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A"S$%A&$
We present a family of algorithms to uncover !"#$%&4groups of
individuals who share unusual sequences of affiliations. While
much work inferring community structure describes large-scale
trends, we instead search for small groups of tightly linked
individuals who behave anomalously with respect to those trends.
We apply the algorithms to a large temporal and relational data set
consisting of millions of employment records from the National
Association of Securities Dealers. The resulting tribes contain
individuals at higher risk for fraud, are homogenous with respect
to risk scores, and are geographically mobile, all at significant
levels compared to random or to other sets of individuals who
share affiliations.

&ategories and Sub3ect Descriptors
D.2.8 [Database 7anagement]F Database Applications – '(!(
)#*#*+; I.5.1 [9attern %ecognition]F Models – ,!(!#&!#-(.; M.4
[Social and "eha<ioral Sciences].

General $erms
Algorithms, Performance, Design.

>ey@ords
Social networks, dynamic networks, anomaly detection.

A. ID$%EDU&$IED
In relational and social network data sets, social structure among
individuals offers vital explanatory power for prediction tasks.
Achieving a more detailed view of the connections between
entities, particularly in dynamic temporal domains, promises to
aid analyses of the data. This paper seeks to infer close
relationships among certain co-workers, given a database of
affiliation histories. Specifically, we search for groups of
individuals, which we call !"#$%&, that have anomalously similar
job sequences within a large industry. We want to identify
employees who were co-workers at multiple jobs, and to
distinguish those who worked together intentionally from those
who simply shared frequently occurring employment patterns in
the industry.

Relational knowledge discovery [10] exploits connections among
individuals, as well as intrinsic attributes, to find patterns and
make predictions. One notable property in relational, or network-
structured, data sets is autocorrelation, or homophilyF the tendency
of connected entities to have similar attribute values [17].
However, raw data does not always expose the links that account
for these correlations. To create a better view, raw data must be
refined, whether by preprocessing it to identify real-world entities

and their relations [8], or further by inferring latent structure, for
instance at the level of groups or communities [16], [11], [7]. In
this work, we identify finer-grained, strong associations among
individuals in a large, dynamic data set by finding small groups
that are anomalously similar.

This novel task was inspired by a case study, but it can be applied
to a number of domains. The important properties in the scenario
are that individuals are affiliated with organizations, and that the
affiliations change over time. We form a model of “typical”
sequences of affiliations, which allows us to score any given
sequence of affiliations based on its likelihood. Then, for each
pair of individuals, we find the sequence they have in common (if
any) and score it. The score describes the likelihood that two (or
more) individuals shared the given affiliations by chance alone,
under the null hypothesis of independent movement.

Other tasks with this structure includeF finding students that select
classes together, given a table of students and their enrollments;
inferring sets of cars traveling in caravan on a highway, given
sightings at different locations and times; or, discovering family
structure in animal groups, from tagged individuals frequently
sighted together (see Related Work). If we remove the temporal
aspect of the problem and simply require a bipartite graph of
affiliations, then we could generalize the model to find people
with unusually similar tastes in movies, highly related documents
sharing words that rarely co-occur, or friends within an album or
yearbook containing photos of large groups.

Our model is particularly suited to situations with large
organizations, where the original data does not describe
associations among individuals at the desired level of detail. For
instance, in our employment domain from the securities industry,
people often work at branches of thousands. In such cases, we can
benefit from learning a model of typical affiliation patterns. Then,
against this background, small groups doing unusual things stand
out in contrast.

G. 7E$IHA$IED
The National Association of Securities Dealers (NASD) regulates
securities firms in the United States, with responsibility for
preventing and discovering misconduct among its registered
representatives, also called just “reps.” With over 600,000 reps
under its jurisdiction, the NASD must focus its investigatory
resources on those most likely to commit fraud or other violations
of securities regulations. In conversations over the course of
related projects [6][18], NASD representatives suggested that
fraud may be committed by colluding groups of reps that move
together through multiple places of employment. If we could
identify “tribes” of reps moving together from job to job, we
could test them for elevated rates of one or more indicators of



fraud risk. Of course, such tribes will certainly also include
harmless sets of friends that worked together in the industry,
perhaps recruiting one another to new jobs. Our hope is that we
will discover groups in which the reps tend to be homogenousF
mostly low-risk or mostly high-risk.

Our source data is a table of employment historiesF for each rep, a
series of records containing the branch identifier, start date, and
end date for every employment the rep has held in the securities
industry. The data set is large, containing (after some preliminary
cleaning) _4.8 million records describing employments of _2.5
million reps at _560,000 branch offices. The branches range in
size from one to _35,000 employees. The branch identities
themselves have been inferred, through an earlier process of link
consolidation from office addresses [6], from the _22,000 firms
that have ever registered with NASD. The employment histories
span the twentieth century through today, though most records are
from the past fifteen years, and almost a quarter refer to currently
held jobs (as of May 2006). Even though many of the records are
historical4referring to branches and reps no longer under
NASD’s jurisdiction4we use the whole collection.

Two constraints of the real-world data shape our approach. First,
many employment histories include simultaneous, overlapping
jobs or leave gaps between employments (at least, between
employments in this industry). This muddies the concept of a
transition between jobsF a rep does not necessarily leave one job
when starting another, nor vice versa. Overlapping jobs are too
common to consider discarding from the dataF 20c of employees
hold more than one job at some point, and 10c even begin
multiple jobs (up to 16) on the same day. With transition dates ill
defined, we cannot treat job changes as the basic units in the task;
instead, we direct our attention to the times and places that people
have been co-workers.

Iigure A. Jxample LhypotheticalM of branch-branch transition

patterns. $he left-most edge means that PQR of the reps @ho

e<er @orSed at Lthis branch ofM ITD Insurance @ere later
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Second, mass movements of employees between jobs are
common. In addition to continual flows between firms (e.g.,
common career paths within a given city), the businesses changeF
branches are closed or opened, firms merge or are bought. Reps in
this flow could end up being colleagues at multiple organizations
without even knowing each other. We can visualize such trends as
transition diagrams, as in Figure 1, to create a map of the whole
industry. The meaning of the numbers along the edges will be
discussed and refined in Section 3.3; roughly speaking, they
indicate the percentage of employees at one branch that later work
at the attached (destination) branch.

Many of these transition percentages are high, which confirms
that job movement in the industry is not random. Among branches
of fewer than ten employees, about 73c have a destination branch
where at least 90c of the employees later end up. Among larger
branches, 30c of the branches have some destination where at
least 50c of their employees go. These figures increase slightly if
we ask which transitions are popular within a given year4to
spotlight abrupt shifts like mergers4as opposed to throughout the
life of a branch office. This structured transition pattern is exactly
what we hope to factor out in order to find genuinely tight
associations among individuals.

3. A99%EA&V

3.A "asic $ribe-Iinding 9rocess
Formally, we are given a bipartite graph G = (R!O,E) of reps /

0 e"12 "32 42 "*f and organizations 5 g e612 632 42 6)f. Each edge
e ! E is annotated with a time intervalF % g ("#2 672 !&!("!#72 !%*8#7).
Our tribe-discovery process begins with finding all pairs 9#7 g ("#2
"7) of individuals that have ever worked together. This can be a
large list (2.6 billion pairs, in our case), generated simply by
iterating through the branches and recording every pair of reps 9#7
g ("#2 "7) whose employment stints at a branch intersect.

For each pair, we then summarize their co-worker relationships,
keeping track of the jobs where they coincide. We record
additional information, such as the date the reps first coincide at
each job, and the total time spent at overlapping jobs. The
algorithm stores the pairs in a new graph : g (/, ;), where ; g
e9#7f, and each edge is annotated withF

<#7 g e the sequence of jobs e6=2 6>2 4f shared by "# and "7 !
additional information described abovef.

For purposes of efficiency, we retain only the rep pairs that have
at least three jobs in common. This leaves us a graph :? g (/, ;?),
with @/@ g 2.5 million, and @;?@ g approximately 3 million pairs of
individuals that are co-workers multiple timesF the candidates for
tribes.

The algorithm proceeds by identifying all significant pairs. We
compute a score -#7A<#7B for each edge in ;?, measuring how
significant or unusual its sequence of shared jobs is. The rest of
Section 3 discusses the choice of function to use for -#7.

Once the significance scores are computed, we pick a threshold 8
for the scores and retain only edges 9#7 for which -#7 h 8. Then, we
compute the connected components of :?, which are designated
the tribes. The output of the algorithm is a list of tribesF sets of
reps within components of size two or higher in :?.

3.G ScoringW%anSing Iunctions
The choice of scoring methods constitutes the heart of the task.
(Strictly speaking, we only use the scores to create a ranking of
the pairs, so we also use the term “ranking method.”) We propose
and compare several. Given a sequence of jobs, we must decide
whether it is unusual for a pair of co-workers to have worked
together at all of these jobs. Two simple methods for ranking the
pairs areF

• MOjS g the number of jobs in the shared sequence

• kEARS g the number of years of overlap

Computing MOjS is a straightforward count of the job sequence.
For years, we choose to add up the length of each overlap period,



so that if a pair of reps works simultaneously at two branches for
ten years, this counts as twenty years of overlap.

These simple methods treat all branches equivalently. As
described earlier, however, reps in the securities industry do not
behave as if they are picking jobs out of a hat. Instead, they tend
to follow patterns caused by industry events and geographical and
other factors. Accounting for these patterns motivates the
probabilistic models that follow.

3.3 9robabilistic 7odel
In developing a simplified model for the job history data, there is
a tradeoff in how specific to make it. We want the model to
flexibly mimic the characteristics of each branch without exactly
reproducing the original data. In addition, the procedure must be
tractable on a large data set. The process of computing all pairs of
co-workers is time- and space-intensive, so it would be infeasible,
for example, to generate random replicates of the network and re-
compute shared job sequences. Attempting to strike the right
balance, we model rep movement across branches as a
modification of a Markov chain over organizations, ignoring
timing and duration.

If each rep held one job at a time and changed it at each time step,
we could model movement using an ordinary Markov chain, as
follows. Each rep picks a start branch randomly. (Say, all reps
start their careers at the same time; it does not matter for the
eventual model). Then at each step, the rep’s next branch is
decided probabilistically based only on the current branch. We
ignore actual time spent at each job; at each step in the Markov
process, a rep either moves to a new branch, or leaves the
workplace. We also assume transition probabilities are static over
time. If this were our model, then the quantities we would need to
estimate areF

C# g D(start at branch #), and
!#7 g D(transition from branch # to branch 7 m [given that]

currently at branch #).
Then, we could estimate the probability of a rep having any given
job sequence asF

= g D(branch A ! branch j ! branch C ! branch D) g
pA ! tAB ! tBC ! tCD .

The probabilities are straightforwardly estimated usingF
C# g n reps ever at branch # / n reps in database
!#7 g n reps who leave branch # and next go to branch 7

/ n reps ever at branch #.
Using the ordinary Markov chain and the null hypothesis of
independent movement, we would score the sequence of Figure 2
as shown.

1. D(rep 1 holds this sequence of jobs) g =

2. D(reps 1 and 2 each hold this sequence of jobs) g =3.

3. D(some two reps in database hold this sequence of jobs)
follows a binomial distribution, with * g n reps in the
database, and C g =3.

Steps 2 and 3 are monotonic transformations of 1, so if the scoring
function only needs to return a ranking, it is enough to calculate =.
Further, it is not necessary to compute the denominator of C#. For
the example in Figure 2a), the score would be !pA ! tAB ! tBC ! tCD g

(4234)(.005)(.01)(.005) . (The “p5c” of the diagram would be an
exact figure normally. The self-loop of one rep at jranch A is

ignored.) For situations where reps start or end at separate jobs,
we only score the sequence they share.

Iigure G. Xob seYuences to score. Dodes indicate branches and

their sizes. Arro@s leading into a node sho@ the dates the ne@
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If job sequences in the database were as simple as Figure 2a), this
model would be sufficient. However, Figure 2b) is more typical of
the data. The reps in this example start at the same branch, split
apart for a few years, come back together, and then both begin
two jobs at related companies at the same time. To allow for these
more complex situations, we adjust the model in such a way that it
is no longer a Markov chain, but the probability calculations are
almost the same.

The major modification is to allow reps to have different paths
between shared jobs, as is shown near the top of Figure 2b). To do
this, we change the quantity !#7, which describes the probability
that a rep moves to branch 7 immediately after branch #, to a new
quantity E#7, describing the probability that a rep moves to branch 7
(! (*> C6#*! after working at branch #. Now, each E#7 ! !#7, and the
transition probabilities leaving a branch no longer sum to 1
( tij

i

! =1, but vij
i

! !1). We cannot generate sequences as part of

a Markov process using the E#7 probabilities, but we can still score
an existing sequence of jobs using these estimates of how likely
each transition is to occur. For Figure 2b), we then calculate

a) b)



D(Reedbuck ! Pond & River) (a percentage not displayed in the
figure), without regard for the intermediate branches. This
modification is much cleaner than an alternate approach that
might attempt to compute direct transition probabilities along all
possible paths. The drawback is that even in the case of direct
moves we compute with E#7, though !#7 would be more appropriate.
It may be the case that E#7 hh !#7 only for branches 7 that are rarely
reached directly from #, and E#7 ! !#7 for branches 7 that are reached
directly; if so, then the substitution is not a problem.

The other modification is to allow for simultaneous jobs. We treat
the shared job sequences as if they are in a definite order, but the
underlying situations can be complicated. For instance, rep 1 can
start at branch A, then add branch j, while rep j starts at branch
j and later adds branch A. Then the reps overlap at j before they
overlap at A, although rep 1 never left branch j for branch A. Or,
as in Figure 2b), the reps may be at both jells rireo firms
simultaneously, not one after the other. To extend the model to
handle these situations, we replace the quantity E#7, the probability
that a rep moves to branch 7 (! (*> C6#*! (9!%" working at branch #,
with a new quantity F#7, the probability that a rep works at branch
7 (! (*> C6#*! &#)G.!(*%6G& !6 6" (9!%" working at branch #. The
same caveats apply as for E#7F the transition probabilities become
less precise and correct, but can now be used in these more
general situations. The transition probabilities shown in Figure 2,
and later in Figures 4 and 5, are actually F#7 values, so the example
calculation for Figure 2a) is computed as we discussed earlier, but
the meanings of the probabilities are different.

3.^ Iamily of 7odels
The probabilistic scoring model described above, which we refer
to as PROj, treats jobs in a sequence as being ordered by time, but
it does not take into account when the transitions occur. A
transition is considered equally probable whenever it takes place.
We create two variations on the model by changing the treatment
of time.

First, we account for varying transition probabilities. We
hypothesize that the scoring will be more accurate if we can
represent single-event mass movements, as well as changes in
industry patterns over the years. For instance, consider the case
where 30c of reps at branch A eventually move to branch j, but
99c of the reps at branch A in 1997 were seen at branch j later in
1997 after it purchased branch A. So, rather than scoring a
transition based on the probability of a rep moving from branch A
to branch j, we describe a more specific event. Now, the rep is
moving from branch A at time X, to branch j at time k
(specificallyF the rep is first seen at branch A at time X, and then
first seen at branch j at time k which is equal to or later than time
X). Time is divided into bins, with bins representing one year or
more. Each branch has its own bin divisions, depending on the
number of employees at the branch at different years. We allocate
the bins so that there are at least 10 people who worked at each
branch in each bin period, provided the branch has had that many
employees during its history.

The parameters needed for this new model, called PROj-TIMEjINS,
require changing C# and (again) F#7. We now computeF

piX g n reps ever at branch # during time X / n reps in db

yiXjY g n reps ever at branch # during time X and at branch 7

during time k, where k ! X / n reps ever at branch #
during time X

We take the opposite extreme for the second variation. The PROj
model is not very informed about time, as the F#7 values describe
the probability of being at branch 7 anytime after or simultaneous
to being at branch #; only the relative order of # and 7 matter. To
find out how important that directionality of time is, we create a
simpler model, PROj-NOTIME, which ignores even the order of job
moves. For this model, we use the original !pi (again, no need to

compute the denominator), and a (final) transition quantity H#7,
representing the raw number of reps who are at both branches #
and 7 during their careers. There is an ambiguity in this
formulation, in that now we should be able to score a set of shared
branches regardless of the ordered they are presented in; howeverF

transition probability from # to 7 g (H#7 / !pi) ! (H#7 / !p j
) g

transition probability from 7 to #.
As PROj-NOTIME turns out to work almost as well as PROj (see
Section 4) and allows this framework to be applied to situations
without a time ordering, we hope to explore the issue of ordering
the branches in future work. For now, we use the same, temporal
ordering of branches as used in the other methods.

The MOjS ranking falls out as a trivial probabilistic model. If all
branch transitions are considered to have the same probability,
and branches have the same probability for being started at, then
the ranking is equivalent to counting the number of shared jobs.

^. JHA_UA$IED ADD %JSU_$S
Ideal tribes consist of reps that certainly know each other and
have coordinated their movements among jobs. Since we cannot
directly verify the personal relationships among thousands of
securities reps across the country, we evaluate our tribes using
indirect measures. First, we examine structural characteristics of
the tribes produced with the various scoring methods. Then, we
analyze the tribes’ patterns of risk scores and geographic
movement.

^.A $ribes 9roduced
Using the basic process described in Section 3.1, we compiled a
list (the edges ;?) of the 3.07 million pairs of reps in the database
that shared at least three different jobs. We ranked these pairs
using the five scoring functions described in Sections 3.2-3.4F
MOjS, kEARS, PROj, PROj-TIMEjINS, and PROj-NOTIME. All but
MOjS give quasi-continuous values as scores. For these, we can
choose a threshold 8 to keep any desired number of pairs; then,
when we compute the connected components of the pairs, we get
a set of tribes of assorted sizes and a corresponding set of reps in
these tribes. For MOjS, the scores are discreteF all pairs have at
least three jobs, and the maximum number of shared jobs is 25. To
compare the different scoring functions, for each continuous
method we determine a cutoff 8 such that the resulting number of
reps in the tribes matches (t/- 1) the number of reps in tribes
formed with MOjS. Tables 1-3 display structural characteristics of
some tribe sets matched in this manner. We omit these
characteristics for the variations on PROj (PROj-TIMEjINS and
PROj-NOTIME), as they are substantially similar to those for PROj.



$able A. $ribe net@orS structure for XE"S ranSing

XE"S

criteria ` reps

`

pairs

`

tribes

max

tribe

size

` reps in

tribes size G

jobs ! 7 578 495 232 31 374

jobs ! 6 1600 1461 623 32 952

jobs ! 5 6066 7855 2124 101 3188

jobs ! 4 26,152 70,209 7244 1350 10,044

$able G. $ribe net@orS structure for 9%E" ranSing

` reps ` pairs ` tribes

max

tribe size

` reps in

tribes size G

578 336 266 6 464

1600 958 718 13 1240

6066 4072 2591 23 4284

26,152 23,193 9468 400 14,064

$able 3. $ribe net@orS structure for aJA%S ranSing

` reps ` pairs ` tribes

max

tribe size

` reps in

tribes size G

578 1624 140 64 176

1600 5446 408 127 512

6066 24,672 1498 604 1934

26,152 362,966 6669 1910 9092

Naturally, components with hundreds or even with dozens of
nodes are unlikely to be tribes of the kind we are looking for. In
practice, we would probably disregard tribes with more than
perhaps ten members. Dropping the larger tribes does not seem to
change the evaluation measures, so we leave them in for the
remaining analysis. What the tribe structures in these tables show
is that the PROj ranking is more inclined to produce tribes of size
two4pairs of associated reps. MOjS and even more so kEARS, in
order to get an equally large set of reps, provide many more
pairs4edges in the graph ;?4but the additional edges go to fill in
the enormous components, instead of creating new small groups.

We can see this effect from another perspective by considering the
frequency of high-ranked job sequences. For MOjS and PROj, the
scores are based solely on the job sequence; therefore, if a number
of reps all share an identical job sequence, then the scores of their
edges are equal. If that (shared) score passes the threshold, then
the whole set of reps will be included in the tribes. For this reason,
a ranking that scores common job sequences as significant will
have large connected components among its tribes.

Table 4 examines this frequency of high-ranked job sequences. It
displays the average, for each pair included in tribes, of the
number of times its job sequence occurs among the 3 million
pairs. The low averages for the PROj ranking confirms that this
model succeeds in scoring rare sequences as significant. MOjS also
brings in fairly rare sequences. For kEARS, when one pair passes
the threshold 8, others with the same job sequence do not, since
the score depends on how long the co-workers are together.

However, we see that the reps working together for the longest
times tend actually have common sequences of jobs.

$able ^. Ior each 3ob seYuence among the top-ranSed pairs,

a<erage number of times it occurs among all pairs of reps.

Among all 3 million pairs, the 3ob lists repeat an a<erage of

^Q.bG times.

` reps in tribes%anSing

5bP AdQQ dQdd Gd,A5G

PROj 1.06 1.07 1.21 1.51

MOjS 1.16 1.35 2.05 4.31

kEARS 315.73 194.05 87.07 224.78

Jrrore %eference source not found. below gives a sense of how
diverse the tribes produced by different scoring methods are. It
shows, for several cutoffs, the percentage overlap between the set
of reps selected by PROj and each other ranking. We see that the
PROj variations give results fairly close to PROj, particularly
PROj-NOTIME. The reps sets created by MOjS are related but
substantially different, while those of kEARS have almost no
overlap.

$able 5. 9ercent o<erlap of rep set @ith that from prob

` reps in tribes%anSing

5bP AdQQ dQdd Gd,A5G

MOjS 38.2c 41.9c 42.1c 51.3c

kEARS 1.6c 2.7c 6.5c 22.1c

PROj-TIMEjINS 80.3c 80.3c 80.1c 82.1c

PROj-NOTIME 93.3c 94.9c 94.9c 96.2c

^.G Disclosure Scores
As part their oversight, the NASD and other regulatory
organizations require disclosures to be filed on reps for a variety
of actions they commit and events that take place. These
disclosures span categories such as customer complaints,
bankruptcies, criminal charges and regulatory actions; some are
mundane and merely required to be reported, while others
represent serious breaches of trust. We can use these disclosures
as assessments of past behavior or as predictors of future fraud
risk. We compute a “disclosure score” for each rep as a weighted
sum of their disclosures, where serious categories are weighted
more highly (the weights were developed in consultation with
NASD); in this system, the vast majority of reps are assigned a
score of zero.

When we examine the disclosure scores of reps in tribes, we find
that the tribes are strongly enriched for reps with high scores.
Figure 3 displays the average disclosure scores of reps in different
ranking systems. The reps are assigned to bins A-G based on what
cutoff causes the rep to be included in the set of tribes (see Table
6). For instance, bins A-D comprise the top 578 reps, and A-E
comprise the top 1600; bin E contains the reps that appear at ranks
579 to 1600. The bin widths correspond to the number of reps in
the bin, for bins A-E; bins F and G would be too wide to fit in the
diagram, so their widths as displayed are not meaningful.



Within each bin, the four bars correspond to reps produced by
MOjS, PROj, PROj-TIMEjINS, and PROj-NOTIME. The dashed
horizontal line at score g 2.8 is the average disclosure score of all
the (unique) reps among the 3 million pairs (;?). The dotted line at
score g 0.7 is the average score for all reps in the database.

$able d. "ins used in Iigure 3.

"in XE"S criteria

determining bin size

` reps in

bin

A jobs ! 12 48

j 9 ! jobs ! 11 66

C jobs g 8 106

D jobs g 7 358

E jobs g 6 1022

F jobs g 5 4466

G jobs g 4 20,086

The overall trend is very encouraging for these rankings. They all
score well above average, and the average disclosure scores of
reps produced at the top of the rankings are higher than those
lower down. The smaller bins A-C are more variable, as they
contain only 220 reps total. It is interesting to see, however, that
the disclosure score of MOjS drops in the highest bin (A), and then
compensates for it in bin C.

kEARS is not displayed, as its scores are lowF all fall below the
dashed line. In fact, in bins A-C the values are below the dotted
line, and unlike with the other ranking systems, they rise as we
move down the list of reps, reaching 2.4 in bin G. This might
imply that the reps who have worked together for many years are
least of all likely to commit fraud.

One alternative explanation for the high disclosure scores seen
here is that the reps who have held such sequences of jobs
together may simply have longer careers than average, and so
have accumulated more disclosures over the years. We test this
explanation by dividing all reps into groups based on the number
of jobs they have held and the number of years they have in the
industry. Given a top-ranked set of reps from the tribes, we
replace the disclosure score of each rep with the average score
from the rep’s matched group, and recalculate the average for the
set. If the matched disclosure scores are elevated, then our top-

ranked reps simply have long histories. In fact though, the
matched scores all give averages close to 2.8, the height of the
dashed line, which means that the length of their careers does not
explain away the high scores.

^.3 Disclosure Score &orrelation @ithin

$ribes
If the tribes are of good quality (*8 the conjecture is correct that
reps at high risk of disclosures often move in tribes, then we
would expect each tribe’s disclosure scores to be homogenous.
That is, some tribes would tend to have multiple members with
high scores, while other tribes would have low scores. Mudging
tribes by the properties of their members’ disclosure scores is not
ideal, since the expected outcome depends on that second
conjecture. In addition, since the frequency of disclosures is very
low, under this lens only high-risk tribes look conclusively like
high-quality tribes; low-risk tribes are hard to distinguish from
random sets of reps. Finally, note the potential problem of
incomplete information hereF reps that appear low-risk compared
to their tribe-mates might just have evaded detection. It is
precisely these individuals that the NASD may be interested in
investigating in the future.

We perform several experiments to test whether the tribes are
homogenous with respect to disclosure scores. First, we examine
individual pairs of reps, using a chi-square test to assess whether
reps with positive disclosure scores pair with others with positive
scores more often than expected at random. If we take all the pairs
that form tribes, then reps in large components will be represented
more than once; to avoid this, we only perform this test on the
tribes of size 2. Since the rankings are all significant at the C ! 10-
7 level, we can compare them using the phi-square statistic, which
is chi-square normalized to have maximum value 1. jy this
measure, all five rankings are more or less equally significant, as
shown in Table 7.

Iigure 3. Disclosure scores of the top-ranSed reps.



$able b. &omparison of tribe homogeneity,

using top AdQQ reps

%anSing ` pairs ` tribes 9hi-sY A<g disc AU&

MOjS 1461 623 0.140 7.9 0.775

kEARS 5446 408 0.119 1.4 0.616

PROj 958 718 0.127 7.9 0.736

PROj-
TIMEjINS

960 714 0.158 7.1 0.752

PROj-
NOTIME

965 718 0.112 7.9 0.730

Next, we set up a prediction task with the tribesF we try to predict
the disclosure score of each rep. For each target rep, we take the
other reps in the same tribe, average their disclosure scores, and
use this average as the predicted value. We can compute an AUC
(area under the ROC curve) for these predictions if the
classification task is binary. The AUC values shown are for the
task “is the rep’s score higher than the average for this setu” jy
this measure, MOjS comes out a little more correlated than PROj-
TIMEjINS, followed by the other PROj rankings, and kEARS trails.

^.^ Geographic 7o<ement
The final indirect measure we use is the postal codes of the
branches. If groups of reps move geographically, particularly
large distances, this is an indicator they are staying together
intentionally. Reps participating in the natural patterns of branch
changes are less likely to be moving to far-off places together. We
have the five-digit zip codes associated with most branches
(96c). The first digit designates a broad region of the United
States, and the first three correspond to a particular large city or
local region. Counting the number of unique one-digit (or three-
digit) zip code prefixes associated with a rep pair’s list of shared
branches gives a rough idea of the geographic mobility of the pair.
As with disclosure scores, since we expect many high-quality
tribes will not have geographic movement, this measure can only
be used to evaluate tribes in the aggregate.

Table 8 displays information about geographic movement. For
each pair in the set, we calculate how many unique 1-digit and 3-
digit zip codes are covered by the shared jobs, as well as how
many shared jobs there are with zip code information (96c of
branches have zip codes available). The numbers shown are the
averages over the distinct job lists among the pairs.

The PROj rankings show the greatest mobility when we look at the
number of zip codes covered. This is more surprising when we
consider that the pairs in MOjS have more shared jobs, yet move
less geographically. Pairs in the kEARS ranking move least of all,
even less than the average of the 3 million, which means that
long-term co-workers tend to settle down. These long-term kEARS

tribes, judging from their low disclosure scores, low overlap with
the others, and low movement, do not seem to be the type of tribes
we are looking for.

$able P. &omparison of geographic mobility, using top AdQQ

reps

%anSing ` uniYue

3ob

seYuences

A<g `

A-digit

zips

A<g `

3-digit

zips

A<g `

branches

@ith zips

a<ail

MOjS 1085 1.58 2.59 6.70

kEARS 738 1.43 1.78 3.91

PROj 896 1.78 2.83 5.47

PROj-
TIMEjINS

899 1.78 2.80 5.47

PROj-
NOTIME

893 1.80 2.85 5.54

all scored
pairs

75,321 1.33 1.78 3.21

^.5 Discussion
To sum up what we have seen, all the rankings MOjS, PROj, PROj-
TIMEjINS, and PROj-NOTIME create tribes whose reps have higher
disclosure scores, on average, than random (Section 0). Reps with
high (or non-zero) disclosure scores are associated in tribes with
other such reps under all rankings. At the cutoffs giving 1600
reps, PROj-TIMEjINS has a higher phi-square than the others,
whereas MOjS gives the highest AUC; these vary at other cutoffs,
with phi-square remaining highest for either PROj-TIMEjINS or
MOjS, and the highest AUC traded among MOjS and all the PROj–
based models (Section 4.3). The PROj models create tribes that
cross more zip codes among their shared jobs, even though the
reps in MOjS have a higher number of shared jobs (Section 4.4).
The PROj models produce more individual pairs in tribes, while
MOjS and kEARS produce larger connected components as tribes
(Section 4.1).

The fact that the MOjS and PROj models perform comparably at
various cutoffs, yet pick different sets of reps, suggests that there
is room for improvement by combining the best of both systems.
Of the tribes ranked highly by MOjS but not PROj, some, on
inspection, appear to be just the types we hoped to avoidF pairs of
reps taking a large number of very common transitions together.
Others look like good tribes, and it appears PROj may miss them
because of poor probability estimates at small branches. When
both reps at a 2-person branch move to the same new job, it is
impossible to tell whether they moved together because their firm
was bought, or because they wanted to stay together. The PROj
model assumes the former, calculating the move as 100c likely to
occur by chance, but this may not be the best policy. More
generally, the PROj model seems to favor large firms, either
because the probability estimates are more stable there, or perhaps
because it is possible to create smaller transition probabilities
from larger firms. We have not yet succeeded in correcting for
this property, and the conclusion might be that the model is
simply better suited for situations with large branches.



vualitatively, many of the tribes look convincing when the reps’
job histories are displayed together. It is a compelling feature that
transition dates often coincide closely, although the model did not
use them.

As examples, Figures 4 and 5 display the career histories of two
potential tribes. Each of these tribes consists of a single pair of
reps. The pair in Figure 4 was scored by PROj as highly
significant, while that in Figure 5, even though it has a long
history together and was ranked highly by MOjS, appears to be
following typical patterns; it was scored as not significant by

PROj. As it turns out, the reps from the significant pair have
disclosure scores of 18 and 24, primarily since in April 1996 they
were both fired (disclosures show an Internal Review and a
Termination for each). One of the reps from the non-significant
pair has no disclosures, while the other was fired in 1997 for
wdiversion of profitable trades to personalw and received a score of
12 for this.

5. %J_A$JD fE%>
Our task of identifying small, anomalously similar groups is novel
within the world of relational knowledge discovery but has
analogs in other fields. Within the analysis of complex relational
and social networks, it is common to cluster the graph or
otherwise infer hidden group structure [16], [11], but usually the
aim is to find large-scale communities, such as among webpages
[7], employees in a single organization [20], or bottlenose
dolphins [14]. In addition, these algorithms are typically designed
for static or time-collapsed networks, whereas the temporal aspect
is important for us.

In time series analysis, there is research within the database
community on efficiently finding identical or similar sequences
[1], and on constructing flexible definitions of similarity [4].
Econometrics has a related concept called cointegrationF two time
series X and k (e.g., of stock prices) may be cointegrated if Xt is
useful for predicting ktt1 [9]. However, in these fields, time series
are traditionally numerical. Furthermore, in our task we need to
find sequences that are not just similar, but anomalously similar.

Anomaly detection, often applied to the security task of intrusion
detection, does highlight unusual time-sequence patterns against a
background of normal activity, often learning a background model
from the data [19]. A recent paper by Eskin [5] offers a clear
formulation that treats the data as a mixture model of normal with
anomalous sequences, a technique that could be useful for scoring
pairs in our scenario, although we would still need to specify the
form of the normal model as we do here. For anomaly detection in
relational data, Lin and Chalupsky [13] offer a measure of path
rarity that can be used to find the closest match to a given
individual, although it does not compare one set of individuals to
another.

In modeling dynamic networks, a few papers offer related ideas.
Magdon-Isamil et al. [13], searching for hidden groups, propose a
Markov chain model of how individuals’ group affiliations change
over time, one general enough to allow multiple simultaneous
memberships along with individual preferences. This framework
could potentially make our probabilistic model cleaner, although
it would need to be heavily constrained to reduce the number of
parameters required. Lahiri and jerger-Wolf [12] introduce an
algorithm for dynamic graphs that predicts future interactions
(edges) at each time step based on patterns of interactions at
previous time steps. With an appropriate mapping of our branch
transitions into their interactions, this approach might provide a
different way of modeling the background transition patterns we
try to capture.

Iigure ^. Jxample tribe ranSed highly by 9%E" but not

by XE"S. %efer bacS to Iigure G for meanings of labels.

Iirm names are fictitious.



Most intriguingly, animal biologists have long faced something
like the tribe-finding taskF given observations of animals in

groups, taken at different time points, they ask which pairs of
animals are highly associated. (These “association patterns” are
used as the links for animal social networks studied in above
papers [14], [12].) The most common association measure, the
Half-Weight Index [3], is a simple function of the number of
times the animals are seen together vs. apart, but jejder et al.
propose a more sophisticated network randomization test [2]. We
are investigating this literature as part of ongoing work, and note a
few aspects here. First, the associations are impossible to verify
directly, but there is work validating the methods through
simulation. Second, the models ignore time, which seems
reasonable given that each group is only observed once.

d. &ED&_USIEDS ADD Jg$JDSIEDS
One of the strengths of this work is that, beginning with no
explicit knowledge of this industry, we can discover, model, and
factor out typical job transitions, even though in real life these are
caused by a combination of geography, career tracks, and other
factors. Moving forward, we may extend our model by
incorporating external or domain-specific information. For
example, we could consider relationships between reps who work
in the same city but not at the same branch, and we could better
handle some odd cases of reps with many simultaneous jobs given
a better understanding of the industry and the data sources.

In this work, we had access to a complete history of employments
and disclosures so far. In practical use, tribe identification will be
more of an online process, a situation we need to consider; it will
be more difficult to recognize tribes when they have shared only a
few jobs.

The most interesting aspect of our formulation, compared to
related work, is our accounting for simultaneous jobs and different
paths between the same jobs. We needed to allow for multiple
affiliations starting and ending at arbitrary times, yet our model
does not describe the network’s changes day by day; instead, we
observed certain discrete events (job transitions, and co-workers
intersecting at a job) as time moved forward.

It may be worthwhile to incorporate more timing information,
such as job durations, into our model, or other properties like the
lengths of reps’ non-intersecting careers. In the direction of
simplifying, we plan to explore the time-oblivious version of the
model (PROj-NOTIME), to see how well it can be applied to other
types of tasks. More immediately, we are investigating
adjustments that may improve the model’s behavior with small
branches. Finally, we hope to experiment with other domains and
data sets.
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but not by 9%E". Iirm names are fictitious.
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