimuthal scan rate) in response to the observed weather. 

Also being explored is the design of revolutionary new 

network-centric scanning strategies that exploit capabilities 

that can only be realized by coordinated multi-Doppler 

scanning such as network based attenuation correction and 

velocity estimation (cf. [13]); and MC&C designs for future 

CASA IPs, which will use advanced phased array radars 

under development by CASA with their “zero intertia” 

instantaneous beam pointing and their ability to obtain high 

quality even at high scan speeds. 

With IP1 operational, our end-users are now evaluating 

 
Fig. 4. Number of tasks in the system at each heartbeat. 



 

 

 

the data quality being obtained under the end-user scanning 

rules. As they become familiar with the new paradigm of 

targeted sector scanning this will surely suggest new 

scanning strategies and new rules to execute them. Under a 

new supplement to the CASA grant, we have also started 

research to incorporate the socioeconomic value of CASA 

data into our end user policy and resource allocation 

algorithms. This is involving the development of an 

integrated decision model of the end-to-end IP1 system to 

quantitatively link “upstream” technical capabilities, such as 

targeted sector scans of the bottom 1km of the troposphere, 

to their impacts on “downstream” responses such as NWS 

warning decisions, EM risk communication, public response, 

and the resulting incremental socioeconomic impacts. This 

end-to-end model will allow us to identify those DCAS 

capabilities and end-users that provide greatest 

socioeconomic value. 
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