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ABSTRACT
Modern data centers increasingly employ virtualization in
order to maximize resource utilization while reducing costs.
With the advent of multi-core processors, memory has be-
come the key limiting resource when running multiple vir-
tual machines on a given server. In this paper, we argue
for exploiting page sharing to significantly reduce aggregate
memory requirements of collocated VMs and increase the
number of VMs that can be housed on a given data center.
We present a memory tracer and a novel memory fingerprint-
ing technique—based on Bloom Filters— to concisely and
efficiently capture the memory contents of each VM. Our
server consolidation algorithm employs a fast, scalable fin-
gerprint comparison technique to efficiently determine which
data center servers offer the maximum sharing potential for
a given VM, and consolidates these VMs onto these servers
via live migration. We also present a hotspot mitigation tech-
nique to correct the negative impacts of unanticipated loss of
page sharing and swapping. We have implemented a proto-
type of our Memory Buddies system in the VMware ESX
server. An experimental evaluation of our prototype using a
mix of enterprise and ecommerce applications demonstrates
that exploiting page sharing enables our system to increase
the effective capacity of a data center by over 30%, while
imposing a CPU and network overhead of less than 0.5%
per server and scaling to data centers with up to a thousand
servers.

1. INTRODUCTION
Data centers—server farms that run networked applications—

have become popular in a variety of domains such as
web hosting, enterprise applications, and e-commerce
sites. Modern data centers are increasingly employing
a virtualized architecture where applications run inside
virtual servers that are constructed using virtual ma-
chines, and one or more virtual servers are mapped onto
each physical server in the data center. Running ap-
plications inside virtual servers as opposed to running
them directly on physical servers provides a number
of benefits. First, it enables server consolidation since
multiple applications can be housed on a single phys-
ical server while still providing the illusion of running

each one on an independent (virtual) server. This re-
duces the number of physical servers required to house a
given set of applications and also provides better mul-
tiplexing of data center resources across applications.
Second, consolidating applications on a smaller set of
physical servers enables spare servers to be powered off
until needed, which reduces the energy costs of operat-
ing the data center. Third, it enables legacy applica-
tions that require legacy operating systems to be mi-
grated to virtual machines without a need to port the
application to newer operating systems.

With the advent of multi-core processors, it is now
feasible to run up to a few tens of virtual machines on
a single physical server. Since memory is a limited and
expensive server resource, it can become the limiting
factor when trying to place multiple virtual machines
onto a single server. In this paper, we argue for exploit-
ing page sharing between virtual machines to maximize
the number of VMs that can be placed on a server dur-
ing initial placement or while consolidating servers. If
two virtual machines on a server have identical pages
in memory, they can share a single copy of the dupli-
cate page, thereby reducing their total memory needs.
Thus, exploiting page sharing can reduce the aggregate
memory footprint of virtual servers that reside on a host
and enable more VMs to be packed on to a given set of
physical servers. Page sharing mechanisms are already
available in virtual machines such as VMware and Xen,
and have been shown to provide significant memory sav-
ings [24]. However, determining which VMs to colocate
on each physical server so as to best exploit page sharing
is a non-trivial problem. First, although similar to bin-
packing, there is no known analog of this “packing with
sharing” problem in the theory literature; even with-
out sharing, the consolidation problem is an instance
of bin-packing, which is NP-complete. A further diffi-
culty is that a simple estimate of the sharing potential
between two virtual machines may be inaccurate in the
long term. A naive estimate may expect certain pages
to be shared, when in reality they may be swapped out
after the VMs are co-located on the same host.

In this paper, we present Memory Buddies, a sys-
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tem that enables server consolidation by aggressively
exploiting page sharing benefits. Our system consoli-
dates virtual machines from underloaded servers by co-
locating them with other VMs with the greatest page
sharing potential; doing so reduces the aggregate num-
ber of servers needed to house a given set of applications
and saves on hardware and energy costs. At the heart of
the Memory Buddies system is a memory fingerprinting
technique that can concisely capture the memory con-
tents of a particular VM as well as the aggregate mem-
ory contents of all VMs resident on a physical server.
Memory fingerprinting is implemented using (i) a mem-
ory tracer that traces the VM’s memory activity to rank
the importance of each page and produce accurate long
term estimate of sharing, (ii) a bloom filter that uses
these tracer statistics to produce a concise fingerprint
of the VM’s memory contents. Our consolidation algo-
rithm employs a fast fingerprint comparison technique
that can quickly compare a VM’s fingerprint with those
of physical servers and identify servers with the greatest
page sharing potential for that VM. Both our finger-
print estimation and fingerprint comparison techniques
are designed to scale well to data centers with hundreds
or thousands of hosts, while imposing minimal memory
tracing overhead. Our system also implements a mem-
ory hotspot mitigation algorithm to reduce the impact
of memory swapping caused by loss of page sharing or
major application phase changes.

We have implemented our techniques using the VMware
ESX server on a prototype Linux data center. An ex-
perimental evaluation of our prototype has shown that
exploiting page sharing for placement in large data cen-
ters can increase the number of virtual machines which
can be hosted on a data center by up to 30%. We have
demonstarted that our Bloom Filter based fingerprint-
ing mechanism can accurately and efficiently determine
the amount of sharing between virtual machines and
that the low overhead of our system allows it to scale
well to large data centers.

The rest of this paper is structured as follows. Sec-
tion 2 present some background and a problem formu-
lation. Section 3 presents our memory fingerprinting
technique. Sections 4 and 5 present our server consol-
idation and hotspot mitigation algorithms. Section 6
presents implementation details and Section 7 our eval-
uation results. We present related work in Section 8
and our conclusions in Section 9.

2. BACKGROUND AND SYSTEM OVERVIEW
Our work assumes a data center comprising a large

cluster of possibly heterogeneous servers. The hardware
configuration of each server—the processor, memory
and network characteristics—is assumed to be known
a priori. Each physical server runs a hypervisor (also
referred to as a virtual machine monitor) and one or

more virtual machines. Each virtual machine runs an
application or a component of an application, and is al-
located a certain slice of the underlying physical server.
The slice, which determines the fraction of the RAM
as well as processor and network bandwidth allocated
to the VM, is determined based on the SLA for that
application. All storage is assumed to be on a network
file system or a storage area network, which eliminates
the need to move disk state if the VM is migrated to
another physical server [5].

The underlying virtual machine monitor is assumed
to implement a page sharing mechanism, which detects
duplicate memory pages in resident VMs and uses a sin-
gle physical page that is shared by all such VMs (if a
shared page is subsequently modified by one of the VMs,
it must be unshared similar to a copy-on-write mecha-
nism) [24]. Thus, if V M1 contains M1 pages, and V M2

contains M2 pages, and S of these pages are common
across the two VMs, then page sharing can reduce the
total memory footprint of two VMs to M1 + M2 − S
from M1 + M2. The freed up memory can be used to
house other VMs, and enables a larger set of VMs to
be placed on a given cluster. In this work, we assume
the VMware ESX server, which implements such a page
sharing mechanism [24].

Problem formulation: Assuming the above sce-
nario, the server consolidation problem can be formu-
lated as follows. Consider a data center that needs to
consolidate one or more physical servers. A physical
server becomes a candidate for consolidation if its load
stays below a low threshold for an extended period of
time;1 consolidating its VMs on other servers allows the
server to be powered down.

For each VM resident on such a server, the consoli-
dation algorithm should to determine a new host such
that (i) the new server has sufficient unused resources to
house the incoming VM, and (ii) page sharing is max-
imized. By placing the VM onto a host that maxi-
mizes the sharing of that VM’s pages, the aggregate
memory footprint of the VM can be reduced, enabling
greater consolidation. The same strategy can also be
used for initial placement of a new VM—the new VM is
placed onto a server with the maximum sharing poten-
tial, causing the VM to consume less physical memory
than otherwise. Once a new target machine has been
determined for each VM on a consolidation candidate,
live migration can be used to actually move the VM to
the new server without incurring application down-time
[17, 5].

Typically the best sharing benefits will be accrued for
duplicate pages that are both active and remain unmod-
ified in memory for extended periods of time. Although
the consolidation algorithm should only consider such

1A server may also become a consolidation candidate if it
needs to be retired from service.
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Figure 1: Memory Buddies System Architec-
ture.

pages while estimating sharing potential, it is inevitable
that future VM behavior will occasionally deviate from
these estimates. This may occur, for instance, if the
VM terminates the current application and begins ex-
ecuting a new one, or if the current application sees a
major phase change in its behavior. In such a scenario,
previously shared pages may become unshared, increas-
ing the memory pressure on the physical server. If the
increased memory pressure results in swapping, then
application performance can be significantly impacted,
resulting in a memory hotspot. To mitigate the impact
of such hotspots, we require our consolidation algorithm
to incorporate memory hotspot mitigation techniques.
Such a technique can take corrective action by offload-
ing one or more VMs to other servers to reduce the
memory pressure. Such hotspot mitigation is essential
for system stability, especially since aggressive consoli-
dation will occasionally result in poor decisions. Mem-
ory hotspot mitigation and consolidation have opposing
goals—whereas the latter aggregates load from under-
loaded servers onto a smaller set of servers, the former
dissipates load from overloaded servers onto a set of less
loaded servers.

System Overview. Low-level page sharing mecha-
nisms only detect and share duplicate pages belonging
to resident VMs—they do not address the problem of
which VMs to co-locate on a host to maximize sharing.
Our Memory Buddies system detects sharing potential
between virtual machines throughout a cluster of hosts,
and then uses the low-level sharing mechanisms to re-
alize these benefits.

Our system, which is depicted in Figure 1 consists
of a nucleus, which runs on each server, and a con-
trol plane, which runs on a distinguished control server.
Each nucleus runs our memory tracer to gather mem-
ory statistics for each resident VM. The tracer tracks
accesses to pages within a virtual machine in order to
determine what pages are being actively used. It then
generates a memory fingerprint for each VM, which is a
concise representation of the VM’s memory contents, as
well as an aggregate fingerprint for the server. The ac-
tive memory statistics and the various fingerprints are

reported to the control plane.
The control plane is responsible for server consolida-

tion and hotspot mitigation. Upon identifying a server
for consolidation, it employs a fast fingerprint compar-
ison algorithm to determine a new home for each VM
and triggers VM migrations to those hosts. Similarly
upon detecting a memory hotspot, it migrates one or
more resident VMs to other hosts to relieve memory
pressure on that server.

The following sections describe the memory finger-
printing and control plane algorithms in detail.

3. MEMORY FINGERPRINTING
The nucleus runs on each physical server and its goal

is to compute a memory fingerprint for each resident
VM as well as an aggregate memory fingerprint for the
physical server. Ideally the nucleus can be implemented
at the VM and the hypervisor-layers to track memory
accesses by the guest operating system and its applica-
tions in order to generate a fingerprint based on these
accesses. However, since VMware is a commercial prod-
uct, we lack source code access to make modifications
to the virtual machine and the hypervisor; consequently
we choose to implement this same functionality inside
the guest operating system. In open-source platforms
such as Xen, it is easy to implement this functionality
at the VM level without a need to modify guest oper-
ating systems.2 Thus, our current nucleus runs inside
each VM and is implemented as a kernel module and a
user-space daemon.

Determining page sharing potential involves comput-
ing how many pages are common to two (or more) vir-
tual machines. Our experimental section demonstrates
that a brute force comparison of two VMs to determine
if they have duplicate memory pages is very expensive,
and a more efficient method must be used to (i) suc-
cinctly capture the memory contents of each VM, and
(ii) compare the memory contents of two or more VMs
to determine how many duplicates are present. Fur-
ther, even if a page is duplicated across VMs, it may
not yield sharing benefits—sharing benefits will accrue
only if the page is not modified for a long period of time
and if it remains active in memory for an extended pe-
riod. Thus, we must only consider resident pages that
are unlikely to be modified when computing the sharing
potential.

Our memory tracer addresses the issue of tracking
resident pages, while our memory fingerprinting gener-
ates a concise representation of the memory contents of
these pages. We describe each component in turn.

2Our initial efforts had focused on the Xen platform. How-
ever, Xen’s page sharing implementation is experimental
and not compatible with its live migration mechanism; since
our work requires both, we chose to switch to the VMware
ESX server.
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3.1 Memory Tracer
The first step in determining the set of resident pages

is to gather a trace of the memory activity of the guest
system to produce an ordered list of page accesses. This
is generated by periodically sampling the accessed bits
for pages in physical memory to see if they have been
recently used. The sampler picks a page at random and
checks its accessed bit. If the bit is set, then it appends
an identifier for the page to the trace and clears the
bit. The identifier is dependent on the address space
the page belongs to and its offset. By using these as
the identifier, a virtual page which is swapped out, and
swapped back in to a different physical address will have
the same identifier. This allows the stack algorithm,
described below, to track the activity of virtual pages,
and assess when a guest would benefit from an increase
in memory allocation.

In addition to tracing the identifiers for the accessed
pages, the tracer also records a hash of their contents
using the SuperFast Hash algorithm [9]. To avoid ex-
cessive CPU overhead, these hashes are cached so that
they do not need to be computed for every page access.
Thus the hashes may not be consistent with the page’s
true contents. Every time a page access is detected, the
system must decide whether or not to recompute the
hash. Ideally the hash would be recomputed only if the
page had been modified, or if the hash had never been
previously computed. Unfortunately the Linux kernel
does not have an API for checking the dirty bit of ev-
ery mapping of a virtual page. To prevent the need
for extensive kernel modifications, we chose a simpler
route: if the page has never been hashed before, then it
is always hashed, otherwise it is hashed with some prob-
ability, currently 0.01. This means that the hash for a
page may not be current, but has probably been up-
dated within the last 99 samples to that page. This is a
justifiable approach because pages which do not change
frequently are likely to have a correct hash. Pages which
do change frequently are likely to have a stale hash, but
these pages are unlikely to be involved in sharing, so an
incorrect hash will cause few problems.

The kernel component of the memory tracer gener-
ates a stream of page access data which is exported
to the guest’s user space via a character device called
/dev/memtracer. The user space component reads this
file and uses Mattson’s Stack Algorithm [16] to deter-
mine the set of active pages. The stack algorithm sim-
ulates the behavior of an infinitely sized LRU queue
acting on the memory accesses indicated in the trace.
It does this using two key data structures: a sorted list
of pages and an array of integers A. The list of pages
stores the fictional LRU queue, and is structured as a
modified Red-Black tree [6] which is sorted by LRU po-
sition rather than page ID. This allows the tracer to
determine the location of an element in the queue in

0 1 1 0 0 1 0...1
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m bits

Figure 2: Bloom Filter with four hash functions.

O(logn) time by walking up the tree and observing the
number of left-hand children for parent. Indexing into
the queue is done via a hash table which maps page
IDs to tree elements. The array of integers is indexed
by LRU position, and each element represents the num-
ber of times an access occurred to that position in the
queue.

Thus, the memory tracer generates a list of resident
memory pages, in LRU order, and a list of hashes that
capture the contents of each page. Our implementation
also allows the system to request a list of only the ac-
tive pages–a subset of the resident pages selected based
on their LRU position. Currently, we base each virtual
machine’s fingerprint on the full set of resident pages,
however we are investigating using the LRU list to build
a Miss Ratio Curve which can be used to more precisely
determine the amount of memory required by a vir-
tual machine [3]. This would allow us to safely reduce
the memory allocation being given virtual machines not
actively using their full allocation and provide perfor-
mance based SLAs.

3.2 Fingerprint Generation
Content based page sharing implementations for both

Xen and VMWare utilize page hashes–such as those
generated by the memory tracer—in order to determine
if a memory page can be shared with another virtual
machine [24, 12]. Maintaining hash lists of the pages
being used by each virtual machine provide an exact
knowledge of the virtual machine’s memory. However,
the storage and network requirements of maintaining
this information and periodically transmitting it to the
control plane may be too high—creating a 32 bit hash
for each 4KB page results in 1MB of hash data per 1GB
of memory, resulting in a high overhead for a data cen-
ter with hundreds of machines.

To reduce this overhead, we must generate a succinct
representation of a VM’s memory contents. We refer to
such a summary as the VM’s memory fingerprint. Our
Memory Buddies system uses bloom filters to generate
a fingerprint of each virtual machine’s memory image.
A Bloom Filter is essentially a lookup function imple-
mented using hash functions, and can be used to insert
and lookup elements [1, 14]. As shown in Figure 2, a
Bloom Filter consists of an m-bit vector and a set of k
hash functions H = h1, h2, h3, ..., hk (k = 4 in the fig-
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ure). Initially, all bits of the vector are set to zero. To
insert an element a, the bits corresponding to positions
h1(a), h2(a), ..., hk(a) are set to 1. Observe that a false
positive can result if the bit positions for an object are
set by other objects that hash to these positions. The
probability of false positives (errors) depends on the size
of the vector m and the number of hash functions used
k. The probability of false positives (errors) assuming
no deletions in the bit vector or with deletions permit-
ted on a vector with integer counters, depends on the
size of the vector m and the number of hash functions
used k. If the number of elements stored in the vector
are n, the error probability ‘pe’ is given by,

pe =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e

−kn
m

)k

(1)

Thus, given n, the number of pages belonging to a VM,
proper choice of the size of the bit vector m and the
number of hash functions k can yield a sufficiently small
error probability. For example, n = 256K for a 1 GB
VM with 4KB pages, and suppose a m = 512KB Bloom
Filter is desired. Setting k = 11 in equation 1 produces
a false positive rate of 0.046%. This selection of k pro-
duces the minimum error rate for the given values of m
and n.

Our system uses the hash list generated by the mem-
ory tracer to construct the Bloom Filter—the page hashes
generated are treated as keys and are inserted into Bloom
Filters to generated a compact representation of the
memory of each virtual machine. Observe that if the
same page is present in two different VMs, the corre-
sponding hash (key) will be inserted into both Bloom
Filters, and the same set of bits will be turned on in
both fingerprints.

Given the individual fingerprints of all VMs resident
on a server, it is easy to generate a composite fingerprint
for a physical server, which represents the aggregate
memory contents of all resident pages on that server.
This is achieved by simplying OR’ing together the bit
vectors from each virtual machine’s Bloom Filter:

BFserver = BFvm1 + BFvm2 + . . . + BFvmk

This is equivalent to combining the various hash lists
and inserting them into a new Bloom Filter—since the
OR operation will set all bits that would be set by in-
serting keys from the combined hash list.

4. SHARING-AWARE CONSOLIDATION
The VM and server fingerprints are periodically com-

puted and transmitted to the control plane by each nu-
cleus; the control plane thus has a system-wide view
of the fingerprints of all VMs and servers in the data
center. The control plane implements a consolidation
algorithm that uses this system-wide knowledge to iden-
tify servers with the greatest page sharing potential for

each VM that needs consolidation. This section first de-
scribes how bloom-filter-based fingerprints can be em-
ployed to estimate page sharing potential, and then
describes the consolidation algorithm employed by the
control plane.

4.1 Fast Fingerprint Comparison
To estimate page sharing potential, we need an effi-

cient means to compare their memory contents of two
or more virtual machines. An intersection of the hash
lists of the VMs can provide accurate information about
which pages are duplicates, but is too expensive; in-
stead we must rely on comparing memory fingerprints
to estimate this information. Since a Bloom filter is an
approximate data structure that can yield false posi-
tives, we can estimate the exact the exact sharing rate
between two or more virtual machines. However, they
can still provide sufficient accuracy for our purpose and
at a significantly reduced computational cost than com-
paring hash lists.

The typical use for a Bloom Filter is to efficiently test
if a single key is contained within a data set. In our
work, we use Bloom Filters for a different purpose—to
efficiently determine the total number of keys that are
present in both data sets. The simplest method to esti-
mate the number of common elements in two Bloom fil-
ters is to calculate the inner product of their bit vectors.
Intuitively, if a key has been inserted into both Bloom
filters, then the same bits will be set to 1 in both cases
since Bloom filters always a set and never clear bits.
When the bitwise AND operation is applied to the two
filters, those bits will remain set. Thus the number of
set bits is an indicator of the number of common keys
present in both—the larger the number of set bits in the
resulting AND, the greater the number of shared keys.
This approach has been successfully used in informa-
tion retrieval research for matching similar document
lists [10] . Although the AND operation yields an indi-
cation of the extent of sharing between the two Bloom
Filters, our system requires a quantitative estimate of
the number of shared elements. To derive such an es-
timate, we use a well-known result from Bloom filter
theory that estimates the number of shared elements
using the following equation [15]:

share =
ln(z1 + z2 − z12 − ln(z1 ∗ z2) + ln(m)

k(ln(m)− ln(m− 1))
(2)

where z1 and z2 are the numbers of zeros in the two
Bloom filters, z12 is the number of zeros in the AND
of the two filters, m is the size of the filters, and k is
the number of hash functions used. share yields the
number of keys common to the two Bloom Filters.

Our Memory Buddies system uses the above result to
compare a VM fingerprint to the composite fingerprint
of a physical server to estimate how many pages of the
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VM are already present on the server and thus can be
shared if the VM were to be moved to that server.

Observe that estimating sharing using Equation 2 is
far more computationally efficient than comparing hash
lists. Whereas the latter is an O(n · logn) operation, the
former involves bit vector manipulation, which can be
performed very efficiently. This overhead is important
since a large data center may contain hundreds or thou-
sands of physical servers and virtual machines, and our
system needs to compare a VM’s fingerprint with that
of each physical server in the data center to identify
the best sharing potential—which can involve several
thousand fingerprint comparisons per VM.

4.2 Consolidation Algorithm
Our server consolidation algorithm opportunistically

identifies servers that are candidates for shutting down
and attempts to migrate virtual machines off of them
to hosts with high sharing opportunities. In doing so,
it attempts to pack VMs onto servers so as to reduce
aggregate memory footprint and maximize the number
of VMs that can be housed in the data center. Once
the migrations are complete, the consolidation candi-
dates can be powered down until new server capacity
is needed, thereby saving on operational (energy) costs.
The consolidation algorithm comprises three phases:

Phase 1: Identify servers to consolidate. The con-
solidation algorithm runs periodically (e.g., once a day)
and can also be invoked manually when needed. Our
system assumes that the various nuclei periodically re-
port memory fingerprints as well as the resource usages
on each server. Monitored resources include memory,
CPU, network bandwidth and disk; both the mean us-
age over the measurement interval as well as the peak
observed usage are reported. The algorithm uses these
reported usages to identify servers to consolidate; a
server becomes a candidate for consolidation if its mean
usage remains below a low threshold τlow for an ex-
tended duration.3 Currently our system only considers
memory usages when identifying consolidation candi-
dates; however, it is easy to extend it to check usages
of all resources to identify lightly loaded servers.

Phase 2: Determine target hosts. Once the set of
consolidation candidates have been identified, the al-
gorithm must determine a new physical server to house
each VM. To do so, we order VMs in decreasing order of
their memory sizes and consider them for migration one
at a time. For each VM, the algorithm first determines
the set of feasible servers in the data center. A feasi-
ble server is one that has sufficient available resources
to house that VM—recall that each VM is allocated

3In addition, the system can also check that the peak usage
over this duration stayed below a threshold, to ensure that
the server did not experience any load spikes during this
period.
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Figure 3: A 2-step migration.

a slice of the CPU, network bandwidth and memory
on the server, and only servers with at least this much
spare capacity should be considered as possible targets.
Given a set of feasible servers, the algorithm must es-
timate the page sharing potential on each host using
our fingerprint comparison technique—the fingerprint
for the VM is compared with the composite fingerprint
of the physical server to estimate the number of shared
pages using Equation 2. The algorithm then simply
chooses the server that offers the maximum sharing po-
tential as the new host for that VM.

In certain cases, it is possible that there are no feasi-
ble servers for a VM. This can happen if the VM has a
large CPU, network or memory footprint and no exist-
ing servers has sufficient idle capacity to house it, or if
existing servers in the data centers are heavily utilized.
In either case, the consolidation algorithm is unable to
directly migrate the VM to another host. Instead it
must consider a a multi-way move, where one of more
VMs from an existing server are moved to other servers
to free up additional capacity and make this server fea-
sible for the VM under consideration. Currently, we
pick the server with the maximum spare capacity and
determine how much additional capacity needs to be
freed up to make that server a feasible host for the VM.
One or more existing VMs are then chosen for migra-
tion so that at least this much capacity is freed up. A
feasible server that offers the highest sharing potential
is chosen as the new host for each such VM.

Figure 3 illustrates such a multi-way move where V M1

is considered for consolidation but no server has suffi-
cient spare memory to house this VM. Since server 2
has the most spare capacity, the algorithm determines
that it needs to free up additional 128MB of memory
and decides to move V M3 to server 3. The server then
becomes feasible for V M1.

In certain rare cases, even multi-way moves may not
be feasible—for instance, when the data center servers
are heavily loaded. In such a scenario, rather than con-
sidering more complex k-way swaps, our algorithms in-
dicates a failure to free up the consolidation candidate
and moves on to the next consolidation candidate.

Phase 3: Migrate VMs to targets. Once new destina-
tions have been determined for each VM on the consoli-
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dation servers, our algorithm can perform the actual mi-
grations. Live migration is used to ensure transparency
and near-zero down-times for the application executing
inside the migrated VMs.

To ensure minimum impact of network copying trig-
gered by each migration on application performance,
our algorithm places a limit on the number of concur-
rent migrations to no more than C at a time; once each
migration completes, a pending one is triggered until
all VMs have migrated to their new hosts. The original
servers are then powered off.

5. HOTSPOT MITIGATION
The hotspot mitigation technique works in conjunc-

tion with the consolidation mechanism to prevent insta-
bility caused by packing virtual machines too tightly.
Its primary goal is to eliminate memory hotspots re-
sulting from excessive swapping. Although other kinds
of hotspots can occur due to CPU, network and disk
overloads, this works focuses on memory hotspots and
techniques such as those in [26] can be employed to
deal with other kinds of hotspots. We define a memory
hotspot as swapping activity that exceeds a threshold
and which results from increased memory pressure. Our
system must detect such hotspots when they form and
mitigate their effects by rebalancing the load in the data
center.

Typically an increase in memory pressure can result
from two types of effects. First, the aggregate memory
needs of application can increase (e.g., if it mallocs a
large amount of memory); if the memory slice allocated
to the VM is insufficient to meet these increased needs,
then guest OS must resort to swapping pages from disk.
In this case, the VM needs to be allocated a larger slice
of memory on the underlying physical server to reduce
memory pressure. The second effect is caused when an
application that is sharing a large number of pages with
another VM sees a major phase change. For instance,
VM may terminate the application, which causes shared
pages to be deallocated, or the application may change
it execution behavior, which causes shared pages to be
swapped out or become unshared due to copy-on-writes.
In either case, the amount of sharing on the physical
server decreases, which in turn increases the aggregate
memory footprint of the VMs. Since our consolidation
algorithm often overbooks memory,4 the resulting in-
crease in memory pressure can cause swapping. We
must distinguish between these two types of memory
hotspots, since a different set of actions are needed to
mitigate their effects. We refer to the two types of

4By overbooking, we mean that the total footprint of the
VMs exceeds physical RAM in the absence of sharing but
sharing allows us to fit these VM in RAM. e.g., if there are
two VMs, M1 + M2 > RAM but with S shared pages we
get M1 + M2 − S ≤ RAM .

hotspots as type 1 and type 2 hotspots, respectively.
The control plane relies on the statistics reported by

the nuclei to detect both type 1 and type 2 hotspots.
In particular, each nucleus is assumed to monitor the
swap activity of each guest OS as well as the number of
shared pages on the physical server; these statistics are
included in the periodic reports to the control plane,
along with the memory fingerprints. If the reported
swap activity of a virtual machine rises above a thresh-
old but there is no significant change in the number of
shared pages, a type 1 hotspot is flagged by the con-
trol plane. In contrast, if the number of shared pages
declines when compared to previously reported values
and swapping is observed (or imminent), then a type 2
hotspot is flagged.

To handle a type 1 hotspot, the control plane must
estimate how much additional memory should be al-
located to the virtual machine to eliminate swapping.
Type 1 hotspots occur because the virtual machine re-
quires more memory than it is guaranteed by its SLA
based slice. Other load balancing systems such as [26,
21] exist which deal with this situation by increasing
memory allocations when swapping is detected. We fo-
cus on type 2 hotspots which are directly related to page
sharing.

To handle a type 2 hotspot, the control plane at-
tempts to migrate the VM that triggered loss of page
sharing to another host. In this case, a feasible server
is picked at random and the VM is migrated to that
host. Page sharing potential is not considered when
picking a feasible server since the VM has seen a recent
phase change in its memory behavior, and no long-terms
statistics are available to make an informed decisions
about the VM’s future page sharing potential.

If there are no feasible destinations for the virtual ma-
chines on the overloaded host, a server must be brought
in from the shutdown pool so that it can host one or
more of the VMs.

6. IMPLEMENTATION
The Memory Buddies implementation uses VMware

ESX server for the virtualization layer as it supports
both page sharing and virtual machine migration. We
have implemented our memory tracing software as a
modification of the Linux 2.6.20 kernel. The kernel
modifications span seven files and include approximately
400 lines of code. The kernel daemon gathers mem-
ory utilization statistics and page hashes which are ex-
ported to a user space application. The data is trans-
mitted to the control plane each measurement interval,
currently every 20 seconds.

The control plane is a Java based server which com-
municates with the VMware Virtual Infrastructure man-
agement console via a web services based API. The API
is by the control plane to discover which hosts are cur-
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rently active and where each virtual machine resides.
Extra resource statistics are retrieved from the VMware
management node such as the total memory allocation
for each VM. This API is also used to initiate virtual
machine migrations between hosts. The control plane
primarily consists of statistic gathering, sharing estima-
tion, and migration components which comprise about
3600 lines of code.

Our use of a Linux based memory tracer currently
prevents us from testing Memory Buddies on Windows
virtual machines. However, all of the components of the
memory tracer could be included within the hypervisor
layer to make it platform independent. We have been
unable to implement our software within the virtualiza-
tion layer due to the closed source nature of VMware’s
ESX server. The key components of the memory tracer
are the page hash generation function and access bit
sampling component used to generate the LRU list.
Page hashing is already performed by the hypervisor
to detect sharing, however the data is not exported
to other applications, requiring us to gather our own
hashes [24]. The memory tracing algorithm we use has
been implemented within the ESX Server virtualization
layer by one of the authors at VMware, however this is
not currently available as a commercial product, so we
were unable to use it in our system [4].

7. EXPERIMENTAL EVALUATION
We have evaluated the Memory Buddies system to

study the gains in consolidation which are possible when
utilizing page sharing to guide virtual machine place-
ment. Our experiments have been performed on a clus-
ter of four P4 2.4Ghz servers connected over gigabit
ethernet. Each server ran ESX Server 3.0.1 and the
VMware Virtual Infrastructure 2.0.1 management sys-
tem ran on an additional node.

Our experiments utilize a range of realistic data cen-
ter applications:

• RUBiS is an open source multi-tier web applica-
tion that implements an eBay-like auction web
site and includes a workload generator that emu-
lates users browsing and bidding on items. We use
the Apache/PHP implementation of RUBiS ver-
sion 1.4.3 with a MySQL database.

• TPC-W models an Amazon style e-commerce web-
site implemented with Java servlets and run on the
Jigsaw server with a DB2 backend.

• SpecJBB 2005 is a Java based business application
benchmark which emulates a 3-tier system with a
workload generator.

• Apache Open For Business (OFBiz) is an open
source suite of enterprise web applications with
accouting, finance, and sales functionality used by
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Figure 4: Sharing aware placement groups sim-
ilar virtual machines.

Application Approx. Sharing
TPC-W 38%

OpenForBiz 18%
RUBiS 16%

SpecJBB 9%

Table 1: Application types and sharing levels

many businesses. We utilize the eCommerce com-
ponent and a workload generator based on the
JWebUnit testing framework to emulate client brows-
ing activities.

For the multi-tier applications, we run all tiers within
a single virtual machine. All Apache web servers are
version 2.2.3 with PHP 4.4.4-9, MySQL databases are
5.0.41, Jigsaw is version 2.2.6, and the DB2 server was
DB2 Express-C 9.1.2.

In our experiments we compare two placement algo-
rithms. Our sharing aware approach attempts to place
each virtual machine on the host that will maximize
its page sharing. The sharing oblivious scheme does
not consider sharing opportunities when placing virtual
machines, and instead places each virtual machine on
the first host it finds with sufficient spare capacity. Al-
though the sharing oblivious approach does not explic-
itly utilize sharing information to guide placement, page
sharing will still occur if it happens to place virtual ma-
chines together with commmon pages.

7.1 Server Consolidation

7.1.1 Sharing Based Placement
We first test Memory Buddies’ ability to use shar-

ing information to more effectively place servers on a
testbed of four hosts. We utilize four different applica-
tions to vary the sharing rate between virtual machines.
Table 1 lists the different application types and their
approximate level of sharing on a 384MB virtual ma-
chine; actual sharing values vary within a few percent
depending on paging activities. Each virtual machine
runs one of these applications, and while the core ap-
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Figure 5: Two Way Migration.

plication data is identical, the workloads and database
contents are unique for each VM.

Initially, we create one virtual machine of each type
and place it on its own physical host. Additional VMs
of each type are then spawned on a fifth host and mi-
grated to one of the four primary hosts. We compare the
number of virtual machines which can be successfully
hosted using both our sharing aware algorithm which
migrates each new VM to the host with the greatest
sharing potential and a sharing oblivious placement al-
gorithm which migrates each VM to the first host it
finds with sufficient memory, without regard to shar-
ing. The experiment terminates when no new virtual
machines can be placed.

Each virtual machine is configured with 384 MB of
RAM, and the hosts have 1.5 GB of spare memory since
VMware reserves 0.5 GB for itself. Thus we expect each
host to be able to run about four VMs without sharing.
Figure 4 displays the final placements reached by each
algorithm. The three web applications, TPC-W, OF-
Biz, and RUBiS, demonstrate a benefit from utilizing
sharing, allowing more VMs to be packed than the base
four. The sharing oblivious algorithm places four VMs
on each host, except for host C on which it fits an extra
VM due to the sharing between TPC-W instances. The
sharing aware approach is able to place a total of 20 vir-
tual machines, while the Oblivious approach can only
fit 17. For this scenario, exploiting sharing increased
the data center’s capacity by a modest 17%.

Result: Memory Buddies can detect which applica-
tions have similar memory contents and automatically
place them together. By reducing the total memory re-
quirements on each host, the effective capacity of each
host can be increased.

7.1.2 Consolidation through Multi-Way Moves
This experiment demonstrates how Sandpiper can ini-

tiate multi-way migrations in order to increase the chance
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Figure 6: Benefits of exploiting sharing in a 100
node data center.

that a server can be fully consolidated. We run a web
hosting type scenario where each virtual machine on
three hosts runs Apache serving a set of static web
pages. We imagine a tiered payment system where
“Gold” class virtual machines are allocated 1024MB of
RAM, “Silver” class machines receive 384MB and each
host has a total of 1.5GB of memory available. In the
initial setup, hosts A and B each run a single Gold class
virtual machine, while host C runs two Silver virtual
machines. Host A is targetted for consolidation so that
the server can be shut down for maintenance. Unfortu-
nately, neither host B nor C have sufficient spare capac-
ity to accomodate the Gold VM from host A. Memory
Buddies detects this and determines that since host B
has the most spare capacity, space should be made on
it to allow the consolidation to proceed. Figure 5 shows
that, as a result, one of the Bronze VMs is migrated
from host B to host C at time 40 seconds. This migra-
tion takes approximately 10 seconds to complete and
allows the Gold VM from A to be safely migrated to B.

Result: Memory Buddies can detect when an attempt
at consolidation fails due to lack of space and can try
to resolve this by using a two-step migration. This in-
creases the chance that all VMs can be safely migrated
from a host, allowing more hosts to be fully shut down.

7.1.3 Data Center Consolidation
This experiment simulates a large data center of 100
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hosts to demonstrate how the sharing aware placement
algorithm can lead to substantial consolidation benefits.

We consider a data center with a mixed workload
of Windows and Linux based virtual machines. The
virtual machines run one of a variable number of ap-
plications which exhibit either high, medium, or low
sharing. The majority of each virtual machine’s mem-
ory is VM-specific data which is unlikely to be sharable.
The result is a set of virtual machines which can share
a small amount of memory with other VMs running the
same operating system, and a larger amount of memory
with VMs also running the same application.

To simulate this kind of realistic environment, an ar-
tificial memory fingerprint is created for each virtual
machine by generating a series of hashes representing
the VM’s OS, application, and data pages. First a set
of pages are created for the OS which provide a base-
line of 5% sharing between virtual machines of the same
operating system. The next portion of the fingerprint
is filled with page hashes representing the VM’s appli-
cation. We vary the number of possible applications to
study the impact of application diversity. Of these ap-
plications, one third have 40% sharing, one third have
25% sharing and the rest have 10% sharing. Unmatched
applications have negligible sharing. The remainder of
the fingerprint is filled with unique hashes to represent
the VM’s data pages. Each host is created with 4GB of
memory and each virtual machine uses 512MB, so we
expect a base line of eight virtual machines per server
when there is very little sharing.

When there are a small number of application types,
explicitly considering sharing potential does not provide
a large gain since a Oblivious algorithm still has a high
chance of placing similar applications together. As a
result, Figure 6(a) shows that the total number of vir-
tual machines which can be placed in the data center
with either the sharing aware or sharing oblivious algo-
rithm is similar when there is a very small number of
application types.

As the number of application types begins to rise, the
relative benefit of using sharing increases as the chance
of randomly achieving a good placement falls. This is
demonstrated in 6(a) by how rapidly the sharing oblivi-
ous approach drops back to only placing the baseline of
8 virtual machines per server. In contrast, the sharing
aware approach continues to successfully place a large
number of virtual machines on each server. The peak
benefit occurs around 30 application types, where the
Sharing Aware algorithm can place 32% more virtual
machines than sharing oblivious. In our 100 node data
center, this results in an additional 147 virtual machines
being hosted when sharing guides placement.

When the number of application types becomes very
high relative to the number of hosts in the data center,
utilizing sharing becomes less effective since more ap-
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plication types must be mixed on each server. Figure
6(b) shows how the increased capacity achieved by ex-
ploiting sharing sharply rises and then gradually falls
as the number of application types increases.

Result: The potential gain from using sharing ranges
from 10 to 30 percent depending on application diver-
sity. Using sharing to guide placement accrues the most
significant benefts when there is a low or medium ratio
of application types to hosts.

7.2 Hotspot Mitigation
This experiment demonstrates Memory Buddies’ abil-

ity to detect and respond to a type 2 memory hotspot–
when application phase changes reduce the potential for
sharing, requiring action to be taken to prevent hurting
application performance. The experiment employs two
hosts, the first running two virtual machines and the
second running only one. All of the virtual machines
run Apache web servers, and initially an identical set
of requests are sent to each, resulting in a high poten-
tial for sharing. Figure 7 shows the number of pages
shared by each server over time. Since V M1 and V M2

reside on the same host, they initially have a high level
of sharing. At time 60 seconds, a phase change occurs
for the requests being sent to V M2. As a result, the
sharing between V M1 and V M2 decreases significantly.
However, since V M1 and V M3 continue to receive the
same workload, there is a high potential for sharing be-
tween them. The Memory Buddies system detects that
this is a type 2 hotspot since the sharing potential has
decreased but there is no detected swapping or change
in the VM’s LRU list. As a result, the system deter-
mines that V M1 should be migrated to Host 2 at time
360 seconds. After the migration completes, the sharing
rate between V M1 and V M3 gradually increases again.

Result: Memory Buddies’ monitoring system is able
to detect changes in sharing potential brought on by ap-
plication phase transitions. This type of hotspot is auto-
matically resolved by determining a different host with
a higher sharing potential for one of the VMs.
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7.3 Bloom Filter Accuracy
This experiment demonstrates the accuracy of per-

forming fingerprint comparisons using Bloom Filters.
We first generate two sets of page hashes with a confi-
gruable amount of sharing using a random number gen-
erator. The size of the list is equivalent to a virtual
machine with 512MB of RAM, and the hashes are in-
serted into a Bloom Filter with a 384KB bit vector.
The intersection of the two lists is estimated using our
Bloom Filter approach and then validated using an ex-
act list comparison. Figure 8(a) shows how the bloom
filter’s accuracy varies depending on the level of shar-
ing between the two lists. With a lower level of sharing,
hash collisions are more likely to reduce the accuracy
of the Bloom Filter comparison method by suggesting
that non-existant pages will be sharable. As sharing
increases, the two bloom filters will have greater sim-
ilarity, resulting in fewer false positives impacting the
sharing estimate. Since our system is primarily inter-
ested in finding the maximum sharing point, reduced
accuracy at lower sharing levels will have little effect on
the choices made by the system.

Next we measure the accuracy of Bloom Filter com-
parisons when the size of the Bloom Filter’s bit vector
is varied. Using two sets of page hashes gathered from
TPC-W applications, we test Bloom Filters with sizes
ranging from 6KB to a maximum size of 24MB. The
hash lists come from two virtual machines with 384MB
of RAM that exhibited approximately 38% sharing. Fig-
ure 8(b) illustrates how the comparison accuracy rapidly
decreases as filter size rises, and that there is little ben-
efit from utilizing Bloom Filters beyond a few hundred
KB.

Result: Bloom filters can provide a high level of accu-
racy for estimating the number of identical elements in
two sets, particularly when the actual set intersection is
high.

7.4 Fingerprint Comparison Efficiency
Next we compare the computation cost of using Bloom

filters to using hash lists. Figure 9(a) plots the time to
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Figure 9: Fingerprint comparison efficiency.

calculate the sharing potential between one VM and and
all other hosts in data centers of varying size. In this
simulation, each host in the data center has two VMs
(each with 1024MB ram). An additional host runs only
a single virtual server, V M1, and is targetted as a can-
didate for consolidation. The consolidation algorithm is
run and compares the sharing potential between V M1

and each VM on the other hosts in the data center. We
measure the time to perform these comparisons using
both our Bloom Filter based approach and with a di-
rect comparison of hash lists. Our results show that
Bloom filters are faster by more than an order of mag-
nitude compared to using a brute force comparison of
hash lists. Within one minute, the Bloom Filter based
approach can compare as many as 1,700 virtual ma-
chines, while the hash list approach can only compare
125. Much of the cost in list comparison is due to sort-
ing time required to order the lists. The comparison
time with Bloom Filters is independent of the list or-
der.

The sharing estimation time is based not only on the
number of virtual machines in the data center, but also
on the amount of memory dedicated to each virtual ma-
chine. When using hash lists, a virtual machine with a
larger memory image will have a correspondingly larger
list of hashes which need to be sorted and compared.
For a given Bloom Filter, the computation time is not
directly related to the number of memory pages, but as
the amount of memory increases, larger Bloom Filters
are required in order to maintain a target level of ac-
curacy. Figure 9(b) demonstrates how the comparison
time for a single VM increases with memory size. Here
the Bloom Filter is resized to maintain a constant error
rate as the memory size increases. This indicates that
hash list comparisons are simply infeasible when using
virtual machines with large memory sizes. For exam-
ple, using hash lists took 3.4 seconds for each virtual
machine comparison when using 4GB hosts, compared
to 0.142 seconds using Bloom Filters.

Result: The Bloom Filter based fingerprint compar-
ison is more than an order of magnitude faster than
direct hash list comparisons, particularly when compar-
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VM Hash List Bloom Size (KB) w/Error
RAM Size (KB) 1% 0.1% 0.01%
1GB 1024 306 460 613
4GB 4096 1227 1840 2454
8GB 8192 2455 3680 4908

Table 2: Per VM communication cost in KB for
hash lists and Bloom Filters with varying accu-
racy.
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Figure 10: Memory Tracer CPU overhead.

ing virtual machines with large memory sizes.

7.5 System Overheads
Here we examine Memory Buddies scalability by look-

ing at its CPU and network overheads. The total com-
munication overhead of the system is dependent on the
number of VMs running in the data center. Table 2
compares the cost of storing or transmitting Bloom Fil-
ter based memory fingerprints or hash lists of various
sizes. The Bloom Filter sizes are based on maintaining
a 0.01% false positive rate. Although our experiments
utilize an aggressive 20 second monitoring interval, a
much coarser grain monitoring window would be suf-
ficient in a real data center due to the slow rate at
which sharing typically adjusts. It can take VMware
tens of minutes to fully identify the sharable pages be-
tween two virtual machines, so more frequent updates
are only useful for detecting potential changes in shar-
ing causing hot spots. To further reduce communication
costs, the Nucleus could estimate the difference between
two successively generated Bloom Filters to determine
if there has been sufficient change to warrant forwarding
the information to the control plane.

The computation performed on the control plane is
dominated by the cost of fingerprint comparison, but
as demonstrated in Figure 9(a), this scales well to large
data centers when using Bloom Filters. The memory
tracer incurs some overhead on each virtual machine
since CPU time must be sent checking the access bits
of pages and maintaing the LRU list. The CPU over-
head of the memory tracer is controlled by the sampling

rate as shown in Figure 10. We utilize a rate of 10,000
samples per second which incurs less than 0.5% over-
head.

8. RELATED WORK
A content based page sharing scheme was first pro-

posed in the Disco [2] system, but required modification
of operating system calls for page creation and mod-
ification. When and was later implemented in both
the VMware and Xen virtualization platforms [24, 12].
Both approaches use a background hashing mechanism
in the virtualization layer to detect pages in guest VMs
with identical contents. Since we lack access to the
hashes gathered by the VMware hypervisor, we mimic
this functionality within the guest OS. The Memory
Buddies system additionally provides a mean to detect
the potential for sharing between virtual machines on
separate hosts.

Several memory monitoring schemes have been pro-
posed for use in virtual environments. The Geiger sys-
tem [11] presented a method for monitoring a virtual
machine’s unified buffer cache to infer information about
the virtual memory system and working set. Geiger
combines monitoring of swap disk activity with page
eviction events to determine how the guest is utilizing
its buffer cache. Lu and Shen propose a hypervisor
based cache which uses a similar technique of monitor-
ing how guests are swapping out pages to make esti-
mates of working set size. The overhead of the system
is reduced since pages are swapped from the guest to an
in-memory hypervisor cache rather than to disk. This
information is used for an adaptive memory allocation
scheme which grants memory to virtual machines to
balance swap rates. Memory Buddies estimates an ap-
proximate LRU curve using an access bit based mem-
ory tracer proposed in [3]. A similar memory tracer has
been implemented within the VMware hypervisor [4].

Process migration was first investigated in the 80’s
[18, 23]. The re-emergence of virtualization led to tech-
niques for virtual machine migration performed over
long time scales in [20, 25, 13]. The means for “live”
migration of virtual machines incurring downtimes of
only tens of milliseconds have been implemented in both
Xen [5] and VMWare [17]. At the time of writing, how-
ever, only VMWare’s ESX server supports both live mi-
gration and page sharing simultaneously.

Virtual machine migration was used for dynamic re-
source allocation over large time scales in [19, 22, 7].
Previous work [26] and the VMware Distributed Re-
source [21] monitor CPU, network, and memory utiliza-
tion in clusters of virtual machines and use migration
for load balancing. The Memory Buddies system is de-
signed to work in conjunction with these sorts of multi-
resource load balancing systems by providing a means
to use page sharing to help guide placement decisions.
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Bloom filters were first proposed in [1] to provide a
tradeoff between space and accuracy when storing hash
coded information. Guo et al. provide a good overview
of Bloom Filters as well as an introduction to intersec-
tion techniques [8]. Bloom filters have also been used to
rapdily compare search document sets in [10] by com-
paring the inner product of pairs of Bloom Filters. The
Bloom Filter intersection technique we use provides a
more accurate estimate based on the Bloom Filter prop-
erties related to the probability of individual bits being
set in the bit vector. This approach was used in [15] to
detect similar workloads in peer to peer networks.

9. CONCLUSIONS
Modern data centers are increasingly employ a vir-

tualized architecture in order to maximize resource uti-
lization while reducing costs. With the advent of multi-
core processors, memory has become the key limiting
resource when running multiple virtual machines on a
given server. In this paper, we argued that server con-
solidation techniques are often limited because mem-
ory cannot be allocated as flexibly as CPU or network
resources and advocated the use of page sharing tech-
niques to significantly reduce aggregate memory require-
ments of collocated VMs and increase the number of
VMs that can be housed on a given data center. We
presented a memory tracer and a novel memory finger-
printing technique—based on Bloom Filters— to con-
cisely and efficiently capture the memory contents of
each VM. Our server consolidation algorithm employs
a fast, scalable fingerprint comparison technique to ef-
ficiently determine which data center servers offer the
maximum sharing potential for a given VM, and con-
solidates these VMs onto these servers via live migra-
tion. We also presented a hotspot mitigation technique
to correct the negative impacts of unanticipated loss of
page sharing and swapping. We implemented a pro-
totype of our Memory Buddies system in the VMware
ESX server. Using a mix of enterprise and ecommerce
applications, we showed that our Memory Buddies sys-
tem is able to increase the effective capacity of a data
center by over 30% when consolidating VMs from un-
derloaded servers. We also showed that our system can
effectively detect and resolve memory hotspots due to
changes in sharing patterns. Our system imposes mini-
mal CPU and network overheads of less than 0.5% per
server and can scale well to large data centers with hun-
dreds of machines. As part of future work, we plan
to enhance our techniques to dynamically vary mem-
ory allocations, possibly by migrating virtual machines,
to improve memory utilization and further increase the
number of VMs that can be placed on a data center
while guaranteeing application performance.
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