Betweenness Centrality as a Basis
for Forming Skills

f)zgiir Simsek
Andrew G. Barto
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003-9264
{ozgur|barto}@cs.umass.edu

April 12, 2007

University of Massachusetts
Department of Computer Science
Technical Report 07-26

Abstract

We show that betweenness centrality, a graph-theoretic measure widely
used in social network analysis, provides a sound basis for autonomously
forming useful high-level behaviors, or skills, from available primitives—
the smallest behavioral units available to an autonomous agent.

1 Introduction

We consider the problem of how to form useful high-level behaviors, or skills,
from available primitives—the smallest behavioral units that are available to
an autonomous agent. A suitable set of skills can greatly improve an agent’s
efficiency in learning to solve difficult problems. The ability to form such skills
autonomously is an essential component of artificial agents that can solve dif-
ficult real-world problems without relying on problem-specific human design
effort.

In approaching this problem, we distinguish between two related questions:
What constitutes a useful skill? And, how can an agent acquire such skills
autonomously? In this paper, we address the former question with the objective
of guiding the research for answering the latter. Our main contribution is a

characterization of a useful class of skills using the graph-theoretic measure
betweenness centrality.

Many of the existing techniques for autonomous skill formation identifies
states that are useful to reach and defines skills for efficiently reaching these
states [7, 5]. This is also the approach we take here. The main distinction of
our work from earlier methods is in how we define what constitutes a useful state
to reach. We define the utility of a given state as a subgoal using a graphical
representation of the problem and a measure of how prominent the node is on
certain shortest paths on this graph. Although several recent approaches have
utilized graphical approaches to skill formation [6, 8, 10], the approach we
propose here is fundamentally different from these earlier methods, which are
based on graph cut and clustering techniques.

Our approach may be used to form a set of skills suitable for a given problem
if the graphical representation of the problem is readily available. But, perhaps
more importantly, our work may form a useful guide for developing techniques
that do not rely on explicitly or completely representing this graph.

2 Background

We use the MDP framework to represent the agent’s interaction with its envi-
ronment. A finite MDP is a tuple (S, A,T, R, D,v), where S is a finite set of
states, A is a finite state of actions, T : Sx Ax S — [0, 1] is a transition function,
R:8x Ax S — Ris areward function, D is the initial state distribution from
which the start state is drawn, and « is a discount factor, 0 < v < 1. At each
decision stage, the agent observes a state s € S and executes an action a € A
with probability 7(s,a), where 7 : S x A — [0, 1] is a stationary stochastic pol-
icy. With probability T'(s, a, s’), the agent observes state s’ in the next decision
stage and receives an immediate reward with expected value R(s,a,s’). The
value function of policy 7 is a map V™ : § — R that specifies the expected
return for executing 7 starting from state s, where return is the discounted sum
of future rewards. An optimal policy is one that maximizes the value function
over all states.

To represent skills, we use the options framework [12, 9]. A (Markov) option
is a temporally-extended action, specified by a triple (I, , 8), where I denotes
the option’s initiation set, i.e., the set of states in which the option can be
invoked, 7 denotes the policy followed when the option is executing, and 3 :
I — [0,1], denotes the option’s termination condition, with §(s) giving the
probability that the option terminates in state s € I.

3 Our Approach

Let G = (V, E) be a directed graph in which V is a set of vertices répresenting
the states of a given MDP and E is a set of edges representing possible state
transitions through actions. For s, v, t € V, let o5 be the number of shortest

paths from vertex s to vertex ¢, and let o5 (v) be the number of shortest paths
from vertex s to vertex t that pass through vertex v.

As a measure of the utility of state v as a subgoal from state s, we propose
to use the following scoring function:

OB ost(v) (1)

g
Vitvgs St

Equation 1 gives the proportion of shortest paths from vertex s to the remain-
ing vertices on the graph that pass through vertex v, which may be considered a
measure of how influential vertex v is in efficiently navigating the graph starting
from vertex s. The higher the score, the more desirable v is as a subgoal from
s.

If we add cs(v) scores for all s € V, we obtain betweenness centrality of
vertex v, a measure widely used in social network analysis to determine the
importance and influence of nodes in a network [3, 4].

Note that the measure we propose is not betweenness centrality, but the
contribution to betweenness centrality from paths that start from a given vertex.
Unlike network analysts who are concerned with the network as a whole, we
necessarily need to view the graph from the perspective of the individual node
for which we are forming the skill.

Using a threshold ¢ on our scoring function gives us a set of subgoals S and
an initiation set I(g), Vg € S:

S = {veV | I3seV st cs(v) >t} (2)
I(g) = {seV |clg) 2t} (3)

As in other subgoal-based approaches in the literature, we can then use a
given subgoal and the corresponding initiation set to define a skill for efficiently
reaching the subgoal state from states in the initiation set using a pseudo-reward
function [2].

An important detail is that the evaluation of subgoal candidates are done
in the absence of any existing skills. When more than one skill are introduced

Figure 1: The Rooms domain.

2500 x10*

~

primitives

»

primitives

'y - N
o (42 o
o o Q
o o o

Number of steps

N W O

Cumulative number of steps

50014

—_

o)
3
oo i~
o
o

4 20 40 60 80 100
Episode Episodes completed
(a) (b)

Figure 2: Performance measures in the Rooms domain.

based on this evaluation, some of the skills may prove to be redundant and
detrimental. This is particularly a problem because the scoring function we
propose assigns similar scores to neighboring states, resulting in subgoals that
are very close to each other, causing an agent to incur the cost of additional
skills while obtaining none of the benefits. To select a representative set of
subgoals from S, we define p(g), support for subgoal g:

plg) = > cilg), VgeS. (4)

s€l(g)

To filter the redundant subgoals, we form a subgraph G’ consisting of vertices
in S and edges among them, identify strongly connected components of this
subgraph, and choose as subgoals those states in S who have higher support
than their neighbors in the strongly connected component they belong to.

In the next section, we explore what type of subgoals our scoring function
identifies in a number of different domains and we experimentally evaluate the
utility of corresponding skills.

4 Evaluation

In our experimental analysis, the agent used Q-learning with e-greedy explo-
ration with ¢ = 0.1. When using skills, it performed both intra-option updates
and macro-Q updates. The learning rate (o) was kept constant at 0.1. Initial
Q-values were 0. Discount rate «y was set to 1 in episodic tasks, to 0.99 in contin-
uous tasks. The options that were generated terminated with probability one at
the goal state and outside the initiation set; at all other states they terminated
with probability zero. We normalized the scores obtained by using Equation 1

S e R AR R

Ry

R

T
SERTRT,
2

SRR

A SRS
T
T
AT A

[Rsnananan

TITrE

1T

R]

T

ESRERRAN
mm%@
‘_Il

1T

H !

NS

Enmanrs
P
s
AR
| RnsnnnRa

Figure 3: Skills formed in the Rooms domain using different values for threshold
t.

by dividing them by n — 2, where n is the number of states in the domain, to
obtain scores between 0 and 1. We experimented with a wide range of values
for the threshold parameter ¢, ranging from 0.001 to 0.9.

4.1 Rooms

Our first example is a gridworld domain from [12] shown in Figure 1. The
available actions at each state are north, south, east, and west, which move
the agent in the intended direction with probability 0.9 and in a uniform random
direction with probability 0.1. If the direction of movement is blocked, the agent
remains in the same location.

Figure 3 shows the skills that were formed in this domain for various values
of the threshold parameter t. The grid squares with a dark shading are the
goal states of the identified skills, while the lighter shading surrounding them
designates the corresponding initiation set. Because of the axes of symmetry
present in the domain, many of the skills were images of each other. The figure
shows only those skills with goal states in the lower triangular section of the
northwest room—except when this would introduce ambiguity, in which case we
present the corresponding skill in a different room. The remaining set of skills
may be deduced from the ones we present. ‘

The columns in the figure correspond to different settings of the threshold
parameter ¢, while the rows correspond to the two types of skills that emerged
in this domain. The type with the higher support consists of skills for reaching
the eight states that surround the four doorways. The second type consists
of skills that lead the agent towards the center of the rooms away from two
opposing corners. Interestingly, varying the threshold parameter did not change
the essential characteristics of the skills that were formed, influencing mainly
the size of the initiation sets.

NOW A W

Primitives

Reward collected in period

yy 1Y B 7
1 2 3 4 5 -200°
L 2000 500 1000 1500 2000

X Period (100 steps each)

(a) (b)
Figure 4: (a) The taxi domain. (b) Performance in the taxi domain.

We explored the utility of these skills in 100 randomly selected episodic tasks
in the domain. In each task, the reward was —0.001 for each transition and an
additional +1 when transitioning into a randomly selected terminal state. Fig-
ure 2a shows mean number of steps as a function of episode, comparing an agent
using only primitive actions to an agent using both the primitive actions and
the skills formed with ¢ = 0.1, revealing a big improvement in performance with
the skills. Figure 2b displays performance for additional settings of ¢, showing
instead the cumulative number of steps as a function of episodes completed, for
easier comparison of the additional cases presented. The figure reveals perfor-
mance improvements as t values get smaller. As noted above, the main impact
of reducing ¢t was to expand the initiation sets, so the figure reveals a sensitivity
to the size of the initiation sets. Lowering ¢ beyond 0.1 did not introduce new
skills or impact performance.

Figure 2b also shows the performance of an agent that used skills with ran-
domly selected subgoals. This setting can be directly compared to only the
t = 0.1 setting because the number of subgoals used and the size of their initia-
tion sets were matched to the values observed in this particular case. The figure
shows that while random skills did not perform as well as the skills formed by
our method, they improved performance remarkably compared to the primitives-
only setting.

4.2 Taxi

Our next example is the taxi domain [2] which consists of a taxi and a passenger
on a 5 x 5 grid depicted in Figure 4a. Initially, the taxi is at a random grid
location while a passenger is waiting to be taken to her destination. At each
grid location, the taxi has six primitive actions: north, east, south, west,

1600
1400

primitives

primitives §3
» 1200 ®
5y ‘G
% 1000 5
ks £ 2
g 800 2
E 600, g .
P4 ‘ E'I rendom
400 g =005
% 3
200} ' o
20 0 60 0 20 40 60 80
Episode Episodes completed

Figure 5: Performance in the small playroom domain.

pick-up, and put-down. The navigation actions succeed in moving the taxi in
the intended direction with probability 0.80; with probability 0.20, the action
takes the taxi to the right or left of the intended direction. If the direction of
movement is blocked, the taxi remains in the same location. The action pick-up
places the passenger in the taxi if the taxi is at the same grid location as the
passenger; otherwise it has no effect. Similarly, put-down delivers the passenger
if the passenger is inside the taxi and the taxi is at the destination; otherwise
it has no effect. We consider a continuing version of the problem, in which,
simultaneously with successful delivery of a passenger, a new passenger appears
on the grid. The source and destination of all passengers are chosen uniformly
at random from among the four grid squares marked with R, G, B, Y. Reward is
—1 for each action, an additional +50 for passenger delivery, and an additional
—10 for an unsuccessful pick-up or put-down action.

With ¢ = 0.1 setting, our method formed thirty skills in this domain. These
fall into one of the following categories: (1) Skills for taking the passenger to her
destination, (2) Skills for dropping off the passenger, (3) Skills for picking up
the passenger from her location, (4) Skills for efficiently reaching grid squares
(2, 3) and (3, 3), which act as bottlenecks that restrict navigation, although
the grid is quite small. Figure 7 shows the goal states of these skills as filled
vertices on the state transition graph of the domain. As in the Rooms domain,
increasing values of ¢ did not lead to different skills, but mainly reduced the size
of their initiation set.

Figure 4b shows the utility of the formed skills on the problem. Compared to
the primitives-only baseline, the skills improved performance remarkably. The
random condition, which was again matched to the ¢ = 0.1 setting, did not
perform as well in this domain as in the Rooms domain.

4.3 Playroom

We next consider a variant of the playroom domain [1, 11], in which an agent
interacts with a number of objects in a room: a light switch, a ball, a bell,
a button for turning music on and off, and a toy monkey. The agent has an
eye and a hand and can perform the following actions: (1) direct its eye to the
object at its hand, (2) hold the object it is looking at, (3) move the object in its
hand to the location it is looking at, (4) flip the light switch, (5) press the play
button, and (6) ring the bell. The first two are reliable actions that the agent
can perform with certainty. The remaining actions are stochastic and succeed
with probability 0.75. In order to operate on an object, both the eye and hand
must be on the object. In addition, to be able to press the music button, the
light should be on. The toy monkey starts making frightened sounds if the bell
is rung while the music is playing and stops only when the music is turned off.

The state transition graph of this domain is shown in Figure 8. The state
representation we used included the object at hand, the object at eye, and the
state of the music (on/off), the lighting (on/off), the monkey (frightened/not),
and the bell(ringing/not). The graph was drawn using a force-directed algorithm
that models the edges as springs and minimizes the force on the system. The
different clusters reflect different settings of the values of music, light, and noise
variables (not all combinations are possible). The shaded nodes on the graph are
the ones that were identified as subgoals with ¢ = 0.025. They are states that
allow transitions between different clusters or those that facilitate navigation
within clusters. More specifically, the subgoals seen in the cluster centers are
those that have the eye and hand on the same object, which is necessary to
manipulate the object. Again, higher or lower values of the threshold parameter
t did not essentially change the type of the skills that were formed, but influenced
the size of the initiation sets. Figure 5 shows the performance of an agent using
these skills on 100 randomly-selected episodic tasks. The skills in the random
condition was matched with the skills formed at ¢ = 0.025 condition.

We also experimented with a larger version of the playroom domain, in which
the agent can place a marker on objects, introducing an additional state variable,
and, in which the action effects are slightly more involved, with the marker
position also playing a role in some of the actions. Figure 9 shows the subgoals
identified on this domain as shaded nodes on the state transition graph. Figure 6
shows performance on 100 randomly-selected episodic tasks. The skills in the
random condition was matched with the skills formed at ¢t = 0.005 condition.
The results in both versions of the playroom were consistent with earlier findings.

5 Discussion

Our analysis shows that the scoring metric we propose is effective in identifying
states that are useful to reach. Our technique relies on the availability of the
state transition graph of the domain and therefore is not always directly usable
for forming skills, but it may prove to be a useful guide for developing techniques

x
—_
o

primitives

e
nN

e
o

Cumulative number of steps

30 60 90 120
Episodes completed

Figure 6: Performance in the large playroom.

for forming the same type of skills without directly or explicitly representing the
transition graph. Two existing approaches may provide a useful starting point.
The first is the approach by McGovern & Barto [7] which relies on analysis of
state trajectories to identify states that are prominent in successful trajectories,
but not on unsuccessful ones. Although their method takes into account all
paths rather than a small number of desirable paths, it may form a basis for
developing a similar approach that focuses on short paths. The second approach
is the method by Simgek, Wolfe & Barto [10] which partitions state transition
graphs constructed from short state trajectories—and therefore generally only
include short paths.

The main component of our approach is path analysis, which differentiates
it from other graphical approaches to skill discovery. The main advantage of
the path-based approach is that it makes it possible to disregard a large portion
of the graph, in other words, to extract from the graph the parts that are most
directly relevant for the task at hand. This is not as easily accomplished when
using graph cut and clustering techniques, except when working with partial
graphs as in the method proposed by Simgek, Wolfe & Barto [10].

The approach we presented may be refined in a number of ways. First, while
the analysis of shortest paths at the exclusion of all others has proved useful, a
binary classification of paths is simplistic and methods that consider a broader
set of paths may improve the quality of the skills that are formed. In addition,
action effects may be more accurately represented on the state transition graph.
In the analysis we presented here, we used identical edge weights, which may
be a large departure from the actual state transition dynamics. And third, a
weight function on vertices may be used in Equation 1, allowing an agent to
take into consideration its estimate of the reward distribution in the domain
when forming skills.

Figure 7: The state transition graph of the taxi domain, showing identified
subgoals as shaded nodes.

Acknowledgments

This research was supported by the National Science Foundation under Grant
No.CCF-0432143. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] Andrew G. Barto, Satinder Singh, and N. Chentanez. Intrinsically moti-
vated learning of hierarchical collections of skills. In International Confer-
ence on Developmental Learning (ICDL), 2004.

[2] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ
value function decomposition. Journal of Artificial Intelligence Research,
13:227-303, 2000.

[3] L. C. Freeman. A set of measures of centrality based upon betweenness.
Sociometry, 40:35-41, 1977.

10

[4] L. C. Freeman. Centrality in social networks: Conceptual clarification.
Social Networks, 1:215-239, 1979.

[5] Bernhard Hengst. Discovering hierarchy in reinforcement learning with
HEXQ. In Claude Sammut and Achim G. Hoffmann, editors, Proceedings
of the Nineteenth International Conference on Machine Learning, pages
243-250. Morgan Kaufmann, 2002.

[6] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstrac-
tion in reinforcement learning via clustering. In Proceedings of the Twenty-
First International Conference on Machine Learning, pages 560-567. ACM
Press, 2004.

[7] Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals
in reinforcement learning using diverse density. In Carla E. Brodley and
Andrea Pohoreckyj Danyluk, editors, Proceedings of the Fighteenth Inter-
national Conference on Machine Learning, pages 361-368. Morgan Kauf-
mann, 2001.

[8] Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-Cut - Dynamic dis-
covery of sub-goals in reinforcement learning. In Tapio Elomaa, Heikki
Mannila, and Hannu Toivonen, editors, Proceedings of the Thirteenth Eu-
ropean Conference on Machine Learning, volume 2430 of Lecture Notes in
Computer Science, pages 295-306. Springer, 2002.

[9] Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis,
University of Massachusetts Ambherst, 2000.

[10] Ozgiir Simgek, Alicia P. Wolfe, and Andrew G. Barto. Local graph parti-
tioning as a basis for generating temporally-extended actions in reinforce-
ment learning. In AAAT Workshop Proceedings, 2004.

[11] Satinder Singh, Andrew G. Barto, and N. Chentanez. Intrinsically moti-
vated reinforcement learning. In 18th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2005.

[12] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs
and Semi-MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1-2):181-211, 1999.

11

Figure 8: The state transition graph of the small playroom, showing identified
subgoals as shaded nodes.

Figure 9: The state transition graph of the large playroom, showing identified
subgoals as shaded nodes.

12

