
Understanding the effects of search constraints on structure learning

Michael Hay, Andrew Fast, and David Jensen
{mhay,afast,jensen}@cs.umass.edu

University of Massachusetts Amherst
Computer Science Department

Technical Report No. 07-21

April, 2007

Abstract

Recently, Tsamardinos et al. [2006] presented an algorithm for Bayesian network structure learn-
ing that outperforms many state-of-the-art algorithms in terms of efficiency, structure similarity and
likelihood. The Max-Min Hill Climbing algorithm is a hybrid of constraint-based and search-and-score
techniques, using greedy hill climbing to search a constrained space of possible network structures. The
constraints correspond to assertions of conditional independence that must hold in the network from
which the data were sampled. One would expect that constraining the space would make search both
faster and more accurate, focusing search on the “right” part of the space. The published results indicate,
however, that the resulting structures are less accurate when search is constrained. We reproduce these
results and explain why they occur. At small samples, the statistical test of conditional independence
has low power, which causes the algorithm to exclude edges between dependent variables. Also, the con-
straints make search relatively harder, leading to errors in edge orientation. In an unconstrained space,
search can “repair” these errors by adding in extra edges. We conclude by proposing and evaluating an
improved algorithm.

1 Introduction

There are two broad classes of Bayesian network structure learning algorithms: search-and-score methods
seek a structure that best fits the given training data; constraint-based techniques try to infer the structure
of the generating Bayesian network through tests of conditional independence. The two classes of algorithms
use different criteria for selecting a structure. Constraint-based algorithms can be thought of as structure
matching : they rule out structures that assert conditional independence relations that are not supported by
data. In contrast, search-and-score techniques are distribution approximating : scoring structures by their fit
to the data, penalizing for unwarranted complexity.

Recently, Tsamardinos et al. [2006] presented a hybrid algorithm that attempts to satisfy both of these
objectives. The algorithm, called Max-Min Hill Climbing (MMHC), outperforms many state-of-the-art
algorithms along three measures: efficiency, likelihood and structure similarity. The published results show,
however, that unconstrained greedy search finds structures with higher likelihood. This is surprising, as
the intuition behind the algorithm is that the search is focused only on the candidate structures that are
consistent with conditional independence relations observed in the training data.

We observe that there are two main causes for the lower performance of the MMHC algorithm. At small
samples, its statistical test of conditional independence has low power, which causes the algorithm to exclude
edges between variables that are in fact dependent (type II errors). Second, while the constrained search
space that MMHC considers does contain good structures, the constraints make it relatively harder to search
than the unconstrained space. Specifically, the scoring metric used to evaluate structures during learning
cannot distinguish the orientation of the edge, leading to errors. Unconstrained search can “repair” these
errors by adding in extra edges; in the constrained space, such edges are forbidden by the constraints.

Using experimental analysis on several real-world networks from a diverse set of domains, we provide evi-
dence supporting the above conclusions and eliminate several other plausible explanations. We outline some

1

possible improvements to the MMHC algorithm that could allow it to achieve the likelihood performance of
Greedy Search while retaining its efficiency, and provide experimental evidence that one of the improvements
works well. We conclude with a discussion of implications for Bayesian network structure learning.

2 Background

A Bayesian network structure is compact encoding of all of the conditional independence relations among
a set of variables Pearl [1998]. The structure of the network is a directed acyclic graph G whose vertices
correspond to the variables. Two variables Xi and Xj are conditionally independent if there exists a set of
variables Z such that

Pr[Xi | Xj ,Z] = Pr[Xi | Z]

There is an edge between two variables if and only if there is no set of variables that makes them conditionally
independent. We refer to the endpoints of the edge as parent and child, where the edge is directed from the
parent to the child.

The structure implies a factorization of the joint probability distribution of the variables

Pr[X1, . . . , Xn] =
n∏

i=1

Pr[Xi | π(Xi)]

where π(Xi) denotes the set of parents of Xi in G. A given structure defines a family of distributions. To en-
code a particular probability distribution, we must specify the local probability distributions Pr[Xi | π(Xi)].
Both the structure and the local probability distributions (parameters) can be learned from data, see e.g.,
[Heckerman et al., 1995] for more details. In this paper, we focus on methods for learning the structure of
networks from data.

2.1 Structure Learning Algorithms

The task of structure learning is to recover the Bayesian network structure from a set of samples drawn from
the distribution. There are two primary types of structure learning algorithms identified in the literature:
search-and-score and constraint-based approaches. The algorithms we consider here are designed for fully
observed samples of discrete data. Buntine [1996] provides a review of the literature.

The search-and-score approach poses structure learning as an optimization problem. These techniques
use a search algorithm (such as greedy local search) to to find a network that optimizes the scoring function
within the vast (super-exponential) space of possible Bayesian networks. The scoring function measures how
well the network fits the training data. Possible scoring functions include the a posteriori probability of the
network, penalized likelihood scores, and information theoretic measures [Buntine, 1996]. In this paper, the
algorithms use the popular BDeu metric to score structures during learning [Heckerman et al., 1995]. Under
certain conditions, the BDeu score corresponds to the a posteriori probability of the network structure given
the training data. This score is also likelihood equivalent. It assigns the same probability to networks that
encode the same distribution, meaning some edges can be reversed without affecting the score.

Constraint-based approaches use either a statistical test or information-theoretic measure to asses the
level of conditional independence between variables [Spirtes et al., 2000]. As each conditional independence
constraint is identified, only networks that are consistent with the current set of constraints set are retained.

2.2 Evaluating the Quality of Learned Structures

A commonly used measure of performance is log-likelihood on sample test data. Given a fixed network
structure and a set of training instances, the posterior distribution of the joint probability has a closed form
solution (under the same assumptions as those underlying the BDeu metric) [Heckerman et al., 1995].

The structural Hamming distance (SHD) is a measure that compares the learned structure to the “gold
standard” structure that generated the data [Tsamardinos et al., 2006]. SHD is the total of three types of
errors – extra edges, missing edges, and reversed edges. It treats edges uniformly, even though some may
connect only weakly dependent variables and have little effect on the probability distribution encoded by
the network.

2

We can treat the distribution encoded by a structure as a function of the training data and decompose
its performance on test data into bias and variance. The bias of the structure is analogous to a weighted
SHD — edges are weighted by the strength of dependence between the variables it connects — although bias
does not penalize for excess structure. This is captured by variance, which measures structure’s sensitivity
to the training data.

During learning, algorithms are selecting structure that balances bias and variance. Relating this to the
operators of the search-and-score algorithms: adding an edge can only reduce bias and increase variance.
Deleting an edge or not adding an edge that is in the true structure increases bias and reduces variance.
Changing the direction of an edge can affect both bias and variance, depending on the other edges in the
structure. Scoring functions like BDeu score attempt to control for variance by penalizing complexity (in
terms of number of parameters).

2.3 Max-Min Hill Climbing

The Max-Min Hill Climbing (MMHC) algorithm combines both the search-and-score and constraint-based
techniques into a single hybrid algorithm [Tsamardinos et al., 2006]. The first phase of MMHC identifies an
undirected graph called a ‘skeleton’ which has an edge for each pair of dependent variables. To construct
the skeleton, the algorithm iterates over possible neighbors and assesses the minimum association between
the target node and the candidate neighbor. The Max-Min Heuristic is used to select the variable that
maximizes the the minimum association with the target node at each step. Once all possible neighbors have
been identified, candidate neighbors that are conditionally independent of the target node are removed.

Conditional independence can be assessed using a statistical test on the training data. This test assumes
independence and rejects the null hypothesis when two variables can be shown to be conditionally dependent.
The conditional independence tests are not run when the counts of the cells of the corresponding contingency
table do not exceed a specified threshold, in this case when the average number of instances per parameter
is below five. When the threshold is not met, dependence is assumed between the target node and the
candidate neighbor.

The statistical power of these tests depend on the amount of data, level of association, and the p-value
cutoff uses to asses dependence. Given two variables that are conditionally dependent, this test will make
the right choice under two conditions. If there is sufficient data to show the association, it will reject the
null hypothesis at the given p-value. If there is insufficient data (according to the threshold), it will elect
not to run the test and (correctly) assume dependence. However, if association is weak and/or the sample
size small, the test may fail to reject the null hypothesis (type II error) and assume indepdence.

The second phase of MMHC is used to select which edges will appear in the final network and to orient
the edge directions based on the network skeleton identified in phase 1. MMHC uses a greedy search that is
constrained to edges identified during phase 1, no additional edges can be added though not all edges in the
skeleton may be chosen by greedy search. The algorithm uses the BDeu score as the scoring metric (with a
uniform prior on network structure).

3 Hypotheses

There are at least three possible explanations for why MMHC performs worse, as measured by log-likelihood,
than Greedy Search. In this section we outline these hypotheses and make connections, where appropriate,
to previous work.

3.1 Low Power

The first hypothesis is that the skeleton-construction phase of MMHC commits errors and thus the constraints
imposed on the search space eliminate the structures that could achieve the highest likelihood given the
training data.

The skeleton network produced by the first phase of MMHC can contain two kinds of errors. A false
positive error is an edge in the skeleton connecting variables that are conditionally independent. Such errors
stem from two causes: a type I error in the statistical test (rejecting the null hypothesis of independence
when it is true), and by default when the algorithm elects not to apply the test in cases of data sparsity.

3

!a" !c"!b"

Figure 1: A simple example illustrating the bias-variance tradeoff in structure learning. Assuming the data
is sampled from structure (a), this structure has no bias and high variance. Networks (b) and (c) are lower
variance, biased approximations. Network (c) might represent the best tradeoff.

False positives only expand the search space (making the space MMHC considers more closely resemble the
space of Greedy Search) and therefore cannot explain why MMHC finds lower performing structures than
Greedy Search.

False negative error is the absence of an edge between dependent variables. Despite the claims of
Tsamardinos et al. [2006], such errors can (and do) occur. They are caused by type II error in the statistical
test (discussed in Section 2.3). This behavior occurs when the sample is too small to detect dependence,
but large enough to pass the arbitrary threshold of 5 instances per parameter. In this region, the statistical
test has low power. The search phase of MMHC cannot correct false negative errors because the search only
considers edges that are present in the skeleton. False negatives could be the cause of the lower performance
of MMHC, because the search phase cannot correct these errors since it only considers the edges in the
skeleton.

3.2 High Variance

Assuming the errors committed in the first phase do not have a substantial impact on performance, a second
explanation is that the best structures lie outside the constrained search space. Because the structure that
generated the data lies within the constrained space, this hypothesis implies that there are better structures
than the generating one.

Whether this occurs depends, in part, on the number of training samples and the complexity of the
network and is best understood by considering the bias and variance of the structure and how they impact
performance. Consider the example in Figure 1. The generating structure (Fig. 1 (a)) has no bias, so
its expected performance is a function solely of its variance. As sample size decreases, the variance (and
consequently error) increases. It is possible that there is a better performing structure that trades off a small
amount of bias for a large reduction in error. Two examples are shown: Figure 1 (b) certainly has lower
variance, but may have too much bias and Fig. 1 (c) may be the best tradeoff. Observe that the network in
Figure 1 (c) includes an edge between variables that are conditionally independent (in the true structure),
which means that it lies outside the space of networks considered by MMHC, assuming the algorithm makes
no Type I errors.

3.3 Hard Search

The final hypothesis is that the constrained search space does contain good structures, but this space is
harder to navigate than the unconstrained space. We outline two possible ways in which the constraints
could interact with search.

3.3.1 Overfitting

The BDeu metric, which is used to score a candidate structure during search, penalizes for complexity using
an arbitrary parameter (the equivalent sample size). If this parameter is set too low, the structure can overfit
the data. Since Greedy Search and MMHC use the same scoring metric, this would affect both algorithms.
However, the magnitude of the effect could be partially determined by the search space such that it is more
severe for MMHC.

4

! "

#

$!%

! "

#

$"%

& '

()

Figure 2: This example illustrates how constrained search may get stuck at a local maxima. The true
structure is (a) and we depict the search process in (b). Starting from an empty graph, the BDeu score
of adding edge (1) is the same as the score of adding (3); similarly for edges (2) and (4). If the algorithm
chooses randomly, one quarter of the time edges (2) and (3) will be selected. In the constrained space, this
is a local maxima; in the unconstrained space, the dashed edge can be added to capture the dependency
between X and Y given Z.

3.3.2 Misdirected Edges

A virtue of the BDeu metric is that if two structures are equivalent (assert the same set of conditional
independence relations) then they have equivalent BDeu scores. We hypothesize that in certain situations,
this virtue can become a vice. Because the score is agnostic about edge direction, a sequence of search
operations can lead to a structure that is sub-optimal, but cannot be improved with a single operation.
When search evaluates adding an edge between two endpoints, the edge will receive the same score in either
direction (unless it is compelled by other edges incident to the endpoints). The search algorithm chooses
randomly among successors having tied scores. If it breaks ties incorrectly, then it can end up at a state
where no single edge modification can result in a better score. An example is shown in Figure 2. Observe
that these states may not be local maxima in the unconstrained search space, because “repair” edges can be
added between the parents of a child.

4 Experimental Design

To replicate the findings of Tsamardinos et al. [2006], we base several facets of our experimental design
(datasets, sample sizes, and some performance measures) on their approach. Below we describe the networks
and the datasets sampled from the networks. Then we discuss evaluation metrics. Finally we discuss the
algorithms, all of which are variations on greedy search. The networks, data, and algorithms are publicly
available at [Hay et al., 2007].

4.1 Networks and Datasets

We evaluate the structure learning algorithms on five Bayesian networks that cover a number of different
domains such as medical diagnosis, insurance risk, meteorology, and agriculture (see Table 1). This is a
subset of the networks evaluated in Tsamardinos et al. [2006]. We limited our study to the networks that
(a) were available in the Bayesian network repository [Bayesian Network Repository, 1997] and (b) were
relatively small (under 100 variables) due to the computational expense of Greedy Search. For each network,
we generated random samples of varying size (500, 1000, 2000, and 5000) for use in training. To assess how
well the learned structure approximates the generating distribution, we measured the log-likelihood of a large
test sample (500,000 instances). Performance measurements were averaged over five training samples at each
sample size. This leads to a total of 100 trials (5 datasets, 4 sample sizes, 5 runs for each dataset-sample
size combination).

4.2 Algorithms

The two main algorithms under investigation are unconstrained greedy search (uGS) and MMHC, which
we denote in this context as cGS(̂neighbors). This notation indicates that the algorithm performs a greedy
search constrained to add edges only between neighbors, which in the case of MMHC are estimated from data.

5

Table 1: A Summary Of The Bayesian Networks Used.

Network No. No. In/Out Domain

Vars. Edges Degree Size (Avg.)

Alarm 37 46 4/5 2-4 (2.8)

Barley 48 84 4/5 2-67 (8.8)

Hailfinder 56 66 4/16 2-11 (4.0)

Insurance 27 52 3/7 2-5 (3.3)

Mildew 35 46 3/3 3-100 (17.6)

To differentiate between the hypotheses, we also analyze the performance of several variants of constrained
greedy search. The variations come from allowing the search to consult an oracle, who knows the structure
of the Bayesian network from which the data is sampled. The algorithm cGS(neighbors) is identical to
cGS(̂neighbors) except that the correct neighbors are provided by the oracle. cGS(parents) can construct
any network that contains a subset of the edges in the generating network. It is identical to cGS(neighbors)
except that edge direction is also specified by the oracle. Analogously, cGS(ancestors) is the same as uGS
except edge direction is specified by the oracle. Finally, cGS∗(neighbors) can in principle add an edge in
either direction between any pair of neighboring vertices. However, the algorithm consults the oracle when
it needs to break ties among successor states: if the best operation is to connect two variables, but the score
is the same whether the edge is oriented from parent to child or child to parent, the algorithm consults the
oracle. If there is no tie, i.e., one direction scores higher than the other, the edge will be added even if it is
misdirected.

5 Experimental Results

For exposition purposes, we present results specific to each hypothesis. A complete assessment of performance
is available in the Appendix.

5.1 Low Power

To evaluate the low-power hypothesis, we compare the performance of cGS(neighbors) to the performance
of cGS(̂neighbors) and uGS. Because cGS(neighbors) consults an oracle to build the skeleton network,
the skeleton contains no missing edges and so has no errors due to low power. Figure 3 compares the
log-likelihood of the three algorithms. As the figure illustrates, on some datasets (Alarm, Barley, Insur-
ance), having the correct skeleton provides substantial reductions in error. However, on all datasets uGS
outperforms cGS(neighbors), indicating that constraining the search space leads to lower performance.
The results on the Mildew data are anomalous in that cGS(neighbors) performs significantly worse than
cGS(̂neighbors), meaning that correcting the errors in the neighbor sets actually hurt performance. Because
of the high cardinality of many the variables in Mildew, there is not enough data for cGS(̂neighbors) to
perform conditional indepdence tests. Thus, on this dataset, cGS(̂neighbors) adds few constraints to the
search space.

5.2 High Variance

To illustrate the effect of variance, Figure 4 compares the log-likelihood performance of the structure that
generated the data to the structures learned by the algorithms. We emphasize that this is distinct from
the likelihood of the generating distribution, which has the highest likelihood on the test data (indicated by
true BN in the figures). In this context, the learned structure is treated as a function of the training data;
the distribution encoded depends on what samples are observed in the training data. At small sample sizes
in all of the datasets except Alarm, the true structure has lower performance than the learned structures.
Since the true structure is unbiased, the low performance is due entirely to variance.

6

alarm barley hailfinder insurance mildew

true BN n=5000

alarm barley hailfinder insurance mildew

true BN n=2000

alarm barley hailfinder insurance mildew

true BN n=1000

alarm barley hailfinder insurance mildew

true BN n=500

Figure 3: A comparison of three algorithms —
from left to right cGS(̂neighbors), cGS(neighbors),
uGS — in terms log-likelihood performance on
five datasets at four different sample sizes. Each
bar represents an average (with standard error
also shown) over five training sets. Each sub-
plot is scaled based on the likelihood of the data
given the true Bayesian network. The substantial
gain in performance between cGS(̂neighbors) and
cGS(neighbors) provides evidence for the hypothe-
sis that cGS(̂neighbors) makes significant errors due
to low power.

alarm barley hailfinder insurance mildew

true BN n=5000

alarm barley hailfinder insurance mildew

true BN n=2000

alarm barley hailfinder insurance mildew

true BN n=1000

alarm barley hailfinder insurance mildew

true BN n=500

Figure 4: A comparison of the log-likelihood of
the true structure, cGS(parents), cGS(ancestors),
uGS. The low performance of the true structure
at small samples indicates high variance. On most
datasets, high-performing structures are found both
within the constrained space (cGS(parents)) and
outside (cGS(ancestors)).

At small samples, variance becomes a factor and the second hypothesis is concerned with whether struc-
tures with low variance and high performance lie within the constrained search space. We analyze this
question by comparing two algorithms that are well equipped to trade off reduction in variance with increase
in bias. They differ in that one (cGS(parents)) is confined to the search space that MMHC is designed to
search and the other (cGS(ancestors)) is unrestricted, much like Greedy Search. Both consult an oracle to
direct the edges, thereby factoring out any error due to edge misdirection. Results are shown in Figure 4.
On four of the five datasets, cGS(parents) and cGS(ancestors) are the highest performing algorithms and
their performances are indistinguishable from one another. Both contain substantially fewer edges than the
true structure, yet this increase in bias is clearly worth the reduction in variance that it provides. On these
datasets, the results indicate that good structures lie within the constrained search space that MMHC is
designed to search.

On the fifth dataset, Mildew, we observe that cGS(parents) performs significantly worse than both

7

cGS(ancestors) and uGS. This suggests that in this domain, achieving a good balance between bias and
variance involves more than simply dropping edges from the true structure. cGS(ancestors) is able to
reduce the bias, without greatly increasing variance, by adding in a few key extra edges. These findings are
consistent with the fact that Mildew appears to be the most complex probability distribution, given that its
variables have high domain cardinalities and fan-in (no. of parents) comparable with the other networks.

5.3 Hard Search

The first two hypotheses cannot fully explain the gap in performance between cGS(neighbors) and uGS. We
next evaluate the remaining hypothesis that the constrained space is harder to search than the unconstrained
space.

5.3.1 Overfitting

To assess the overfitting hypothesis, we compare cGS(neighbors) and uGS both in terms of their performance
on the test data and their BDeu scores on the training data. If the network that cGS(neighbors) produces
has a higher score on the training data than the network produced by uGS, yet has lower performance on the
test data, then overfitting has occurred. This event occurred only in 2 out of 100 trials, strongly suggesting
that overfitting is not the cause.

5.3.2 Misdirected Edges

Our final hypothesis — that the search misdirects edges and cannot recover from these errors in the con-
strained space — is evaluated by empowering cGS(neighbors) with an ability to distinguish edge orientation
under certain conditions. The cGS∗(neighbors) algorithm consults the oracle whenever it needs to break ties
among successor states: if the best operation is to connect two variables, but the score is the same whether
the edge is oriented from parent to child or child to parent, the algorithm consults the oracle. (This is distinct
from cGS(parents), which does not even consider misdirected edges.) The cGS∗(neighbors) algorithm does
well, with performance comparable to or better than uGS, as shown in Figure 5.

5.4 Discssion of Results

To summarize, the results indicate that MMHC’s independence tests are far from perfect, but that correcting
those tests alone cannot account for the performance gap. Furthermore, they show conclusively that high-
performing structures for small samples differ significantly from the true structure. Though those structures
exist within the space searched by MMHC, the algorithm does not routinely find them. Correcting errors
in edge detection closes the performance gap by successfully keeping the search algorithm away from local
maxima.

6 Improved Algorithm

As the experimental results indicate, the MMHC algorithm can be improved along two dimensions. The
first is adjusting for low statistical power. We focus here on the second area of improvement: modifying the
search phase so that it has an opportunity to “repair” its mistakes in edge misdirection. The constraints
learned in the first phase of the algorithm combined with the (unavoidable) mistakes in edge direction have
the effect of boxing in search such that with only the search operations of adding, deleting or removing a
single edge, search cannot escape local maxima.

Several remedies are possible for this second problem. Expanding the set of search operators by including
operations that simultaneously modify multiple edges may help. More complex operators are considered
by Chickering [2002] and Moore and Wong [2003].

Second, the constraints learned in the first phase of the algorithm could be revised during search so that
they reflect the conditional independence assertions of the current network structure. A third remedy is to
relax the constraints altogether once the algorithm reaches a local maximum, performing an unconstrained
search from where the constrained search leaves off.

8

alarm barley hailfinder insurance mildew

true BN n=5000

alarm barley hailfinder insurance mildew

true BN n=2000

alarm barley hailfinder insurance mildew

true BN n=1000

alarm barley hailfinder insurance mildew

true BN n=500

Figure 5: This plot shows likelihood for the algorithms, from left to right, cGS∗(neighbors), cGS(neighbors),
uGS. The results illustrate how the remaining performance gap between cGS(neighbors) and uGS can be
closed by resolving ambiguity about edge orientation.

We evaluated this last remedy based on two goals: we desire a solution should have the accuracy of Greedy
Search (measured here by log-likelihood), yet the efficiency of MMHC (measured here by runtime). Table 2
depicts the results. The remedy is denoted as MMHC+. The table presents the runtime of both Greedy
Search and MMHC+ normalized by the runtime of MMHC and the likelihood of MMHC+ and MMHC
normalized by the likelihood of Greedy Search. Thus a number less than or equal to 1 indicates that MMHC+

is matching the performance of the better algorithm for that measure. The results are encouraging, in that
the remedy has the accuracy of Greedy Search yet is considerably more efficient. However, it remains slower
than MMHC, in some cases by an order of magnitude. Furthermore, these networks are fairly small (less
than one hundred variables) and the solution may not scale to larger networks as well as MMHC has been
shown to do.

7 Conclusions

One conclusion we draw from this analysis is a commentary on the objective of structure learning. As
indicated by the use of measures such as SHD, many view the objective as learning the structure of the
distribution that generated the data. We argue that the objective should be to learn the best structure
given the size of the sample. The best structure is not always the generating structure, because its poste-
rior distribution may have high variance. Thus evaluating algorithms based on the extent to which their
output matches the generating network can cloud the picture. We emphasize that this is not a critique
of constraint-based algorithms, but an acknowledgment that for the algorithm to find high-performance

9

Table 2: Timing and likelihood results evaluating the proposed remedy to the search challenges faced by
MMHC. The measures are normalized such that a score of one indicates performance on par with the best
algorithm for that measure.

Network Time
MMHC+ GS MMHC

Alarm 10.00 15.58 1.00
Barley 3.52 8.32 1.00
Hailfinder 2.94 6.33 1.00
Insurance 3.69 5.33 1.00
Mildew 1.11 1.34 1.00

Inverse Likelihood
MMHC+ GS MMHC

Alarm 0.93 1.00 3.69
Barley 1.15 1.00 1.9
Hailfinder 1.00 1.00 1.26
Insurance 1.05 1.00 2.65
Mildew 0.99 1.00 1.02

structures, it must gracefully approximate its objective at small sample sizes. As we observe in the MMHC
algorithm, the constraints can interact with search in some unexpected ways, leading to lower performance
than unconstrained search. There are remedies as we have shown and in future work, we intend to explore
them in more depth. Finally, our conclusions suggest that any knowledge which constrains the search space
of Bayesian net structures, even if it is accurate, could reduce the likelihood of the learned network.

Acknowledgements

The authors wish to thank Laura Brown for clarifying some aspects of the MMHC implementation, and Cindy
Loiselle for helpful comments. This research is supported by NSF under contract number IIS-0326249. The
U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstand-
ing any copyright notation hereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements either expressed or
implied, of NSF or the U.S. Government.

References

Bayesian Network Repository, 1997. URL http://www.cs.huji.ac.il/labs/compbio/Repository/.

W. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Trans. on
Knowledge and Data Eng., 8(2):195–210, 1996.

D. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning
Research, 2:445–498, 2002.

M. G. Hay, A. Fast, and D. Jensen. Supplemental materials. URL http://www.cs.umass.edu/∼mhay/
uai2007/. 2007.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge
and statistical data. Machine Learning, 20(3), 1995.

A. Moore and W.-K. Wong. Optimal reinsertion: A new search operator for accelerated and more accurate
Bayesian network structure learning. In Proc. of the 20th Intl. Conf. on Machine Learning, 2003.

10

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann, 1998.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, 2000.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure
learning algorithm. Mach. Learn., 65(1):31–78, 2006.

A Complete Results

Tables 3-7 summarize the log-likelihood performance of all the algorithms. Each value shown is the average
log-likelihood over five different training datasets.

Table 3: Comparison of Log-likelihood on Alarm.

Algorithm Log-likelihood
SampleSize 500 1000 2000 5000
generating distribution -5249834.689 -5249834.689 -5249834.689 -5249834.689
generating structure -5394927.109 -5329284.13 -5293447.054 -5270458.703
cGS(parents) -5393395.165 -5325888.933 -5291459.512 -5269345.863
cGS(ancestors) -5413906.855 -5335577.956 -5293112.573 -5269749.651
cGS(neighbors) -5504311.931 -5403162.07 -5357283.585 -5344450.835
cGS∗(neighbors) -5403990.054 -5330496.137 -5291459.512 -5269345.863
cGS(̂neighbors) -5988050.293 -5654636.86 -5432599.99 -5385686.447
MMHC+ -5525506.293 -5393923.617 -5313667.113 -5278489.472
uGS -5514515.974 -5389569.768 -5313457.486 -5290023.568

Table 4: Comparison of Log-likelihood on Barley.

Algorithm Log-likelihood
SampleSize 500 1000 2000 5000
generating distribution -24161905.91 -24161905.91 -24161905.91 -24161905.91
generating structure -32750557.33 -30806363.71 -29057663.7 -27176643.62
cGS(parents) -27598369.11 -26122188.2 -25344161.39 -24903437.13
cGS(ancestors) -27589521.53 -26124796.82 -25341051.95 -24904925.51
cGS(neighbors) -28839255.6 -27384133.54 -26658930.52 -25910972.57
cGS∗(neighbors) -27574075.63 -26052713.1 -25369517.63 -24890539.27
cGS(̂neighbors) -29356008.95 -27467644.6 -27375134.07 -27060733.81
MMHC+ -28081502.93 -26853067.25 -26160473.79 -25429556.24
uGS -28071062.5 -26871179.49 -26204322.65 -25305512.44

11

Table 5: Comparison of Log-likelihood on Hailfinder.

Algorithm Log-likelihood
SampleSize 500 1000 2000 5000
generating distribution -24556047.51 -24556047.51 -24556047.51 -24556047.51
generating structure -25941735.34 -25424878.9 -25060170.93 -24748628.49
cGS(parents) -25390151.32 -25009928.96 -24833091.09 -24699908.27
cGS(ancestors) -25395489.4 -25007043.78 -24837502.67 -24690584.63
cGS(neighbors) -25486332.43 -25099589.74 -24958362.12 -24789338.1
cGS∗(neighbors) -25343405.41 -25039862.14 -24831744.79 -24699908.27
cGS(̂neighbors) -25522514.51 -25153273.92 -25058144.46 -24803284.29
MMHC+ -25382718.23 -25065256.88 -24868981.4 -24685110.52
uGS -25366100.53 -25056041 -24865055.39 -24709709.08

Table 6: Comparison of Log-likelihood on Insurance.

Algorithm Log-likelihood
SampleSize 500 1000 2000 5000
generating distribution -6543159.764 -6543159.764 -6543159.764 -6543159.764
generating structure -6815442.149 -6692112.909 -6620018.142 -6573588.417
cGS(parents) -6789882.433 -6686592.63 -6614929.167 -6576866.762
cGS(ancestors) -6792998.65 -6688048.39 -6615901.498 -6577141.369
cGS(neighbors) -6858464.296 -6787422.369 -6657643.984 -6593527.387
cGS∗(neighbors) -6817613.921 -6695915.881 -6613391.331 -6575902.793
cGS(̂neighbors) -7142084.918 -6936003.099 -6865994.987 -6817494.271
MMHC+ -6876608.101 -6723817.319 -6640856.95 -6600424.895
uGS -6843069.284 -6741495.557 -6652735.146 -6604564.169

Table 7: Comparison of Log-likelihood on Mildew.

Algorithm Log-likelihood
SampleSize 500 1000 2000 5000

generating distribution -19539886.84 -19539886.84 -19539886.84 -19539886.84
generating structure -28432609.82 -25858455.11 -23559877.02 -21544543.28

cGS(parents) -25018013.99 -24104541.24 -23376189.09 -21938155.52
cGS(ancestors) -24592510.3 -23508470.37 -22785801.66 -21989533.88
cGS(neighbors) -25190133.96 -24506863.16 -23707861.82 -22482429.37
cGS∗(neighbors) -25028839.46 -24161792.15 -23367465.54 -21938279.1
cGS(̂neighbors) -24661412.66 -23839751.54 -22912020.33 -22404843.31

MMHC+ -24661412.66 -23727717.46 -22821545.3 -22150557.25
uGS -24696935.94 -23731812.86 -22915396.78 -22118569.19

12

