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Abstract
Given the complexity of planning, it is often beneficial to cre-
ate plans that work for a wide class of problems. This facili-
tates reuse of existing plans for different instances of the same
problem or even for other problems that are somehow simi-
lar. We present a novel approach for finding such plans using
state representation and abstraction techniques originally de-
veloped for static analysis of programs. Our algorithm takes
as input a finite 3-valued first-order structure representing a
set of initial states and a goal test. The output is a set of
generalized plans and conditions describing the problem in-
stances for which they work. These plans–which could in-
clude loops and are thus close to algorithms–work for a large
class of problem scenarios having varying numbers of objects
that must be manipulated to reach the goal. We show how to
use this framework to learn a general plan from examples.

Introduction
Interest in computing plan generalizations in AI is perhaps
as old as planning itself. Attempts at producing plans for
more than a single problem instance started with Fikes et
al. [1972]. Their framework parametrized and indexed sub-
sequences of existing plans for use as macro operations or
alternatives to failed actions. However, this approach turned
out to be quite limited and prone to over-generalization.
This initial effort was followed by various approaches to
plan reuse: case based planning [Hammond, 1996], analog-
ical reasoning [Veloso, 1994] and more recently, domain-
specific planning templates [Winner & Veloso, 2002, 2003]
which is probably the closest in spirit to our approach.
Winner & Veloso [2003] provide an approach for extract-
ing generalized domain-specific plans (dsPlans) from exam-
ples. A dsPlan is composed of programming constructs like
branches and loops. Branches are used to merge new ex-
ample plans with the existing plans. The ability for extract-
ing loops however is limited and the proposed algorithm can
only detect loops with a single action. DISTILL has been
shown to extract a dsPlan for all blocks world problems con-
sisting of 2 blocks from 6 chosen example plans. In contrast,
our work aims to find general plans that would work, for ex-
ample, on instances of a particular blocks world problem
with different (and unbounded) numbers of blocks.

We present a promising approach for finding plans for
sets of problem instances from a domain. These problem
instances could not only differ in the number of elements
which need to be manipulated for reaching the goal, but also

have no bounds on these numbers. We accomplish this by
including loops over such objects in our plans. Our plans
are thus closer to algorithms: our input represents an ab-
stract planning problem and the generalized plans we pro-
duce solve it for a range of problem instances. Instead of
reusing or generalizing given plans, at the very outset we
search for a general plan.

Our approach uses state aggregation, which has been ex-
tensively studied for efficiently representing universal plans
[Cimatti et al., 1998], solving MDPs [Hoey et al., 1999;
Feng & Hansen, 2002], for producing heuristics and for hi-
erarchical search [Knoblock, 1991]. Unlike these techniques
that only aggregate states within a single problem instance,
we use an abstraction that aggregates states from different
problem instances with different numbers of objects. This
abstraction scheme has been used effectively in static analy-
sis of programs [Sagiv et al., 2002].

The main contribution of the paper is a new framework
for generalized planning, a novel technique for accomplish-
ing this using an existing abstraction scheme and a precise
analytical charaterization of the domains (extended-LL do-
mains) where it currently works. The rest of this paper is
organized as follows. The next section presents a high-level
overview of our technique and the abstraction mechanism
it employs, illustrated with a simple blocks world example.
This is followed by a formal description of the abstraction
methodology. The next section presents the requirements
we impose on this general method thus identifying a use-
ful category of domains that we handle. We then present
our planning algorithm and illustrate how it works. We also
show an interesting and surprisingly straightforward appli-
cation of our technique which allows us to learn a general
plan from examples.

Overview of the Approach
Our approach is based on canonical abstraction that has
been used effectively in the Three-Valued Logic Analyzer
(TVLA) – a tool for static analysis of programs that ma-
nipulate pointers [Sagiv et al., 2002; Loginov et al., 2006].
Canonical abstraction groups together any objects that are
the same with respect to certain key properties: unary predi-
cates referred to as abstraction predicates. The values of all
the abstraction predicates on an object of the domain define
the role that it plays. Abstract states are then generated by
merging all objects in a role into a single summary element.
For example, Fig.1 shows the abstraction predicates, roles,
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Figure 1: Canonical abstraction in blocks world. Abstracted ob-
jects are encapsulated. The abstraction predicates are topmost and
onTable; diagram on the right shows the state in TVLA notation.

Figure 2: Branching. In blocks world the focus operation models
“drawing” an object from a role. In doing so it produces a branch
on the number of objects left in the ¬topmost ∧ ¬onTable role.

and an abstract representation for a blocks world domain.
We need a sound methodology for modeling actions with

such abstract representations. This is done in TVLA using
action transformers specified in first-order logic with tran-
sitive closure, discussed in detail in the next section. The
most interesting part of this methodology is the automatic
modeling of branching when an action depletes the number
of objects of a role. Since we abstracted away the true num-
bers, our model must reflect the possibility that the object
removed from a role could be the last one playing that role.
Fig.2 shows an example of this situation in the blocks world
where the focus operation splits the abstract structure into
two relevant cases.

Our overall methodology uses the abstraction mechanism
described above to construct an abstract state space. The ab-
stract start state represents a set of concrete states from prob-
lem instances with varying numbers of objects. We perform
a search in the abstract state space using the action model
described. Typically, back edges and loops are encountered.
Unlike a search in the concrete state space, not all loops en-
countered here are stagnant – on the contrary, part of our
goal is to identify paths with loops that make progress and
lead to the goal. Once such a path is found, we find the pre-
conditions on the concrete states for which it will work, and
annotate the start structure to reflect the availability of this
partial solution. We then repeat this process until either the
entire abstract start structure has been covered, or all the in-
teresting paths have been analyzed. In this paper, we only
consider paths with simple, i.e, non-nested loops.

Framework for Canonical Abstraction
We represent states of a domain using logical structures. A
structure, S, of vocabulary V , consists of a universe |S| = U

along with a relation RS over U for every relation symbol R
in V and an element cS ∈ U for every constant symbol in V .
We use !ϕ"S to denote the truth value of a closed formula ϕ
in the structure S.
Example 1 A typical blocks world vocabulary would con-
sist of a binary relation on; this can be used to define other
relations like onTable and topmost using first-order formu-
las. For clarity in presentation however, we will treat all of
these relations as separate and equally fundamental. An ex-
ample structure, S, in this vocabulary can be described as:
|S| = {b1, b2, b3}, onTableS = {b3}, topmostS = {b1},
onS = {(b1, b2), (b2, b3)}.
We assume actions to be deterministic. The action trans-
former for an action a (written τa) consists of a set of pre-
conditions and a set of formulas defining the new value r′

of each relation r. We separate these two parts of an ac-
tion transformer: the argument selection and precondition
checks are done in a pre-action step. For instance, for the
move action, the pre-action steps set up predicates identi-
fying the object to be moved and its destination. For the
update, these predicates are used to bind the two variables
obj1 and obj2 to the block to be moved, and its destination,
respectively. Preconditions of actions may enforce integrity
constraints, for example, the precondition for move could
be topmost(obj1) ∧ topmost(obj2) ∧ obj1 #= obj2 ensur-
ing that the relation on remains 1:1 and irreflexive.

We write τa(S) to denote the structure obtained by apply-
ing action a to structure S. Let, τa(Γ) =

{
τa(S)

∣∣ S ∈ Γ
}

be the application of a to a set of structures, Γ.
Let ∆+

i (∆−
i ) be formulas representing the conditions un-

der which the relation ri(x̄) will be changed to true (false)
by a certain action. The formula for r′i, the new value of ri,
is written in terms of the old values of all the relations:

r′i(x̄) = (¬ri(x̄) ∧ ∆+
i ) ∨ (ri(x̄) ∧ ¬∆−

i ) (1)

The RHS of this equation consists of two clauses, the first of
which holds for arguments on which ri is changed to true by
the action; the second clause holds for arguments on which
ri was already true, and remains so after the action.
Example 2 In the blocks world, action move has two argu-
ments: obj1, the block to be moved, and obj2, the block it
will be placed on. Update formulas for on and topmost are:

on′(x, y) = ¬on(x, y) ∧ (x = obj1 ∧ y = obj2)
∨ on(x, y) ∧ (x #= obj1 ∨ y = obj2)

topmost′(x) = ¬topmost(x) ∧ (on(obj1, x) ∧ x #= obj2)
∨ topmost(x) ∧ (x #= obj2)

The goal condition is a represented as a first-order for-
mula; given a start structure, the objective of planning is to
reach a structure that satisfies the goal condition. With this
notation, we define a domain-schema as follows:
Definition 1 A domain-schema is a tuple D = (V,A,ϕg)
where V is a vocabulary, A a set of action transformers, and
ϕg a first-order formula representing the goal condition.

Some special unary predicates are classified as abstrac-
tion predicates. The special status of these predicates arises
from the fact that when we perform abstraction, unlike other
predicates, these predicates do not become ambiguous. We



define the role an element plays as the set of abstraction
predicates it satisfies:

Definition 2 A role is a conjunction of literals consisting of
each abstraction predicate or its negation.

Example 3 In the blocks world, with abstraction predicates
topmost and onTable, the role ¬topmost∧¬onTable des-
ignates blocks that are in the middle of a stack.

Canonical Abstraction
Canonical abstraction [Sagiv et al., 2002] groups states to-
gether by only counting the number of elements of a role
up to two. If a role contains more than one element, they
are combined into a summary element. We can tune the
choice of abstraction predicates so that abstract structures ef-
fectively model some interesting general planning problems
and yet the size and number of abstract structures remains
manageable.

The imprecision that must result when states are merged is
modeled using three-value logic. In a three-valued structure
the possible truth values are 0, 1

2 , 1, where 1
2 means “don’t

know”. If we order these values as 0 < 1
2 < 1, then con-

junction evaluates to minimum, and disjunction evaluates to
maximum. See Fig.1 where on holds between the topmost
block, e1, and some but not all of the blocks of the summary
element, e2. Thus the truth value of on(e1, e2) is 1

2 , drawn
in TVLA as a dotted arc.

We next define embeddings [Sagiv et al., 2002]. De-
fine the information order on the set of truth values as
0 ≺ 1

2 , 1 ≺ 1
2 , so lower values are more precise. Intuitively,

S1 is embedabble in S2 if S2 is a correct but perhaps less
precise representation of S1. In the embedding, several ele-
ments of S1 may be mapped to a single summary element in
S2.

Definition 3 Let S1 and S2 be two structures and f :
|S1| → |S2| be a surjective function. f is an embedding
from S1 to S2 (S1 'f S2) iff for all relation symbols p of ar-
ity k and elements, u1, . . . , uk ∈ |S1|, !p(u1, . . . , uk)"S1 ≺
!p(f(u1), . . . , f(uk))"S2 .

The universe of the canonical abstraction, S′, of structure,
S, is the set of nonempty roles of S:

Definition 4 The embedding of S into its canonical ab-
straction wrt the set A of abstraction predicates is the map:

c(u) = e{p∈A|!p(x)"S,u/x=1},{p∈A|!p(x)"S,u/x=0}

Further, for any relation r, we have !r(e1, . . . , ek)"S′
=

l.u.b${!r(u1, . . . , uk)"S |c(u1) = e1, . . . , c(uk) = ek}.

Note that the subscript {p ∈ A|!p(x)"S,u/x = 1}, {p ∈
A|!p(x)"S,u/x = 0} captures the role of the element u in S.
Thus canonical abstraction merges all elements that have the
same role, see Fig.1. The truth values in canonical abstrac-
tions are as precise as possible: if all embedded elements
have the same truth value then this truth value is preserved,
otherwise we must use 1

2 . The set of concrete structures that
can be embedded in an abstract structure S is called the con-
cretization of S: γ(S) = {S′|∃f : S′ 'f S}.

fψ Rolei RoleiRolei RoleiRolei

φφ
φ

S SS1 2 3S0

Figure 3: Effect of focus with respect to ϕ.

Focus With such an abstraction, the update formulas for
actions might evaluate to 1

2 . We therefore need an effective
method for applying action transformers while not losing too
much precision. This is handled in TVLA using the focus
operation. The focus operation on a three-valued structure
S with respect to a formula ϕ produces a set of structures
which have definite truth values for every possible instanti-
ation of variables in ϕ, while collectively representing the
same set of concrete structures, γ(S). A focus operation
with a formula with one free variable is illustrated in Fig.3:
if φ() evaluates to 1

2 on a summary element, e, then either
all of e statisfies φ, or part of it does and part of it doesn’t,
or none of it does. This process could produce structures
that are inherently infeasible. Such structures are either re-
fined or discarded using a set of restricted first-order for-
mulas called integrity constraints. In Fig.3 for instance, if
integrity constraints restricted φ to be unique and satisfiable,
then structure S3 in Fig.3 would be discarded and the sum-
mary elements for which φ() holds in S1 and S2 would be
replaced by singletons.

The focus operation wrt a set of formulas works by suc-
cessive focusing wrt each formula in turn. The result of
the focus operation on S wrt a set of formulas Φ is writ-
ten fΦ(S). We use ψa to denote the set of focus formulas
for action a.

Choosing Action Arguments
Usually, action specifications are allowed to have free vari-
ables. During a typical TVLA execution, such an action is
tried with every binding of the free variables that satisfies the
pre-conditions. In static analysis this feature can be used to
model non-determinism. We choose the arguments in a se-
ries of pre-action focus steps. For example, to choose obj1,
in the move action we would focus on an auxiliary unary
predicate obj′1() that is constrained to be single-valued and
to imply topmost.

Action Application
Recall that the predicate update formulas for action trans-
former take the form shown in equation 1. This equation
might evaluate to indefinite truth values in abstract struc-
tures. For our purposes, the most important updates are for
abstraction predicates since precision in their values deter-
mines the accuracy of modeling action dynamics. In this
special case, the expressions for ∆+

i and ∆−
i are monadic

(i.e. have only one free variable apart from the action argu-
ments which are bound by the pre-action steps).

In order to obtain definite truth values for these updates,
we focus the given abstract structure S on the expressions
∆±

i . Once the action transformer has been applied, we again
apply canonical abstraction (this is called “blur” in TVLA)
on the resulting structures to get the abstract result struc-
tures.



Input: S0, D = (A, ϕg)

S ← S01
while S ! ϕg do

Nondeterministically execute action a ∈ A on S to get S′2
S ← S′3

end
Algorithm 1: NDPlan

Transitions
Once the action arguments have been chosen, there are three
steps involved in action application: action specific focus,
action transformation, and blur. The transition relation a−→
for each action a, captures the combined effect of these three
steps. More precisely,

Definition 5 (Transition Relation) S1
a−→ S2 iff S1 and S2

are three-valued structures and there exists a focused struc-
ture S1

1 ∈ fψa(S1) s.t. S2 = blur(τa(S1
1)).

Sometimes however we will need to study the exact path
S1 took in getting to S2. For this, the transition S1

a−→ S2 can

be decomposed into a set of transition sequences {(S1
fψa−−→

Si
1

τa−→ Si
2

b−→ S2)|Si
1 ∈ fψa(S1) ∧ Si

2 = τa(Si
1) ∧ S2 =

blur(Si
2)}.

TVLA can effectively generate the full instantiation of
these transition relations for a given domain in the form of a
transition graph, the subject of our next section.

Transition Graphs Transition graphs are graphs of all the
transition relations a−→ with nodes representing structures.
Formally,
Definition 6 Given a domain D and an initial state S0, the
transition graph for D starting with S0, GD(S0) is the edge-
labeled multigraph defined by the set of relations { a−→: a ∈
A} on the set of structures reachable from S0. Each edge of
GD(S0) is labeled by the appropriate action.

We omit the subscript D where it is understood from con-
text. The entire transition graph of a domain, though finite,
is usually an unwieldy structure. Its generation can be op-
timized using various heuristics; owing to abstraction, this
in itself could be an interesting subject for research. In this
paper however, our focus is on using the transition graph
rather than its efficient generation. The algorithm we pro-
pose for generating plans allows for the dynamic generation
of transition graphs; it can also be used in an on-line fashion
by interleaving the search and transition graph generation
phase with the analysis phase for iteratively obtaining par-
tial solutions. We discuss this issue further in the Algorithm
section. For now, we present one very simple algorithm to
show that this graph can indeed be effectively generated.

Algorithm 1 shows NDPlan, a non-deterministic algo-
rithm for finding plans. We use NDPlan as a program in-
put to TVLA for generating G (S0). TVLA collects all the
structures that could possibly result from the execution of
a program statement at the next node in the program’s con-
trol flow graph (CFG). Since the non-deterministic action
execution could produce the effects of any of the actions in
A, TVLA produces all of those structures at the CFG node
corresponding to statement #3. Running TVLA on this plan
therefore has the same effect as a BFS search for a goal state,

except that the search continues until all reachable structures
have been generated. In order to speed up this process, it is
possible to restrict its behavior so as to not explore actions
on structures which are easily seen to be on the wrong track.

Our Methodology
The idea behind our algorithm for generalized planning is to
successively find paths in a transition graph and for each
such path, to compute the pre-conditions under which it
takes concrete structures to structures satisfying the goal.

In order to accomplish this, we need a way of representing
subsets of abstract structures that are guaranteed to take a
particular branch of an action’s focus operation. Next, we
need to propagate these subsets backwards through action
edges in the given path all the way up to the start structure.

We represent subsets of an abstract structure by annotat-
ing a structure with a set of conditions from a chosen con-
straint language. In static analysis terms, we use annotations
to refine our abstraction. Formally,

Definition 7 (Annotated Structures) Let C be a language
for expressing constraints on three-valued structures. A
C−annotated structure S|C is a refinement of S consisting
of structures in γ(S) that satisfy the condition C ∈ C. For-
mally, γ(S|C) =

{
s ∈ γ(S)

∣∣ s |= C
}

.

We extend the notation defined above to sets of struc-
tures, so that if Γ is a set of structures then by Γ|C we mean
the structures in Γ that satisfy C. Consequently, we have
γ(S|C) = γ(S)|C .

We now need to be able to identify the (annotated) pre-
image of an annotated structure under any action. This re-
quirement on a domain is captured by the following defini-
tion:

Definition 8 (Annotated Domains) An annotated domain-
schema is a pair 〈D , C〉 where D is a domain-schema and
C is a constraint language. An annotated domain-
schema is amenable to back-propagation if for every tran-

sition S1
fψa−−→ Si

1
τa−→ Si

2
b−→ S2 and C2 ∈ C there exists

Ci
1 ∈ C such that τa(γ(S1)|Ci

1
) = τa(γ(Si

1))|C2 .

In terms of this definition, since τa(γ(Si
1)) is the subset

of γ(Si
2) that has pre-images in Si

1 under τa, S1|Ci
1

is the
pre-image of S2|C2 under a particular focused branch (the
one using Si

1) of action a. The disjunction of Ci
1 over all

branches taking S1 into S2 therefore gives us a more general
annotation which is not restricted to a particular branch of
the action update. Therefore, we have:

Lemma 1 Suppose 〈D , C〉 is an annotated domain-
schema that is amenable to back-propagation and S1, S2 ∈
D such that S1

a−→ S2. Then for all C2 ∈ C there exists a
C1 ∈ C such that τa(γ(S1)|C1) = (τa(γ(S1)) ∩ γ(S2))|C2 .

This lemma can be easily generalized through induction
to multi-step back-propagation along a sequence of actions.
We use the abbreviation τk...1 to represent the successive ap-
plication of action transformers a1 through ak, in this order.

Proposition 1 (Linear backup) Suppose 〈D , C〉 is an anno-
tated domain-schema that is amenable to back-propagation
and S1, . . . , Sk ∈ D are distinct structures such that S1

τ1−→



S2 · · ·
τk−1−−−→ Sk. Then for all Ck there exists C1 such that

τk−1...1(γ(S1)|C1) = τk−1...1(γ(S1)) ∩ Sk|Ck

The restriction of distinctness in this proposition confines
its application to action sequences without loops.

Amenability for back-propagation can be seen as being
composed of two different requirements. In terms of def-
inition 8, we first need to translate the constraint C2 into
a constraint on Si

1. Next, we need a constraint selecting the
structures in S1 that are actually in Si

1. Composition of these
two constraints will give us the desired annotation, Ci

1. The
second part of this annotation, classification, turns out to be
a strong restriction on the focus operation. We formalize it
as follows:
Definition 9 (Focus Classifiability) A focus operation fψ on
a structure S satisfies focus classifiability with respect to a
constraint language C if for every Si ∈ fψ(S) there exists
an annotation Ci ∈ C such that s ∈ γ(Si) iff s ∈ γ(S|Ci).

Since three-valued structures resulting from focus opera-
tions with unary formulas are necessarily non-intersecting,
we have that any s ∈ S may satisfy at most one of the con-
ditions Ci. Focus classifiability is hard to achieve in general;
we need it only for structures reachable from the start struc-
ture.
Inequality-Annotated domain-schemas Let us denote
by #R(S) the number of elements of role R in structure
S. In this paper, we use CI(R), the language consisting
of constraints expressed as sets of linear inequalities using
#Ri(S) for annotations. In order to make domain-schemas
annotated with constraints in CI(R) amenable to back prop-
agation, we first restrict the class of permissible actions to
those that change role counts by a fixed amount:
Definition 10 (Uniform Change) An action shows uniform

change w.r.t a set of roles R iff whenever S1
fψa−−→ Si

1
a−→

Si
2

b−→ S2 then ∀s1 ∈ γ(Si
1), s2 ∈ γ(Si

2) such that
s1

a−→ s2, we have #Ri(s2) = g(#R1(s1), . . .#Rl(s1))
where g is a linear function determined by Si

1 and Si
2, and

R1 . . . Rl ∈ R. In the special case where changes in the
counts of all roles are constants, we say the action shows
constant change.

The next theorem shows that uniform change gives us
back-propagation if we already have focus-classifiability.
Theorem 1 (Back-propagation in inequality-annotated do-
mains) An inequality-annotated domain-schema whose ac-
tions show uniform change wrt R and focus operations sat-
isfy focus classifiability wrt CI(R) is amenable to back prop-
agation.

PROOF Suppose S1
fψa−−→ Si

1
a−→ Si

2
b−→ S2 and C2 is a set

of constraints on S2. We need to show that there exists a Ci
1

such that τa(γ(S1)|Ci
1
) = τa(γ(Si

1))|C2 . Since we are given
focus-classifiability, we have Ci such that s ∈ γ(S1)|Ci iff
s ∈ γ(Si

1). We need to compose Ci with an annotation for
reaching Si

2|C2 to obtain Ci
1. This can be done by rewrit-

ing C2’s inequalities in terms of counts in S1 (counts don’t
change during the focus operation from S1 to Si

1).
Suppose #Rj (Si

2) = gj(#R1(S1), . . .#Rl(S1)). Then
we obtain the corresponding inequalities for S1 by substitut-

ing gj(#R1(S1), . . . #Rl(S1)) for #Rj (Si
2) in all inequali-

ties of C2. Naturally, if the resulting inequalities are satisfied
in S1, C2 will be satisfied in Si

2. The resulting set of inequal-
ities which we will call C1, gives us the rest of the desired in-
equalities. The conjunction of C1 and Ci gives us the desired
annotation Ci

1. That is, τa(γ(S1)|Ci
1
) = τa(γ(Si

1)|C1) =
τa(γ(Si

1))|C2 . !

The next theorem provides a simple condition under
which constant change holds.
Theorem 2 (Constant change) Let a be an action whose
predicate update formulas take the form shown in Eq. 1. Ac-
tion a shows constant change if for every abstraction pred-
icate pi, all the expressions ∆+

i , ∆−
i are at most uniquely

satisfiable.

PROOF Suppose S1
fψa−−→ Si

1
τa−→ Si

2
b−→ S2; s1 ∈ γ(Si

1)
and s1

τa−→ s2 ∈ γ(Si
2).

For constant change we need to show that #Ri(s2) =
#Ri(s1)+δ where δ is a constant. Recall that a role is a con-
junction of abstraction predicates or their negations. Further,
because the focus formula fψa consists of pairs of formu-
las ∆+

i and ∆−
i for every abstraction predicate, and these

formulas are at most uniquely satisfiable, each abstraction
predicate changes on at most 1 element. The focused struc-
ture Si

1 shows exactly which elements undergo change, and
the roles that they leave or will enter.

Therefore, since s1 is embeddable in Si
1 and embeddings

are surjective, the number of elements leaving or entering
a role in s1 is the number of those singletons which enter
or leave it in Si

1. Hence, this number is the same for every
s1 ∈ γ(Si

1), and is a constant determined by Si
1 and the

focus formulas. !

Quality of Abstraction In order for us to be able to clas-
sify the effects of focus operations, we need to impose some
quality-restrictions on the abstraction. Our main require-
ment is that the changes in abstraction predicates should
be characterized by roles: given a structure, an action can
change a certain abstraction predicate only for objects with
a certain role. We formalize this property as follows: a for-
mula ϕ(x) is said to be role-specific in S iff only objects of
a certain role can satisfy ϕ in S. That is, there exists a role
R such that for every s ∈ γ(S), if (s, [c/x]) |= ϕ(x) then
(s, c/x) |= R(x).

We therefore want our abstraction to be rich enough to
make the action change formulas, ∆±

i , role-specific in ev-
ery structure encountered. For example, in the blocks world
state shown in Fig.2 the move action can only change the
topmost predicate for a block of the role ¬topmost ∧
¬onTable, representing blocks in the middle of the stack.
The design of a problem representation and in particular, the
choice of abstraction predicates therefore needs to carefully
balance the competing needs of tractability in the transition
graph and the precision required for back propagation.

The following proposition formalizes this in the form of
sufficient conditions for focus-classifiability. Note that fo-
cus classifiability holds vacuously if the result of the focus
operation is a single structure (e.g., when the focus formula
is unsatisfiable in all s ∈ γ(S), thus resulting in just one
structure with the formula false for every element).



Proposition 2 If ψ is unique, satisfiable in all s ∈ γ(S) and
locally role-specific for S then the focus operation fψ on S
satisfies focus classifiability w.r.t CI(R).

PROOF Since the focus formula must hold for exactly one
element of a certain role, the only branching possible is that
caused due to different numbers of elements (zero vs. one
or more) satisfying the role while not satisfying the focus
formula (see Fig.3). The branch is thus classifiable on the
basis of the count of the number of elements in the role. !

Corollary 1 If Φ is a set of uniquely satisfiable and role-
specific formulas for S such that any pair of formulas in Φ
is either exclusive or equivalent, then the focus operation fΦ

on S satisfies focus classifiability.
Therefore any domain-schema whose actions only re-

quire the kind of focus formulas specified by the corollary
above is amenable to back-propagation. Because of the sim-
ilarity of such domain-schemas with linked-lists, we call
them extended-LL domains:
Definition 11 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such
that ∆+

i and ∆−
i are role-specific, exclusive when not equiv-

alent, and uniquely satisfiable in every structure reach-
able from Sstart. More formally, if Sstart →∗ S then
∀i, j,∀e, e′ ∈ {+,−} we have ∆e

i role-specific and either
∆e

i ≡ ∆e′

j or ∆e
i =⇒ ¬∆e′

j in S.

Corollary 2 Extended-LL Domains are amenable to back-
propagation.

Intuitively, these domain-schemas are those where:
1. The information captured by roles is sufficient to deter-

mine whether or not an object of any role will undergo
change due to an action; and

2. The number of objects being acquired or relinquished by
any role is fixed (constant) for each action.
Examples of such domains are linked lists, blocks-world

scenarios (the appropriate start structures are defined in the
section on Examples), assembly domains where different
objects can be constructed from constituent objects of dif-
ferent roles etc.

Handling Paths with Loops
So far we dealt exclusively with propagating annotations
back through a linear sequence of actions. In this section we
show that in extended-LL domains we can effectively prop-
agate annotations back through paths consisting of simple
(non-nested) loops.

Let us consider the path from S to Sf including the loop in
Fig.4; analysis of other paths including the loop is similar.
The following proposition formalizes back-propagation in
loops:
Proposition 3 (Back-propagation through loops) Suppose
S0

τ1−→ S1
τ2−→ . . .

τn−1−−−→ Sn−1
τ0−→ S0 is a loop in an

extended-LL domain with a start structure Sstart. Let the
loop’s entry and exit structures be S and Sf (Fig.4). We
can then compute an annotation C(l) on S which selects the
structures that will be in Sf |Cf after l iterations of the loop
on S, plus the simple path from S to Sf .

si 0s s’f

si+1 sn−1
sf

ai+1

s’ a’i+1

ai
a0

a’1

an−1s

Figure 4: Paths with a simple loop. Outlined nodes represent
structures and filled nodes represent actions.

PROOF Our task is to find an annotation for the structure
S which allows us to reach Sf |Cf , where Cf is a given
annotation. Since we are in an extended-LL domain, ev-
ery action satisfies constant change. Let the individual
changes due to action ai on role count #Rj (S) be denoted
as δi

j . In general, this change depends on the structure on
which the action is applied and the exact focused branch
taken. For clarity in presentation we omit these dependen-
cies in the notation and assume different indices correspond
to different actions. We use additional notation when deal-
ing with action a0: its two branches are characterized by
changes δ0

j and δ
0f

j . Our convention will be to add δi
j to

role #Rj (S) to obtain the count in τi(S), and subtract δi
j

from a structure to find the role count before action appli-
cation. As discussed in Theorem 1, the pre-image of an
annotation C under action a can be obtained by replacing
roles in every inequality in C in terms of their counterparts
before the action execution. In other words, we can write
τ−1
i (C) = [#Rj (τi(S)) + δi

j/#Rj (S)]C.

We need to start going back from Sf and obtain expres-
sions for annotations of every structure in the loop after l
unwindings of the loop. Let us denote the annotation at
structure Sj during the lth unwinding of the loop to be
Cj(l). Cn−1(1) for Sn−1 in Fig.4 is therefore calculated
as τ−1

0 (Cf )
∧

Cn−1→f , where Cn−1→f denotes the focus-
classification conditions required for taking the Sn−1 → Sf

branch of action a0.

In general these annotations can be defined inductively as
follows:

Ci(l) = τ−1
i+1(Ci+1(l)) ∧ Ci→i+1 if i < n − 1

Cn−1(l) = τ−1
0 (C0(l − 1)) ∧ Cn−1→0 if l > 1

Cn−1(1) = τ−1
0f

(Cf ) ∧ Cn−1→f

Here, we distinguish between τ−1
0 and τ−1

0f
: the former

represents the Sn−1 → S0 branch of a0; the latter the
Sn−1 → Sf branch.

In the rest of this discussion, we use τ−1
n1..n2

as an abbrevi-
ation for τ−1

n1
· τ−1

n1+1 · · · τ−1
n2

. Expanding the inductive rules
once, we get:

Cn−2(1) = τ−1
n−1 · τ

−1
0f

(Cf ) ∧ τ−1
n−1(Cn−1→f )

∧C(n−2)→n−1

τ−1
n−1 distributes over the expression because the inverse op-

eration amounts to a linear substitution.

Continuing in this way, we get the following expression



for Cm(1) where m < n − 1:

Cm(1) = τ−1
m+1..n−1 · τ

−1
0f

(Cf )

∧
n−1∧

k=m+1

τ−1
m+1..k(Ck→k+1) ∧ Cm→m+1

where the successor of n−1 is treated as 0f . The first term of
this expression is the back-propagation of Cf . The second
term is a conjunction of back-propagation of all the focus
classification conditions necessary for us to stay in the loop
until Sf . In subsequent unwindings of the loop, we will need
the Sn−1 → S0 branch, and consequently we will treat the
successor of n − 1 as 0 (addition modulo n).

Writing the second term as Cm
loop(1), denoting the loop

conditions for first unwinding of the loop, we get

Cm(1) = τ−1
m+1..n−1 · τ

−1
0f

(Cf ) ∧ Cm
loop(1)

Using the inductive definitions, and writing the transforma-
tion over the entire loop, τ−1

n−1..0 (or τ−1
n−1..0f

) as τ−1 (or
τ−1
f ), we get the general expression for Cm(l), l > 1 as:

Cm(l) = τ−1
m..0 · τ−1(l−2) · τ−1

f (Cf )
∧ τ−1

m..0 · τ−1(l−2)(C1
loop(1))

∧ τ−1
m..0 · τ−1(l−3)(C1

loop(2))
...

∧ τ−1
m..0τ

−1(C1
loop(l − 2))

∧ τ−1
m..0(C1

loop(l − 1))

However, note that the loop conditions C1
loop(i) for i > 1

are all the same! Even with this simplification, the annota-
tion described above presents a potentially large set of con-
ditions. However, since the conditions are linear inequalities
and the changes in roles are monotone with respect to the
number of times the inverse operation is performed, there
are essentially four conditions at any Sm for lth unwinding
of the loop. These conditions ensure all the other condi-
tions (representing intermediate numbers of loop unwind-
ings) hold:

Cm(l) = τ−1
m..0 · τ−1(l−2) · τ−1

f (Cf )
∧ τ−1

m..0 · τ−1(l−2)(C1
loop(1))

∧ τ−1
m..0 · τ−1(l−3)(C1

loop)
∧ τ−1

m..0(C1
loop)

And finally, we have the conditions #Rj (S) ≥ 0 for all j
for any S. !

Algorithm for Generalized Planning
Let the annotated-domain-schema〈D , CI〉 be an extended-
LL domain with a start structure S0. Algorithm 2 shows our
algorithm for generalized planning. It proceeds in phases
of search and annotation on the transition graph. During
the search phase it finds a path π from the start structure to
structures satisfying the goal condition. The transition graph
could also be dynamically generated during this phase. Dur-
ing the annotation phase, it finds the annotation on S0, Cπ

for π as described in the previous section. The resulting al-

Input: G (S0), Sg = {S : S ∈ G (S0) and S |= ϕg}, $:
order on paths in G (S0)

Output: Π = {〈C, π〉 : s ∈ γ(S|C) ⇒ π(s) |= ϕg}
Π ← ∅1
while ∨{C : 〈C, π〉 ∈ Π} *= + and ∃π: path not checked
do

π ← getNextSmallest(S0,Sg)2
Cπ ← findPrecon(S0, π,Sg)3
if ∨{C : 〈C, π〉 ∈ Π} *⇒ Cπ then4

Π ← Π ∪ {〈Cπ, π〉}5
end

end
Algorithm 2: GenPlan

gorithm can be implemented in an any-time fashion, by out-
putting plans capturing more and more problem instances as
new paths are found in the transition graph.

Procedure getNextSmallest(S0,Sg) returns the next
smallest path with simple loops between S0 and members
of Sg . Procedure findPrecon(S0,π) returns the conditions
on S0 under which the path π takes structures to Sg , as dis-
cussed in the previous section.

Together with the definition of extended-LL domains and
propositions 3 and 1 Algorithm 2 realizes the following the-
orem:

Theorem 3 (Generalized planning for extended-LL do-
mains) For an extended-LL domain with a start structure
S0 it is possible to find plans πi and annotations Ci such
that ∀s ∈ γ(S|Ci), πi takes s to the goal; further, for
s ∈ γ(S) \ γ(S|∨iCi), the goal is not reachable via plans
with only simple loops in the transition graph G (S0).

Examples
In this section we formulate a problem in the blocks world
domain in our framework and show how our algorithm finds
a generalized plan. The formulation for linked lists is similar
and can be used to find generalized plans for problems like
reversing a linked list of unknown length i.e., to synthesize
simple programs.

Striped Block Tower
Representation Our example is set in the blocks world
domain with red and blue blocks. Given a stack consist-
ing of red blocks below and blue blocks above, the goal is to
construct a stack with alternating red and blue blocks above
an assigned red, base block with a blue block on top.

Our vocabulary consists of the predicates
{t[on]2, on2, topmost1, onTable1, obj11, obj12, red1, blue1, base1},
where all the unary predicates are abstraction predicates.
t[on] is the transitive closure of on, and is used in integrity
constraints for the coerce operation. The obj1, obj2 predi-
cates are used to select action arguments before an action is
applied. There are two actions: move(), which places obj1
on top of obj2 and moveToTable(), which moves obj1 to
the table.

With this set of abstraction predicates, ∆±
i are not role

specific in states with two or more stacks (their bases get
merged in the abstraction and the block below a selected
topmost block could be either a block on table or a middle
block, violating role-specificity). One solution is to change
the problem definition so as to have a fixed, finite amount



Figure 5: Initial structure for striped blocks world.
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Figure 6: Generalized plan with three loops found from the tran-
sition graph. Numbers represent structure IDs from the transition
graph.

of space for stacks on the table. Blocks not on any stack
are placed in an unbounded size bag (captured by predicate
bag). This will give us an additional set of abstraction pred-
icates, onStacki, holding for every block in the ith stack.
This separates stacks in the abstraction and ensures role-
specificity for all states reachable from the canonical ab-
straction of any real state with a bounded number of stacks
of unbounded size. For simplicty, we restrict to only one
stack in this demonstration.

Input Our initial abstract structure represents all problem
instances with a single stack of unknown and unbounded
numbers of red and blue blocks (at least two of each). The
red blocks are below the blue blocks. Fig.5 shows the ini-
tial structure in TVLA notation - relations with truth values
1
2 are shown using dotted edges and summary elements are
shown using double circles. To prune the search space, we
add a new abstraction predicate, misplaced, and use the fol-
lowing heuristic: a block is misplaced if it is on a block of
the same color, or above a misplaced block; a block is only
placed on another if it does not get misplaced in the pro-
cess. This does not effect our main result because using this
heuristic reduces the size of the transition graph but not the
size of the resulting plan.

Output Fig.6 shows the most interesting branch of the ob-
tained plan. It consists of three loops: the first loop moves
all blue blocks to the table; the second, the red blocks, and
finally, the last loop moves blue and red blocks alternately
back on to the stack. Algorithmically, this plan can be writ-
ten as shown in Fig.7. The loops in this 20 step plan make
it sufficient for infinite problem instances with unbounded
numbers of blocks. In the next section, we compute the pre-
cise pre-conditions for this plan. Part of these pre-conditions
is the interesting fact that for our goal to be reachable, the
number of blue blocks has to be equal to the number of red

Figure 7: Plan from Fig.6 written out in text.

blocks in the initial structure.

Annotations

In this section we provide an illustration for back-
propagation of annotations. We wish to find the pre-
conditions at structure 1 for true, or no annotation at Goal.
Let Bt(Rt) be the roles corresponding to blue(red, but not
base) blocks that are onTable and topmost. Similarly, let
Bm(Rm) be the roles of blue(red) blocks that are neither
topmost nor onTable. In these terms, the edge 221 →
Goal, is taken if there is exactly one Bt block in 221. Sim-
ilarly, we exit from the last loop via 196 → 218 if there is
only one Rt block in 196. This makes the annotation at 221
as [Rt = 1, Bt = 1]. Unrolling this annotation through the
loop, we get the the annotations for 196 after l unwindings
as: [Bt(196) = l + 1, Rt(196) = l + 1]. If l > 0, these con-
ditions subsume the conditions required for staying in the
loop, which are Bt > 1 and Rt > 1. Continuing in this way
back through the other actions and loops and representing
the number of unwindings of “move red to table” (“move
blue to table”) as lr(lb), we get the annotation at structure 1
as [Bt = l− lb, Rt = l− lr −1, Bm = 3+ lb, Rm = 4+ lr].

These conditions form the required pre-condition for the
given plan to work. Together they imply that the total num-
ber of blue blocks, #Bt + #Bm + 1 (+1 for the topmost
block in the initial structure) is 4 + l, exactly equal to the
number of red blocks in the initial structure. If we also tally
role counts with structures rather than simply propagating
them backwards, we obtain the equalities l − lb = 0 and
l − lr − 1 = 0 at structure 1. This tells us that number of
iterations of the stacking loop is equal to the number of it-
erations of the unstack-blue-block loop; and further that we
needed to unstack one red block less (the base).

Cases with fewer number of blocks are captured by other
paths (found before this path), and their pre-conditions are
obtained similarly. Our algorithm thus finds a generalized
plan for solving infinitely many instances of the given ab-
stract problem. In this case in fact, we get a solution for all
solvable instances. The stacking loop in this example also
demonstrates that in comparison to DISTILL, our techniques
do not impose any a-priori restrictions on the number of ac-
tions in a loop.



Input: π = (a1, . . . , an): plan for S#
0 ; S#

i = ai(S
#
i−1)

Output: Generalized plan Π
S0 ← c(S#); Π ← π; CΠ ← +1
Apply transformers for π on S0 to get S′

i−1, Si s.t.2

S′
i−1 ∈ fai(Si−1), τi(S

′
i−1) = Si and S#

i . Si.
if ∃C ∈ CI(R) : Sn|C |= ϕg then3

Π ← formLoops(S0 : a1 . . . , Sn−1 : an, Sn)4
CΠ ← findPrecon(S0, Π, ϕg)5

end
return Π, CΠ6

Algorithm 3: GeneralizeExample

Generalizing from Examples
In this section we present a simple application of our frame-
work for computing a generalized plan from a plan that
works for a single problem instance. The idea behind this
technique is that if a given concrete plan contains sufficient
unrollings of some simple loops, then we can automatically
identify these loops by observing the plan on a suitable ab-
stract structure. We can then enhance this plan using the
identified loops and use the techniques discussed in this pa-
per to find the set of problem instances for which this new
generalized plan will work. The procedure is shown in Al-
gorithm 3.

Given a concrete example plan π for S#
0 , we start with an

abstract structure S0 for the start state. S0 can be any ab-
stract structure which makes the resulting domain extended-
LL, and for which we wish to find the restriction under
which a generalization of π will work; the canonical abstrac-
tion of S#

0 forms a natural choice. If the final abstract struc-
ture Sn or its restriction satisfies the goal, we have a general
plan and we proceed to find its pre-conditions.

The formLoops subroutine converts a linear path of
structures and actions into a path with simple loops. One
way of implementing this routine is by making a single pass
over the input path, and adding back edges whenever a struc-
ture Sj is found such that Si = Sj(i < j), and Si is not
part of, or behind a loop. Structures and actions following
Sj are merged with those following Si if they are identi-
cal; otherwise, the loop is exited via the last action edge.
This method produces one of the possibly many simple-
loop paths from π; we could also produce all such paths.
formLoops thus gives us a generalization Π of π. We then
use the findPrecons subroutine to obtain the restriction on
S0 for which Π works.

Example
We illustrate this idea using the blocks world setting from
the previous section. Let us call the generalized plan shown
in Fig.6 ΠG. Suppose we are given a concrete version
π = a1, . . . , an of ΠG for the initial structure S#

0 corre-
sponding to a stack with 5 blue blocks above 5 red blocks.
π would have 9 moveToTable actions followed by 9 ac-
tions alternately moving red and blue blocks to the stack.
π could have been generated by any classical planner. Let
S#

i = ai(S#
i−1), i > 0.

To obtain the general plan, we first convert π into a se-
quence of action transformers by replacing each action with
a transformer that uses as its argument(s) any block having
the role of the real action’s argument(s) (focus-based choice

operations described earlier could be used to do so). We then
apply the resulting sequence of transformers to the canonical
abstraction of S#

0 (Fig.5). This gives us a sequence of sets
of structures representing the possibilities after each action.
From each set in the sequence, we select the structure Si

such that S#
i ' Si. Note that πabs has the same start state,

and action transformers as ΠG. Further, because of abstrac-
tion its structure and action sequence is an unrolled version
of ΠG’s and every unrolled loop in Πabs is punctuated by a
repeated abstract structure.

When formLoops is executed on Πabs, it finds the re-
peated structures and re-creates the loops, giving us exactly
ΠG! Finally, since Sn satisfies the goal, we use the tech-
niques presented in this paper to find the problem instances
for which Π will work.

We are thus able to extract the generalized plan ΠG from
π, a simple concrete plan that could have been found by
any classical planner. This approach is particularly effective
if the goal condition only uses abstraction predicates (e.g.
∀x¬misplaced(x)).

Conclusion and Future Work
We present a new framework for generalized planning using
abstraction across problem instances to conduct the search
for generalized plans. The main contributions of the paper
are the presentation of an abstraction technique particularly
conducive for this purpose, the formulation of the planning
algorithms, and a precise analytical characterization of the
settings in which they work. We also show how to use this
framework to learn a general plan from examples. Our plan-
ning algorithm is only partially implemented; a full imple-
mentation requires interfacing with TVLA and is left for fu-
ture work. We use several examples to illustrate how the al-
gorithm works and to demonstrate the overall power of this
approach.

Our framework opens up several interesting research av-
enues for future work. Searching in an abstract space that
spans different problem instances presents new challenges
for heuristic and pruning techniques. Generalizing our tech-
niques to a wider class of domains and plans with nested
loops are natural extensions that are worth exploring. Fi-
nally, other annotation languages could be examined as they
may provide a way of moving beyond extended-LL do-
mains.
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