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1. INTRODUCTION

In domains that require extensive computation, such as high-performance scientific
computing, a program may be divided up among several processors working in
parallel in order to reduce the overall execution time and increase the total amount
of memory available to the program. The process of “parallelizing” a sequential
program is notoriously difficult and error-prone. Attempts to automate this process
have met with only limited success, and thus most parallel code is still written by
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hand. The developers of such programs expend an enormous amount of effort in
testing, debugging, and a variety of ad hoc methods to convince themselves that
their code is correct. Hence any techniques that can help establish the correctness
of these programs or find bugs in them would be very useful.

In this paper we focus on parallel numerical programs, i.e., parallel programs
that take as input a vector of (usually floating-point) numbers and produce as
output another such vector. Examples include programs that implement matrix
algorithms, simulate physical phenomena, or model the evolution of a system of
differential equations. We are interested in techniques that can establish the cor-
rectness of a program of this type—i.e., prove that the program always produces
the correct output for any input—or exhibit appropriate counterexamples if the
program is not correct.

The usual method for accomplishing this—testing—has two significant draw-
backs. In the first place, it is usually infeasible to test more than a tiny fraction of
the inputs that a parallel numerical program will encounter in use. Thus, testing
can reveal bugs, but, as is well-known, it cannot show that the program behaves
correctly on the inputs that are not tested. Secondly, the behavior of concurrent
programs, including most parallel numerical programs, typically depends on the
order in which events occur in different processes. This order depends in turn on
the load on the processors, the latency of the communication network, and other
such factors. A parallel numerical program may thus behave differently on different
executions with the same input vector, so getting the correct result on a test exe-
cution does not even guarantee that the program will behave correctly on another
execution with the same input.

The method proposed here, which combines model checking with symbolic exe-
cution in a novel way, does not exhibit these two limitations: it can be used to show
that a parallel numerical program produces the right result on any input vector,
regardless of the particular way in which the events from the concurrent processes
are interleaved.

In attempting to apply model checking techniques in this setting, two issues
immediately present themselves. First, these techniques require the programmer to
supply a finite-state model of the program being checked. But numerical programs
typically deal with huge amounts of floating-point data, and the very nature of
our problem dictates that we cannot just abstract this data away. Hence it is not
obvious how to construct appropriate finite-state models of the programs without
greatly exacerbating the state explosion problem. The second issue concerns the
nature of the property we wish to check: the statement that the output produced
by the program is correct must be made precise, and formulated in some way that
is amenable to model checking tools.

We deal with the first issue by modeling computations in the programs symbol-
ically. That is, in our model, the input is considered to be a vector of symbolic
constants xi, and the output is some vector of symbolic expressions in the xi. The
numerical operations in the program are replaced by appropriate symbolic oper-
ations in the model. Furthermore, each symbolic expression is represented by a
single integer index into a table, which prevents the blowup of the size of the state
vector and makes it possible to easily express the model in the language of standard
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model checking tools, such as Spin [Holzmann 2004].
We deal with the second issue by requiring that the user provide a sequential

version of the program to be verified, which will serve as a specification for the
parallel one. The model checker will be used to show that the parallel and sequential
programs are equivalent, i.e., that they produce the same output on any given input.
Of course, this means that our method only reduces the problem of verifying a
parallel program to the problem of verifying a sequential one. However, most
problems in this domain have a much simpler sequential solution than parallel
one, and it is already common for developers of scientific software to begin with a
sequential version of the program or to construct one, for testing and other purposes.
Moreover, we will see below that our method provides information that can help
verify the correctness of the sequential program as well.

Another issue that arises in this approach is the fact that most numerical pro-
grams contain branches on conditions that involve the input. Such programs may
be thought of as producing a set of cases, each case consisting of a predicate on the
input and the corresponding symbolic output vector. Our method deals with this
as follows. We use the model checker to explore all possible paths of the sequential
program, and for each such path we record the path condition pc, the Boolean-
valued symbolic expression on the input that must hold in order for that path to
have been followed. The model of the parallel program is engineered to take as
input not only the symbolic input vector, but the path condition pc as well. The
model checker is then used to explore all possible paths of the parallel program that
are consistent with pc. If, for every pc, the result produced by the parallel program
always agrees with the result produced by the sequential one, the two programs
must be equivalent.

The method is described in detail in Section 2. In Section 3, we give two reduction
theorems for models of parallel numerical programs that help make the method of
Section 2 usable with larger examples. Using Spin, we have applied the method to
four parallel numerical programs; we describe this experience and present some data
that arose from it in Section 4. In Section 5, we discuss the problem of constructing
models suitable for verification and an extension to Spin intended to address some
of the difficulties in extracting such models from code. Section 6 discusses related
work and Section 7 presents some conclusions and directions for future work.

2. METHODOLOGY

We consider a parallel numerical program Ppar that consists of a fixed number of
parallel processes. We write n for the number of parallel processes. We assume that
these processes have no shared memory and communicate only through message-
passing functions such as those provided by the Message Passing Interface (MPI)
[Message Passing Interface Forum 1995; 1997]. (Though much of what follows
will apply equally to other communication systems, or even to shared memory
systems, MPI has become the de facto standard for high performance computation,
particularly in the domain of scientific computation.) We assume we are given
a sequential program Pseq, which serves as the specification for Ppar. We also
assume that both Pseq and Ppar terminate normally on every input, a property that
can often be verified using more traditional model checking techniques [Siegel and
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double A[N][L], B[L][M], C[N][M];
...

int i,j,k;

for (i=0; i<N; i++)

for (j=0; j<M; j++) {

C[i][j] = 0.0;

for (k=0; k<L; k++)

C[i][j] += A[i][k]*B[k][j];

}

Fig. 1. Sequential matrix multiplication code

Avrunin 2004; Siegel 2005]. In some cases, we may also have to impose a small
upper bound on the number of iterations of certain loops in a program, to ensure
that the model we build will not have an inordinately large (or even infinite) number
of states.

Notice that the requirement that Ppar and Pseq be equivalent implies, in partic-
ular, that each program be deterministic, i.e., that if given the same input twice, it
will produce the same output. If either program fails to be deterministic, this will
be caught and flagged as an error by our method.

To simplify the presentation, we begin by explaining the method under the as-
sumption that neither program contains branches on expressions involving variables
that are modeled symbolically. After this we consider some numerical issues that
arise from the fact that floating-point arithmetic is only an approximation to the
arithmetic of the real numbers, and finally we describe the general approach, in
which branches on symbolically modeled expressions are allowed.

2.1 A simple example

To illustrate the method, we consider the example of Figure 1. This sequential C
code takes the product of an N × L matrix A and an L × M matrix B and stores
the result in the N ×M matrix C. We can consider this to be a numerical program
for which the input vector consists of the NL + LM entries for A and B, and the
output vector consists of the NM entries of C at termination. There are many ways
to parallelize Pseq, but we will consider the one shown in Figure 2, which is adapted
from Gropp et al. [1999] and uses MPI functions for interprocess communication.
Each process should be thought of as executing its own copy of this code, in its
own local memory. A process may also obtain its rank (a unique integer between 0
and n − 1) from the MPI infrastructure. For this code, which uses a master-slave
approach to achieve automatic load-balancing, we assume that N ≥ n− 1 ≥ 1, and
that all three matrices are stored in the local memory of the process of rank 0 (the
master). To compute the product, the master will distribute the work among the
processes of positive rank (the slaves).

We assume that each slave process already has a copy of B in its local memory.
The master begins by sending the first row of A to the first slave, the second row of
A to the second slave, and so on, until the first n − 1 rows of A have been handed
out. A slave, after receiving a row vector of length L from the master, multiplies
it by B, and sends back the resulting row vector of length M to the master. The
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int rank,nprocs,i,j,numsent,sender,row,anstype;

double buffer[L], ans[M];

MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank==0) { /* I am the master */

numsent=0;

for (i=0; i<nprocs-1; i++) {

for (j=0; j<L; j++)

buffer[j] = A[i][j];

MPI_Send(buffer, L, MPI_DOUBLE, i+1, i+1, MPI_COMM_WORLD);

numsent++;

}

for (i=0; i<N; i++) {

MPI_Recv(ans, M, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

&status);

sender = status.MPI_SOURCE;

anstype = status.MPI_TAG-1;

for (j=0; j<M; j++)

C[anstype][j] = ans[j];

if (numsent<N) {

for (j=0; j<L; j++)

buffer[j] = A[numsent][j];

MPI_Send(buffer, L, MPI_DOUBLE, sender, numsent+1, MPI_COMM_WORLD);

numsent++;

}

else MPI_Send(buffer, 1, MPI_DOUBLE, sender, 0, MPI_COMM_WORLD);

}

} else { /* I am a slave */

while (1) {

MPI_Recv(buffer, L, MPI_DOUBLE, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

if (status.MPI_TAG==0) break;

row = status.MPI_TAG-1;

for (i=0; i<M; i++) {

ans[i] = 0.0;

for (j=0; j<L; j++)

ans[i] += buffer[j]*B[j][i];

}

MPI_Send(ans, M, MPI_DOUBLE, 0, row+1, MPI_COMM_WORLD);

}

}

Fig. 2. Parallel matrix multiplication code

master waits at a receive statement that will accept a message from any process
(we will refer to a statement of this kind as a wildcard receive). After one or more
messages have arrived, the master chooses one for reception, copies the row vector
received into the appropriate row in C, sends the next row of A to the slave that
had just returned the result, and returns to the wildcard receive. It continues in
this way until all the rows of A have been handed out. After that point, whenever a
slave sends in a result, the master sends back a termination message to that slave.
After all results have come in, and the last termination message has been sent
out, C should contain the product of A and B, and all processes should terminate
normally.
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The first step of our method is to create a finite-state model Mseq of Pseq in
Promela, the input language for Spin. The model will use symbolic expressions
in place of the floating-point values that arise in Pseq. (Integer values can also be
modeled symbolically, though this is often not necessary.) A symbolic expression
may be thought of as a tree-like structure in which the leaf nodes are either floating-
point literals or symbolic constants. The symbolic constants are denoted x0, x1, . . .
and correspond to the components of the input vector. To each non-leaf node in
the tree is associated a (unary or binary) operator, e.g., +,−,∗,/, or any other
arithmetic operator that occurs in the program.

Each numerical operation in the program involving a symbolically modeled vari-
able is replaced by an operation on symbolic expressions in the model. The symbolic
operation simply forms a new tree from a given operator and one or two operands.
We will use the usual infix notation to denote symbolic expressions, but we must
keep in mind that no interpretation is given to the operations, and none of the usual
rules of real arithmetic (associativity, commutativity, etc.) hold. For example, for
the matrix multiplication program with N = L = M = 2, if the initial symbolic
values for A and B are given by

A =
(

x0 x1

x2 x3

)
, B =

(
x4 x5

x6 x7

)
,

then the final value of C[0][0] will be the symbolic expression (0.0 + x0x4) + x1x6,
which does not equal the symbolic expression x0x4 +x1x6. The symbolic structure
can be represented in a language such as Promela using standard data structures
such as integer arrays, but we will see shortly that this is not really necessary.

The next step of our method is to create a finite-state model Mpar of Ppar. To
do this we use Spin processes to represent the processes of the parallel program
and Spin channels to transfer messages between processes, using techniques such as
those of Siegel and Avrunin [2004] and Siegel and Avrunin [2005]. The arithmetic
operations are represented symbolically, just as in the sequential case. Finally, a
composite model is formed, in which first Mseq is executed in its own Spin process,
then Mpar is executed using n additional Spin processes, and finally a series of
Spin assertions are checked to verify that the final symbolic entries of the copy of
C generated by Mseq agree with those generated by Mpar. Spin is then used in
verification mode to explore all possible paths of the composite model and to verify
that the assertions are never violated. In the matrix multiplication example, there
are many such paths, due to all the different possible orders in which the slaves can
return their results to the master.

Now, the method described above may work for small models, but it has a se-
rious drawback. For a typical program, the size of the symbolic expressions—and
therefore the size of the structure used to represent the state of the model—can
quickly blow up. Like most model checking tools, Spin stores the set of states it has
encountered as it searches the state space of the model, and the amount of memory
required to represent this set is usually the main barrier to a successful completion
of the search. Since the memory required to represent the set is approximately the
product of the number of states and the size of the structure used to represent a
single state, the method we have proposed has little chance of scaling.

To ameliorate this problem, we use a form of value numbering to reduce the
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memory needed to represent a symbolic expression and use subexpression sharing to
reduce the total number of expressions and facilitate expression comparison. Using
this approach, the floating-point values in the original programs are represented by
integer indices that refer to entries in a static symbolic expression table. (By static,
we do not mean that the table never changes, but that it is shared by every state
in the state space, just as a static variable in a Java class is shared by all instances
of that class.) The table contains one entry for every expression (including every
subexpression of every expression) that is encountered during the search of the
state space of the composite model. An entry for a binary expression is a triple in
which the first component is an operator code, the second component is an integer
referring to an (earlier) entry in the table corresponding to the left operand, and
the third component is an integer corresponding similarly to the right operand. The
entry for a unary expression is similar but has only two components. An entry for
a leaf expression has either the form (X, i), corresponding to the symbolic constant
xi, or (L,α), where α is a floating-point number, corresponding to a literal value.

The table is initialized by entering the literal values 0 and 1, as these are needed
by many models and by many of the routines in our symbolic manipulation package.
Next, the symbolic constants for the input vector are entered into the table. Other
entries to the table are made as needed as symbolic operations are performed during
the search of the state space. The arithmetic operations are modeled by operations
on integers that refer to entries in the table. The operation that performs addition,
for example, takes two integers i and j, and first looks in the table to see if the
triple (+, i, j) has already been entered. If it has, the addition operation returns
the index of that triple. If it has not, it appends that triple to the end of the table
and returns the new index. This guarantees that every expression has a unique
entry in the table, and so the expressions corresponding to two integers i and j are
equal if and only if i = j.

The table that is constructed during the verification of the 2×2 matrix multipli-
cation example is excerpted in Figure 3. At the end of execution of Mseq, the table
will have 26 entries. The variable C[0][0] will be initialized to the value 0, the index
of the expression 0.0 in the table, then set to the index 11, and finally set to 13,
the index of the expression (0.0 + x0x4) + x1x6. Hence one of the assertions that
will be checked is that, at the termination of any execution of Mpar, the variable
C[0][0] in the master process will also be 13.

In this case, when the state space of Mpar is explored, no new entries are ever
made, because all of the expressions generated can already be found in the table.
(In more complicated examples, however, the parallel program may also add new
expressions.) In fact, for non-trivial sizes (see Section 4), Spin can verify that the
assertions are never violated, establishing the equivalence of the two programs.

2.2 Numerical Issues

Floating-point arithmetic is only an approximation to the arithmetic of real num-
bers, and many of the standard properties of the latter do not necessarily hold
for the former [Goldberg 1991]. (The exact differences depend on which particular
floating-point arithmetic one uses.) In the matrix multiplication example, the sym-
bolic expressions computed by the sequential and parallel models are exactly the
same, which guarantees that the programs being modeled will always produce the
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i ei interpretation
0 (L, 0.0) 0.0
1 (L, 1.0) 1.0
2 (X, 0) x0

3 (X, 1) x1

...
...

...
9 (X, 7) x7

10 (*, 2, 6) x0x4

11 (+, 0, 10) 0.0 + x0x4

12 (*, 3, 8) x1x6

13 (+, 11, 12) (0.0 + x0x4) + x1x6

14 (*, 2, 7) x0x5

...
...

...
25 (+, 23, 24) (0.0 + x2x5) + x3x7

Fig. 3. Symbolic expression table for 2 × 2 matrix multiplication

same results, no matter what arithmetic is used to execute the programs (assum-
ing, of course, that the arithmetic functions are deterministic). There are cases,
however, where two models may compute expressions that are not exactly the
same, but which may be close enough for particular needs. For example, in most
floating-point arithmetics—including all those that conform to the IEEE 754 or 854
standards [IEEE 1985; 1987]—the expressions 0 + f and f must always evaluate
to the same floating-point value, for any floating-point expression f . Hence, if the
symbolic results produced by the two models are the same “up to” the relation
that identifies any symbolic expression e with the symbolic expression 0+ e, we are
still guaranteed that the two programs will produce the exact same floating-point
results on any platform implementing IEEE arithmetic.

In general, let ∼ be an equivalence relation on the set S(X) of symbolic expres-
sions over a set of symbolic constants X = {x1, x2, . . .}. We assume that ∼ is
operation-preserving, i.e., that

e1 ∼ e2 ∧ f1 ∼ f2 ⇒ e1 + f1 ∼ e2 + f2

holds for all ei, fi ∈ S(X), and that similar statements hold for the other operators.
This means that each operation induces an operation on the set of equivalence
classes S̄(X) ≡ S(X)/ ∼, and so all of the arithmetic and comparisons for equality
in the models may be thought of as taking place in S̄(X).

Note that in S̄(X), it is no longer trivial to test for the equality of two elements.
We will see in Section 4.1 that our implementation deals with this by performing
certain simplifications on an expression before it is entered into the symbolic table.
This is not quite as strong as reducing the expression to a true normal form (i.e.,
to a unique representative of its equivalence class), but it is very inexpensive and
provides sufficient precision for the examples we have looked at.

Each operation-preserving equivalence relation yields a different notion of pro-
gram equivalence. We have identified three that we think are useful and have used
in our implementation, though the same methods can certainly be used for other
relations. The three relations are as follows:
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—Herbrand equivalence: this is the strongest, and therefore most desirable, notion
of equivalence. Two symbolic expressions are Herbrand equivalent if and only
if they are exactly equal. As we have seen, two Herbrand equivalent programs
will produce the same results, independently of the way in which the arithmetic
operations are implemented.

—IEEE equivalence: this is a slightly weaker relation. There are a number of iden-
tities for real arithmetic that also hold for IEEE arithmetic, e.g, x + y = y + x,
xy = yx, and 1x = x1 = x + 0 = 0 + x = x/1 = x. Two elements of S(X) are
considered to be equivalent if one can be transformed to the other by a finite
sequence of transformations corresponding to such identities. Two IEEE equiv-
alent programs must produce the same output on any platform implementing
IEEE arithmetic. Of course, they would also produce the same output if the
arithmetic were exactly real arithmetic.

—Real equivalence: this is weaker still. Two elements of S(X) are considered to
be equivalent if one can be transformed to the other using any identities of real
numbers, including those that do not hold for IEEE arithmetic, such as the
associativity of addition or multiplication, and the distributive property. Two
real equivalent programs would produce the same results if all computations
were performed as real arithmetic, but they may produce different results when
run on an actual computer, even one that implements IEEE arithmetic. The
differences may be slight, but in some situations the error can mushroom and the
two can differ greatly.

The sad truth is that real equivalence is often the best that we can hope for.
This is because there are many common scenarios that rely on associativity or
some other property that does not hold for IEEE arithmetic. For example, it is
often the case that one needs to compute a sum of floating-point variables that
reside in the local memory of different processes and return the result to every
process. MPI provides a convenient way to do this: one just calls MPI_Allreduce
with a parameter specifying that the reduction operation is to be floating-point
addition. However, the MPI Standard states that the implementation may add the
values in any order—the implementation is not even required to use the same order
twice. Hence an MPI program making one call to MPI_Allreduce may produce
different results when run twice on the same input, even if the execution platform
uses IEEE arithmetic. Because the MPI functions that perform reductions do not
specify the order in which the arithmetic operations are applied, real equivalence
is usually the best that can be achieved for programs that use these functions.

For programs that are real but not IEEE equivalent, difficult issues may arise in
creating test oracles or in determining whether the error (the difference between the
actual results and what the results would have been had real arithmetic been used)
falls within acceptable bounds. Such questions are simply beyond the scope of our
method. Other investigations have attempted to deal precisely with floating-point
errors, in different circumstances; see, for example, Martel [2005] and the references
cited there.

We mentioned above that sometimes we might want to model integer variables
symbolically. This requires a small modification to the above framework, in which
we associate a type (either integer or floating-point) to each symbolic constant
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double matrix[N][M];
...

int top,col,row,i,j;

double pivot,tmp;

for (top=col=0; top<N && col<M; top++, col++) {

pivot = 0.0;

for (; col<M; col++) {

for (row=top; row<N; row++) {

pivot = matrix[row][col];

if (pivot!=0.0) break;

}

if (pivot!=0.0) break;

}

if (col>=M) break;

if (row!=top)

for (j=0; j<M; j++) {

tmp = matrix[top][j];

matrix[top][j] = matrix[row][j];

matrix[row][j] = tmp;

}

for (j=col; j<M; j++) {

matrix[top][j] /= pivot;

}

for (i=0; i<N; i++) {

if (i!=top) {

tmp = matrix[i][col];

for (j=col; j<M; j++) {

matrix[i][j] -= matrix[top][j]*tmp;

}

}

}

}

Fig. 4. Sequential Gaussian elimination code

and, consequently, a type to each symbolic expression. The notion of Herbrand
equivalence is unchanged, but for both IEEE and real equivalence we allow all the
usual rules of integer arithmetic, including commutativity, associativity, and the
distributive property for integer addition and multiplication.

2.3 The general case

The method used for the matrix multiplication example applies to any program
with no branches on expressions that involve the symbolically modeled variables.
We now drop this restriction. To illustrate the general case, we use the program
in Figure 4, which implements the Gaussian elimination algorithm to transform
an N × M matrix to its reduced row echelon form. The input vector for this
program consists of the NM initial values of the matrix entries, and the output
vector consists of the NM final values of those entries.

Recall that an important step in this algorithm is to locate, at each stage, a pivot
row, i.e., a row at or below the current top row that contains a non-zero entry in
the current column. This is accomplished in the sequential code by looping over
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double matrix[M];
...

int top,col,row,j,rank,nprocs;

double pivot,tmp;

double toprow[M];

MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (top=col=0; top<N && col<M; top++, col++) {

for (; col < M; col++) {

if (matrix[col]!=0.0 && rank>=top)

MPI_Allreduce(&rank, &row, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);

else

MPI_Allreduce(&nprocs, &row, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);

if (row<nprocs) break;

}

if (col>=M) break;

if (row!=top) {

if (rank==top)

MPI_Sendrecv_replace(matrix, M, MPI_DOUBLE, row, 0, row, 0, MPI_COMM_WORLD,

&status);

else if (rank==row)

MPI_Sendrecv_replace(matrix, M, MPI_DOUBLE, top, 0, top, 0, MPI_COMM_WORLD,

&status);

}

if (rank==top) {

pivot = matrix[col];

for (j=col; j<M; j++) {

matrix[j] /= pivot;

toprow[j] = matrix[j];

}

}

MPI_Bcast(toprow, M, MPI_DOUBLE, top, MPI_COMM_WORLD);

if (rank!=top) {

tmp = matrix[col];

for (j=col; j<M; j++) {

matrix[j] -= toprow[j]*tmp;

}

}

}

Fig. 5. Parallel Gaussian elimination code

the rows, starting at top and working down, looking for a non-zero entry. If none is
found, the algorithm moves to the next column and loops over the rows again. This
continues until the first non-zero entry is found, or until we fall off the bottom or
the right side of the matrix. (For simplicity, we will ignore the question of choosing
the nonzero entry of largest absolute value.)

In the parallel version (Figure 5), we assume that n = N (where n is the number
of parallel processes) and that the ith row of the matrix is stored in the local memory
of the process of rank i. The pivot row is determined in a very different way, using a
call to MPI_Allreduce in which the reduction operation returns the minimum of the
given values. Each process contributes an integer to this communication, according
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to the following rule: if its entry in position col is 0 or the rank of the process
is less than top, the process contributes the integer n, else it contributes its rank.
The call to MPI_Allreduce results in the minimum of all these contributions being
stored in the variable row of each process. If, after this communication completes,
row is less than n, then each process knows that the process of rank row will be used
as the next pivot row and breaks out of the pivot-searching loop, else the search
for a pivot continues. Additional communication is used to exchange the top and
pivot rows and to broadcast the pivot row.

Because of the branch expressions that involve the floating-point input (e.g.,
pivot!=0.0), the sequential program can follow different paths, depending on the
input. Consider, for example, the case where N = M = 2, and the matrix is

initially
(

x0 x1

x2 x3

)
. If x0 *= 0 and x3 − x2(x1/x0) = 0 then the program will follow

a path resulting in the final value of
(

1 x1/x0

0 0

)
(assuming IEEE arithmetic is

used). If instead x0 *= 0 and x3 − x2(x1/x0) *= 0, the final result is the identity
matrix. In fact, in this 2× 2 case, there are 7 possible paths through the sequential
program. To each path there is an associated path condition, the predicate on the
input vector that must hold in order for that path to be followed, and a resulting
symbolic output vector. (Notice it is possible for two different paths to yield the
same output: the path arising from the condition x0 = 0 ∧ x2 *= 0 ∧ x1 *= 0 also
yields the identity matrix.)

We deal with this as follows. In Mseq, we model the floating-point variables
symbolically, as before, but we also introduce an integer variable that gives the
index in the symbolic table of the current path condition pc for the program. This
expression is Boolean-valued and can involve operators such as <,>,=,*=,≥,≤,∧,∨.
Its initial value is the special symbolic expression true. At each point where there
is a floating-point branch in the program, say on a condition e, the model calls
a function φ(pc, e). This function returns one of three possible values: if it can
determine that pc ⇒ e it returns true; if it can determine that pc ⇒ ¬e, it returns
false; and if it cannot determine either, it returns unknown. If the answer is true
or false, the corresponding branch is taken, but if the answer is unknown then the
model makes a non-deterministic choice between the true and false branches. In
this latter case, if the true branch is selected, the value of pc is updated by setting
it to pc ∧ e, while if the false branch is selected, it is set to pc ∧ ¬e. Note that this
process ensures that the disjunction of the path conditions is always true.

Recall that in the composite model, the execution of Mpar begins just after Mseq

terminates. Now, the branches in Mpar will be dealt with in the same way as in Mseq,
but—and this is the crucial point—Mpar will use the same path condition variable
that was used in Mseq. Hence execution of Mpar begins with pc holding the final
value computed by the sequential model. This means that, assuming φ(pc, e) can
be evaluated with sufficient precision, the parallel model can only follow a path that
is consistent with the one followed by the sequential model. Since the disjunction
of the path conditions from the sequential program is true, however, all paths
in the parallel program are considered. The precision with which φ(pc, e) can be
evaluated depends, of course, on the power of the reasoning system that is being
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used, as discussed further below. Finally, the last step in the composite model is
the sequence of assertions comparing the output vectors of the two models, just as
before.

Now when Spin is used to check for assertion violations in the composite model,
it will have to explore all possible paths through Mseq, and for each of these it will
have determined a path condition-output vector pair (pc,y). For each such pair,
it will explore all possible paths of the parallel model that are consistent with pc,
determine the parallel output y′, and check the equivalence of y and y′. If the
assertions can never be violated, we can conclude that for any input vector, the
two programs must produce equivalent results, assuming the arithmetic used in
executing the programs obeys the identities of the designated equivalence relation.

Notice that the path condition pc produced by a sequential run does not neces-
sarily specify all the branch conditions for Mpar. In the Gaussian elimination code,
for example, the sequential program breaks out of the loop that searches for a pivot
as soon as the first non-zero entry is found. Hence the symbolic variables for the
entries that are not examined remained unconstrained in pc. In the parallel code,
on the other hand, each process examines its own entry to see if it is non-zero,
and those processes that cannot make this determination based on pc must make
a non-deterministic choice. The model checker explores all of these choices, and
checks that each of them results in the same output vector y.

The effectiveness of this approach depends heavily on the precision with which
the φ(pc, e) are evaluated. If unknown is returned for a case where it can in fact be
shown that pc ⇒ e (or that pc ⇒ ¬e), it is possible that Spin will explore infeasible
paths through Mseq, or paths through Mpar that are not consistent with the one
followed by Mseq. In these cases the analysis might produce a spurious result, i.e.,
it might report that a violation has been found when one does not really exist.
However, since the analysis is conservative, i.e., it only ignores a branch when it is
certain that the branch cannot be taken, a positive result guarantees that the two
programs are equivalent. The procedure used by our implementation to determine
φ is described in Section 4.1; it is very lightweight but precise enough to yield a
conclusive result in all of the examples we have studied.

A useful byproduct of this method is the set of pairs (pc,y) produced by Spin
in analyzing Mseq. These can be used to establish the correctness of the sequential
program, although exactly how this is done would depend on the particular pro-
gram. For Gaussian elimination, for instance, each of the matrices that corresponds
to a y in one of the pairs can be checked, by a series of assertions, to satisfy the
conditions of reduced row echelon form.

In summary, our method to compare a sequential and parallel version of a nu-
merical program consists of the following steps: (1) build a Spin model Mseq of the
sequential program in which the floating-point computations (and perhaps some in-
teger computations) are represented symbolically, and in which branches are mod-
eled using non-deterministic choices and a path condition variable; (2) in a similar
way, build a Spin model Mpar of the parallel program; (3) put these together to
form a composite model, in which first Mseq is executed, then Mpar (using the same
path condition variable), and which ends with assertions stating that the outputs
of Mseq and Mpar agree; (4) use Spin to check that the assertions of the composite
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model can never be violated.

3. REDUCTION THEOREMS

Partial orders and related techniques play an important role in model checking, by
reducing the number of states that need to be explored. Ideally, we would have
liked to apply techniques that are optimized for models of MPI programs, such as
those discussed in Siegel [2005], but we could not find an easy way to implement
them in Spin. Instead, in Section 3.1 we give a result that justifies slightly weaker
techniques, but can be easily incorporated into Spin models. One consequence of
the theorem is that for models with no wildcard receives, we may instruct Spin to
use only synchronous communication, and we may place the code for each process
in an atomic block. Though this greatly restricts the ways in which events from
the different processes can be interleaved, the theorem implies that Spin will still
explore every possible terminal state of the model, which is all that is required
for our purposes. For models with wildcard receives, we must use asynchronous
communication, but we can still use atomic blocks, as long as every wildcard receive
occurs either outside, or as the first statement of, an atomic block. In both cases,
the reduction in the number of states explored can be dramatic.

Many parallel numerical programs utilize a structure in which identical worker
processes send requests and results to a server. These requests can arrive in any
order, and a model checker must explore all of them, leading to a rapid blowup
in the number of states. For instance, in the parallel version of the Monte Carlo
example discussed in Section 4, the worker processes can send their requests to the
random number server in any order. Hence in one execution worker 1 may get the
first block of random numbers and worker 2 the second block, while in another
execution the situation could be reversed. In fact, any permutation of the block
distribution can take place on each iteration of the main loop. In Section 3.2, we
give a symmetry reduction theorem that can be applied when the output vectors
and path conditions of the sequential version of the program are invariant under
these permutations.

3.1 A partial order reduction theorem for MPI programs

To explore all possible terminal states of a program, it is usually not necessary to
explore all possible paths through the program. That is because there are often
many equivalent paths, i.e., paths terminating in the same terminal state. This
means that we may restrict the set of paths that we explore, as long as we are sure
to keep at least one representative from each equivalence class. The theorem below
justifies such a restriction for MPI programs.

To state the theorem, we adopt the formal model of Siegel [2005] (which slightly
extends the model of Siegel and Avrunin [2005] by adding the notion of a syn-
chronous global transition). The reader is referred to Siegel [2005] for the complete
details, but the basic idea is that a model essentially consists of an automaton for
each process and a set of channels, each with a fixed sending and receiving process.
The transitions of the automata may be labeled by local, send, or receive events.
Each state in an automaton is either a terminal state (a state with no outgoing
transitions), a local-event state (all transitions departing from that state are local),
a sending state (there is only one departing transition and it is labeled by a send
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event), a receiving state (all the departing transitions are labeled by receive events),
or a send-receive state—a state from which first a send can happen and then a re-
ceive, or first a receive then the send. A global state of the model gives a state in
the automaton for each process and a (possibly empty) queue of messages for each
channel. A global transition corresponds to either a single transition in one of the
automata or a pair of send and receive transitions that execute synchronously; the
latter is a synchronous global transition.

So let M be any model of an MPI program, and ν a channel size vector. Thus ν
assigns to each channel c a value ν(c) which is either ∞ or a non-negative integer.
Suppose that T is a finite trace of M from a global state σ0 to a global state σf

and that T is ν-bounded, i.e.,

∀c ∈ Chan : maxlenc(T ) ≤ ν(c).

This means that the number of messages queued in any channel c never exceeds the
bound ν(c). Suppose further that σf is ν-halted, i.e., there is no global transition
departing from σf that does not cause the number of queued messages in some c
to exceed ν(c). Another way of saying this is that there is no way to extend T to
a ν-bounded trace of length n + 1, where n = |T |.

We consider a game that involves two players, the scheduler and the selector,
and constructs a new ν-bounded trace T ′. The game consists of a sequence of
stages, each of which extends the trace by one transition. So, at the beginning
of stage i, the first i − 1 transitions of T ′ have already been selected. Stage i
proceeds as follows. First, if T ′ terminates in a ν-halted state, then the game
ends in deadlock. Otherwise, the scheduler chooses a non-empty subset of enabled
transitions, according to a certain rule that we describe below. The selector then
chooses a specific transition from this subset and appends it to T ′. The game
ends if it deadlocks, or after n stages have completed, whichever occurs first. The
selector wins the game if the final trace constructed terminates in σf , else the
scheduler wins. The theorem states that there is a strategy for the selector so that
the selector always wins.

We now describe the scheduling rule that constrains the choice made by the
scheduler. Say the current state is σ. Let Eσ denote the set of all ν-enabled global
transitions at σ, i.e., the set of all global transitions enabled at σ that do not cause
the number of queued messages for any channel c to exceed its bound ν(c). Suppose
Eσ is non-empty. Then the scheduler must choose a non-empty subset F of Eσ that
satisfies at least one of the following conditions: (1) F = {τ}, where τ is not a local
event transition, nor a receive transition emanating from a wildcard receive state
(i.e., a state from which there are outgoing transitions labeled by receives on at
least two distinct channels), nor a synchronous transition for which the associated
receive transition emanates from a wildcard receive state, (2) F is the set of all
transitions enabled in a single process that is at a local event state, or (3) F = Eσ.
We call such a set F an acceptable set at σ, and the set of all acceptable sets at σ
will be denoted Cσ.

To state the theorem precisely, we introduce the following notation. First, for
any finite sequence S = (x1, . . . , xn) of elements of a set X, and any x ∈ X, we let
S ·x denote the sequence obtained by appending x to the end of S. Next, given any
two global states σ and σf of M, we define statements θ(σ,σf , n), for all n ≥ 0,
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as follows: θ(σ,σf , 0) is the statement σ = σf , and for n > 0, θ(σ,σf , n) is the
statement

Eσ *= ∅ ∧ ∀F ∈ Cσ ∃τ ∈ F : θ(des(τ),σf , n − 1).

This is a formal way of stating that, starting from σ, the selector can always force
the trace to terminate at σf in n steps, no matter what moves are made by the
scheduler.

Theorem 1. Let M be a model of an MPI program, ν a channel size vector, T
a ν-bounded trace in M from a global state σ to a ν-halted global state σf . Then
θ(σ,σf , |T |) holds.

Proof. The proof is by induction on |T |. If |T | = 0 then σ = σf , and since
this is exactly the statement θ(σ,σf , 0), the theorem holds. So suppose n > 0,
T = (τ1, . . . , τn), and the theorem holds for any trace of length less than n. We
cannot have Eσ = ∅ since τ1 is ν-enabled at σ. Let F ∈ Cσ.

If F = Eσ then let τ = τ1. Then (τ2, . . . , τn) is a ν-bounded trace from des(τ) to
σf of length n − 1, and so by the inductive hypothesis, θ(des(τ),σf , n − 1) holds.
Hence θ(σ,σf , |T |) holds.

Suppose F is the set of all ν-enabled local event transitions from a single process
p. Now there must exist an integer i such that 1 ≤ i ≤ n and τi is in process p.
For if not, there would still be a local event transition in p enabled at σf , and σf

would not be a ν-halted state. Let i be the least integer with this property. We
claim that there is a ν-bounded trace

T ′ = (τ ′
i , τ

′
1, . . . , τ

′
i−1, τ

′
i+1, . . . , τ

′
n)

from σ to σf with label(τ ′
j) = label(τj) for all j. This is because we may move τi

to the left one step at a time, applying Lemma 1 of Siegel [2004] at each step. Let
τ = τ ′

i , and argue as in the paragraph above to see that θ(σ,σf , |T |) holds.
Suppose F is a singleton set {τ}, where τ is either a send, receive, or synchronous

transition. Say τ is a receive in process p. Then, according to the scheduling rule,
at σ, p must be in a receiving state for a sole channel c, and so label(τ) = c?x for
some x that is already queued at σ. Now there must exist some i such that (1)
1 ≤ i ≤ n, (2) τi is a receive in process p, and (3) there is at most one j such
that 1 ≤ j < i and τj belongs to process p, and, if there is such a j, then σ is a
send-receive state and τj is the send emanating from that state. The reason for
this is that if it were not the case, there would still be a receive enabled at σf , and
σf would not be ν-halted. Now we argue as before to move τi to the left, using
Lemma 2 of Siegel [2004] to move past the send τj if necessary. The only thing we
must check is that the message received by τi was already queued at σ. However,
since c is the sole receiving channel for p at σ, τi must also be a receive on c, and
so we must have label(τi) = c?x, as required. Now we proceed to argue as in the
paragraph above that θ(σ,σf , |T |) holds. The case where τ is a send is similar but
easier since we do not have to deal with wildcards. If τ is a synchronous transition,
then first decompose it into its send and receive parts, then move each all the way
to the left, and then recompose them into a synchronous transition.

We now examine some practical consequences of Theorem 1. Say we are using
Spin to verify an assertion on the terminal states of M. In creating a Spin model,



Model Checking Parallel Numerical Programs · 17

we must specify a finite bound ν(c), for each channel c, when c is declared. By the
scheduling policy we mean the mechanism of Spin that determines the set of all
possible next transitions from a given state. The scheduling policy plays the role
of the scheduler in our game. In its default mode, the scheduling policy returns
all ν-enabled transitions. Hence in the default mode, Spin will explore all ν-halted
states that are reachable by ν-bounded traces from the initial state.

Notice that, if there are terminal states that can only be reached by traces in
which the number of queued messages for some c exceeds ν(c), these states will not
be explored by Spin. In some cases, one may verify that there are no such states by
using assertions to check that control never reaches a send statement for a channel
when that channel is full. In other cases, this may not be possible, or the channel
sizes required may be so large that the verification becomes infeasible. In such cases
we may still use a less-than-satisfactory channel size and satisfy ourselves with a
result that is not quite conservative. (Of course, if Spin finds an error, this is just
as helpful as if we had used unbounded channels.) The situation is similar to the
need that sometimes arises to place small bounds on the number of loop iterations,
and is a problem that often arises with finite-state verification techniques. What
we will see shortly, however, is that the reduction strategy we describe cannot make
the problem any worse, i.e., if there exists a property violation within the specified
bounds, it will still be found after applying the reduction.

Now, the scheduling policy used by Spin can be restricted with the careful use
of atomic blocks. When control is inside an atomic block of a process, Spin’s
scheduling policy returns only the ν-enabled transitions from that process, assuming
there is at least one. If there are none, then the process loses atomicity, and the
scheduling policy returns the set of all ν-enabled transitions. A special rule is used
for rendezvous channels, i.e., channels of size 0. A send on a rendezvous channel
is not blocked precisely when the receiving process is in a position to receive the
message; in this case, the Spin scheduling policy returns just the synchronous
transition and control passes to the receiving process. If the receiving process
happens to also be inside an atomic block, then atomic control passes directly
from the sender to the receiver.

Now we can use atomic statements in any way, as long as the resulting scheduling
policy obeys the scheduling rule defined above. Let us say, for example, that we
have inserted atomic statements in such a way that if a wildcard receive occurs
within an atomic block B then it must be the first statement in B and B cannot
be inside another atomic block. Assume also that ν(c) ≥ 1 for all c, so there are
no rendezvous channels. These assumptions mean that the only state from which
Spin’s scheduling policy can select a wildcard receive is one in which no process
has atomic control. But if no process has atomic control, Spin’s scheduling policy
will return the set of all ν-enabled transitions. Hence the scheduling policy satisfies
the scheduling rule, and we are guaranteed that Spin will still explore all ν-halted
states reachable from the initial state by ν-bounded traces.

Consider now the case where M has no wildcard receives, and let ν be any
channel size vector. Say that we construct a Spin model of M in which we set all
channel sizes to 0 and place the code of each process in a single atomic block. What
is the resulting scheduling policy? In any state, it will return either (1) a singleton
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set consisting of a synchronous transition (that by assumption does not involve a
wildcard), or (2) the set of all local transitions in a single process, or (3) the empty
set, if the state is potentially halted (i.e., no synchronous or local event transition
is enabled). If (3) occurs when the state is not terminal, Spin will report this as
an improper end state (i.e., a deadlock). Hence if the search returns without ever
reporting an improper end state, then the scheduling policy satisfies the scheduling
rule, and we are guaranteed that the search has visited every ν-halted state of M
reachable by a ν-bounded trace.

3.2 A symmetry reduction theorem for MPI programs

In this section we prove a theorem that has consequences for numerical programs
in which the output vectors and path conditions exhibit symmetry in the symbolic
constants. The theorem is expressed using the language of group theory and group
actions [Rotman 1995].

Let n and m be non-negative integers, G a finite group, and X a G-set of cardi-
nality n. Let

X = {(x1, . . . , xn) | {x1, . . . , xn} = X},

which is a set of cardinality n!. Let Π and Y be G-sets, and let Y = Y m. The
action of G on X induces an action of G on X by defining

g(x1, . . . , xn) = (gx1, . . . , gxn),

for g ∈ G. The action of G on Y induces a component-wise action on Y as well.
We call the 6-tuple

C = (G, X,X ,Π, Y,Y)

a symbolic context.
Let C be a symbolic context. Consider a pair of functions (C, f), where C assigns,

to each x ∈ X and p ∈ Π, a set C(x, p), and f assigns to each triple (x, p, c), where
x ∈ X , p ∈ Π, and c ∈ C(x, p), an element y = f(x, p, c) ∈ Y. Assume that for all
g ∈ G, x ∈ X , p ∈ Π, and c ∈ C(x, p), the following both hold:

C(gx, gp) = C(x, p) (1)
gf(x, p, c) = f(gx, gp, c). (2)

Then we call (C, f) a symbolic model over C.

Theorem 2. Let C = (G, X,X ,Π, Y,Y) be a symbolic context and let (C, f) be
a symbolic model over C. Suppose there are x ∈ X , p ∈ Π, and y ∈ Y for which the
following all hold:

(1 ) gp = p for all g ∈ G,

(2 ) gy = y for all g ∈ G, and

(3 ) ∀c ∈ C(x, p) ∃g ∈ G : f(gx, p, c) = y.

Then f(x, p, c) = y for all c ∈ C(x, p).
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Proof. Given c, choose g to satisfy hypothesis 3. Then

f(x, p, c) = g−1f(gx, gp, c)

= g−1f(gx, p, c)

= g−1y

= y.

Now we describe the application of this theorem to symbolic models of numerical
programs. In this application, the set X is the set of symbolic constants, and X is
the set of all possible input vectors to the model. The group G may be any subgroup
of ΣX , the group of all permutations of X. The set Π is the set of all Boolean-valued
symbolic expressions in the symbolic constants, e.g., (x1x2)/x3 ≥ 0 ∧ x2 *= x3. A
path condition, for example, is an element of Π. Notice that the action of G on
X extends naturally to an action on Π in which G acts trivially on operators and
literals. We may also take Π to be the set of all Boolean-valued symbolic expressions
modulo an operation-preserving equivalence relation ∼, as long as ∼ is preserved
by the action of G, i.e., p ∼ q ⇒ gp ∼ gq for all g ∈ G. The examples of equivalence
relations that we have considered in this paper all satisfy this property. The set
Y is the set of all real-valued symbolic expressions in the symbolic constants, e.g.,
(x1x2)/x3 + x4. Again, we may apply an appropriate equivalence relation. The set
Y is the set of all symbolic output vectors.

The pair (C, f) represents our numerical program P . The set C(x, p) corresponds
to the set of all executions of P on input x that are consistent with the path
condition p. The element y = f(x, p, c) represents the output of P when given
input x, a path condition p, and a particular execution c consistent with p. The
assumptions (1) and (2) express what is essentially a functorial property in the
symbolic constants: permuting the names of the input does not change the set of
behaviors of the program, nor does it change the output produced by the program,
except to permute the names of the symbolic constants in the output in the same
way that they were permuted in the input.

The theorem may now be interpreted as follows: suppose we are given an input
vector and a path condition p and output vector y such that both p and y are
invariant under the action of G. Then for each possible path through the model
that is consistent with p, we may first permute the input according to any element
of G before computing the output produced by that path. If the output is always y
then we may conclude the output would have been y even if we had not permuted
the input.

4. EXPERIMENTS

In this section, we discuss our implementation of the method and our experience in
applying it to four numerical programs. The source code for the implementation,
the models, and all of the experimental results can be obtained at http://www.
cis.udel.edu/∼siegel/projects.

4.1 Implementation

The core of our implementation is a library of functions for manipulating symbolic
expressions and maintaining the symbolic expression table. This library is written
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in C and is incorporated into our models by using the embedded C code facility of
Spin. The entries in the table are C structs, and include fields for the index of
the expression, an integer code representing the operator, pointers to the left and
right subexpressions for binary expressions, etc. A hashtable is also used, in order
to find table entries quickly.

Three “levels” of each arithmetic operation are provided, corresponding to the
three different equivalence relations discussed in Section 2.2. The level 0 operations
correspond to Herbrand equivalence; these simply form a new expression from the
operator and operands, check to see if the new expression already exists in the table,
add it to the table if it does not, and return the index. The level 1 operations
correspond to IEEE equivalence and do a little more work; the level 1 addition
operation, for example, checks to see whether one of the operands is 0 (in which
case it returns the other operand), or if one operand is the negative of the other (in
which case it returns 0). The level 2 operations correspond to real equivalence. The
level 2 addition operation, for example, exploits associativity and commutativity
to reduce sums to a simplified form in which the parentheses are moved to the left
as far as possible, the terms are ordered by increasing index, literal integer terms
are combined into a single literal, and so on. Of course, when checking for IEEE
equivalence, the level 2 addition and multiplication operations can also be used for
all integer expressions.

Similar things could of course be done for the other level 2 operations (multi-
plication, subtraction, and so on), but in the examples we have studied so far this
has not been necessary, and so at present these work exactly as the corresponding
level 1 operations. In our experience, it seems that additive reduction operations,
which are very common in parallel numerical programs, account for much of the
difference between the exact symbolic expressions computed in the sequential and
parallel models. Reductions over other operations, such as multiplication, seem to
be much less common. In any case, the symbolic package is designed to make it
easy to specify the symbolic operation used for a particular computation in the
code and to add new versions of the symbolic operations to reduce expressions to
other simplified forms, as the need arises.

The function φ, which attempts to determine whether the given path condition
pc implies the given expression e (or ¬e), is implemented as follows. First, by
construction, pc will always be a conjunction of smaller expressions of the form pci

or ¬pci, where each pci arises by evaluating one of the conditional expressions in a
branching statement. Our implementation of φ simply loops over i, looking for a
pci which can be easily seen to imply e or ¬e. By “easily seen” we mean by using
reasoning such as x < y ⇒ x *= y, x = y ⇒ ¬(x *= y), and so on. If it finds such
a pci, it returns true or false, as the case may be, otherwise it returns unknown.
This lightweight procedure seems to be effective because the conditional expressions
evaluated in the sequential and parallel programs tend to be quite similar.

All of the variables from the symbolic package are static, that is, they are not
incorporated into the state vector by using, for example, the Spin c_track function.
Thus the only variables incorporated into the state vector are those corresponding
to variables in the original programs and the path condition variable.

The type of equivalence that one wishes to verify (Herbrand, IEEE, or real)
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Table I. Experimental data

matmat gauss jacobi monte

equivalence type Herbrand Herbrand real IEEE
parallel processes 6 6 17 9

sequential executions 1 13,327 4 4
symbolic expressions 2,202 247,656 8,239 1,232
size of input vector 200 26 1,333 99

size of output vector 100 36 36 1
size of path conditions 0 36 3 3

states (×103) 4,443 16,114 6,295 3,112
memory (MB) 217 801 362 279
time (seconds) 506 3,224 9,846 738

is controlled by a command-line argument specified when compiling the verifier
(pan.c) generated by Spin. This argument tells the symbolic package which level of
symbolic operations it should use: level 0 for Herbrand equivalence, level 1 for IEEE
equivalence, and level 2 for real equivalence. (When verifying IEEE equivalence,
integer addition and multiplication operations use level 2, instead of level 1.) Finer
control over the operations can be obtained by defining additional functions and
calling them from the Promela model where desired.

4.2 The programs

For our preliminary study, we analyzed four scalable parallel numerical programs.
We attempted to verify each of these using the method of this paper, scaling until
Spin exhausted the 800 MB of available memory or verification time exceeded
10,000 seconds. In what follows, we give a brief description of each program, we
discuss certain issues that arose in verifying its correctness, and we explain what
we were able to verify (or not verify).

In Table I, we give data for the largest configuration of each program that we
were able to verify. The rows of the table give (1) the type of equivalence that was
verified, (2) the number n of parallel processes, (3) the number of distinct sequential
executions, (4) the number of expressions generated in the course of the verification,
(5) the length of the input vector, i.e., the number of symbolic constants, (6) the
length of the output vector, (7) the maximum number of terms in the path condition
conjunction, (8) the number of states explored, (9) the amount of memory used by
Spin, and (10) the verification time. We used Spin version 4.2.4 with options
-DCOLLAPSE -DSAFETY -DNOBOUNDCHECK on a 2.2GHz Pentium 4 Linux box.

4.2.1 matmat. Our first example is the matrix multiplication program of Sec-
tion 2.1, with N = L = M = 2(n − 1). As all the loops in the program code are
already finite, it was not necessary to impose any bounds on them when construct-
ing the models. We were able to verify that the sequential and parallel programs
are Herbrand equivalent for n ≤ 6.

4.2.2 gauss. Our second example is the Gaussian elimination program of Sec-
tion 2.3, with N = M = n. We wrote both the sequential and parallel codes
ourselves. Again, it was not necessary to impose any loop bounds when construct-
ing the models. We were able to verify that the sequential and parallel programs are
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Herbrand equivalent for n ≤ 6. We note, however, that in order to show that the
sequential program really produces the reduced row echelon form, we needed IEEE
arithmetic. This is because, for example, the use of Herbrand arithmetic results in
matrix entries of the form x0/x0 where the definition of reduced row echelon form
requires 1.

4.2.3 jacobi. Our third example implements a Jacobi iteration algorithm to
solve a linear system of the form Ax = b. Both the sequential and parallel ver-
sions are from the CD ROM accompanying the book by Karniadakis and Kirby
[Karniadakis and Kirby II 2003]. (Both versions are in the file SCchapter7.cpp; the
sequential version is the function Jacobi and the parallel version is the function
Jacobi_P.) In this algorithm, the N × N matrix A and the column vector b of
length N form the input, and the goal is to solve for the value of the column vector
x of length N , which forms the output. We take N = 2n+2. The algorithm begins
with an initial guess for x (the column vector in which every entry is 1.0), and
then enters a loop in which the entries of x are adjusted at each iteration, based on
the values of neighboring entries. The algorithm stops when the error term, which
is computed as the inner product of the difference between two consecutive values
of x with itself, falls below a given threshold ε, or when the number of iterations
exceeds a fixed bound MAXITS.

In the parallel version, the data are partitioned so that each process contains
a certain number of rows of A, x, and b. Communication is used to update the
contents of ghost-cells, which mirror the boundary data on neighboring processes,
and in a reduction operation used to compute the error term after each iteration.
In our models, ε is treated as another symbolic constant, and we take MAXITS = 3.
(Some constant bound must be specified for MAXITS if the model is to have a finite
number of states.)

Our analysis quickly revealed that the results of the sequential and parallel pro-
grams could disagree for n = 2, even using real arithmetic. The source of the
problem was a small mistake in the computation of the error in the sequential
code: instead of taking the inner product of the difference between two successive
values of x with itself, the code simply took the inner product of the two successive
values. (We reported the error to the authors and it has been corrected in the
second printing of the book.) After correcting the error, we verified real equiva-
lence (which is the best that can be hoped for, due to the floating-point reduction
operation) for n ≤ 17. While this example scaled significantly further than the
others, it is also the only case in which time, rather than memory, proved to be
the limiting factor. This appears to be due to the large amount of computation
required to simplify expressions when using the level 2 operations.

4.2.4 monte. Our fourth example is a parallel program taken from Gropp et al.
[1999] that implements a Monte Carlo algorithm to estimate π. (We wrote the
sequential code.) The algorithm repeatedly chooses a point at random from a square
with sides of length 2. If the distance from the point to the center exceeds 1.0, an
integer variable out, initially 0, is incremented, else a variable in is incremented.
The estimate for π is 4.0*in/(in+out). The algorithm stops when an error term
falls below a fixed threshold ε, or in+out exceeds a fixed bound. In the parallel code,
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one process acts as a random number server, returning blocks of random numbers
to the remaining “worker” processes. The worker processes use these blocks to
determine a set of points and make their own local in and out calculations. The
values of in and out are summed at the end of each iteration, using an integer
reduction operation. At the end of the reduction, each process has the global sums,
forms the estimate for π, computes the error, and decides whether to perform
another iteration or terminate. In our models of these programs, we bounded the
loops so that the number of points consumed by each worker could never exceed 4.

The random nature of this code presents an interesting challenge to our method.
On the face of it, a program that depends in an essential way on the values re-
turned by a random function can hardly be deterministic. We resolve this problem
by considering the sequence of random numbers generated by the random function
to be the inputs to the program. Hence our method can be used to verify that if
the random number function were to generate the same sequence of values for the
sequential and the parallel programs, the two programs must return the same esti-
mate for π. This seems to us to be a natural extension of our notion of equivalence
to numerical programs that use random numbers.

We used two additional reduction techniques for this example, which proved very
effective. The first concerns the program statement

if (x*x+y*y<1.0) then in++ else out++;

which is used to determine whether a point (x, y) is within distance 1.0 of the
center. If we were to follow our method strictly, each time this statement is executed
in Mseq a non-deterministic choice would be made between the two alternatives.
Since this statement is executed many times in the model, the number of sequential
executions would blow up quickly. To avoid this problem, we made a simple program
transformation. First, we defined a new operation delta which takes two floating-
point arguments a and b, and returns the integer 1 if a < b and 0 otherwise. The
statement above can then be replaced by

in += delta(x*x+y*y,1.0);
out += 1-delta(x*x+y*y,1.0);

which does not require a non-deterministic choice. The only change we had to make
to the symbolic package was to add a level 0 operation for delta, i.e., we just treat
delta as an uninterpreted function. With this modification, the symbolic output of
Mseq will be a more complicated expression, involving many delta-subexpressions,
but the number of executions of Mseq will be much smaller, which turns out to be
a good tradeoff. Notice also what happens if we use IEEE arithmetic to compute
the sum of in and out; since the symbolic package knows to use associativity and
commutativity for integer expressions, the delta terms in the sum all cancel and the
result is a single integer constant. This also reduces the number of states explored,
since it allows the symbolic package to determine with precision when the sum
exceeds the upper bound, rather than forcing it to make another non-deterministic
choice.

Using these this transformation and the symmetry reduction theorem of Sec-
tion 3, we were able to establish IEEE equivalence for n ≤ 9. These reductions
appear to be fairly general and should be useful with a wide variety of parallel
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numerical programs.

5. THE MODEL CONSTRUCTION PROBLEM AND MPI-SPIN

The Promela models for the programs described in Section 4.2 were all constructed
by hand. As we have noted, the parallel versions of these programs use MPI,
and so some way had to be found to represent this MPI communication using
Promela constructs. Promela does not specifically support MPI, but it does provide
some general abstractions that correspond to basic message-passing operations. In
particular, there is a channel data structure with enqueue and dequeue operations
that can be used to model the basic MPI point-to-point operations occurring in our
(relatively simple) MPI programs. Collective operations such as MPI_Allreduce
can be modeled using a “coordinator” process and additional channels. This is the
modeling approach taken in previous work and used to construct the models for
the experiments described in this paper. But while this approach may suffice for a
“proof of concept” of the symbolic comparison method that is the main subject of
this paper, it does have certain practical limitations. We discuss these limitations in
detail in Section 5.1. Some of the limitations have been addressed in a new extension
to Spin called Mpi-Spin [Siegel 2007b; 2007a], and in Section 5.2 we discuss some
preliminary work using Mpi-Spin to implement the symbolic comparison method.

5.1 Limitations to the modeling approach

The programs we considered used only a small number of the MPI primitives—
primarily the basic blocking point-to-point functions MPI_Send and MPI_Recv. The
arguments for MPI_Send include (1) a pointer to the beginning of the buffer con-
taining the data to be sent, (2) the number of data elements to send, (3) the type
of the data elements, (4) the rank of the destination process, and (5) an integer
tag. The arguments for MPI_Recv are similar.

In the models, much of the information contained in these parameters is ab-
stracted away. The abstractions vary from model to model and even within a
single model. For example, in the matrix multiplication example, where tags play
a crucial role in the logic of the program, each message sent by the Master process
in the model consists of two components: (1) a vector of length L consisting of
integer indices of symbolic expressions, and (2) a single byte representing the tag.
The messages sent by the slaves also have a vector and a byte representing the
tag, but the length of the vector is M . In the Gaussian elimination case, where
the tags are not used in any significant way and so can be abstracted away alto-
gether, a message used in point-to-point communication is just a vector of integer
indices of symbolic expressions of length M , while a message sent as part of the
MPI_Allreduce consists of a single byte.

The type of message that can be sent on a Spin channel, however, is fixed stat-
ically in the channel declaration and cannot be changed. One implication of this
is that the channel declarations (and related code) must be tailor-made for each
model. Similarly, the Promela code implementing collective operations may have
to be re-designed for each case, depending on such things as the type of abstraction
used to represent the data, the particular reduction operation, and so on. All of this
limits the possibilities for code re-use from model to model, increasing the burden
on the modeler and the likelihood of errors.
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A second problem arises if one attempts to construct a model where a process
sends one type of message to another process at one point and another type at
another point. If the same Spin channel is to be used at both points, some sort
of common abstraction must be found for the two message types, which may be
difficult to achieve. If, on the other hand, distinct channels are used for the two
message types, the relative order between messages in different channels will not
be preserved, which may violate the MPI ordering semantics and result in a model
that is not conservative.

A third problem with the channel-based approach is that it does not generalize
to the more complex MPI operations. Of particular importance are the widely-used
MPI nonblocking operations. These provide a precise way to specify how compu-
tation and communication can be carried out concurrently in an MPI program, a
technique that is often given a large degree of credit for the high level of performance
that scientific computing has achieved.

Nonblocking constructs can be used to specify that a communication task is to
begin at one point in an MPI process and that the process should block at a sub-
sequent point until that task has completed; computational code can be inserted
between these two points to achieve the desired overlap. For example, one indi-
cates that a send operation is to begin by posting a send request via a call to the
nonblocking function MPI_Isend. (The “I” stands for “immediate” and indicates
that this function returns immediately, rather than blocking.) The arguments for
MPI_Isend are similar to those for MPI_Send, but in addition the nonblocking ver-
sion returns a handle to a request object. A subsequent invocation of MPI_Wait
on this request handle blocks until the send request has completed, i.e., until the
data has been completely copied out of the send buffer and into either a system
buffer or directly into the receive buffer of the receiving process. A nonblocking
receive operation works in an analogous manner, the corresponding request block-
ing until the data has been completely copied into the receive buffer. Note that
nonblocking communication is strictly more general than blocking communication;
MPI_Send, for example, is functionally equivalent to MPI_Isend followed immedi-
ately by MPI_Wait.

It is not at all clear how the simple channel-based abstraction can be modified
to deal with nonblocking communication. Consider, for example, the case where
a receive request is posted before any send request is posted. The posting of the
receive request cannot be represented by pulling a message out of a queue, since the
message does not yet exist. Yet somehow the request must be represented in the
state, along with a reference to the variable(s) modeling the receive buffer. For if at
some subsequent point a matching send request posts, the system must somehow
pair the two requests and copy the appropriate data from the send variable(s) into
the receive variable(s).

5.2 Mpi-Spin

Mpi-Spin is an extension to Spin for modeling MPI programs in a way that ad-
dresses the limitations discussed above. It adds to Spin’s input language many
functions, types, and constants corresponding to the MPI primitives, including all
of the (standard mode) nonblocking MPI functions. The syntax of these functions
is almost exactly the same as for the C bindings of the MPI functions. In partic-
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ular, these functions accept arbitrary C pointers; they support various datatypes;
they allow messages of any type to be sent at any time; and they support the most
common reduction operations. No special effort is required on the part of the user
to model the MPI infrastructure or primitives. All of this greatly reduces the effort
required to construct models of MPI programs.

The basic idea behind the implementation of Mpi-Spin is to use a communication
record structure to represent each outstanding communication request or buffered
message in the system state. The fields for this C structure include a pointer to
the send or receive buffer, the datatype, the ranks of the source and destination
processes, and so on. The communication record values created in the course of the
search of the state space are hashed and assigned unique ID numbers, just as in the
case of the symbolic expressions, and it is these ID numbers that are assigned to
variables in the Promela models. Instead of using multiple channels, a single global
array of active communication records is maintained and modified by the various
MPI functions. An additional MPI daemon process is used to model all possible
behaviors of the MPI infrastructure, and is responsible for such actions as pairing
send and receive requests, buffering messages, and completing requests. All of these
implementation details, however, are transparent to the user.

Mpi-Spin also introduces a type MPI_Symbolic for representing symbolic expres-
sions, togther with a number of operations on that type. Hence Mpi-Spin provides
all of the ingredients necessary for applying the symbolic comparison method to
more complicated MPI programs, including those that use nonblocking communi-
cation.

To examine this potential, we considered another example from a popular MPI
text [Snir et al. 1998]. (The sequential version is Example 2.12; the parallel version
we consider here is Example 2.27.) This program is another variation on the Jacobi
iteration algorithm, but takes as input an (N + 2) × (N + 2) matrix A (N ≥ 1),
which is successively modified and also constitutes the output of the program. The
values of the leftmost and rightmost columns and the top and bottom rows of A
correspond to boundary conditions and are fixed, while the value of a cell in the
interior N × N sub-matrix is updated on each iteration using a formula that is a
function of the cell’s left, right, upper, and lower neighbors. An additional N × N
matrix B is used to temporarily hold the new values as they are computed.

In the parallel version, A and B are distributed by columns, and each process
uses one or two additional columns for ghost cells. The body of the main loop of
the parallel program consists of four steps. In the first step, the new values for the
left and right columns of the local section of B are computed. In the second step,
four communication requests are posted: two for sending those two columns of B to
the left and right neighbors, and two for receiving the columns from the neighbors
into the local ghost cells. In the third step, the new values for the interior columns
of B are computed and then all the values of B are copied into A. The fourth step
is a call to MPI_Waitall on an array consisting of the four request handles: this
causes the calling process to block until all four requests have completed. Their
completion guarantees that the ghost cells have been properly updated and that
the data has been entirely copied out of the left and right columns, so that it is safe
to proceed to the next loop iteration. Note that overlap between computation and
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communication is achieved by allowing the computation of the new interior values
to take place concurrently with the ghost cell exchange.

Using Mpi-Spin, we quickly discovered a fault in the parallel version. The prob-
lem occurs whenever N < 2n. In that case, on at least one process two send
requests are posted using the same buffer—the single column of the local section
of B—which is not allowed in MPI. In all other cases considered, Mpi-Spin was
able to successfully verify the equivalence of the sequential and parallel versions.
In the largest configuration which we verified successfully, n = 6, N = 14, and
synchronous nonblocking communication was used; this resulted in 512,553 states
explored, consumed 332 MB, and took 307 seconds.

As we have noted, MPI blocking communication is a special case of nonblocking
communication and, in fact, blocking functions such as MPI_Send or MPI_Recv are
implemented in Mpi-Spin by simply calling the corresponding nonblocking function
and following this immediately with an MPI_Wait. It appears, however, that for
programs that use exclusively blocking communication, the Mpi-Spin approach is
not as efficient as the channel-based approach. For example, the verification of the
Gaussian elimination example for n = 5 required 6.67 millions states and 1015 MB
for Mpi-Spin; for our tailor-made channel-based model the numbers are 790,611
states and 35 MB. We could not scale this example to n = 6 using Mpi-Spin.

To address this shortcoming, we added a number of optimizations to Mpi-Spin
for models that use exclusively blocking communication. The principal optimization
is the use of channels instead of the communication record array. The messages sent
on the channels are integer IDs of communication record values. In this way, the
optimization maintains the full generality of the Mpi-Spin approach. To use this
optimization, the user need only indicate with a flag that the model uses exclusively
blocking communication; no changes to the model itself are required.

With the new optimizations in place, the Mpi-Spin models appear to scale com-
parably to our original tailor-made models. The Gaussian elimination example
actually consumes slightly less states/memory using Mpi-Spin. For the matrix
multiplication example, the Mpi-Spin model consumes approximately 20% more
states/memory on the largest configuration. We plan to port the other two exam-
ples and to explore further optimizations in order to improve the performance of
Mpi-Spin without sacrificing its usability and generality.

6. RELATED WORK

The idea of representing computations symbolically has a long history and has
enjoyed many applications, including to testing and debugging (e.g., [Boyer et al.
1975; Clarke 1976; Hantler and King 1976]). There has also been some work in-
corporating these ideas into model checking. For example, a component of the
SLAM toolkit [Ball and Rajamani 2001] translates a C program into a program
that operates solely on Boolean variables corresponding to predicates in the orig-
inal program. A theorem prover is used in that process to determine the effect
of each statement in the original program on the predicates. Another component
uses symbolic execution to determine whether a path through the Boolean program
corresponds to an actual execution of the original program. This is similar in spirit
to our method, which translates a program into one which operates on symbolic
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expressions and uses a (very lightweight) form of theorem proving to determine
branches and expression equivalence.

Symbolic execution has also been used to improve the precision of Java PathFinder,
in order to verify properties of Java programs that manipulate complex data struc-
tures and that may even contain unbounded loops [Khurshid et al. 2003; Păsăreanu
and Visser 2004].

Our approach differs from this previous work in several ways: (1) in the way we
use the path condition to filter out executions of the parallel program that are not
consistent with a sequential execution, (2) in our emphasis on complex floating-
point expressions, rather than on heap-allocated data and integer expressions, and
(3) in our use of the value numbering scheme to represent the state space efficiently.

In another direction, the recent work of Elmas et al. [2005] also uses a non-
concurrent implementation as a specification for a concurrent program. That work,
however, is directed at runtime verification of appropriate concurrent access to data
structures and requires a special specification capturing an appropriate relaxation
of atomicity. It does not consider the sort of parallel numerical programs we discuss
here, for which construction of a sequential implementation is often a standard part
of the development effort, and is not intended to determine the correctness of the
numerical calculations implemented by the parallel program.

There are a number of tools and techniques that can be used to estimate the
error arising from floating-point computations in programs; see Martel [2005] for a
description and comparison of some of these.

7. CONCLUSIONS AND FUTURE WORK

We have described a method that uses model checking techniques in combination
with symbolic execution to verify the correctness of the calculations performed by
parallel programs—even complex floating-point calculations. We have successfully
applied this method to four quite different examples, scaling to configurations of
between 6 and 17 processes. While these numbers are much smaller than those that
arise in practice, evidence from the application of model checking techniques with
other kinds of software suggests that problems are usually exposed by verification
of relatively small configurations. This is quite different from the case with testing,
where the small size may make it difficult to trigger particular pathological patterns
of behavior. The difference is due to the fact that model checking takes into account
all possible executions of the model.

The key idea of our method is to compare a sequential and a parallel program
by using the path conditions arising from the sequential version as a filter when
exploring the parallel version. This approach takes advantage of the fact that, since
it is usually easier to construct a correct sequential numerical program, scientific
software developers often start with a sequential version or develop one in tandem
with the parallel version.

The approach does have several limitations. First, as it now stands, models of the
sequential and parallel programs must be built by hand. This requires significant
effort and a degree of skill on the part of the user. The ideal situation would be to
have tools that automatically extract the models from source code, and indeed a
great deal of research on this subject has been carried out, at least for other domains.
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As described in Section 5, we are exploring ways to adapt these techniques to MPI
programs, though we expect to encounter some significant challenges when it comes
to automatically creating models of programs with large amounts of floating-point
data.

A second limitation is the need that sometimes arises to impose bounds on the
number of loop iterations. Without this restriction, a model in which computations
are performed symbolically might have an infinite number of states and would
therefore not be amenable to standard model checking techniques.

A third limitation is the assumption that the computations performed in the
sequential and parallel programs must be computed in a similar way, although the
computations for the parallel program may be distributed in a complex manner.
This assumption means that it is usually relatively inexpensive to determine if two
symbolic expressions are equivalent or if one symbolic predicate implies another.
The further removed the computations in the two programs become, the more
powerful the symbolic manipulation must be in order to arrive at a conclusive
result. If the computations performed by the two programs are very different, we
might argue that the sequential program is not a good specification for the parallel
one. Nevertheless, as we examine more complex programs, it is certainly possible
that the kind of lightweight symbolic manipulation and theorem proving that we
are currently using will no longer suffice. For this reason, we are exploring ways
to integrate our approach with more sophisticated symbolic algebra and theorem
proving tools.

Perhaps the greatest problem with model checking parallel programs is state ex-
plosion: the fact that the number of states of a program typically grows exponen-
tially with the number of processes. A vast array of techniques has been developed
to counteract this problem, and we have demonstrated that some of these, such as
partial order and symmetry reductions, can be adapted to work with our method.
Spin turned out to be an excellent platform for the rapid prototyping of our method.
The Mpi-Spin extension allows for easier modeling of many features of MPI pro-
grams, including the nonblocking communication constructs, though further work
is needed to make Mpi-Spin models as efficient for verification as the hand-coded
ones. Furthermore, some of the techniques we want to explore for reducing the
difficulty of verification may be difficult to implement in Spin and we also intend
to explore other model checkers, such as Bogor [Robby et al. 2003], which is de-
signed to allow easy customizations of its search strategy and other components.
We also plan to look for additional theoretical results that can reduce the difficulty
of verification. In particular, we hope to extend the reduction theorem of Siegel and
Avrunin [2005] to the nonblocking MPI functions and to prove results analogous to
Theorem 1 in that setting.

Given these limitations, we certainly cannot claim that our method can be used
to verify the correctness of every parallel numerical program. But we have shown
that it works on some interesting, non-trivial examples and that when it is ap-
plicable, it seems to be a very effective approach for dealing with a very difficult
problem. In addition, we expect to significantly increase the range of applicability
of the method as we incorporate new and existing techniques from model checking,
theorem proving, and symbolic algebra.
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