
DirectStream: A Directory-based Peer-to-Peer
Video Streaming Service

Yang Guo Kyoungwon Suh, Jim Kurose, and Don Towsley
Corporate Research Department of Computer Science

Thomson Inc. University of Massachusetts at Amherst
Princeton, NJ 08540 Amherst, MA 01003, USA

Yang.Guo@thomson.net kurose,towsley,kwsuh@cs.umass.edu
Phone: 609-987-7725 Phone: 413-545-1585

Fax: 609-987-7299 Fax: 413-545-1249

CMPSCI TR 07-30

Abstract—Providing video streaming service over the In-
ternet is a challenging task. Recent works [1–7] show that
peer-to-peer networking is a promising technique to address
the scalability issues faced by video streaming service. Peer-
to-peer video streaming allows users distributed across the
Internet to collaborate and bring computation and stor-
age resources into the system, hence reducing the workload
placed on the server and increasing the number of clients
served. In this paper, we propose DirectStream, a direc-
tory based peer-to-peer video streaming service that effi-
ciently and cost-effectively provides video on-demand ser-
vice with VCR operation support. In addition, we develop
an application-level multicast based directory service tai-
lored for DirectStream, known as AMDirectory service. We
analytically and experimentally examine the system perfor-
mance, and show that the proposed scheme significantly re-
duces the workload posed on the origin server, and that it
scales extremely well as the popularity of the video increases
even if participating clients behave non-cooperatively. Fur-
thermore, AMDirectory service allows DirectStream to per-
form well in the face of a large number of concurrent users.
We also discuss how DirectStream supports basic VCR op-
erations, and provides continuous playback in the presence
of the users’ early departures and bandwidth starvation.

I. INTRODUCTION

Providing video streaming service in a scalable way
is a challenging task due to the long durations and
high bandwidth requirements of video streams. In the
past, IP multicast based approaches[8–14] and replicated
server/proxy based approaches[15–18] have been devel-
oped to tackle the scalability issue. However, all these
methods have their own drawbacks, due to limited de-
ployment and access to IP multicast, or to costs associ-

ated with deployment and maintenance. A video stream-
ing service that is scalable and flexible while incurring
low deployment and maintenance cost is desirable.

Recent works, e.g., [1–7], suggest that peer-to-peer net-
working is a promising technique to address the scala-
bility issues faced by video streaming services. Peer-to-
peer video streaming allows users distributed across the
Internet to bring computation and storage resources into
the system, hence reducing the workload placed on the
video’s origin server, and thereby admitting more users
to receive the service. In this paper, we propose Di-
rectStream for peer-to-peer video streaming with the sup-
port of a distributed directory service, known as AMDi-
rectory service. DirectStream provides instantaneous or
near-instantaneous video on-demand service (VoD), and
enables basic VCR functionalities.

In DirectStream, a user is implemented with both
server and client capabilities, and behaves like a peer—it
caches a moving window of the latest received video con-
tent, and serves latecomers by continuously forwarding
the cached content. A set of clients arrived close in time
forms a forwarding tree through which a single stream
from the server is shared. We study the system perfor-
mance through both analysis and simulation, and show
that the proposed scheme significantly reduces the work-
load posed on the server, and scales extremely well as the
popularity of the video increases. We further investigate
several key technical issues emerging from this peer-to-
peer streaming service, namely

• Combating non-cooperative users. As in any peer-
to-peer system, there is no guarantee that the peers
will behave cooperatively. For DirectStream, selfish

users may always try to connect to the original server
directly, or refuse to forward streams to other peers.

• Constructing the peer-to-peer overlay appropriate
for streaming. The goal here is to allow users to have
good quality streaming service, while maximizing
the number of users that can be served by the sys-
tem in the long run.

• Providing scalable directory service that facilitates
the overlay construction in the face of a large num-
ber of users. As the video popularity increases, the
number of users in the system also increases. How to
provide directory service under such environments is
a challenging task.

Our analysis and simulation experiments show that Di-
rectStream performs well even when a fraction of the par-
ticipating clients behave selfishly or non-cooperatively.
We further offer the intuition why DirectStream is im-
mune to such a challenge. As to the second issue, we
employ a QoS-sensitive peer-selection algorithm to con-
struct the appropriate streaming overlay. Given the avail-
able bandwidth between the candidate parents and the
newly arrived user satisfies the bandwidth requirement,
we choose the parent peer that give us better chance to
admit more users in the long run. We develop AMDirec-
tory service to provide scalable directory service tailored
for DirectStream. AMDirectory service is an application-
level multicast based directory service that dynamically
distributes and tracks the location of users in the network.
Since it offers user proximity information, an incoming
user can quickly identify the appropriate parent user with-
out searching through the entire candidate list, which may
contain hundreds of candidates when the video popularity
is high.

The remainder of the paper is organized as follows. Re-
lated work is included in Section II. In Section III, we
describe the design and architecture of DirectStream. In
Section IV, we present AMDirectory service. The per-
formance of DirectStream is evaluated both analytically
and through simulation in Section VI. In Section V, we
discuss the means to support basic VCR operations, and
to provide continuous playback in the presence of clients’
early departures and bandwidth starvation. Finally, Sec-
tion VII concludes the paper with summary and future
directions.

II. RELATED WORK

DirectStream is related to previous works in the context
of peer-to-peer video streaming, application-level multi-
cast, and available bandwidth measurement techniques.

There have been significant efforts to address the scal-
ability issue presented in the streaming media service us-
ing peer-to-peer networking techniques, e.g., [1–7]. The
work reported in [1, 2, 5, 7] are mainly designed for live
media streaming. SplitStream [5] is a high-bandwidth
content streaming/distribution system that is built upon

Pastry [19] and Scribe [20]. It provides live streaming
service while DirectStream targets VoD service. AMDi-
rectory service is also built upon Pastry and Scribe. How-
ever, AMDirectory is designed to provide the directory
service for DirectStream, while the streaming overlay is
constructed using peer selection. Distinct overlays help
to suite individual overlays to their respective functionali-
ties. Buffering a moving window of latest data at client
side corresponds to the interval caching technique that
was first proposed in [21, 22] to efficiently utilize mem-
ory for video streaming. It has been applied at the ap-
plication level in several occasions ([23–28]). Hua et al.
[23] first applied the client side interval caching in an
ATM networking environment. Jin et al. [25] analyzed
the link cost of a client-based caching approach. Sharma
et al. [27] propose a distributed prefetching protocol that
allows clients to prefetch and store portions of the stream-
ing data ahead of play-out time so as to facilitate the re-
covery process caused by parent client’ early departure.
Cui et al. [26] analytically examined the server stress and
link stress under different stream access pattern. This pa-
per is an extension of [4]. While above studies focus on
different aspects of applying buffering technique to p2p
VoD streaming, to our best knowledge, we are the first
to propose a framework that allows clients to take full
advantage of the benefits of interval caching, and care-
fully examine the system’s performance and the effect of
clients’ non-cooperative behavior unique to the peer-to-
peer networks. Furthermore, we propose AMDirectory
service that allows DirectStream to perform well in the
face of large number of users, and investigate how to ap-
propriately construct the peer-to-peer networks in order to
improve the system’s scalability.

AMDirectory service is also related to the work on IP
and application-level anycast, e.g., [29–33]. The anycast
service proposed in [33] also uses Pastry and Scribe. We
designed AMDirectory to provide directory service for
DirectStream, and tailor the design to work with peer-to-
peer video streaming service.

Finally, estimating the available bandwidth efficiently
is very important for the overlay construction since it de-
termines clients’ joining delay. Reference [34] claims
that their tool needs less than 15 seconds to produce
an estimate of the available bandwidth. We expect the
bandwidth measurement in DirectStream to take less time
since the granularity of bandwidth of interest in Direct-
Stream is the video playback rate. Furthermore, since
the available bandwidth measurement has little impact
to other traffic flows [34], we believe that the concur-
rent bandwidth measurement toward the same requesting
client will not affect the measurement accuracy signifi-
cantly.

Server

cluster 1

H

cluster 2

A

B C

New client

(a)

Server

cluster 1

H

cluster 2

B C

New client

(b)

Fig. 1. DirectStream system. (a) DirectStream system with two clus-
ters — one headed by client A and the other headed by client H . (b)
DirectStream system after the departure of client A.

III. DIRECTSTREAM: A DIRECTORY-BASED
PEER-TO-PEER VIDEO STREAMING SERVICE

DirectStream is comprised of clients, content servers,
and the AMDirectory service. The content servers pro-
vide the same functionality as in the traditional client-
server service model—storing contents in their repository
and serving clients’ requests so long as sufficient band-
width is available. In contrast, the clients in DirectStream
act as both a traditional client and as a server. Clients
cache a moving window of video, and can serve other
clients by forwarding the stream. A peer-to-peer over-
lay is formed among clients over which the video stream
is forwarded. The AMDirectory provides lookup service,
which keeps track of all servers and clients participating
in DirectStream, and helps new clients to obtain the re-
quired service. The detailed design of AMDirectory ser-
vice is presented in Section IV.

Fig. 1(a) illustrates a DirectStream peer-to-peer
streaming system at time t with one server and a number
of clients. These clients form two clusters, cluster 1 and
cluster 2. We define cluster to be a set of clients that share
a single stream from the server. A peer-to-peer streaming
overlay is established among the clients of the same clus-
ter. For instance, clients A, B, C and other three clients
form the first cluster. The streaming overlay, in this case
a forwarding tree, is established among them.

A cluster in DirectStream evolves over time. For in-
stance, client A was a member of the cluster 1 however it
left the cluster after completing playback and forwarding
the stream to B and C (see Fig. 1(b)). This cluster may
grow in the future by admitting new clients into it.

Below we first describe the data caching at clients and
the usage of AMDirectory service in DirectStream. We
then introduce a peer selection algorithm to construct the
overlay appropriate for streaming. Finally, we present the
procedure of servicing a new client.

A. Data caching at clients
Clients in DirectStream cache a moving window of the

most recent content that they have received. Assume a

client buffers b minutes worth of video, and is watching
the video at a position τ minutes from the beginning of the
video at time t. The client caches the most recent b min-
utes of the video, [(τ − b)+, τ], and continuously caches
the most recent content as time goes along. This client
can serve any client requesting the same video starting at
a position within [(τ − b)+, τ].

As the amount of cached stream, b, increases, the scal-
ability of DirectStream improves (see Proposition VI.1).
However, the value of b is restricted by (i) the available
cache space at clients, and (ii) the willingness of clients to
server other clients for an extra time after finishing watch-
ing the video themselves. Since the clients may have to
forward the stream to other clients for b minutes after they
finish watching the video, clients have a strong incentive
to use a small value of b even if they have large storage
space. In case clients leave immediately after playing
back, the clients may have to switch to new parents at
the end of video playback. In that case, more dedicated
resources, such as servers, have to be deployed.

B. Using AMDirectory service
AMDirectory service maintains information regarding

content servers and clients to facilitate the search by a
new client for a parent client. A user community is cre-
ated for each video in AMDirectory service. Content
servers immediately register themselves with AMDirec-
tory and indicate themselves as servers. AMDirectory
service maintains one entry for each client. For instance,
the entry for client i is a tuple (ai, ti, τi, bi), where ai

is client i’s IP address, ti is the time when this client
started to receive the stream, τi is the position in the video
where the client began, and bi is the client’s buffer size.
At any future time t, the content cached at client i is[
min{L−bi, τi +(t− ti−bi)+}, min{L, τi +(t− ti)}

]
,

where L is the video length. The implementation of
AMDirectory service is described in Section IV.

C. Parent client selection
The peer clients in DirectStream form peer-to-peer

overlays over which the video stream is forwarded. Since
a minimum guaranteed bandwidth equal to the playback
rate is required over all connections in the streaming over-
lay, a client has to select a parent node that has sufficient
bandwidth to itself. Moreover, the selection of the par-
ent node should allow the DirectStream to admit as many
clients as possible in the long run.

We propose QoS peer selection that mimic the QoS
routing at the application level. Assume that client A
sends a service request to AMDirectory service and re-
ceives a list of n candidates, {ci}i=n

i=1 , that can provide the
service. Suppose that the measured number of hops from
candidate client ci to the requesting node is ni, and the

1 "

#

#
#

$

Server

New client

2

2

2

AMDirectory Service

cluster 1 cluster 2

B C

H

K

I

(a)

Server

New client

cluster 1 cluster 2

B C

H

K

I

(b)

Fig. 2. Servicing new clients in DirectStream system. (a) A new client
arrives at system. The dashed lines represent the signaling paths. (b)
The new client selects client I as its parent and starts to receive the
stream from client I .

measured available bandwidth is xi. The QoS peer selec-
tion algorithm uses the distance-bandwidth ratio, defined
as nr

i /xi where r is a positive constant, as the metric in
selecting the peer peer client. The new client selects the
candidate with smallest distance-bandwidth ratio to be its
parent client. Intuitively, the selection of a parent with
large available bandwidth helps to balance the workload;
while the selection of a parent close by reduces the traf-
fic placed on the underlying network. QoS peer selection
tries to properly balance the above two factors.

Routing traffic with bandwidth guarantees has been
studied extensively in the QoS routing context. However,
the current Internet has not fully supported the QoS rout-
ing yet. QoS peer selection attempts to mimic QoS rout-
ing at the application level so as to maximize the number
of clients that can be serviced in the long run. Our prelim-
inary results in [35] show that the QoS selection algorithm
performs better than traditional selection algorithms, such
as shortest-widest selection algorithm and widest-shortest
selection algorithm [36].

D. Servicing a new client
Assume that a new client wants to watch video A start-

ing at position τ . The service search process for such a
request consists of the following five steps, as indicated
in Fig. 2(a).
Step 1. The new client initiates the AMDirectory

lookup service, asking for video A starting at position τ .
Step 2. The AMDirectory lookup service allows the

content servers and the clients that can serve this request
to send response messages to the requesting client. The
lookup process in AMDirectory service is presented in
Section IV-A.
Step 3. The new client selects the parent client using

the QoS parent selection algorithm.
Step 4. The new client contacts the selected parent

client and asks it to forward the stream.
Step 5. After successfully setting up the connection,

the new client registers itself in the AMDirectory.

In the example illustrated in Fig. 2, the new client se-
lects client I as its parent and joins the cluster. It will
receive the stream from client I thereafter.

A similar procedure can be used to support client re-
covery and VCR functionalities. In peer-to-peer video
streaming, a client may leave the system without ad-
vanced notice. Its children clients lose their parent and
cannot receive the stream any more. In this case, the chil-
dren clients start the recovery process. The recovery pro-
cess is the same as a new client joining process except that
the video starting position will be at the parent client’s de-
parture point.

IV. AMDIRECTORY SERVICE: APPLICATION-LEVEL
MULTICAST BASED DIRECTORY SERVICE

A directory service allows users to locate other users
sharing the same interests. It is an essential building block
for many distributed applications. For instance, in peer-
to-peer video streaming, an incoming client uses the di-
rectory service to identify other clients that are watching
the same video and are willing to support incoming clients
as peers.

We propose a new directory service, AMDirectory ser-
vice, to dynamically distribute and track the location of
users in the network. Traditional directory services are
implemented using a central server, which is a single
point of failure and can become the performance bot-
tleneck. AMDirectory service employs application-level
multicast as the basis for scalable directory service. For
each community sharing the same interest, an application-
level multicast group is created. Users register themselves
by joining the multicast group, and unregister themselves
when leaving. The lookup service is provided to allow
users to check out other users in a group. Compared to a
centralized directory server, AMDirectory service has the
following advantages:

• Avoiding the single point of failure problem. The
mechanism built into application-level multicast al-
lows AMDirectory service to recover even if some
nodes go down.

• Scalable. An application-level multicast group can
handle more information than a single directory
server.

• Providing proximity information. Proximity infor-
mation is vital in constructing an appropriate peer-
to-peer overlay for a streaming service. Since
some application-level multicast trees are built tak-
ing proximity into account, AMDirectory service
can use them to provide the approximate proximity
information naturally.

AMDirectory can be implemented us-
ing any application-level multicast. We have chosen to
implement it on top of Scribe [20] because Scribe builds
a proximity-aware spanning tree on top of Pastry [19], a
structured peer-to-peer network. It supports both small

and very large groups, and it allows nodes to join and
leave a group with low overhead.

A. Design of AMDirectory service
AMDirectory service is built on the top of Scribe, and

supports the following operations: community creation,
user registration, user un-registration, and user lookup
service. In the following, we describe these operations,
respectively.
• User community creation. AMDirectory service uses

one multicast group for each user community. The com-
munityId of this user community can be the hash of this
community’s unique name, e.g., the video title concate-
nated with its creator’s name. A user community is cre-
ated by creating a Scribe multicast tree [20].
• User registration and un-registration. User registra-

tion and un-registration in AMDirectory use the under-
lying Scribe node join and departure operations. How-
ever, there may be multiple users attached to the same
node. When a user registers with AMDirectory service,
the corresponding Pastry node records the user’s informa-
tion, and checks whether it is already in the corresponding
Scribe multicast tree. If it is, nothing needs to be done.
Otherwise, it initiates the Scribe join process.

When a user unregisters from AMDirectory service,
the underlying node take this user’s information off the
record. If this user is the last registered user at this node,
the node leaves the Scribe multicast tree.
• User lookup service. User lookup is the key ser-

vice provided by AMDirectory. It allows a user to iden-
tify other users in a community that satisfy certain crite-
ria, denoted as lookup criteria. For instance, a user may
determine all users that are willing to serve the video.
The lookup service can be implemented by extending the
available Scribe APIs and such an extension is straight-
forward. Below we describe the procedure of user lookup
without getting into its implementation details.

requesting client

group tree root

lookup-root node
(first node in tree)

breadth-first tree search

Fig. 3. User lookup in AMDirectory service. An incoming user send a
lookup message toward the tree root. The first node in the tree intercepts
the message, and conducts a breadth-first search.

A client that intends to perform the lookup service first
obtains the community id of interest. The community id

can be retrieved from a public web site, or through other
bootstrapping methods (for instance, the community id
can be the hash value of a video title). The client then
sends a lookup message toward the root of this commu-
nity’s group tree, as shown in Fig. 3. We call the first
node that is in the Scribe tree and on the route from the
requesting client to the tree root the lookup-root node. A
breadth-first search is then conducted on the tree with the
lookup-root node as the root (rather than the original tree
root). More specifically, when a node in the group tree re-
ceives a lookup message and determines it is the lookup-
root node (this can be realized by setting a flag inside the
lookup message), it initiates the breadth-first search. The
lookup-root node first informs the local registered users
of the lookup criteria. It then forwards the lookup mes-
sage to its children and parent nodes in the Scribe tree.
When non-lookup-root nodes receive a lookup message,
they also inform the local registered users of the lookup
criteria. They then forward the lookup message to their
children and parent nodes except the one from which the
message is received.

The breadth-first search on the tree rooted at the
lookup-root helps the requesting client estimate the prox-
imity of responding users. The lookup message contains
a depth field that is set to be zero at the lookup-root node.
The depth increases by one each time the lookup mes-
sage is forwarded to the next node. Upon receiving a
lookup message, a registered user checks whether it sat-
isfies the lookup criteria. If it does, a response message is
sent back to the requesting client with the depth informa-
tion. Since the lookup-root node is the first node that the
lookup message comes across, it is treated as the closest
node to the requesting node. In addition, the nodes having
small depth are likely to be close to the lookup-root node,
and hence close to the requesting client as well.

The proximity information of users is vital for many
applications to improve the overall performance. In Di-
rectStream, when the client request rate is high, there are
thousands of concurrent users in the system. A new client
can have hundreds of candidate parent clients. Select-
ing an appropriate parent from a large number of can-
didates can incur high overhead, and significantly delay
the client’s joining process. As shown in Section VI-B.7,
we use AMDirectory service to select a small set of can-
didates, while still achieving performance similar to as if
all candidates are considered.

To avoid the large number of responses flooding the re-
questing node, we can limit the searching scope. For in-
stance, we can use a TTL (time to live) field in the lookup
message so that the lookup message will not traverse be-
yond certain number of hops starting from the lookup-
root.

V. DISCUSSIONS – SUPPORTING VCR OPERATION
AND PROVIDING CONTINUOUS PLAYBACK

A. Supporting VCR operations
The support of VCR operations is straightforward in

DirectStream. Below we describe how DirectStream can
support jump forward, jump backward, and pause.

The clients invoking jump forward or jump backward
want to play normally from an arbitrary point in the video.
For instance, client A is currently playing the video at
position τA with a buffer size of bA, and would like to
jump to τ

′

A. If τ ′

A > τA, this is a jump forward operation.
Otherwise, it is a jump backward operation.
1) Jump forward: The jump forward operation is han-

dled differently based on whether the new start position,
τ

′

A, falls within the caching window of its parent client.
If τ

′

A falls within its parent’s caching window, then A

can send a shiftTo τ
′

A command to its parent, asking it
to forward the stream from the new position τ

′

A. Client
A will inform AMDirectory service of its new caching
window. Since client A misses the stream from τA to τ

′

A,
all of its children clients need to find alternative parent
clients. Client A sends recover messages to all of its chil-
dren clients, who then start the recovery process.

On the other hand, if τ ′

A does not fall into the caching
interval of its parent client, client A needs to use AMDi-
rectory service with the new starting position τ

′

A, and fol-
lows the same procedure as serving a new client as de-
scribed in Section III. The child clients of A have to lo-
cate the alternate parent clients as well.
2) Jump backward: For the jump backward operation,

there are also two scenarios: (1) the new position τ
′

A lies
within the local caching interval; or (2) it does not. In
the first case, A simply shifts the playback point. In the
second case, the procedure is the same as the jump for-
ward operation with the new position outside the caching
interval of the parent client. The child clients of A have
to locate the alternate parent clients as well.
3) Pause: Pause removes the client temporally from

the system. The client unregisters itself from AMDirec-
tory service, and sends a recovermessage to all of its chil-
dren clients who continue the playback. When it resumes
play back, it rejoins the DirectStream like a new client.
4) Other operations: Other operations, such as fast

forward and fast backward, cannot be supported natu-
rally in DirectStream. One way to address this issue
is to treat fast forward and fast backward streams as
separate streams. In such case, the users conducting
fast-forwarding or fast-backwarding can share the stream
among them using DirectStream.

B. Providing continuous playback
As in any P2P application, a participant can leave at

any time without advanced notice. We denote this as the

client early departure. Meanwhile, the available band-
width varies over the time. Although the study in [37]
indicates that the available bandwidth remains stable for
a relatively long period of time, the playback will be in-
terrupted if the available bandwidth becomes less than the
required bandwidth. We denote this as bandwidth starva-
tion. Both client early departures and bandwidth starva-
tion disconnect the peer-to-peer overlay, hence the recon-
struction of overlay is required. In DirectStream, we let
the direct children of departing client contact AMDirec-
tory service to find the new parent client. During this pro-
cess, the downstream clients’ continuous playback can be
disrupted.

Data buffering has been widely used in combating
bandwidth fluctuation. Buffering a short period of video
content and delaying the start of playback is an effective
means to deal with the short-term bandwidth starvation. It
also allows a client to locate an alternative parent in case
its current parent leaves the system. Furthermore, if a
client’s ancestor clients depart early, the above technique
is also effective since the buffered data at the intermedi-
ary clients along the path from the ancestor to the current
client can help to shield the disruption.

However, data buffering alone may not be enough to
handle the peer dynamics. In the following, we intro-
duce Multiple Forwarding Parents scheme that enables
the tradeoff between system’s scalability and clients’ re-
ception quality.
1) Multiple backup parents (MBP) scheme: trading

off scalability against quality: Multiple backup parents
scheme allows a client connecting to multiple parents. As
shown in Fig. 4, client A has four parents. Among them,
parent 2 is the active parent that serves the data. Parent 1,
3,4 are backups. A backup can become an active parent if
parent 2 leaves the system and the backup parent has the
bandwidth to accommodate one more stream. By contact-
ing the backup peers, the client shortens the joining delay
and gets reconnected quickly.

Such simple multiple backup scheme is not new how-
ever effective. Skype [38] employs the similar scheme
with multiple relay points. The measurement study shows
that Skype offers reasonably good quality to users. Un-
like voice service, though, the video streaming demands
higher bandwidth. A backup without redundant band-
width does not help.

To address this issue, MBP lets individual client reserve
the amount of bandwidth of one stream for backup pur-
pose. For instance, in the right side of Fig. 4, client B
reserves one stream bandwidth, and is the backup parent
of three clients. In case any of these clients need to locate
a new parent, the first one who made the request will be
able to use client B as its new parent.

Assume that a client has m backup parents, and each
backup parent accommodates up to n clients as their
backup parent. Suppose that a client loses its parent
with probability p, then the probability of using one of

2 3

4 A

1

B

backup parentactive parent

Fig. 4. Multiple backup parents (MBF) scheme. Left side is a simple
example with client A with one active parent and three backup parents.
Right side shows client B serves as active parents as well as backup
parents. It reserves the bandwidth of one stream for all backup clients.

its backup parent as new parent can be approximated by
P = (1 − p/m)n−1; and the probability that this client
successfully finds new parent from the backup parent list
is 1 − (1 − P)m.

If a client has less than m backup parents, it periodi-
cally contacts the directory service to retrieve more can-
didates. The use of MBP together with data buffering sig-
nificantly improves clients’ continuous playback and re-
duce the chance to be ejected out of the system due to the
peer churn, as shown by the simulation in Section VI-B.8.

VI. PERFORMANCE EVALUATION

In this section, we examine the performance of Di-
rectStream via analysis and simulation. We derive
closed form formulas for the average workload placed
at the content server, and assess the impact of VCR
jump-forward/jump-backward operations on the content
servers. We conduct extensive simulation experiments to
evaluate the performance of DirectStream, paying partic-
ular attention to the occasions where clients behave non-
cooperatively. The results show that DirectStream can
significantly reduce the workload imposed on the server,
and scales extremely well as the popularity of the video
increases even if the participating clients behave non-
cooperatively. Moreover, simulation shows that AMDi-
rectory service allows DirectStream to perform well even
in the face of a large number of concurrent users. The
incoming new client can quickly identify the suitable par-
ent client without searching through the entire candidate
parent list that may contain hundreds of candidates.

A. Performance analysis
1) Average server stress: We define the server stress

at time t, S(t), to be the number of streams sent out from
the content server. In DirectStream, the content server
only needs to stream a single copy to the first client in
a cluster. All other clients within the cluster obtain the
content from their respective parent clients (see Fig. 1). In
the following analysis, we assume that the request arrival
process is Poisson with an arrival rate of λ, and that all

clients have the same size buffer of b minutes. In addition,
we assume that a client has sufficient upload bandwidth to
support as many peer clients as required. If a client can
receive the content from a peer client, it does so rather
than obtain the video from the server.

We denote by E[S] the average server stress. Let L be
the video length, W the normalized workload (W = λL),
and ρ the effective buffer size (ρ = b/L). We have the
following Proposition.
Theorem VI.1: Consider DirectStream with a single

content server. If the arrival process is Poisson with the
rate λ, then

E[S] = We−ρW . (1)

Furthermore, on average, each client serves 1 − e−ρW

clients.
The proof is included in the Appendix.
Remark: First, the average server stress reaches the max-
imum of (eρ)−1 at W = 1/ρ. For instance, if the cache
size is larger than 5% of the video length, i.e., ρ ≥ 0.05,
the average server stress does not exceed 8 streams. Sec-
ondly, Figure 5 plots the average server stress for differ-
ent values of ρ, and compares them with the lower bound
on server stress for IP-multicast based schemes, which is
ln(1 + W) as derived in [39]. We observe that the av-
erage server stress in the DirectStream decreases as the
normalized workload increases once W ≥ 1/ρ, while the
lower bound for an IP-multicast based scheme continues
to increase logarithmically.

1&& 1&1 1&2 1&#
&

1

2

#

$

"

'

(

)

*+,-./0123 5+,6/+.3

78
2,

.9
2

:;
-

<2
, +

= ;
>2

3
>2

,8
2,

 ?
@.

::
2/

>

"A

1&A

#&A

"&A

B+52, <+;:3 =+, CD -;/E0?.>E!<.>23 >?@2-2>
FGHI

Fig. 5. Average server stress vs. normalized workload with the buffer
size of 5%, 10%, 30%, and 50% of video length

2) Average server stress with freeloaders: Now we
study the effect of clients that do not behave coopera-
tively. We call clients that receive the DirectStream ser-
vice however refuse to serve other clients freeloaders. As-
sume that a client is a freeloader with probability p, we
have the following results.
Theorem VI.2: Consider a DirectStream system with a

single server. The arrival process is Poisson with the rate
λ. If a client is a freeloader with probability p, then:

E[S] = We−(1−p)ρW . (2)

Furthermore, on average, a non-freeloader client supports
1−e−(1−p)ρW

1−p clients.
The proof is included in the Appendix.
Remark: First, note that freeloaders reduce the effective-
ness of data buffering. For instance, the average server
stress with no freeloaders and 5% video length cache is
equal to the average server stress where 50% of the clients
are freeloaders and the buffer can store 10% of the video.
Second, the maximum server stress is 1/(eρ(1−p)) when
W = 1/(1 − p)ρ. Finally, each non-freeloader has to
serve more clients with freeloaders than without freeload-
ers since (1 − e−(1−p)ρW)/(1 − p) ≥ 1 − e−ρW . This
can cause a concentration of network traffic at clients and
thus reduce the system’s scalability, as shown in the ex-
periment in Section VI-B.4.
3) Effectiveness in supporting VCR operations: We

further look into the effectiveness of DirectStream in sup-
porting VCR operations, described in Section V-A. We
hope that VCR operations can be supported with little im-
pact on the servers. More specifically, we are interested
in the probability that a VCR request has to be serviced
by the content server rather than by a peer client. If this
probability is small, we infer that DirectStream can sup-
port VCR operations with small impact on the servers.

Assume that there are no freeloaders and all clients
watch the video from the beginning. For such a Di-
rectStream system, suppose there is an extra client (who
doesn’t belong to the arrival process) that arrives at an ar-
bitrary time t and wants to watch the video starting at an
arbitrary point τ within the video. Let P be the probabil-
ity that this extra client has to obtain the service from the
server. We have the following result.
Theorem VI.3: Consider a DirectStream system with a

single server. The arrival process is Poisson with the rate
λ, and clients watch the video from the beginning. Then:

P ≤ e−ρW . (3)
The proof is included in the Appendix.
Remark: Notice that P decreases quickly as the buffer
size and the normalized workload increases. Intuitively,
each client in DirectStream caches b minutes of video,
and the aggregate of these intervals covers most of the
video when the arrival rate is high. So a VCR jump
forward or backward operation can be served with high
probability by a client whose cached interval cover the
required starting point.

B. Simulations
1) Simulation settings: We evaluate DirectStream us-

ing a network topology generated by GT-ITM [40] with
100 nodes. It consists of one transit network (with 4
nodes) and 12 stub domains. We assume that each node
represents a local network that can host an unlimited num-
ber of clients, and that there is sufficient bandwidth within
a local network to support media streaming. We further

assume that one node at each local network joins Pas-
try overlay, from which AMDirectory service can be ac-
cessed. Clients in the same local network use this node as
a proxy to receive AMDirectory service.

We assume a constant bit rate (CBR) video playback.
We assign a bandwidth to each link in terms of the num-
ber of playbacks a link can support. The capacities of
links between transit nodes and between transit nodes and
stub domain nodes are chosen to be larger than those be-
tween stub domain nodes since links in the core network
are typically better provisioned and have more bandwidth
than the edge links. Using advanced coding techniques,
videos with the playback rate from 300bps to 500bps of-
fer reasonably good viewing quality. A link with the ca-
pacity of 100Mbps can support 200 to 333 such streams.
Since we simulate DirectStream providing service for one
video, we choose the capacity of each core link to be 10,
i.e., core links can support up to 10 streams simultane-
ously; and that of each edge link to be 3 for the simu-
lation results reported in this paper. The video length is
set to 100 mins, and the parameter r in the QoS selection
algorithm is set to 0.5.

We simulate the on-demand service of one video to
clients whose arrival process is Poisson. Each client is
equally likely to be placed at any node in the network. In
our simulation results, the half-width of the 95% confi-
dence interval of the data shown in this paper is always
less than 5% of the point estimate.
2) Client rejection probability: We first place the

server at one of the stub nodes. Fig. 6(a) depicts the rejec-
tion probability vs. the normalized workload, W , for uni-
cast (client-server service model) and DirectStream with
different buffer sizes, ranging from 5% to 20% of the
video length. The normalized workload is the product
of client arrival rate and video length. Compared to the
traditional client-server service model, DirectStream sig-
nificantly serves more clients, especially when the client
request rate is high. Furthermore, we observe that the re-
jection probability for DirectStream exhibits an interest-
ing bimodal behavior, with one mode in a low workload
region and the other in a high workload region.

We argue that the first mode is due to limited band-
width at the server, while the second one is caused by a
combination of limited bandwidth at the server and lim-
ited capacity of the entire network. We denote by clus-
ter headers the clients whose candidate list only contains
the content server. Fig. 6(b) shows the rejection proba-
bility caused by the cluster headers that intend to obtain
the video from the server directly. Comparing the two
graphs in Fig. 6, we observe that the rejection of the clus-
ter headers by the server mainly contributes to the first
mode. Proposition VI.1 also indicates that when the load
equals 1/ρ, the server bandwidth requirement reaches the
maximum, which coincides with the maximum rejection
probability in Fig. 6(b).

Regarding the second mode, as the client request rate

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/02

:E
 ,2

M2
?E

0+
:

N,
+<

.<
0/0

EO

H2,82, 0: HE;< P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(a) Rejection probability

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3
L

/;
>E

2,
 @

2.
32

, ,
2M

2?
E0+

:
N,

+<
.<

0/0
EO

H2,82, 0: HE;< P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(b) Cluster headers’ rejection probability

Fig. 6. Overall rejection probability and cluster header rejection prob-
ability in DirectStream with the server in the stub domain

1&& 1&1 1&2 1&#&

"

1&

1"

2&

2"

#&

F==2?E082 *+,-./0123 5+,6/+.3

H
2,

82
, >

E,2
>>

H2,82, 0: HE;< P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(a) Server stress

1&& 1&1 1&2 1&#&

1&&

2&&

#&&

$&&

"&&

'&&

(&&

)&&

K&&

F==2?E082 *+,-./0123 5+,6/+.3

*
2E

5
+,

6
;>

.9
2

H2,82, 0: HE;< P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(b) Workload on the entire network (network usage)

Fig. 7. Server stress and network usage in DirectStream

increases, the server stress (Fig. 7(a)) and network us-
age (Fig. 7(b)) also increase. Thus client requests are
more likely to be rejected due to limited available band-
width at the server as well as between clients. However, as
the workload further increases, the likelihood of a nearby
peer increases. Hence the rejection probability decreases
as the arrival rate further increases.
3) Effect of server bandwidth: We investigate the ef-

fect of the server bandwidth by placing the server at one
of the transit nodes, where more bandwidth is available.

First we notice that the rejection probability in Fig. 8(a)
is unimodal rather than bimodal as illustrated in Fig. 6(a).
Fig. 8(b) depicts the rejection probability of cluster head-
ers. The rejection probability caused by cluster headers
is almost zero over the entire workload range. This can
be explained by the abundant bandwidth present at the
server because of its location in stub domain. The maxi-
mum average server bandwidth required is (eρ)−1, and is
less than the link bandwidth of 10 in transit domain. Thus
the server is not a bottleneck and the rejection probability
due to the limited server bandwidth is eliminated.

In terms of server stress caused by the cluster headers
(see Fig. 9(b)), again it is consistent with our previous
analysis, namely reaching the maximum at 1/p. Further-
more server stress decreases as the workload increases
further.
4) Effect of freeloaders: Here we investigate the ef-

fect of freeloaders on the performance of DirectStream.

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/02

:E
 ,2

M2
?E

0+
:

N,
+<

.<
0/0

EO

H2,82, 0: U,.:>0E P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(a) Rejection probability

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/;

>E
2,

 @
2.

32
, ,

2M
2?

E0+
:

N,
+<

.<
0/0

EO

H2,82, 0: U,.:>0E P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(b) Cluster headers’ rejection probability

Fig. 8. Overall rejection probability and cluster header caused rejection
probability in the DirectStream with server in transit domain

1&& 1&1 1&2 1&#&

1&

2&

#&

$&

"&

'&

F==2?E082 *+,-./0123 5+,6/+.3

H
2,

82
, >

E,2
>>

H2,82, 0: U,.:>0E P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(a) Server stress

1&& 1&1 1&2 1&#&

1&

2&

#&

$&

"&

'&

F==2?E082 *+,-./0123 5+,6/+.3

H
2,

82
, >

E,2
>>

 ?
.;

>2
3

<O
 ?

/;
>E

2,
 @

2.
32

,

H2,82, 0: U,.:>0E P+-.0: QR+HS

;:0?.>E
<;==2,!>012T"
<;==2,!>012 T 1&
<;==2,!>012 T 1"
<;==2,!>012 T 2&

(b) Server stress caused by cluster headers

Fig. 9. Overall server stress and cluster header caused server stress in
DirectStream with server in transit domain

As depicted in Fig. 10, the rejection probability and
the server stress increase as the freeloader probability in-
creases. However, even when the freeloader probability is
high, the rejection probability exhibits a similar trend as
it does with lower freeloader probability, consistent with
Proposition VI.2.

In further examining the effect of freeloaders, we com-
pare the following two scenarios: (1) buffer size equal to
5% of the video with no freeloaders; and (2) buffer size
equal to 10% of the video length with the fraction of free
loaders equal to 0.5. According to Proposition VI.1 and
VI.2, the server stress is the same for both scenarios. Fig.

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/02

:E
 ,2

M2
?E

0+
:

N,
+<

.<
0/0

EO

H2,82, 0: HE;< P+-.0: QR+HS

:+ =,22/+.32,
=,22/+.32, N,+<J T &J1
=,22/+.32, N,+<J T &J#
=,22/+.32, N,+<J T &J"

(a) Client rejection probability

1&& 1&1 1&2 1&#&

2

$

'

)

1&

12

1$

1'

1)

2&

F==2?E082 *+,-./0123 5+,6/+.3

H
2,

82
, >

E,2
>>

H2,82, 0: HE;< P+-.0: QR+HS

:+ =,22/+.32,
=,22/+.32, N,+<J T &J1
=,22/+.32, N,+<J T &J#
=,22/+.32, N,+<J T &J"

(b) Server stress

Fig. 10. Performance comparison with freeloaders

11 compares their rejection probabilities. When the nor-
malized workload is low, the rejection probabilities are
close. However, as the normalized workload increases,
the system with larger client buffers and larger fraction
of freeloaders exhibits significantly more rejections. Ac-
cording to Proposition VI.2, each non-freeloader has to
support (1 − e−(1−p)ρW)/(1 − p) children clients. So
the non-freeloaders in the second scenario support more
clients than in the first scenario. This makes it difficult to
balance the workload, and leads to a high rejection prob-
ability when the normalized workload is high.

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L/
02

:E
 ,2

M2
?E

0+
:

N,
+<

.<
0/0E

O

H2,82, 0: HE;< P+-.0: QR+HS

<;==2, >012 T " 50E@ :+ =,22/+.32,
<;==2, >012 T 1&V =,22/+.32, N,+<J T &J"

Fig. 11. Performance comparison of the case with buffer size equal
to 5% with no freeloaders and buffer size equal to 10% with freeloader
probability 0.5.

5) Effect of greedy clients: Another type of non-
cooperative client is the greedy client. A greedy client
connects to the server directly whenever possible since
the server will not depart in the middle of streaming and
thus does not impose the client early departure problem,
as defined in Section V. Fig. 12(a) compares the rejec-
tion probability for a system with cooperative clients to
that for a system with greedy clients. Although the rejec-
tion probability for a system with greedy clients is higher
than that with cooperative clients, it still exhibits a similar
shape, and scales well as the request rate increases. Intu-
itively, the server can be modeled as a M/D/C/C queue,
where the service time is the video length, and C is the
number of channels available at the server. In a cooper-
ative environment, each server channel is used to serve
a cluster; while in the non-cooperative environment, the
greedy clients try to grab an idle channel whenever pos-
sible. However, the greedy clients are forced to form a
cluster when all channels are occupied. This explains why
the rejection probability curves exhibit the similar shapes.
As to the server stress (see Fig. 12(b)), DirectStream with
greedy clients imposes a much greater workload on the
server, which does not decrease even when the request
rate is high due to the greediness of clients.
6) Random buffer size: In the experiments presented

above, we assume that the clients’ buffer are of the same
constant size. Fig. 13 depicts the client rejection probabil-
ity with random buffer size, where the buffer size is uni-
formly distributed around its average size, with the devia-
tion equal to half of the average size. The rejection prob-
ability with constant and random buffer size are close to

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/02

:E
 ,2

M2
?E

0+
:

N,
+<

.<
0/0

EO

H2,82, 0: HE;< P+-.0:
W:0?.>E
X;==2, >012 T " Q9,223OS
X;==2, >012 T 1& Q9,223OS
X;==2, >012 T " Q?++N2,.E082S
X;==2, >012 T 1& Q?++N2,.E082S

(a) Client rejection probability

1&& 1&1 1&2 1&#&

"

1&

1"

2&

2"

#&

#"

F==2?E082 *+,-./0123 5+,6/+.3

H
2,

82
, >

E,2
>>

H2,82, 0: HE;< P+-.0:
W:0?.>E
X;==2, >012 T " Q9,223OS
X;==2, >012 T 1& Q9,223OS
X;==2, >012 T " Q?++N2,.E082S
X;==2, >012 T 1& Q?++N2,.E082S

(b) Server stress

Fig. 12. Performance comparison of cooperative and greedy clients.

each other, suggesting that the randomness of buffer size
does not have a significant impact on the system’s perfor-
mance.

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

*+,-./0123 5+,6/+.3

Y2
M2

?E
0+

:
N,

+<
.<

0/0E
O

H2,82, 0: HE;< P+-.0: QR+HS

789J X;==2, H012 T "
789J X;==2, H012 T 1&
789J X;==2, H012 T 2&
X;==2, H012 T "
X;==2, H012 T 1&
X;==2, H012 T 2&

Fig. 13. Rejection probability with constant and random buffer size

7) Efficient parent client selection using AMDirectory
service: As the client request rate increases, the number
of concurrent clients in the system increases. A new client
has many candidate parent clients from which to select
the right parent. Since a certain amount of measurement
work has to be done for each candidate, a large number of
candidates could significantly slow a new client’s joining
process, and impose substantial measurement overhead
on the network. In the following, we show that AMDirec-
tory service allows a new client to sample a small number
of candidates, and that DirectStream still achieves good
scalability.

Fig. 14(a) depicts the client rejection probability when
a new client is only allowed to contact a limited number
of candidates. A new client limits the number of candi-
dates by limiting the searching scope combined with ac-
tively dropping the candidates that are further away from
it (by comparing the depth value, see Section IV). The
maximum number of allowed candidates are 10, 20, and
30, respectively, for the results presented in Fig. 14(a).
Note that the rejection probability is very close to the
rejection probability using all possible candidates when
the normalized workload is low (< 300). When the nor-
malized workload is between 300 to 3000, the rejection
probability increases when the number of candidates de-
creases. This is due to the fact that although AMDirec-

1&& 1&1 1&2 1&# 1&$&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3

L
/02

:E
 ,

2M
2?

E0+
:

N,
+<

.<
0/0

EO

H2,82, 0: HE;< P+-.0: QR+HS ;>0:9 7ZP0,2?E+,O H2,80?2

;:/0-0E23 :+J += ?.:303.E2>
-.[:+J ?.:303.E2> T 1&
-.[:+J ?.:303.E2> T 2&
-.[:+J ?.:303.E2> T #&

(a) Using AMDirectory service

1&& 1&1 1&2 1&# 1&$&

&J1

&J2

&J#

&J$

&J"

&J'

&J(

&J)

&JK

1

*+,-./0123 5+,6/+.3
L

/02
:E

 ,2
M2

?E
0+

:
N,

+<
.<

0/0
EO

H2,82, 0: HE;< P+-.0: QR+HS ;>0:9 Y.:3+- H2/2?E0+:
;:/0-0E23 :+J += ?.:303.E2>
-.[:+J ?.:303.E2> T 1&
-.[:+J ?.:303.E2> T 2&
-.[:+J ?.:303.E2> T #&

(b) Random selection

Fig. 14. Performance comparison with/out AMDirectory service using
limited no. of candidates.

tory service returns a list of close-by clients, it does not
consider the available bandwidth information. Therefore,
some candidates with large available bandwidth but fur-
ther away form the requesting client can be ignored by
AMDirectory. However, as the workload increases fur-
ther, the proximity information plays a more significant
role in selecting parent client. The rejection probability
with limited candidates thus gradually decreases.

We further compare the client rejection probability us-
ing AMDirectory service to that using random selection
algorithm, where a small set of candidates are selected
randomly among all possible candidates. Fig. 14(b) de-
picts the results using random selection. We observe that
the rejection probability using random selection is larger
than that using AMDirectory service, and continues to in-
crease and eventually blows up. The rejection probabil-
ity using AMDirectory service decreases beyond certain
point, hence the scalability is still achievable in Direct-
Stream with limited number of candidates using AMDi-
rectory service.

& 1 2 # $ "&

1&

2&

#&

$&

"&

'&

(&

)&

*+,-./0123 5+,6/+.3

*+
J :

+3
2>

 ?
+:

E.
?E

23

H2,82, 0: HE;< P+-.0: QR+HS ;>0:9 7ZP0,2?E+,O H2,80?2

-.[:+J ?.:303.E2> T 1&
-.[:+J ?.:303.E2> T 2&
-.[:+J ?.:303.E2> T #&

Fig. 15. Number of nodes contacted to find enough candidates (X-axis
is the exponent of normalized workload with base of ten)

Finally, we examine how fast the AMDirectory’s
lookup service is. We use the number of nodes that are
contacted during the search process as the metric. Note
that the same metric also reflects the amount of messages
passed in the network during AMDirectory lookup ser-
vice. Fig. 15 depicts the number of nodes contacted vs.
the normalized workload with different maximum num-
ber of allowed candidates. The X-axis is the exponent of

1&& 1&1 1&2 1&#&

&J&"

&J1

&J1"

&J2

&J2"

&J#

*+,-./0123 5+,6/+.3

Y
2M

2?
E0+

:
N,

+<
.<

0/0
EO

H2,82, 0: HE;< P+-.0: QR+HS ;>0:9 7ZP0,2?E+,O H2,80?2

:+ =.0/;,2
=.0/;,2 N,+<J T &J1
=.0/;,2 N,+<J T &J#
=.0/;,2 N,+<J T &J"

(a) Rejection probability

1&& 1&1 1&2 1&#&J(

&J("

&J)

&J)"

&JK

&JK"

1

*+,-./0123 5+,6/+.3

Y
2?

+8
2,

 >
;?

?2
>>

 N
,+

<.
<0

/0E
O

H2,82, 0: HE;< P+-.0: QR+HS ;>0:9 7ZP0,2?E+,O H2,80?2

=.0/;,2 N,+<J T &J1
=.0/;,2 N,+<J T &J2
=.0/;,2 N,+<J T &J#
=.0/;,2 N,+<J T &J$
=.0/;,2 N,+<J T &J"

(b) Recover success probability

Fig. 16. Performance comparison with/out client failure

the normalized workload with base of ten. The buffer size
is chosen to be 20% of the video length. The conclusions
drawn from this example hold for different buffer sizes.

When the normalized workload is low, the total number
of possible candidates is less than the maximum number
of allowed candidates. Hence, the entire multicast tree is
traversed to find all possible candidates. This is obvious
with normalized workload of 10 where the same number
of nodes are contacted regardless of the maximum num-
ber of allowed candidates. In contrast, when the normal-
ized workload increases beyond the normalized workload
of 100, the number of contacted nodes decreases signif-
icantly. For instance, when the normalized workload is
1000, the number of contacted nodes is in the range of 7
to 18 nodes.

We also like to point out that the majority of these con-
tacted nodes are encountered during the breadth-first tree
search phase (see Section IV-A), which means that these
nodes are come across in parallel because the lookup ser-
vice proceeds along the tree branches parallelly. This fur-
ther reduces the lookup time.
8) Impact of client failure: As described in Section

V-B, a participant can leave at any time without advanced
notice due to failure. In DirectStream, the immediate
child(ren) of the departing client will initiate the recover
process once it detects the parent’s departure. The fur-
ther downstream descendent clients wait for the outcome.
A client starts the recover process only if its immediate
parent client leaves the system.

We investigate the system performance in the face of
client failure. We assume that a client fails in the middle
of the playback with certain probability, and the departure
point is uniformly distributed within the video length. A
client that fails to recover is counted as a rejection in this
experiment. Fig. 16(a) presents the rejection probability
with and without client failure, where the buffer size is
10% of the video length. Unexpectedly, the failure only
marginally affects the client’s overall rejection probabil-
ity. Intuitively, the rejection probability is the function
of normalized workload and overall system capacity. Al-
though the client failure introduces churn into the system
and clients may experience un-continuous playback, it

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

*+,-./0123 5+,6/+.3

Y
2M

2?
E0+

:
N,

+<
.<

0/0
EO

H2,82, 0: HE;< P+-.0: QR+HS 50E@ X.?6;N D.,2:E D22,>

=.0/;,2 N,+<J T &J1
=.0/;,2 N,+<J T &J#
=.0/;,2 N,+<J T &J"

(a) Rejection probability using MBF scheme

1&& 1&1 1&2 1&#&J(

&J("

&J)

&J)"

&JK

&JK"

1

*+,-./0123 5+,6/+.3
Y

2?
+8

2,
 >

;?
?2

>>
 N

,+
<.

<0
/0E

O

H2,82, 0: HE;< P+-.0: QR+HS 50E@ X.?6;N D.,2:E D22,>

=.0/;,2 N,+<J T &J1
=.0/;,2 N,+<J T &J#
=.0/;,2 N,+<J T &J"

(b) Recover success probability using MBF scheme

Fig. 17. Performance using MBF scheme

does not change the overall system capacity significantly.
This may explain the marginal change of client rejection
probability.

Fig. 16(b) depicts the recover success probability vs.
the normalized workload. We define the recover success
probability to be the probability that a recovering client
successfully find an alternative parent. The recover suc-
cess probability is always greater than 0.75, and it con-
verges to one as the normalized workload increases. Fur-
thermore, the curve exhibits two dips, matching the two
modes in the rejection probability. The experiment sug-
gests that the DirectStream handles failure well, and the
performance improves as the normalized workload in-
creases.

We further look into the system performance with mul-
tiple backup parents (MBF) scheme in place. We set
the number of backups to be 5; and each client serves 5
clients as their backup parent. Comparing Fig. 16(a) with
Fig. 17(a), it is obvious the p2p system with MBF admits
less clients. This is due to the bandwidth reservation for
backup parents. Fortunately, the system still scales as the
arrival rate increases further.

The recover success probability using MBF increases
significantly comparing to the results without using MBF
scheme as shown in Fig. 16(b). Even with 50% of users
depart early, the clients still can recover with probability
greater than 90%. We believe that 90% of success rate is
pretty good comparing with the measurement study con-
ducted in [41]. The study shows that PPLive, a popular
p2p streaming service, is able to attract a large popula-
tion of viewers even if between 10% to more than 50%
of viewers experience playback freeze or reboot in a one
hour time window.
9) Impact of client out degree: In the previous experi-

ments, we have assumed that a client in the DirectStream
puts no limit on the number of children client it is willing
to forward the stream to. We define the number of chil-
dren that a client is willing to support to be the out-degree
of this client. In practice, a client may have limited out-
degree. Here, we investigate how the out-degree impacts
the client rejection probability.

Fig. 18 depicts the rejection probability against the nor-

1&& 1&1 1&2 1&#&

&J1

&J2

&J#

&J$

&J"

&J'

*+,-./0123 5+,6/+.3

Y2
M2

?E
0+

:
N,

+<
.<

0/0E
O

H2,82, 0: HE;< P+-.0: QR+HS

W:/0-0E23 +;E!329,22
\;E 329,22 T 1
\;E 329,22 T 2
\;E 329,22 T #
\;E 329,22 T $
\;E 329,22 T "

Fig. 18. Client rejection probability with various out degrees (out de-
gree is the number of children a client can support)

malized workload with different out-degrees. When the
normalized workload is in the low to medium range, the
more out-degree clients support, the lower rejection prob-
ability is. This is reasonable since more out-degree gives
the DirectStream more flexibility to form better overlays.
However, as the normalized workload increases further,
the impact of the out-degree diminishes. This is due to the
fact that clients only support a small number of children
when the workload is high, as demonstrated by Theorem
VI.1.

Another observation is that the out-degree plays an im-
portant role when its value is small, e.g. out-degree equal
to one or two. Once the out-degree is greater than two,
the rejection probability quickly improves and becomes
close to that with unlimited out-degree. In practice, if peer
clients can allow more than two children, we expect the
out-degree will not impact the overall performance signif-
icantly.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose DirectStream streaming me-
dia service that can efficiently and cost-effectively pro-
vide video on-demand service with VCR operation sup-
port. We show, through both analysis and simulation
experiments, that DirectStream significantly reduces the
workload posed on the server as well as on the network,
and scales much better than the traditional client-server
unicast service model even when the participating clients
behave non-cooperatively. In addition, AMDirectory ser-
vice allows DirectStream to perform well even in the face
of a large number of concurrent users. The incoming
new client can quickly select the appropriate parent client
without searching through all possible candidates. Our re-
sults suggests that peer-to-peer networking is an effective
technique to address the scalability issue in VoD service.

Future research can proceed along several avenues. As
described in Section V, providing continuous playback in
face of clients’ early departure and bandwidth starvation
is a challenging research issue. Secondly, the current de-
sign of DirectStream handles the non-cooperative clients
passively. We are interested in developing a mechanism
to encourage clients to cooperate with each other, and to

achieve certain fairness among peers. Finally, current Di-
rectStream is designed with supporting CBR videos in
mind. How to extend it to support VBR is an interesting
research question.

APPENDIX

Proof of Theorem VI.1: Consider the client arrival pro-
cess as depicted in Fig. 19. Client 0 is the first client and
becomes the cluster header. For client i, 1 ≤ i ≤ n, we
assume that the inter-arrival time between i-th and (i+1)-
th client, vi−1

i , is less than b, i.e., vi−1
i ≤ b. Hence client

i can obtain the stream from client (i − 1) and a cluster
is formed among these clients. We further assume that
vn

n+1 > b, then a new cluster is created by client n + 1.
Define the cluster inter-arrival time to be the inter-

arrival time between two adjacent cluster headers. Denote
by R the cluster inter-arrival time. We have R0 = v0

n+1.
The arrival of cluster headers forms a renewal process,
and {Ri}∞i=0 is an i.i.d. sequence. Since each cluster only
retrieve one copy of video from server, we have:

E[S] = L/E[R]. (4)

time
0 3 4 (n-1) n (n+1) (n+2) (n+3)1

cluster interarrival time

b

Fig. 19. DirectStream service: clients, clusters, and cluster length

Denote by q the probability that the client inter-arrival
time is larger than b. Let E[X] be the average client
inter-arrival time given that the client inter-arrival time is
smaller than b, and E[Y] be the average client inter-arrival
time given that the inter-arrival time is greater than b. We
have:

E[R] =
∞∑

m=0

(1 − q)mq
[
mE[X] + E[Y]

]
. (5)

Since the client arrival process is Poisson with arrival
rate λ, we have:

q = e−λb. (6)

E[X] =
∫ b

0
xf(x|x < b)dx,

=
∫ b

0
x

λe−λx

1 − e−λb
dx

=
1
λ
− e−λb

1 − eλb
b. (7)

E[Y] =
∫ ∞

b
f(y|y > b)dy,

=
∫ ∞

b
y
λe−λy

e−λb
dy,

= 1/λ + b. (8)

Substitute Equation (6)(7)(8) into Equation (5), we have:

E[R] =
∞∑

m=0

m(1 − q)mqE[X] + E[Y],

=
1 − q

q
E[X] + E[Y],

=
eλb

λ
. (9)

Substitute Equation (9) into (4), we have:

E[S] = We−ρW . (10)

where L is the video length, W is the normalized work-
load (W = λL), and ρ is the effective buffer size (ρ =
b/L).

As for the average number of peer clients a client has
to serve, if the inter-arrival time is less than b, the client
serves the following client; otherwise no client needs to
be served. Therefore the average number of peer clients
that a client has to serve is 1 − e−λb = 1 − e−ρW .

Proof of Theorem VI.2: Since a client is a freeloader
with probability p, the client arrival process can be split-
ted into two Poisson processes: one for non-freeloaders
with rate (1− p)λ, and the other for freeloaders with rate
pλ. In the following we use subscript n and f to denote
the variables related to normal clients and freeloaders, re-
spectively.

Because freeloaders do not support other clients, the
cluster inter-arrival time is determined by the non-
freeloaders. Define the shaded interval to be the time
interval from b minutes after the arrival of the last non-
freeloader in a cluster to the arrival of next cluster’s
header (see Fig. 19). The free loaders arrived during the
shaded interval have to obtain the service from the server
directly. Let Nf be the number of freeloaders that ar-
rives at the shaded interval. The average number of server
streams to serve one cluster is thus 1+E[Nf], and the av-
erage server stress is:

E[S] =
L

E[Rn]
(1 + E[Nf]),

= (1 − p)We−(1−p)ρW (1 + p/(1 − p)),

= We−(1−p)ρW . (11)

Denote by N the average number of peer clients a
non-freeloader client has to serve, and by tn the non-
freeloaders’ inter-arrival time. We have

E[N] = E[N |tn < b] + E[N |tn > b],

= (1 + pλ)
(1

(1 − p)λ
− e−(1−p)λb

1 − e−(1−p)λb
b
)

·(1 − e−(1−p)λb) + pλbe−(1−p)λb,

=
1 − e−(1−p)ρW

1 − p
. (12)

Proof of Theorem VI.3: Let us first consider the shifted
scenario, where the extra client arrives at time t − τ and
wants to watch the video from the beginning. There exists
a client that can serve such request unless t − τ falling
into the shaded interval. Since t− τ is randomly selected,
the probability that t − τ falls into the shaded interval is
E[shaded-interval-length]/E[R] = e−ρW .

The shifted scenario is equivalent to the original case
(where the extra client arrives at t and wants to watch the
video starting at τ) if the video is infinitely long. For finite
length video, there may exist a client that can serve the
extra client even if t − τ falling into the shaded interval.
Therefore P ≤ e−ρW .

REFERENCES

[1] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming
live media over peers,” Tech. Rep. 2002-21, Stanford University,
March 2002.

[2] V. Padmanabhan, H. Wang, P. Chou, and K. Sripandidkulchai,
“Distributing streaming media content using cooperative network-
ing,” in Proc. IEEE Workshop on NOSSDAV, May 2002.

[3] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2cast: Peer-to-
peer patching scheme for vod service,” in Proceedings of the 12th
World Wide Web Conference (WWW-03), May 2003.

[4] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “A peer-to-peer on-
demand streaming service and its performance evaluation,” in Pro-
ceedings of 2003 IEEE International Conference on Multimedia &
Expo (ICME 2003), July 2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth content distribution
in a cooperative environment,” in Proc. IPTPS’03, February 2003.

[6] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: An efficient mech-
anism for content distribution in a peer-to-peer (p2p) network,”
Tech. Rep. MSR-TR-2004-100, Microsoft Research, 2004.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet:
A data-driven overlay network for live media streaming,” in Proc.
IEEE INFOCOM, March 2005.

[8] K. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique
for true video-on-demand services,” in Proc. ACM Multimedia,
September 1998.

[9] L. Gao and D. Towsley, “Threshold-based multicast for continuous
media delivery,” in IEEE Transactions on Multimedia, December
2001.

[10] A. Hu, “Video-on-demand broadcasting protocols: A comprehen-
sive study,” in Proc. IEEE INFOCOM, April 2001.

[11] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel, “Scal-
able on-demand media streaming with packet loss recovery,” in
IEEE/ACM Transactions on Networking, vol. 11, April 2003.

[12] D. Eager, M. Vernon, and J. Zahorjan, “Bandwidth skim-
ming: A technique for cost-effective video-on-demand,” in Proc.
SPIE/ACM Conference on Multimedia Computing and Network-
ing, January 2000.

[13] A. Bar-Noy, G. Goshi, R. E. Ladner, and K. Tam, “Compari-
son of stream merging algorithms for media-on-demand,” in Proc.
SPIE/ACM Conference on Multimedia Computing and Network-
ing, January 2002.

[14] E.G. Coffman Jr., P. Jelenkovic, and P. Momcilovic, “Provably
efficient streaming merging,” in Proc. of Web Caching and Content
Distribution, June 2001.

[15] S. Acharya and B. Smith, “Middle man: A video caching proxy
server,” in Proc. NOSSDAV 2000, June 2000.

[16] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy
caching mechanism for quality adaptive streaming applications in
the internet,” in Proc. IEEE INFOCOM, April 2000.

[17] Y. Chae, K. Guo, M. Buddhikot, S. Suri, and E. Zegura, “Silo,
rainbow, and caching token: Schemes for scalable fault tolerant
stream caching,” in IEEE Journal on Selected Areas in Communi-
cations on Internet Proxy Services, September 2002.

[18] X. Zhang, M. Bradshaw, Y. Guo, B. Wang, J. Kurose, P. Shenoy,
and D. Towsley, “Amps: A flexible, scalable proxy testbed for
implementing streaming services,” in Proc. NOSSDAV 2004, June
2004.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,” in
Proc. IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), November 2001.

[20] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel,
“Scribe: A large-scale and decentralised application-level multi-
cast infrastructure,” in IEEE Journal on Selected Areas in Commu-
nications (JSAC) (Special issue on Network Support for Multicast
Communications), 2002.

[21] M. Kamath, K. Ramamritham, and D. Towsley, “Continuous me-
dia sharing in multimedia database systems,” in Proc. of 4th Inter-
national Conference on Database Systems for Advanced Applica-
tions (DASFAA’95), April 1995.

[22] A. Dan and D. Sitaram, “A generalized interval caching policy for
mixed interactive and long video enviroments,” in SPIE Multime-
dia Computing and Networking Conference, January 1996.

[23] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand systems,” in Proc. IEEE
International Conference on Multimedia Computing and Systems,
June 1997.

[24] D. A. Tran, K. A. Hua, and T. T. Do, “Layered range multicast
for video on demand,” in Proc. International Conference on Com-
puter Communications and Networks (IC3N’02), October 2002.

[25] S. Jin and A. Bestavros, “Cache-and-relay streaming media deliv-
ery for asynchronous clients,” in International Workshop on Net-
worked Group Communication, October 2002.

[26] Y. Cui, B. Li, and K. Nahrstedt, “ostream: Asynchronous stream-
ing multicast in application-layer overlay networks,” in IEEE
Journal on Selected Areas in Communications, vol. 22, January
2004.

[27] A. B. Abhishek Sharma and I. Matta, “dpam: A distributed
prefetching protocol for scalable asynchronous multicast in p2p
systems,” in Proc. IEEE INFOCOM, March 2005.

[28] M. Zhou and J. Liu, “Tree-assisted gossiping for overlay video
distribution,” in Kluwer Multimedia Tools and Applications, 2006.

[29] C. Partridge, T. Menedez, and W. Milliken, “Host anycasting ser-
vice,” in RFC 1596, November 1993.

[30] D. Katabi and J. Wroclawski, “A framework for scalable global
ip-anycast (gia),” in Proc. ACM SIGCOMM, 2000.

[31] S. Bhattachargee, M. Ammar, E. Zegurra, N. Shah, and Z. Fei,
“Application layer anycasting,” in Proc. IEEE INFOCOM, 1997.

[32] Z. Fei, S. Bhattachargee, M. Ammar, and E. Zegurra, “A novel
server technique for improving the response time of a replicated
service,” in Proc. IEEE INFOCOM, 1998.

[33] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scal-
able application-level anycast for highly dynamic groups,” in sub-
mission.

[34] M. Jain and C. Dovrolis, “End-to-end available bandwidth: mea-
surement methodology, dynamics, and relation with tcp through-
put,” in Proc. ACM SIGCOMM, August 2002.

[35] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “A directory-based
peer-to-peer on-demand streaming service,” Tech. Rep. UM-CS-
Tech-Report, Department of Computer Science, University of
Massachusetts Amherst, 2002.

[36] Q. Ma and P. Steeniste, “On path selection for traffic with band-
width guarantees,” in Proc. International Conference on Network
Protocols, October 1997.

[37] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the
constancy of internet path properties,” in Proceedings of the
ACM SIGCOMM Internet Measurement Workshop (IMW ’2001),
November 2001.

[38] S. Ren, L. Guo, and X. Zhang, “ASAP: an as-aware peer-relay
protocol for high quality voip,” in Proc. IEEE ICDCS, 2006.

[39] D. Eager, M. Vernon, and J. Zahorjan, “Minimizing bandwidth
requirements for on-demand data delivery,” in IEEE Transactions
on Knowledge and Data Engineering, Sep/Oct 2001.

[40] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. IEEE INFOCOM, April 1996.

[41] X. Hei, Y. Liu, and K. Ross, “Inferring network-wide quality in
p2p live streaming systems,” tech. rep., Polytechnic University,
2007.

