Multi-user Data Sharing in Radar Sensor Networks

M. Li, T. Yan, D. Ganesan, E. Lyons, P. Shenoy, A. Venkataramani, and M. Zink
Department of Computer Science,
University of Massachusetts Amherst, MA 01003.
{mingli, yan,dganesan,elyons, shenoy, arun, zink}@cs .umass.edu

ABSTRACT

In this paper, we focus on a network of rich sensors that are ge-
ographically distributed and argue that the design of such net-
works poses very different challenges from traditional “mote-
class” sensor network design. We identify the need to handle
the diverse requirements of multiple users to be a major de-
sign challenge, and propose a utility-driven approach to maxi-
mize data sharing across users while judiciously using limited
network and computational resources. Our utility-driven ar-
chitecture addresses three key challenges for such rich multi-
user sensor networks: how to define utility functions for net-
works with data sharing among end-users, how to compress
and prioritize data transmissions according to its importance
to end-users, and how to gracefully degrade end-user utility in
the presence of bandwidth fluctuations. We instantiate this ar-
chitecture in the context of geographically distributed wireless
radar sensor networks for weather, and present results from an
implementation of our system on a multi-hop wireless mesh
network that uses real radar data with real end-user applica-
tions. Our results demonstrate that our progressive compres-
sion and transmission approach achieves an order of magni-
tude improvement in application utility over existing utility-
agnostic non-progressive approaches, while also scaling bet-
ter with the number of nodes in the network.

1. INTRODUCTION

While much of the focus of the sensor network community
has been on the design of miniature low-power “mote-class”
wireless sensor networks, there is an equally important ongo-
ing networking revolution for “rich” powerful higher-power
sensors. This revolution has been driven by two technology
trends. The first trend is the emergence of cheaper, more ef-
ficient and more compact designs of traditionally large and
unwieldy sensors such as radars and cameras [7], enabling
more mobile, solar-powered deployments in remote locations
that lack sensing coverage. The second trend is the recent
success in designing WiFi-based long-range, multi-hop mesh
networks [1, 5], which facilitate ad-hoc remote deployments
of these sensors in areas where a wired network infrastructure
is unavailable. These technological developments have led to
several efforts to deploy large-scale, dense, wirelessly con-
nected networks of powerful sensors, including earthquake
sensing ([8]), weather monitoring using wireless radars ([18]),
and road traffic monitoring ([3]).

These emerging large-scale sensor systems (shown in Fig-

i
Intemet |/
‘ §

Disaster Advisory First
Services Responders
= =

Figure 1: Multi-user Sensor Networks

ure 1) have important differences from their existing resource-
poor counterparts and raise a number of new research chal-
lenges. The first major difference between the two types of
sensor networks is their design objective. Due to limited en-
ergy resources and the need for long lifetime, the design per-
formance goal in mote-class sensor networks is to minimize
energy consumption. Other resources such as bandwidth and
computation are typically less of a concern since simple, low
data-rate sensors such as those for temperature, humidity, or
pressure are used. In contrast, rich sensors such as radars and
cameras generate raw data at hundreds of kilobits or tens of
megabits per second. However, the per-node bandwidth on a
shared wireless mesh is limited. Consequently, the need to
optimize network bandwidth usage is as important as mini-
mizing energy consumption in such networks.

A second key difference is the diversity of end-users that the
two types of sensor networks are designed to support. Mote-
class sensor networks typically have many tens of nodes de-
ployed in a small geographic area, and are designed to per-
form one or few tasks efficiently, primarily periodic data col-
lection. This is both due to the lack of available resources on
the sensors to perform computationally intensive in-network
data processing, and due to the limited geographic area that
the sensors span. In contrast, many rich sensor systems span
vast geographies, and are intended to serve a spectrum of users
with different needs. To illustrate, users of a large-scale trans-

portation sensor network using cameras will include traffic
police, first responders who need notification about accidents,
commuters who are interested in traffic congestion on their
routes, and even insurance companies who might desire infor-
mation about accidents to settle claims. These different types
of users often impose different, and sometimes conflicting,
demands on the network. In a radar sensor network, scien-
tists may desire access to raw data to conduct research, while
meteorological applications may require data that has under-
gone intermediate processing, and end-users may only need
the “final processed result”. Further, a tornado detection ap-
plication will require timely notifications of important events,
while other users are less sensitive to delay in sensor updates
(e.g., end-users are tolerant to slight delays in weather up-
dates).

Thus, a key challenge in rich sensor networks is to opti-
mize diverse user needs in the presence of limited resources.
One option is to handle the different user needs separately,
but this model ignores one of the most important characteris-
tics of multi-user sensor networks — all the users of a sensor
network operate on the same data streams and the data rele-
vant to one user can potentially be used to handle the needs of
other users. Thus, rather than separately handling user needs,
an approach that jointly considers user needs to maximize data
sharing among users is better suited to make judicious use of
the limited computational and network resources. Since the
workload seen by such networks can dynamically vary over
time as user needs and interests change—for instance, the
workload imposed by users can increase significantly during
an intense storm or a major traffic problem—such data sharing
techniques must also adapt to dynamic load conditions.

1.1 Research Contributions

In this paper, we describe a novel utility-driven architec-
ture that maximizes data sharing among diverse users in a
sensor network. We believe that maximizing utility across
diverse end-user queries using multi-user data sharing tech-
niques (henceforth referred to as MUDS') is a key challenge
for designing more scalable sensor networks. Our architec-
ture is designed for hierarchical sensor networks where sen-
sors are streaming data over a multi-hop wireless network to
a sensor proxy. These incoming data streams at the proxy
are used to answer queries from different users. The proxy
and the sensors interact continually to maximize data sharing
across queries while simultaneously adapting to bandwidth
variations, and changing query needs of users. We instantiate
this architecture in the context of ad-hoc networks of wireless
radar sensors for severe weather prediction and monitoring.
Our work has three main contributions:

o Multi-query Aggregation: A key contribution of our
work is multi-query aggregation, where radar data streams
are shared between multiple and diverse end-user queries,

' Actual system name is anonymized to aid double-blind reviewing.
We use the term MUDS to refer to our system and XRad to refer to
existing radar networks.

thereby maximizing total end-user utility. We demon-
strate that different end-user application needs, spatial
areas of interest, deadlines, and priorities, can be com-
bined into a single aggregated query, thereby enabling
more optimized use of bandwidth resources.

e Utility-driven Compression and Scheduling: At the
core of our system is a utility-driven progressive data
compression and packet scheduling engine at each radar.
The progressive compression engine enables radar data
to be compressed and ordered such that information of
most interest to queries is transmitted first. Such an en-
coding enables our system to adapt gracefully to band-
width fluctuations. The utility-driven scheduler compares
the utility of different progressively compressed streams
that are intended for different sets of queries, and trans-
mits packets such that utility across all concurrent queries
at a radar is maximized.

e Global Transmission Control: In addition to local utility-
driven techniques, our system supports global utility op-
timization mechanisms driven by the proxy. The proxy
continually monitors the utility of incoming data from
different radars and decides how to control streams to
maximize total utility across the entire network. Such
a global control mechanism enables the system to adapt
to uneven query distribution across the network, and to
deal with disparities in available bandwidth among dif-
ferent radars due to wireless contention. This is espe-
cially important when some nodes in the network are ob-
serving important events such as tornadoes, and need to
obtain more bandwidth than other nodes that are trans-
mitting data for less critical queries.

In our experiments, we measure, evaluate and demonstrate
the performance of our architecture and algorithms for radar
sensor networks for severe weather monitoring. We have im-
plemented the system on a testbed of Linux machines that
form an 802.11-based wireless mesh network. Using a combi-
nation of simulations and experiments with real and emulated
radar traces, we show that our system provides more than an
order of magnitude (11x) improvement in query accuracy and
utility for a 12 node network, when compared to an existing
utility-agnostic non-progressive approach. Our system also
degrades gracefully with network size — when the network
size increases from three nodes to twelve nodes, the average
utility achieved by each radar in our system only decreases
by 15%, whereas the average utility of the existing XRad ap-
proach decreases by 57%. Further, our system adapts better to
bandwidth variations with only 15% reduction in utility when
the bandwidth drops from 150kbps to 10kbps.

The rest of this paper is structured as follows. Section 2
provides an overview of radar sensor networks and the chal-
lenges in these networks. Section 3 provides an overview of
our architecture, while Section 4 describes the design of the
key components of our architecture. Sections 5 describes our
implementation and evaluation. Finally, Sections 6 and 7 dis-
cuss related work and our conclusions.

2. RADAR SENSOR NETWORKS

In this section, we provide an overview of the diverse end-
user applications that use a radar sensor network, followed by
the formulation of the problem addressed in this paper.

2.1 End User Applications

A network of weather sensing radar sensors can be used
by diverse users such as automated weather monitoring ap-
plications, meteorologists, scientists, teachers and emergency
personnel. Several different weather monitoring applications
may be in use, each of which continuously requests and pro-
cesses data sensed by various radars:

e Hazardous weather detection: Applications in this class
are responsible for detecting hazardous weather such as
storm cells, tornadoes, hail, and severe winds in real-
time (e.g. [10]). This class of applications focuses on
sharp changes in weather patterns; a tornado detection
application, for instance, looks for sharp changes in wind
speed and direction that are indicative of a tornado.

e 3D wind direction estimation: This application constructs
a 3D map by computing the direction of the wind at each
point in 3D space. Since a single radar can only deter-
mine wind direction in a single dimension (radial axis),
the application needs to merge data from two or more
overlapping radars in order to estimate the 3D wind di-
rection. Due to the need to merge data, only regions
of overlap between adjacent radars are useful, and data
from other areas need not be transmitted.

e 3D assimilation: This application integrates data from
multiple radars into a single 3D view to depict areas of
high reflectivity (intense rain) that occur in the region.

We note that the first application is of interest to meteorolo-
gists for real-time weather forecasting, the second is useful to
researchers, while the third is useful to emergency managers
to visualize weather in their jurisdiction. In addition to these
applications, end-users may pose other ad-hoc queries for data
or instantiate continual queries that continuously request and
process data to detect certain events or conditions.

2.2 System Model and Problem Formulation

Our MUDS radar sensing network comprises three tiers as
shown in Figure 2 (i) applications and end-users who pose
queries and request field data, (ii) sensor proxies that act as the
gateway between the Internet and the radar sensor field, exe-
cute user queries, and manage the radar sensor network, and
(ii1) a wireless network of remote radar sensors that implement
utility-driven services and stream their data to the proxy.

Each radar node comprises a mechanically steerable radar
attached to an embedded PC controller; the embedded PC
with dual-core Intel processor that runs Linux is equipped
with 1GB RAM and a 802.11 wireless interface. A typi-
cal deployment will comprise many tens of radars distributed
over a wide geographic area. The radars are “small” and are
designed to be deployed in areas with no infrastructure us-
ing solar-powered rechargeable batteries; they can also be de-

Hazardous
Weather
Detection

Direction
Estimation

Figure 2: Multi-hop Radar Sensor Networks

ployed on cellphone towers or on building rooftops where in-
frastructure such as A/C power is readily available. In either
case, we assume that the radars connect to the proxy node us-
ing a multi-hop 802.11 wireless mesh network.

Each mechanically steerable radar has two degrees of free-
dom (6, ¢) which enable control over the orientation and the
altitude where the radar points and senses data. The radar
scans the atmosphere by first positioning itself to point at an
altitude ¢ and then conducts a scan by rotating 6 degrees
and scanning while rotating. The MUDS system operates
in rounds, where each round is referred to as an epoch. For
this paper, we assume an epoch of 30 seconds. Before each
epoch begins, the proxy collects all queries for a particular
radar. Each query represents a request for data from a weather
monitoring application (e.g., the tornado detection) or from
end-users (who may issue ad-hoc queries). A query can re-
quest any subset of the region covered by a radar scan—for
instance, a tornado detection algorithm may only request data
from regions where intense weather has been detected. Each
query has a priority and a deadline associated with it, which is
then used to to assign a weight to each region that the radar can
scan. The weight represents the relative importance of scan-
ning and transmitting data from the region in the next epoch.?
Thus, region-specific weights represent collective needs of all
queries that have requested data in that epoch.

Assuming the weights are computed before each epoch be-
gins, the radar then scans all regions with non-zero weights
during the epoch. Each scan is assumed to produce tens of
Megabytes of raw data, which is typically much higher than
bandwidth available to each radar in a multi-hop 802.11 mesh
network. Thus, the primary constraint at a radar node is band-
width, and the radar node must determine how to intelligently
transmit the results of the scan back to the proxy.

“For instance, a region that is not requested by any query will receive
a weight of zero and need not be scanned by the radar.

Query 2:
Tornado detection|

Radar Scan

Progessive
c |

Utility-based

Engine

Radar Sensor

Figure 3: Multiple incoming queries in an epoch are first aggregated by the multi-query aggregator at the radar. The merged query and the radar

scan for the epoch are input to the progressive encoder which generates different compressed streams for different regions in the query. The streams

are input to the utility-driven scheduler which schedules packets across all streams whose deadlines have not yet expired.

Each proxy is assumed to be a server (or a server clus-
ter) with significant processing and memory resources. The
weather monitoring applications described in Section 2.1 are
assumed to execute at the proxy, processing data streams from
various radars in real-time. Each application is assumed to
process data from an epoch and issues per-radar queries for
data that it needs in the next epoch.

Assuming such a system, this paper addresses the following
questions:

e How can the radar sensor system merge and jointly han-
dle queries with diverse high-level needs such as tornado
detection, 3D wind direction estimation and 3D assimi-
lation?

e Since the raw data from a scan exceeds the available
network bandwidth and this bandwidth can vary signif-
icantly over time, how should a radar node intelligently
compress the raw data prior to transmission?

e How should the radar prioritize the transmission of this
compressed scan result back to the proxy node so that
application overall utility is maximized?

e Since the query load on different radars can be uneven
and data from some radars may be more critical than oth-
ers during intense storms, how should the proxy globally
control transmissions across radars to ensure that impor-
tant data gets priority?

The following section discusses techniques employed by
the MUDS system to address these questions. For simplicity
of exposition and because optimizing the radar scan strategy
is not the goal of our work, we assume each radar points at a
fixed altitude ¢ and performs a 360° scan of the atmosphere
resulting in a full 2D scan. It is straightforward to extend the
discussion to three dimensional partial scans where both the
altitude ¢ and the rotation f are varied in a scan. Also, since
our focus is on multi-user data sharing in a wireless environ-
ment, we do not focus on the design issues of long range wire-
less mesh networks, and assume that existing techniques such
as [5, 17] can be used.

3. MUDS SYSTEM ARCHITECTURE

The proxy and sensor in the MUDS system interact contin-

ually to maximize utility under query and bandwidth dynam-
ics. This interaction has four major parts: (a) a multi-query
aggregation phase at the proxy and radar to compute a sin-
gle unified query per epoch, (b) progressive compression of
the radar scan at each radar by using the unified query as in-
put, (c) a utility-driven scheduling phase at each radar where
packets are prioritized by overall utility gain, and (d) a global
transmission control phase driven by the proxy to optimize
transmissions from different radars.

Multi-query aggregation: The first phase of our system
operation is the multi-query aggregation phase where multi-
ple user queries in an epoch are combined to generate a single
unified query. This is done both by the proxy as well as the
radars — the proxy uses the unified query for global transmis-
sion control, and the radar uses it for progressive compression
and scheduling. Each user query is associated with a weight,
a spatial region of interest, and a deadline. The weight of a
query is dependent on the priority of the user (e.g. the Na-
tional Weather Service is a high priority user), and the priority
of the query to the user (e.g. a tornado detection query has
higher priority during times of severe weather). Each query
is also associated with a spatial area of interest, for instance,
the wind direction estimation query is only meaningful for
overlapping regions between radars. Queries are executed in
batches — queries that arrive within a single epoch are merged
to generate a joint spatial query map that captures the needs
of all concurrent queries. An example of the spatial map that
merges a tornado detection and a 3D assimilation query is
shown in Figure 3. The merging of queries results in their
weights being accumulated for shared regions of interest. The
set of queries in an epoch is communicated by the proxy to
the individual radar sensors whenever there is a change due to
the arrival of new queries.

Progressive compression: Each radar scan produces tens
of Megabytes of raw data that must then be transmitted back
to the proxy node. Since the raw data rate is significantly
higher than the bandwidth available per radar on the mesh,
the data rate must somehow be reduced prior to transmission.
The existing XRad system employs a simple averaging tech-
nique to down-sample data—neighboring readings are aver-

aged and replaced by this mean; the larger the number of
neighboring readings over which the mean is computed, the
greater the reduction in data rate. Rather than using a naive
averaging technique, our system relies on the query map to
intelligently reduce the data rate using a progressive compres-
sion technique. The progressive compression engine uses the
unified query map and compresses data in two steps. First,
the weights of different regions in the map are used to split
the radar scan into multiple smaller regions, such that each re-
gion has a fixed weight and a fixed set of associated queries.
Thus, the radar scan in Figure 3 is split into three regions with
weights 1, 2, and 3 respectively. Each of these regions is then
progressively encoded using a wavelet-based progressive en-
coder. The encoder compresses and orders data in each region
such that most important features in the data is transmitted
first, and less important features are transmitted later. Finally,
the progressively encoded streams corresponding to different
regions are input to a utility-based scheduler at the radar.

Utility-driven packet scheduling: The utility-based sched-
uler schedules packets between different streams from differ-
ent epochs, and makes a decision regarding which packet to
send from among the streams. This decision is based on the
weight associated with the stream and the utility of the packet
to the queries that are interested in the stream. For example,
stream 3 in Figure 3 is of interest to both queries; therefore
transmitting a packet improves the utility for both the queries.
In order to compute the utility of a packet, the radar uses a pri-
ori knowledge of how application utility relates to the mean
square error (MSE) of the data. This provides a mechanism
for the scheduler to observe error in the compressed raw data
and determine how this error would translate to application
error. As we describe later, the mean square error of the data
influences utility in different ways for different applications.
The scheduler computes the total benefit (computed as the
product of marginal utility of the packet and weight assigned)
that would result from transmitting the first packet from each
stream, and picks the stream with greatest increase in benefit.
Figure 4 provides an illustration of the scheduling decision. In
the example, 66% of the first stream has been transmitted but
only 33% of the second stream has been transmitted. There-
fore, the difference in mean square error is likely to be higher
by transmitting a packet from the second stream. However,
there are two additional factors to consider. The first stream
corresponds to a tornado detection query, which requires high
resolution data in order to precisely pinpoint the location of
the tornado, whereas the second stream corresponds to a 3D
assimilation query and 3D wind direction estimation queries,
each of which needs only less precise data. On the other hand,
a packet from the second stream is useful to two concurrent
queries, whereas a packet from the first stream is only useful
for tornado detection. Thus, the decision of what packet to
choose depends on the mean square error of the data, number
of queries interested in the data, weights of the queries, and
importantly, the utility function of the queries.

Global Transmission Control: While the progressive en-

Stream 1: Tornado Detection

Utility-based
Scheduler

Transmit to
proxy

I T
ream D assimitation +
3D wind direction estimation

Figure 4: In this scenario, 66% of stream 1 and 33% of stream 2 have
been transmitted. The scheduler determines the marginal utility of trans-
mitting a packet from each of the streams for the applications interested
in the streams and decides which packet to transmit next.

coding and utility-driven scheduling at each sensor optimize
for multiple queries at a single radar, there is a need for global
control of transmissions to maximize overall utility across the
network. In particular, this is useful when queries are not
evenly distributed across the network, and some nodes that
are handling higher priority queries need more bandwidth than
others. The proxy uses a simple global transmission control
policy where it monitors the utility of incoming packets from
different radars. If there is a great imbalance in the utility of
streams from different radars, it notifies the radar with lower
utility to stop its stream temporarily. This has the effect of
reducing contention in the network, especially at nodes close
to the proxy, thereby potentially enabling a radar with more
important data to obtain more bandwidth to the proxy.

4. MUDS SYSTEM DESIGN

We describe each component of the MUDS architecture in
greater detail in this section.

4.1 Multi-Query Aggregator

The multi-query aggregator is central to the data sharing
goals of our system. Aggregating multiple user queries into a
single aggregated query has two benefits. First, it minimizes
the number of scans performed by the radar (which is time
and energy-intensive) since each radar scan is used to answer
a batch of queries. Second, it allows the data in a single scan
to be transmitted once but shared to answer multiple queries,
thereby maximizing query utility in limited bandwidth set-
tings. In contrast, a system that scans and transmits data sepa-
rately for each query would be extremely inefficient both due
to increased scanning overhead, as well as the duplication of
data transmitted.

The proxy batches all queries that are posed in each epoch,
and at the beginning of the next epoch, it sends to each radar
a list of queries that require data from that radar. An alterna-
tive model could have been for the proxy to merge the queries
and transmit only the merged query to the radar sensor, but
we eschewed this option since it would consume more band-
width than just sending the queries to the radar. Each query
is specified by a 4-tuple <QueryType, ROI, Priority, Dead-
line> that shows the type, region of interest, priority, and the
deadline of the query. In our system, the region of interest is
represented by a sector or a rectangle for simplicity, although

our approach can be easily extended to handle more arbitrary
regions of interest. The priority can be either specified by the
query or implicitly specified by the proxy — for instance, if
the user is a high priority user like the National Weather Ser-
vice — or can be determined as a combination of the two.

The multi-query aggregator then combines multiple user
queries into a single aggregated query plan. The query plan
that is generated is a spatial map in which the spatial area
corresponding to the region covered by the radar is pixelated.
For each pixel in the scan data, the corresponding pixel in the
query plan is a list of 3-tuples <QueryType, Weight, Dead-
line>, that show the type, weight, and the deadline of queries
interested in data sensed at that pixel.

The weight value of a pixel for each query represents the
“importance” of transmitting data sensed from that pixel to
that query. We use a heuristic for determining pixel weights
in order to maximize application utility. Let p;, I; , and d;
represent the priority, the region of interest, and the deadline
of query ¢. Priority p; is represented as a scalar value; region
of interest, I;, is represented as a 2D map where [;(u,v) is 1
if the pixel (u,v) is within the region of interest of i, and 0
otherwise; and deadline, d; is in seconds.

Let w; (u, v) represent the weight of pixel (u, v) for query i.
‘We would like the following three criteria to be satisfied: i) the
weight for the pixel should be greater if the query has higher
priority than other queries, ii) the weight for the pixel should
be greater if the query’s deadline is shorter than other queries
since higher weight will result in the data being transmitted
first, and iii) the weight for the pixel should be zero if the
pixel is not in the region of interest of query i. Thus, the
weight w; (u, v) is defined as:

i, v) = i, v)—)

d;

4.2 Progressive Compression Engine

Data compression is an integral component of rich sensor
networks where the data rates can be considerably higher than
available bandwidth. In our system, we use progressive en-
coding to compress raw data. Progressive compression of
data yields two benefits: (a) it enables the system to use all
available wireless bandwidth to transmit data, thereby adapt-
ing to bandwidth fluctuations, and (b) it enables us to order
data packets based on utility of data to queries, thereby maxi-
mizing overall utility.

Progressive encoding (also known as embedded encoding)
compresses data into a bit stream with increasing accuracy.
This means that as more bits are added to the stream, the de-
coded data will contain more detail. In our system, we use a
wavelet-based progressive encoding algorithm called set par-
titioning in hierarchical trees (SPIHT) [20]. The choice of a
wavelet encoder is well-suited for radar data processing appli-
cations since meteorological tornado detection algorithms use
wavelet-based processing in order to detect discontinuities in
reflectivity and velocity signals [6, 14]. Moreover, SPIHT or-

]
%Lr
i

HL2

LHa I3

<=

o

LH1 HH1

Figure 5: An example subband pyramid generated by wavelet trans-
form. The arrows represent a spatial orientation tree that is constructed
on the pyramid. Each arrow is oriented from the parent node to its de-
scendants.

ders the bits in the steam such that the most important data
is transmitted first. Thus, the decoded data can achieve high
fidelity even with few packets transmitted.

We provide a brief overview of the SPIHT algorithm next
(refer [20] for a detailed discussion). The input data for the
algorithm is assumed to be a two-dimension matrix D(i, j).
Before SPIHT encoding, the data D is first transformed into
a subband pyramid P(i,j) using the wavelet transform. In
the transform, the data D is split into subbands recursively.
After each iteration, four new subbands labeled as LL, LH,
HL, HH are generated as shown in Figure 5. The first letter
L/H in the label refers to the low/high frequency component
in the horizontal dimension of the matrix, while the second
L/H means low/high frequency component in the vertical di-
mension. The next step is generating a hierarchical tree from
the subband pyramid as shown by arrows in Figure 5. Each
arrow is oriented from the parent node to its four descendants
that cover the parent node’s corresponding area in higher fre-
quency, except that each root node only has three descendants.
The data encoding iterates through the hierarchical tree start-
ing from the root node. In each iteration, the most significant
bit of each point is output into a stream and is removed from
that point. In the generated stream, the most important data
is at the head of the stream because most natural images like
photos or radar scans have energy concentrated in the low fre-
quency components so the significance of a point decreases as
we move from the highest to the lowest levels of the tree.

Besides generating the progressive stream, the SPTHT en-
coder also generates an incremental trace of the encoded stream
that shows what the mean square error of the decoded data
would be after sending each byte of the stream. As described
in the next section, this feature is essential to perform utility-
driven scheduling of packets.

We made a few modifications to the standard SPIHT en-
coder to adapt it to our needs. The progressive encoding en-
gine in our system first splits each scan into multiple regions
such that all pixels in a region share the same list of three

tuples, <QueryType, Weight, Deadline> in the aggregated
query map. Although this may result in an exponential num-
ber of regions with respect to the number of queries in the
worst case, in practice we find the number of regions to be
small for radar queries. Each of these regions is encoded to
generate a progressively compressed stream per region. One
practical problem is that the standard wavelet transform that
expects a square matrix, but each region can be of arbitrary
shape. To deal with this, we use a shape adaptive wavelet
transform that can handle arbitrary shapes to encode each re-
gion. The generated streams are buffered and fed into the local
transmission scheduler.

4.3 Local Transmission Scheduler

At any given time, a radar may have multiple streams that
are buffered and being transmitted by the local transmission
scheduler. The goal of this scheduler is to optimize the trans-
mission order of the data in the streams in order to maximize
overall application utility despite fluctuating bandwidth con-
ditions. We describe this in detail next.

Each stream buffered by the scheduler comprises packets
of the same length (1KB in our implementation). The local
transmission scheduler optimizes the transmission order of the
packets based on their marginal utility to the set of queries cor-
responding to the stream. The marginal utility of a packet is
the increase in utility resulting from the transmission of that
packet. Informally, the utility of a prefix of a stream is deter-
mined by the application error that results from decoding and
processing that prefix.

Formally, let p denote some prefix of a stream and let ¢ de-
note a query corresponding to that stream. The utility U;(p)
of p to query i is given by

Wy if err;(p) < req_err;(p)
Ui(p) = { max.errs(p) errs(p)

if err;(p) > req_err;(p)
2

where w; is the weight of the query i; err;(p) is the ap-
plication error that results from decoding and processing p;
max_err;(p) is the maximum value of the application error
(computed as the error corresponding to a 1KB prefix of the
stream); and reg_err;(p) is the error value below which the
user is satisfied with the result. Thus, the utility decreases
linearly with the application error and stops decreasing when
the user-specified limit is reached. The marginal utility of a
packet to a query is the difference in utility to the query just
before and after sending the packet.

Wy max_err;(p) —req-err;(p)

However, since the progressive encoder could be encoding
different scans with very different features, this metric is only
weakly correlated with application error.

Fortunately, our empirical evaluation confirms that a data-
centric metric, the mean square error of the data stream, is
highly correlated to the application error. We leverage this
observation to estimate application error as follows. We seed
the scheduler with a function seed_err;(mse) that maps mean
square error of the decoded data to application error. Such a
function is generated a priori for each application using train-
ing data from past radar scans. In the training procedure, scans
are compressed into a progressive stream using the SPIHT
compression algorithm. The stream is cut off at different pre-
fix lengths, giving us decoded data of varying fidelity. For
each such prefix, the application is run on the decoded data,
and the error of the decoded data as well as the application
error are measured. Based on this measured data, we build
a function seed_err;(mse) for each application and seed each
radar with this function.

Finally, during regular operation, the scheduler needs to
compute mse corresponding to the decoded prefix just after
sending the packet. The mse can be obtained from the error
trace generated by the progressive compressor as described in
Section 4.2. The scheduler estimates err; (p) as seed_err;(mse)
by simply performing a lookup table. The weight of the query
w; is incorporated in Equation 2 so that more urgent queries
have higher utility. Note that by construction, all pixels in a
region have the same weight.

The total marginal utility of a packet x is its marginal util-
ity across all queries corresponding to the stream. To under-
stand this, suppose there are m queries corresponding to a
stream. Let U;(p) be the utility of prefix p to query ¢ just
before sending packet z, and U;(p + x) just after. Then, the
overall marginal utility of packet is given by

AUp) = > (Uilp+=) = Ui(p)), 3)
i=1---m

where the operator ‘4’ denotes extending the prefix to in-
clude the next packet. Based on Equation 3 the scheduler can
calculate the marginal utility of the packet at the head of each
stream. Given the utility, the scheduler picks in each round
the packet with maximum marginal utility across all packets
at the heads of existing streams, and transmits that packet.
Such a scheduling algorithm can be implemented efficiently
in practice. First, we note that packets within a stream are al-
ready present in order of decreasing marginal utility, so only
the packet at the head of each stream needs to be examined

How does the scheduler compute the application error err;(p)? for a scheduling decision. The marginal utility of the packet

It is impractical for the scheduler to measure err;(p) by run-
ning the application on each prefix of the stream because of
the huge computation overhead of decompressing data and
executing the application. Thus, we need a simple and ac-
curate method to determine err;(p) given just the compressed
stream. One possibility is to use a data-agnostic metric such
as the compression ratio as an indicator of application error.

at the head of each stream can be computed efficiently with a
small number of table lookups — one lookup to identify the
MSE difference resulting from transmitting the packet, and
one lookup per query to identify the marginal utility for the
query from decoding the packet. Finally, the packet with the
highest marginal utility across all streams needs to be cho-
sen. Since the number of streams is small, our implementation

simply uses a linear insert and search procedure; it is straight-
forward to use a heap instead.

bandwidth of a forwarding node, and (iii) the proxy’s incom-
ing bandwidth is shared among all the radars in the network.

Theorem 1. The above packet scheduling algorithm achieves AS @ result, maximizing local utility at each radar may not

the maximum total utility across all the concurrent streams at
each point in time if U(p) is concave, i.e., the marginal utility
is strictly decreasing.

The proof follows from a straightforward reduction to the
knapsack problem and a standard result from convex opti-
mization (omitted for space). Our empirical evaluation con-
firms that the marginal utility decreases with the length of the
progressively encoded stream.

Example: We exemplify our methodology for computing
the seed_err() function for the three applications. We first
consider tornado detection. This application uses a clustering-
based technique to detect tornadoes, and generates the cen-
troids and intensities of each tornado. In order to determine
the error in tornado detection, we run the application on scans
that were decoded after compressing them to different com-
pression ratios. Let the data MSE for a decoded scan be mse .

There are three cases to consider to determine seed_err(msey).

First, if the result on the decompressed scan detects a tornado,
t, within 300m of the result on the raw scan, then this is a pos-
itive result. The choice of 300m as the threshold for positive
detection was made based on discussions with meteorologists.
In this case, tornado detection error tornado_err(t) is com-
puted as follows: rornado_err(t) = |(RI(t) — DI(t))| - %
where RI(t) is the intensity of the tornado as determined from
processing the raw data, DI(t) is the intensity from process-
ing the decoded data, and d(t) is the distance between the
actual centroid from the raw data, and the computed centroid
from the decoded data. Second, if a tornado, ¢, is detected in
the decoded scan but no tornado is detected in the raw scan
within 300m, then it is considered a false positive. In this
case, tornado_err(t) = DI(t). Finally, if a tornado, ¢, is de-
tected in the raw scan but no tornado is detected within 300m
of its centroid in the decoded scan, then this is considered a
false negative, and tornado_err(t) = RI(t).

The total error, seed_err(mse;) is the sum over of the above
errors over all tornadoes detected in the raw scan and the com-
pressed scan. Determining the error function for the 3D wind
direction estimation and 3D assimilation applications is more
straightforward. Here, the applications are run on the raw
radar scan and the decompressed scan, and the mean square
error of the difference between these results is used as the er-
ror for the application.

4.4 Global Transmission Control

While the local transmission scheduler uses the weight map
to optimize what order to transmit packets from each radar,
the global transmission controller performs a decision across
all the concurrent streams on all the radars. Radars compete
with each other for wireless bandwidth in a number of ways:
(i) radars within the same wireless contention domain contend
with each other when transmitting, (ii) in multi-hop commu-
nication, all the nodes in the same routing branch share the

optimize global utility across all radars in the network. A
radar with higher utility data might have much lower available
bandwidth than a radar with lower utility due to a number of
factors.

This necessitates global control of transmissions from radars,
in addition to local utility optimization. Global transmission
control in wireless networks has been the subject of significant
work (e.g. [12]). Most of these approaches use the idea of a
conflict graph that captures the interference patterns between
nodes in the network. Such a conflict graph can be used as the
foundation for scheduling transmissions from nodes such that
spatial reuse is maximized, in addition to throughput.

While the use of conflict graphs is the subject of our future
research in the area, we use a simple but effective heuristic in
this work. In our approach, the proxy monitors the incoming
streams from the radars, and stops the transmission of streams
that will not improve overall utility much. Specifically, the
proxy stops a stream when its utility reaches 95% of its max-
imal utility. The proxy knows the maximum utility since it
has a locally generated version of the aggregated query plan.
Since utility is a concave function of the length of the trans-
mitted data stream, the utility of a stream grows very slowly
after having achieved 95% of its maximal value. Therefore
stopping the stream does not affect overall utility significantly.
However, stopping a stream can benefit other streams since
there will be less channel contention, and less forwarded data
to the proxy. We experimentally demonstrate the effective-
ness of such a threshold-based global transmission control in
Section 5.

S. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our system
using a radar trace-driven prototype implementation as well
as trace-driven simulations. We use two data traces in our ex-
periments. The first is the Oklahoma dataset collected from
a 4-radar testbed deployed in Oklahoma (obtained from me-
teorologists [4]). Each radar in the testbed generates 107MB
Doppler readings per 360-degree scan every 30 seconds. We
collected 30 minutes of trace data from each radar. To obtain
a larger scale dataset for scalability experiments, we also ob-
tained an emulated radar data set generated by the Advanced
Regional Prediction System (ARPS) emulator. The ARPS
emulator is a comprehensive regional-to-stormscale atmospheric
modeling system designed by the Center for Analysis and Pre-
diction of Storms, which can simulate weather phenomena
like storms and tornadoes, and generate data at the same rate
as the real radars in the Oklahoma testbed. We emulated 12
radars in the emulator and collected 30 minutes of trace data
from each of them. We refer to this trace as the ARPS dataset.
The ARPS emulator takes days to generate a 30 minute trace,
hence larger traces were prohibitively time consuming. Note
that the actual raw data from radars can be up to an order of

Figure 6: The routing topology of a 13-node wireless testbed with one
proxy and twelve emulated radars.

magnitude larger than the two datasets that we used. We were
limited to collecting smaller datasets by the bandwidth and
storage capacity in the Oklahoma network, and the speed of
the ARPS emulator.

Our radar network prototype comprises 13 radar nodes, each
emulated by a Apple Mac Mini computer with an 802.11 b/g
wireless card. We manually configure the nodes into a 3-
hop wireless topology (shown in Figure 6) by setting their
routing tables appropriately. The proxy is a server running
a proxy process that collects data from radars and processes
user queries. The other twelve nodes run radar processes that
encode and transmit radar data. To simplify our protocol de-
sign, we use TCP as our transmission protocol, since the pro-
gressively stream needs to be received reliably and in-order
for decoding. Two TCP/IP connections are built between each
radar and the proxy—one for transmitting data from the radar
to the proxy, the other for sending control information from
the proxy to the radar. The progressive compression engine
was adapted from the open-source QccPack library [9] that
provides an implementation of SPIHT for images.

To evaluate performance of individual components of our
system under controlled conditions, we augment prototype
experiments with simulations using real traces. In order to
evaluate the query processing performance of our system, we
implement a query generator. Each generated query is a 4-
tuple < Type, ROI, Deadline, Priority >. The Type field
is the application type which can be tornado detection, wind
direction estimation or 3D assimilation. The ROI field shows
the query’s region of interest which is represented by a sec-
tor of the radar’s circular sensing range. The Deadline field
represents the query’s reply deadline in seconds. The Prior-
ity field represents the query’s priority, which is determined
by the user’s preference to this query. We implemented two
query arrival models: (i) a Poisson arrival model in which
queries arrive at each radar as a Poisson process with config-
urable average arrival rate, (ii) a deterministic model in which
queries arrive at each radar in fixed order at fixed rate. For the
tornado detection query, we designed a additional model, in
collaboration with meteorologists, that models query patterns
during a tornado. In this model, the priority of the tornado
query, and the nodes on which it is posed depends on where
the tornado is predicted to be localized.

5.1 Determining the Utility Function

At the core of our system is a utility function that captures
application-perceived utility as a function of the mean square
error of data being transmitted by the radars. To evaluate the

1
08
> 0.6
2 04l
3D Assimilation -+
02 Wind Dir Estim -
’ Tornado Detect —&—
0 : ‘ ‘ ‘ NN
0 10 20 30 40 50 60
Data MSE
1 —— N
08 | % 3D Assimilation -+
Wind Dir Estim -
Tornado Detect —&—
> 0.6
2 04
0.2
0 : ‘ ‘
0 500 1000 1500 2000
Data Size(KB)

Figure 7: Utility functions for the three applications are derived by
compressing and evaluating application performance on traces from the
Oklahoma dataset.

utility functions for the three applications, we ran the applica-
tions on lossily compressed versions of the Oklahoma dataset.
We lossily compress the data traces to % of original size with
1 ranging from 1 to 13. For each of these compression ratios,
we measure the mean square error of the resulting data after
decompression, as well as the application error after executing
it on the decompressed data. Given the application error, the
utilities for the applications are generated using Equation 2.
Here we use fixed user requirement E, ., in the experiments
so that the utility functions only need to computed once. We fit
piece-wise linear functions to utility functions, and use these
functions as the utility functions in the rest of our experiments.
The graph on the top of Figure 7 shows the piece-wise utility
functions of the three applications obtained from our empiri-
cal evaluation. The bottom graph shows an example of how
this utility function would translate to actual number of pack-
ets when a scan is compressed.

5.2 Performance of Progressive Compression

In this section, we evaluate two main benefits of the SPIHT
progressive compression algorithm: (i) higher compression
rate, and (ii) adaptation to bandwidth fluctuation.

5.2.1 Compression Efficiency

The extreme data generation rates of radar sensors makes
compression an essential component of radar sensor system
design. In this section, we compare the compression effi-
ciency of the SPIHT algorithm that we employ against an av-
eraging compression algorithm that is currently used in the
Xrad radar system. Each radar scan is represented as a matrix

200
180
160
140
120
100
80 r
60 r
40 1
20 r

S

SPIHT Compression -
Average Compression —=—

MSE

200 300
Bandwidth(kbps)

Figure 8: Comparison of SPTHT progressive compression against av-
eraging compression. Each algorithm compresses data to the size that
can be transmitted in one epoch for a given bandwidth.

of gates x azimuths, where the radial axis is divided into gates,
and the angular dimension is divided into azimuths. The aver-
aging compression algorithm compresses data simply by aver-
aging along the azimuth dimension. In order to compress data
n times, the averaging compression algorithm averages val-
ues from n adjacent azimuths in the same gate position. The
compressed data has n times fewer azimuths than the original
data.

We compare the two compression algorithms using trace-
driven simulations with the Oklahoma dataset. Each scan in
the trace is compressed to the size s that can be sent in one
epoch (30 seconds) under a fixed bandwidth B, i.e., s = 30-B.
The MSE of the compressed data is measured for different
bandwidth settings ranging from 10kbps to 500kbps. Fig-
ure 8 shows MSE as a function of bandwidth. With increasing
bandwidth, the MSE of the SPIHT algorithm decreases much
more quickly than the averaging algorithm since SPIHT cap-
tures the key features of the radar scan using very few packets.
Even at extremely low bandwidths such as 20kbps, the MSE
of the SPIHT compressed stream is 20, whereas the MSE of
the same stream with averaging compression is an order of
magnitude higher at 200. This shows that SPIHT is an ex-
tremely efficient compression scheme for radar data.

5.2.2 Bandwidth Adaptation

Next, we evaluate the ability of SPIHT to adapt to band-
width fluctuations. SPIHT adapts to fluctuations naturally
because of its progressive feature, i.e., data can be decoded
progressively without receiving the entire compressed data
stream. We compare it against a non-progressive compres-
sion algorithm under different levels of bandwidth fluctuation.
The non-progressive algorithm is implemented by simply re-
moving the progressive feature from SPIHT. In other words,
the non-progressive SPIHT encoder first estimates how much
bandwidth is highly likely to be available until the deadline
of the stream, and would compresses data to that size before
transmission. The data can be decoded by the proxy only af-
ter the entire compressed stream is received since no partial
decoding is possible.

10

140

Progressive -+ f
120 Non-Progressive —&—
100
w 80
%)
E 60 L
40
20 % # #
0 L L L L
0 5 10 15 20 25
Standard Deviation(kbps)
Figure 9: Comparison of progressive compression against non-

progressive compression for different levels of bandwidth fluctuation.
Bandwidth fluctuation follows a normal distribution with mean 40kbps;
standard deviation is varied from Okbps to 25kbps.

Unlike progressive compression where the receiver can de-
code even a partially transmitted stream, a non-progressive
compression-based scheme has to rely on a conservative es-
timate of the available bandwidth to ensure the compressed
data can be fully transmitted and received before the query
deadline. We use a moving window estimation algorithm in
our implementation. The non-progressive encoder considers
a window of bandwidth values in last w epochs. The values
are sorted in descending order and the 95th percentile value is
taken as the estimated bandwidth. We use a window size of
20 in the experiments.

We perform a trace-driven simulation using the Oklahoma
dataset where the available bandwidth in each epoch is chosen
from a normal distribution with mean 40kbps. The standard
deviation of the distribution is varied from Okbps to 25kbps
in steps of 5, and the resulting MSE from the two schemes is
measured. Figure 9 shows MSE of the decoded data as a func-
tion of the standard deviation of the distribution. At a standard
deviation of zero, the two compression algorithms achieve the
same accuracy since they utilize the same amount of band-
width. As the standard deviation increases, the bandwidth
utilized by the non-progressive algorithm drops quickly, be-
cause it estimates available bandwidth conservatively. There-
fore, the accuracy of the non-progressive algorithm degrades
much more quickly than the progressive algorithm. For the
highest standard deviation, the MSE of the non-progressive
algorithm is six times more than that of the progressive algo-
rithm.

Figure 10 gives us a time-series view of how bandwidth
fluctuation impacts the two schemes. While the non-progressive
scheme has high MSE due to its conservative estimate, the
MSE for the progressive compression scheme follows the fluc-
tuations in bandwidth since it is able to exploit the entire avail-
able bandwidth. The R-value for the bandwidth and MSE
time-series for the progressive algorithm is —0.79, indicating
robust anti-correlation: i.e. bandwidth is inversely correlated
to the MSE.

100

. 80
[%2]
Q
o
< 60
£
el
£ 40
C
a
20
O L L L L L
5 10 15 20 25 30
Epoch
60
Progressive -
50 | Non-Progressive &
40
w ﬁBBDDBBDDEDD%BBEBBDBEBDBDBDDU
U) 30 [1/“ l.l". ,v" v"'. X, ,'X‘,
= O iV T SN NN WA ¥l
20
10
0 L L L L L
0 5 10 15 20 25 30
Epoch

Figure 10: Time series of bandwidth and MSE of decoded data.
Bandwidth fluctuation follows a normal distribution with mean value at
40kbps and standard deviation of 25kbps.

5.3 Performance of Data Sharing

In multi-user sensor networks with diverse end-user needs,
sharing data among queries greatly improves utility of the sys-
tem. We evaluate the ability of our system to handle two types
of data sharing: 1) queries with identical regions of interest but
with different deadlines, and ii) queries with identical dead-
lines but with overlapping regions of interest.

5.3.1 Temporally Overlapping Queries

We first consider the case where queries have the same re-
gion of interest but have different deadlines. In this case, the
progressive compression engine generates a single progres-
sively compressed stream for both queries. The query pro-
cessor decodes the compressed stream as it is received, and
processes the two queries when their deadlines arise. In con-
trast, a system using non-progressive compression cannot eas-
ily share data between queries. We compare our approach
against a non-progressive compression scheme in which data
is compressed and transmitted separately for each query indi-
vidually.

‘We evaluate the two schemes using trace-driven simulations
with the Oklahoma dataset. Two queries—tornado detection
and 3D assimilation—arrive at a radar every two epochs. They
have different deadlines but both ask for all the data from a
360-degree scan. The tornado detection query has a deadline
of one epoch, and the 3D assimilation query has a deadline of
two epochs. Figure 11 shows the utility of the two schemes as
bandwidth is varied from 10kbps to 100kbps. At bandwidth
of 10kbps, our system achieves five times the utility of the

11

1.6
1.4
1.2

Progressive —+—
T/ Non-Progressive -

08t/
06F /
04t/
02}

Avg Utility/Radar/Epoch

0 L L L L L L L L
10 20 30 40 50 60 70 80 90 100
Bandwidth(kpbs)

Figure 11: Performance for temporally overlapping queries. Two
queries with different deadlines but same region of interest arrive at the
radar every two epochs.

non-progressive scheme. As the bandwidth increases, both
schemes can get significant data through to the proxy, there-
fore the relative utility gains from our system reduces.

5.3.2 Spatially Overlapping Queries

‘We next evaluate our system’s ability to handle queries with
the same deadline and overlapping regions of interest. Re-
gions that are of interest to multiple queries are weighted higher
than regions of interest to just one query, and are therefore
transmitted earlier and with higher fidelity than regions that
are only of interest to one of the queries. We compare our
scheme to a scheme without data-sharing. For the non-data-
sharing scheme, data for different queries are sent separately
even when there is overlap between the queries. We consider
two queries, tornado detection and 3D assimilation, each of
which requires data from a 180-degree sector. The degree of
overlap between the regions of interest for the two queries is
varied from O degrees to 180 degrees in steps of 30 degrees.

Figure 12 shows the end-user utility achieved by our scheme
and the non-data-sharing scheme as the angle of overlap of the
two queries is varied. As the angle of overlap increases, the
utility gain from our scheme increases. For an overlap of 180
degrees (maximum overlap), our scheme achieves 21% higher
utility than the non-data-sharing scheme.

5.4 Performance of Local Scheduler

‘We now evaluate the benefit of the local transmission sched-
uler, which always transmits the packet with the highest util-
ity gain first. We compare this approach against an approach
that uses a random transmission scheduler, which picks pack-
ets randomly from heads of the data streams. In the experi-
ments, we simulate one radar and one server and control the
available bandwidth. The tornado detection, wind direction
estimation, and 3D assimilation queries arrive in round robin
order at the radar at the beginning of each epoch. All queries
have the same priority and the same deadline of three epochs.
We run the two systems at bandwidth ranging from 10kbps to
150kbps, and seeded with the Oklahoma dataset.

Figure 13 shows the average utility per epoch as a function

1.6
14
127F

0.8

0.6 t
No Data-Sharing ——
04 r " Data-Sharing -

0.2

Total Utility

60 90 120 150
Overlap Angle(Degree)

30 180

Figure 12: Evaluation of the impact of data sharing on utility. Two ap-
plications, tornado detection and 3D assimilation, with overlapping sec-
tors are considered.

0.5

04

03

0.2
Utility-based Schedule -+

01 | Random Schedule —&—

Avg Utility/Radar/Epoch

0 L L L L L L L
20 40 60 80 100 120 140 160
Bandwidth(kbps)

0

Figure 13:

scheduling.

Comparison of utility-driven scheduling against random

of bandwidth. For bandwidth lower than 150kbps, the utility-
driven scheduler always achieves higher utility than the ran-
dom scheduler, with as much as 100% increase in utility at
low bandwidth. As bandwidth increases, the utilities of the
two systems become closer. Our system performs better un-
der low bandwidth conditions because the most important data
are always sent in the first packets. When bandwidth is high
enough to send all data in high fidelity, e.g., at 150kbps, there
is negligible benefit from utility-driven scheduling.

5.5 Performance of Global Control

Having evaluated the performance of local transmission con-
trol, we next consider global transmission control by the proxy.
Such an optimization is beneficial when there is an imbalance
in query load across different regions in the network. We de-
signed an uneven query pattern as follows - a tornado detec-
tion query with priority=3 arrives at each radar which is¢-hops
(¢ varies from 1 to 3) away from the server in each epoch,
while each of the other radars has a wind direction estimation
or 3D assimilation query with priority=1 in each epoch. We
use the testbed consisting of one server and twelve radars as
shown in Figure 6. Each radar in the testbed is seeded with a
radar trace from the ARPS dataset.

Figure 14 shows the average utility per epoch with increas-

12

2.5

w/ Global Control -+
S S w/o Global Control —<—
- e — et |
4
8 15
5
o
E
=
2 05
<
0 1
1 2 3

Num of Hops

Figure 14: Performance of global transmission control. Utility is
shown for differing numbers of hops from the proxy to nodes having
high-priority queries.

ing number of hops from the proxy. The utility decreases for
both of the approaches as queries with high priority arrive at
nodes farther from the proxy. This is because nodes on the
edge of the routing topology usually have less available band-
width than nodes closer to the proxy, as packet loss probability
increases as packets travel more hops. Thus, a query arriv-
ing at an edge node cannot achieve high utility because of the
limited bandwidth, therefore, the contribution of the tornado
detection query to the overall utility is reduced. However, the
global control-based approach degrades much slower than the
approach without global control. For instance, when the tor-
nado query is posed three hops from the proxy, the global
control-based approach achieves twice the utility of the ap-
proach without such control. This shows that global transmis-
sion control provides a simple but effective approach to deal
with imbalanced query loads.

5.6 System Scalability

Until now, we have characterized the performance of indi-
vidual components of our system. We now turn to full system
measurement and evaluation on our testbed. Our goals are
two-fold: 1) to demonstrate that our system as a whole scales
well with network size and number of queries per epoch, and,
ii) to provide a breakdown of the utility gains provided by the
different components of our system.

5.6.1 Impact of Network Size

Our first set of scalability experiments test our system at
different network scales. In the experiments we use different
number of nodes in the testbed shown in Figure 6 — the one
and four node experiments are for a one hop topology, the
eight node experiments are for a two hop topology, and the
twelve node experiments are for a three hop topology. Each
radar is seeded with data traces from the ARPS dataset.

The query distribution for our experiments was designed, in
collaboration with meteorologists, to realistically model query
patterns during a tornado. The three queries — tornado detec-
tion, wind direction estimation, and 3D assimilation — arrives
at each radar as a Poisson process with average arrival rate

of one query per three epochs and standard deviation of one
query per epoch. The wind direction estimation queries and
3D assimilation queries are assigned weights of one or two
randomly.

The priority of the tornado query, and the nodes on which it
is posed depends on where the tornado is predicted to be. Me-
teorologists use tracking algorithms such as Extended Kalman
Filters to track tornado trajectories, thereby predicting its likely
location. Therefore, in our query model, we assume that the
priority of tornado detection queries is three on radars where
the tornado is predicted to be observed by the tracker, and is
one otherwise. To generate this query pattern, we use a visual
estimate from the ARPS emulator data to determine the likely
centroid of the tornado.

We compare four schemes in this experiment. The existing
XRad system with averaging compression and conservative
bandwidth estimation (described in Section 5.2.2) provides
us a baseline for comparison. Then, we consider three vari-
ants of our system: first, we turn on progressive compression
only, then we turn on progressive compression as well as local
transmission scheduling, and finally, we include global con-
trol as well. Figure 15 shows the average utilities per epoch
of XRad and the three variations of our system.

For small networks (1 or 4 nodes), our gains over the XRad
system are primarily due to progressive compression. For in-
stance, when there is only one radar in the network, just the
addition of progressive compression gives us 3x as much util-
ity as the XRad scheme. Both local scheduling and global
control have limited impact for the one and four node network
settings, because there is limited contention and considerable
available bandwidth from each node to the proxy. Thus, at a
network size of one, the addition of local scheduling achieves
only 4% more utility than just having progressive compres-
sion. Global control has no impact at network size 1, and
limited impact at network size 4.

As system size increases, contention between nodes also in-
creases. There is less available bandwidth per radar and more
bandwidth fluctuation due to increased contention and colli-
sions, and consequent variations in TCP window size. As a re-
sult, both local scheduling as well as global control give more
gains. The benefit from these schemes increases with growing
network size. For instance, the addition of local scheduling
to progressive compression increases utility from 15% at net-
work size four to 38% at network size 12. The inclusion of
global control improves utility by only 4% at network size 4,
but provides a 30% improvement at network of size 12.

Another point to note is the increasing difference in perfor-
mance between the XRad scheme and our full system. With
all three techniques enabled, our system achieves more than
an order of magnitude improvement in utility over the XRad
system for network size at 12. As network size increases from
one to twelve, the utility of our system only decreases by 25%,
whereas the utility of XRad decreases by 80%; this compari-
son demonstrates the scalability of our system.

5.6.2 Impact of Query Load

13

XRad
35 | XRad+Progress &

XRad+Progress+Local-Schd
XRad+Progress+Local-Schd+Global-Alloc

Avg Utility/Radar/Epoch

4 8
Number of Radars

Figure 15: Scalability to network size. Breakdown of contribution of
each component of our system to the overall utility.

Utility-driven prototype —+—
ASA system 8-

_.
o
B

Avg Utility/Query

o
3

1 2 3
Query Rate(query/epoch)

Figure 16: System scalability to the query load.

Our second scalability experiment stresses the query han-
dling ability of our system. We compare our system against
the XRad system under different query loads. Since the query
processor aggregates the same type of queries into a single
query in each epoch, there are at most three queries posted on
each radar per epoch. We run the experiments on the wireless
testbed at network size 12. Each radar node is seeded with a
data trace from the ARPS emulator. We use constant query
arrival rate in the query distribution for our experiments. In
each epoch at most three queries of different types arrive at
each radar. The priorities of the wind direction estimation
queries and 3D assimilation queries are assigned one or two
randomly. The priority of tornado detection queries is three
on radars which the tornado is predicted to be observed by the
tracker, and is one otherwise. We evaluate the two systems
under different query rate ranging from one to three queries
per epoch.

Figure 16 shows the average utility per query as a function
of query rate. In our system, as the query rate increases, each
query still gets data with sufficient accuracy to achieve high
utility. Thus, the utility of XRad system decreases by 57%
when the query rate increases from one to three, whereas the
utility of our system only decreases by 15%. This demon-
strates the scalability of our system to high query load.

6. RELATED WORK

We discuss related work not covered in previous sections.

Multi-query Optimization: A few approaches have addressed
multi-query optimization in sensor networks [16, 21]. For
instance, [16] considers a limited form of multi-user shar-
ing where different users request data at different rates from
different sensors, and [21] considers a multi-query optimiza-
tion for simple queries such as min, max, sum, count and
average. In contrast, we consider data sharing for consider-
ably more complex applications involving spatial and tempo-
ral data sharing, and propose a general solution that can work
across a variety of queries.

Utility-based Design: There is a growing body of research
on utility-based approaches to address different problems in
sensor networks including resource allocation in SORA [15],
and sensor placement [2]. Much of this work is only periph-
erally related to our work. For instance, SORA employs a
reinforcement learning and an economic approach for energy
optimization in sensor networks [15]. The work is not de-
signed for multi-user scenarios.

Data compression: Many techniques have used data com-
pression to reduce communication energy overhead in sensor
networks. For instance, Sadler et al. [19] consider data com-
pression algorithms such as LZW for networks of energy-
constrained devices. However, the use of compression to-
gether with multi-query optimization is a novel approach that
has not been studied in the past.

Utility in Internet-based Systems: For Internet-like networks,
Kelly [13] pioneered a utility-theoretic framework for rate con-
trol and, in particular, for deconstructing TCP like protocols.
Such approaches have also been used for jointly optimizing
routing and rate control [13, 11]. These schemes attempt to al-
locate resources such as bandwidth across users without con-
sideration to data sharing between the users. Multicast rate
control schemes exploit data sharing across users; but they
apply to a one-to-many environment unlike MUDS that is de-
signed for many-to-one or many-to-many environments.

7. CONCLUDING REMARKS

In this paper, we focused on a network of rich sensors that
are geographically distributed and argued that the design of
such networks poses very different challenges from traditional
“mote-class” sensor network design. We identified the need to
handle the diverse requirements of multiple users to be a ma-
jor design challenge, and proposed a utility-driven approach
to maximize data sharing across users while judiciously us-
ing limited network and computational resources. Our utility-
driven architecture addresses three key challenges: how to de-
fine utility functions for networks with data sharing among
end-users, how to compress and prioritize data transmissions
according to its importance to end-users, and how to grace-
fully degrade end-user utility in the presence of bandwidth
fluctuations. We instantiated this architecture in the context of
geographically distributed wireless radar sensor networks for
weather, and presented results from an implementation of our

14

system on a multi-hop wireless mesh network that uses real
radar data with real end-user applications. Our results demon-
strated that our progressive compression and transmission ap-
proach achieves an order or magnitude improvement in ap-
plication utility over existing utility-agnostic non-progressive
approaches, while also scaling better with the number of nodes
in the network.

Overall, these results demonstrate the significant benefits
of multi-user data sharing in rich sensor networks. While we
have considered only bandwidth optimization in this work, we
are exploring joint radar sensing and bandwidth optimization
in our future research. We also believe that the benefits of data
sharing can apply to a wider range of applications and end-
users than we have explored in this work. We plan to extend
our work to camera sensor networks as well as resource-poor
mote-class sensor networks in our future research.

8. REFERENCES

[1]1 D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level
Measurements from an 802.11b Mesh Network. In In Proc. SIGCOMM, 2004.

[2] F.Bian, D. Kempe, and R. Govindan. Utility based sensor selection. In In Proc.
IPSN, 2006.

[3] V.Bychkovsky, K. Chen, M. Goraczko, A. Miu, E. Shih, Y. Zhang,

H. Balakrishnan, and S. Madden. Cartel: A distributed mobile sensor computing
system. In Proc. SenSys, 2006.

[4] http://www.caps.ou.edu/. CAPS: Center for Analysis and Prediction of
Storms.

[5] K. Chebrolu, B. Raman, and S. Sen. Long-distance 802.11b links: Performance
measurements and experience. In Proc. MOBICOM, 2006.

[6] P.R.Desrochers and S. Y. Yee. Wavelet-based Algorithm for MesoCyclone
Detection. In Proceedings of SPIE: Wavelet Applications in Signal and Image
Processing, 1997.

[7]1 B.Donovan, D. J. McLaughlin, J. Kurose, and V. Chandrasekar. Principles and
design considerations for short-range energy balanced radar networks. In Proc.
IGARSS 2005, 2005.

[8] http://www.earthscope.org.

[91 J.E. Fowler. QccPack: An Open-Source Software Library for Quantization,
Compression and Coding. In Proceedings of SPIE: Applications of Digital Image
Processing, 2000.

R. Fritchie, K. K. Droegemeier, M. Xue, M. Tong, and E. S. Godfrey. Detection of
Hazardous Weather Phenomena Using Data Assimilation Techniques. In 32nd
Conference on Radar Meteorology, 2005.

H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley. Overlay TCP for
Multi-Path Routing and Congestion Control. In Proc. of IMA Workshop on
Measurements and Modeling of the Internet, Jan 2004,

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on
multi-hop wireless network performance. Wireless Networks, 2005.

F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. In Journal of the Operational
Research Society, volume 49, 1998.

S. Liu, M. Xue, and Q. Xu. Using Wavelet Analysis to Detect Tornadoes from
Doppler Radar Radial-Velocity Observations. In Journal of Atmospheric Ocean
Technology, 2006.

G. Mainland, D. Parkes, and M. Welsh. Decentralized, adaptive resource
allocation for sensor networks. In Proc. NSDI, May 2005.

R. Muller, G. Alonso, and D. Kossman. Efficient sharing of sensor networks. In
Proc. MASS, 2006.

R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and E. Brewer.
WiLDNet: Design and Implementation of High Performance WiFi-based Long
Distance Networks. In Proc. NSDI, 2007.

B. Philips, D. Pepyne, D. Westbrook, E. Bass, J. Brotzge, W. Diaz, K. Kloesel,

J. Kurose, D. McLaughlin, H. Rodriguez, and M. Zink. Integrating End User
Needs Into System Design and Operation: The Center for Collaborative Adaptive
Sensing of the Atmosphere (CASA). In Proceedings of the 87th AMS Annual
Meeting, San Antonio, TX, USA, Jan. 2007.

C. Sadler and M. Martonosi. Data compression algorithms for energy-constrained
devices in delay tolerant networks. In Proc. SenSys, 2006.

A. Said and W. A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for
Video Technology, 6:243-250, 1996.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Multi-query
optimization for sensor networks. In Proc. DCOSS, 2005.

[10]

[11]

[12]

[13]

[14]

[15]
(16l

[17]

[18]

[19]

[20]

[21]

