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Abstract—This paper presents a hierarchical, statistical
topic model for representing the grasp preshape affor-
dances of a set of objects. The affordances are shared
among the objects, and learned from training data provided
by teleoperation. Each affordance defines a distribution
over visual appearance and the position/orientation of the
hand. The parameters of the model are learned using a
Gibbs sampling method. After training, the affordances can
be used to compute grasp preshapes for novel objects. The
model is evaluated experimentally on a set of objects for its
ability to generate grasp preshapes that lead to successful
grasps, in comparison with a baseline approach.

I. INTRODUCTION
For robots performing object manipulation tasks, the

notion of grasp affordances provide a useful way of
describing and categorizing the ways in which the robot
can interact with objects [1]. The grasp affordances of an
object are the ways in which the object can be grasped in
order to be used for a particular function. For example,
a coffee mug has at least two distinct affordances: one
for drinking (typically by using the handle), and another
for transporting. Note that while one could transport the
mug using the same grasp that was used for drinking, the
converse may not be true (grasping the top of the mug).
The physical characteristics of an object, e.g. visual
appearance, provide a way of inferring its affordances.
Further, the grasp affordances of an object provide a
natural categorization of objects based on function rather
than appearance, which may vary drastically among
similar objects.
In this paper, we describe how a form of statistical

topic model can be used to model grasping strategies
based on a set of affordances common to all objects.
Traditionally, topic models, such as Latent Dirichlet
Allocation (LDA), have been used in the information
retrieval community to model the distribution of words
in a text corpus [2]. These models assume that each
document is a collection of latent “topics,” where each
topic is defined as a multinomial distribution over the
vocabulary. These models have been applied in other
domains, such as visual object recognition [3], [4]. The

generative process for documents under the topic model
begins with choosing a document-specific distribution
over topics. Next, for each word in the document, a topic
is sampled using the document-specific distribution, and
then a word is sampled using the distribution defined by
the chosen topic.
In our model, each topic corresponds to a grasp

affordance, where the affordance defines a distribution
over variables that can be used to describe its appearance
and the position and orientation of the hand for a grasp
preshape. Each time the object is grasped, an affordance
of the object is sampled from the distributions implied
by that object. Furthermore, these affordances may be
shared across objects. Since the model is learned from
actual grasps of objects performed by teleoperation, the
clustering process is in effect modeling the affordances
that were used in the training process.
One difference between the model presented in this

paper and traditional topic models is that the “words” in
this case are the conditionally independent component
distributions used to describe the appearance and physi-
cal location of a grasp. Furthermore, these distributions
are continuous, whereas in the traditional topic model,
each topic is a multinomial distribution over a set of
words.
The experimental platform used in this paper is Dex-

ter, the UMass bimanual humanoid, shown in Figure 1.
In order to collect training data, we teleoperate Dexter
to perform grasps on objects, and use its stereo vision
system to compute visual features.

II. RELATED WORK

This paper is influenced by the hierarchical, part-
based model of Sudderth et al. [4]. In that work, they
describe a visual object classifier that models each object
by computing a multinomial distribution over a set of
globally shared “parts.” Each part describes a cluster of
image features. The parts in their model are analogous
to the affordances described here. One difference is that
in applying the model to new objects, we do not have



Fig. 1. This picture shows Dexter performing a grasp of the
black drano object, as described in Section VI. Each of Dexter’s
arms has 7 DOF and is equipped with a three-fingered hand with four
total degrees of freedom. The stereo head has four degrees of freedom.

a full set of features, and instead use only the visual
appearance to infer object class. Unlike their model, we
are not interested in the classification problem; rather,
we use the affordances learned by our model to generate
new grasps on novel objects.
The model of Sudderth is an adaptation of statistical

topic models such as the author-topic model [5] and
Latent Dirichlet Allocation (LDA) [2]. In their original
paper describing LDA, Blei et al. proposed using a
variational method for performing approximate inference
of the model [2]. Since then, Griffiths and Steyvers [6]
proposed using a Gibbs sampling method for inference,
which is the approach used in this work.
There has been work on how to generate grasps

using visual information. In Saxena et al. [7], they are
interested in computing a grasp point for an object
by analyzing visual features. Their model performs a
regression that estimates likely grasp positions in a 2D
image based on the features. This is similar in spirit
to the motivation of this work, which is to be able to
estimate likely grasp preshapes from visual information
alone. The difference being that this work explicitly
models multiple grasp hypotheses for each object.
Platt [8] describes a scheme for generating hypothesis

grasps based on analyzing the first and second moments
of the foreground blob segment. We use similar visual
features in this work, but we generate grasp hypotheses
by using a model of the training set of demonstrated
grasps.

III. REPRESENTING AFFORDANCES IN THE MODEL

As previously described, each affordance is repre-
sented as a tuple of three parameterized probability dis-

tributions: the visual appearance of the object, the hand’s
position, and the hand’s orientation during grasping. We
discuss how each of these features of an affordance are
represented in turn.

A. Visual Appearance
To compute the visual appearance of an object used

in the model, we first segment the object into a fore-
ground blob using background subtraction. The object’s
centroid Ôm ∈ R3 is measured by performing a stereo
triangulation on the first moments of the left and right
foreground blobs. The visual feature bm, is the average
second moment of the left and right foreground seg-
ments, and is modeled as a two-dimensional inverse-
Wishart distribution, parameterized by scale ψ with u
degrees of freedom:

p(bm |ψ, u) = Inv-Wishartu(bm |ψ). (1)

The distribution is unimodal, and generally used to
model priors on multivariate covariance matrices. This
feature provides a proof of concept of the model, but
other types of visual features can be used. For example,
in other work, a multinomial distribution over a set of
SIFT features is used to allow each topic to have many
likely appearances [3], [4]. The main requirement is that
there must be a probability distribution to describe the
likelihood of features in an affordance.

B. Grasp Position
The position of the hand with respect to oriented

features of the object when initiating the grasp deter-
mines which affordance of the object is being used. In
theory, each grasp affordance describes an entire region
in the hand’s twist space relative to the object. It is this
notion we wish to capture in our representation of an
affordance. It is convenient, computationally, to model
position and orientation as independent distributions.
From each training grasp point p ∈ R6, we model the

position of the hand xp ∈ R3 in a frame centered at the
centroid of the object, Ôm, using a normal distribution
with mean µ and covariance Σ:

p(xm |µ,Σ) = N (xm |µ,Σ). (2)

C. Grasp Orientation
Given p, we perform a discrete quantization of the

rotational component to extract the orientation feature
of the grasp point. This quantization matches the ori-
entation of the hand, represented as a unit quaternion
qp ∈ H, to a set of Q canonical hand orientations.
These orientations are represented by a set of Dimroth-
Watson distributions, bimodal, symmetric distributions
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over the space of unit quaternions [10], [11]. Each DW
distribution has a mode q̂ and concentration parameter
κ. The canonical orientations are a set of these DW
parameters, Q = {(q̂1,κ1), . . . , (q̂Q,κQ)}. Thus the
extracted feature is the index of the DW distribution with
highest likelihood:

wp = arg max
i=1..Q

DW(qp | q̂i,κi), (3)

where d(i, j) is a measure of distance between i and j.
The set Q is the result of computing a mixture model

using DW components over hand orientations from a
training set of grasps. The parameters of each component
in the mixture model make up one member of Q.
Each affordance then defines a discrete distribution

over the set of canonical orientations:

p(wp |φ) = φ(wp), (4)

where φ is a Q-vector in the (Q− 1)-simplex such that
φ(i) is the probability of selecting orientation i.
By using a multinomial model for grasp orientation,

each affordance can represent multiple orientations. This
is useful for dealing with the symmetries that can occur
when grasping using Dexter. For example, Dexter can
perform a side grasp on an object with the thumb point-
ing towards or away from the robot. If the training data
consisted of both types of grasps, then the affordance
that encodes that particular side grasp will have nonzero
probability of choosing both types of orientation. Note
that for each affordance, the probability table over orien-
tation is built using the training data, so orientations that
are more prevalent in the training set are more likely in
the model.

IV. THE GENERATIVE MODEL

The basic idea behind the generative model is to
associate each example grasp with a latent “affordance”
variable and then sample the object appearance and grasp
position and orientation from the distributions specified
by that affordance. Using the affordances sampled from
the posterior, we can make predictive distributions over
grasp position and orientation for new objects.
The generative model is illustrated in Figure 2. The

nodes of the graph represent random variables, with
the shaded nodes denoting the observed variables. Rect-
angles around variables denote replication, where the
number of times is shown in the bottom right. Rounded
nodes indicate fixed hyperparameters.
We organize the training data set D = (b,x,w) into

M sets of object grasp features, where set m has Nm

examples. Each object corresponds to a “document” in
the text topic model setting. Datum i of object m is
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Fig. 2. The graphical model described in this paper. Circles indicate
random variables, with shading indicating they are observed. The boxes
around nodes represent replication; the number of times written in the
bottom right corner. Rounded nodes indicate fixed hyperparameters.
The edges between nodes indicates a conditional probability distribu-
tion described in the text.

the tuple (bmi, xmi, wmi, ), which consists of a visual
feature, the position, and the orientation of the hand
during the grasp, respectively.
The generative process for data point i is given below:

θ |α ∼ Dirichlet(α)
zi | θ ∼ Multinomial(θ)

bi | zi = j ∼ Inv-Wishartuj (ψj)
wi | zi = j ∼ Multinomial(φj)
xi | zi = j ∼ N (µj ,Σj),

(5)

where X ∼ D means that random variable X is sam-
pled from distribution D. Moreover, θ is sampled from
an A-dimensional Dirichlet distribution. The affordance
components bi, wi, and xi are sampled according to the
distributions (1), (4), and (2), described in Section III.
As shown in (5), θ describes a multinomial distribution

over the shared set of affordances for an object; in
effect, it defines a mixture model over affordances.
Once an affordance j is chosen from the set, the visual
appearance, grasp position, and grasp orientation are
sampled using the parameters specified by affordance j.
Note that by using a multinomial distribution over the
affordances, independent samples from the model for the
same object can result in a different affordance being
selected.
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For notational convenience, let Ω = (α,β,Ψ, u0, ν,Ξ)
correspond to the fixed hyperparameters in the model,
and let C = (ψ, u,φ, µ,Σ) correspond to the parameters
of the component distributions for each affordance.
In order to compute the marginalized likelihood of

a set of N data points from a single object, we must
integrate out the component distribution parameters and
the affordances mixtures z:

p(D |Ω) =
∫

· · ·
∫

C, θ

p(θ |α)p(ψ, u |Ψ, u0)

× p(µ,Σ | ν,Ξ)p(D | θ, C)dθdC (6)

where

p(D | θ, C) =
N∏

n=1

∫
p(bn, wn, xn | z, C)p(z | θ)dz

=
N∏

n=1

A∑

a=1

p(bn |ψa, ua)p(wn |φa)p(xn |µa,Σa)θ(a),

(7)

and the likelihoods in (7) are (1), (4), and (2).
Thus for M objects, the marginal likelihood is

p(D |Ω) =
M∏

m=1

∫
· · ·

∫

C, θ

p(θm |α)p(ψ, u |Ψ, u0)

× p(φ |β)p(µ,Σ | ν,Ξ)p(D | θ, C)dCdθ. (8)

V. PARAMETER ESTIMATION IN THE MODEL

The inference problem is to compute the posterior
distribution of the latent variables given example grasp
points:

p(θ, z, C | D,Ω) =
p(D | θ, z, C,Ω)p(θ, z, C |Ω)

p(D |Ω)
, (9)

which is intractable to compute, although we can esti-
mate it using Gibbs sampling. In order to estimate the
posterior, we perform a clustering of the data into a set of
affordances that are usable by all objects. The parameters
of each affordance are determined by the training data
points assigned to that cluster; these points are collected
from all the presented objects which use that affordance
Given our data set D, we use Gibbs sampling to estimate
the affordance assignments z, which we use to provide
point estimates for the other parameters θ and C.
We assume independent, symmetric Dirichlet priors

over θ and φ, with hyperparameters α and β, respec-
tively. The blob covariance prior is inverse-Wishart with
scale Ψ and u0 degrees of freedom. The covariance
matrices for grasp position, Σ, also have an inverse-
Wishart prior with scale Ξ and ν degrees of freedom [9].

The grasp position mean is given a noninformative prior
as well.
The idea behind Gibbs sampling is that while we

cannot sample directly from the target state space, viz.
the assignment of affordances to data points z, we can
sample each dimension of the space conditioned on the
current state of the rest of the dimensions. The sampler
outputs a Markov chain, so a number of iterations
must be computed before samples can be considered
independent. In the following, let z−mi denote the set of
all affordance assignments excluding zmi, and let b−mi,
x−mi, and w−mi be defined similarly.
Using the conditional independence relationships

shown in the graph of Figure 2, the posterior distribution
over affordance assignments can be written as

p(zmi | z−mi,D) ∝ p(zmi | z−mi, om)
× p(bmi | z,b−mi)p(xmi | z,x−mi)

× p(wmi | z,w−mi). (10)

The likelihoods of the conditional affordance assign-
ments and hand orientation assignments are multino-
mials, and have been derived from standard Dirichlet
integrals:

p(zmi = j|z−mi, om = l) =
nO

jl + α
∑

j′ nO
jl′ + Aα

(11)

p(wmi = k|zmi = j, z−mi,w−mi) =
nW

kj + β
∑

j′ nW
kj′ + Qβ

. (12)

Where nO
jl is the number of times affordance j has

been assigned to object l, and A is the number of
shared affordances. Likewise, nW

kj is the number of times
orientation feature k has been assigned to feature j, and
Q is the number of canonical grasp orientations.
At each iteration of the sampling algorithm, given

the current assignment of data points to affordances,
the posterior distribution over the position of the grasp,
xmi, is a multivariate Student-t distribution with (nA

j +
ν − 2) degrees of freedom, where nA

j is the total
number of features assigned to affordance j. This can
be approximated with the following moment-matched
normal distribution [9]:

p(xmi | zmi = j, z−mi,x−mi) ≈ N (xmi | µ̂j , Σ̂j),
(13)
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where

µ̂j =
1

nA
j

M∑

m=1

∑

k|zmk=j

xmk

δj =
nA

j + 1
nA

j (nA
j + ν − 4)

Σ̂j = δj



Ξ +
M∑

m=1

∑

k|zmk=j

(xmk − µ̂j)(xmk − µ̂j)T



 .

The conditional distribution for a blob covariance is
given as

p(bmi | zmi = j, z−mi,b−mi) = Inv-Wishartûj (ψ̂j)
(14)

with
ûj = u0 + nA

j

ψ̂j =
1

nA
j



Ψ0 +
M∑

m=1

∑

k|zmk=j

bmk



 .
(15)

At each iteration of the Gibbs sampler, we use (11) –
(14) to compute (10). A single data point update can
be computed in O(A), and each sample output by the
sampler requires computing this assignment for every
training data point. Thus the total time to compute a
sample given a training set withM objects and N grasps
per object is O(MNA).

A. Generating grasps for new objects
After allowing the Gibbs sampler time to converge,

each sample approximates a sample from the posterior
distribution. To generate grasp positions for a new object,
we can use the affordances indicated by the posterior.
In general, we are interested in generating candidate

grasp locations for a novel object given the visual
features. Let Θ̂(s) correspond to the model parameters
estimated from sample s. The generative process for new
grasps given blob covariance bt is:

zt | bt, Θ̂(s) ∼ p(z | bt, Θ̂(s))

wt | zt = j, Θ̂(s) ∼ Multinomial(φ̂(s)
j )

xt | zt = j, Θ̂(s) ∼ N (µ̂(s)
j , Σ̂(s)

j ).

(16)

With a set of samples from the posterior distribution
p(z | D), statistics that are independent of the content of
individual affordances can be computed by integrating
over the full set of samples. For any single sample Θ̂(s)

we can estimate θ and C using the affordance assign-
ments in z(s) as described in Section V using (11) – (14).
These correspond to predictive distributions over new
affordances and grasp positions conditioned on D and

z. Note that these estimates cannot be combined across
samples, since there is no guaranteed correspondence
between affordances among the set of samples.
The first distribution in (16) can be computed as

p(z = i | bt, Θ̂(s)) ∝ p(bt | z = i, Θ̂(s))p(z = i | Θ̂(s))

≈ Inv-Wishart
û
(s)
i

(ψ̂(s)
i ),

(17)

where we assume that p(z = i | Θ̂) is uniform. An
alternative is to use information about how z is allocated
among the objects in D, for example, by taking the
average

p(z = i | Θ̂(s)) =
1
M

M∑

m=1

θ(s)
m (i). (18)

By following the generative process in (16), we can
produce a set of possible grasp positions for the robot
to choose from given a visual feature.

VI. EXPERIMENTAL RESULTS
To experimentally test the ability of the model to

represent the grasp affordances shown in the training
set, and generate new grasps, a set of 31 objects O was
chosen for grasping. A random selection of these objects
were designated training, and the rest test objects. The
training set consisted of teleoperating Dexter to perform
five grasps using each grasp affordance reachable using
the right arm. Each object was presented to Dexter in the
middle of the workspace, and the right arm was used to
perform all grasps, as shown in Figure 1.
Because there is no notion of orientation of the object,

the same object presented in multiple orientations (flat,
standing up, etc.) is treated as separate objects. In
the experiments, the notation object-N refers to the
presentation of object in a different orientation. There
are examples in the literature of how this assumption
can be relaxed by incorporating the notion of rigid body
transformations into the model itself [13].
For training, Ntrain = 19 objects were chosen ran-

domly from O, and grasps were demonstrated using
teleoperation. This object set is shown in Figure 3. The
set of grasp orientations, Q, was computed using the
training set, and a set of Q = 6 DW parameters were
chosen. Note that in these experiments, symmetric grasps
were not used, that is, the demonstrator did not perform
a grasp at the same location using a different hand
orientation.
Additionally, each of the objects was represented by

a single blob feature. The set of test objects along with
their visual feature is shown in Figure 4.
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Fig. 3. This picture shows the objects in the training set. The red
oval corresponds to the covariance matrix that was used as a visual
feature for grasps with the object.

For learning the parameters of the model, A = 10
shared grasp affordances were used. The Gibbs sampler
ran for 200 iterations of burn-in, and after which 10 sam-
ples were stored by running the sampler for 10 iterations
and then storing the next sample.
Using the set S of 10 samples, Ntest = 12 objects

were presented, and the model generated 6 candidate
grasps for each object; these were transformed into the
base frame from the object’s frame and then the robot
attempted each grasp. It should be noted that technically
we are generating grasp preshapes for the hand: the
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Fig. 4. This picture shows the objects as they were presented for
generating grasps.The red oval corresponds to the covariance matrix
that was computed from the average second moments of the segmented
blob in the left and right cameras.

position and orientation to achieve before performing
a grasp. In our experiments, the grasp itself is simply
flexing the fingers until a sufficient force has been
applied to the object. One could incorporate a grasp
controller to perform the actual grasp once the hand has
been moved to the hypothesized preshape location [14].
In these experiments a grasp was judged successful if
the robot was still holding onto the object after moving
the hand 10 cm vertically after grasping.
As an example of the types of grasps generated by the

model, Figure 5 shows a composite image of six grasps
generated for the blocks-3 object.
To analyze the performance of the model, we created

a naı̈ve model which also generated grasps using the
blob feature. This model performed visual processing
to estimate the width and height of the object, and
then generated grasps by selecting points on a spherical
hemisphere centered at the object’s centroid. The radius
of the hemisphere was equal to half the length of the
longest dimension of the object. The orientation of the
hand was chosen such that the palm was normal to
the ray connecting the object’s centroid. Moreover, a
uniform random rotation about this ray was chosen.
The three fingers of the hand were spread equidistant
from each other. The robot then attempted to grasp the
object at each of the six locations, and grasp success
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Fig. 5. A composite image showing six candidate grasp positions for
the blocks-3 object.
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Fig. 6. This graph shows the result of using the trained grasp model
on a set of test objects. Each bar measures the number of successful
grasps for the labeled object. The blue bars are for the naı̈ve model,
and the red for the shared affordance model.

was judged as before. In the experiments shown here,
the model is used to generate grasps for the right arm of
the robot. It could be adapted for use with the left arm
by suitably transforming the predicted grasps according
to the symmetries between left and right arms.
The results of performing these grasps are shown in

Figure 6, where blue and red bars correspond to the naı̈ve
and affordance model, respectively. Overall, the naı̈ve
model was successful 43 out of 72 total grasp attempts.
In comparison, using the affordance model, 53 out of
72 attempts were successful; a statistically significant
improvement (p < 0.01).

In most cases, our model outperformed the naı̈ve
mode approach, including the babo-2 object, which the
naı̈ve model was unable to grasp. However, our model
did have difficulty with the jelly-1 and whisky-1
objects. In both case, although the generated grasps were
located above the object with a suitable orientation, they
were too high for a successful grasp. This is a result
of the fact that the model is in effect summarizing the
grasps provided in the demonstration. For novel objects,
the model finds the affordance with the most similar
appearance, but the grasp positions suggested by that
affordance may not adequately fit the actual geometries
of the object.
In these experiments, there was no secondary analysis

of the candidate grasps; the affordance distribution was
sampled and the candidate was attempted, in order to
show that successful grasps can be achieved using only
the visual feature and the object’s centroid. Since the
model represents the affordance as a distribution, an
improved method could incorporate additional knowl-
edge about the object into the candidate selection. For
example, by sampling a number of candidates and choos-
ing the one closest to the object (that was not inside
the object—the model has no notion about the size
of the object being grasped), or by refining candidate
hypotheses using more detailed geometric information
about the object.
As a nonparametric approach, by providing the model

with more training data, the variance of the affordance’s
position distribution can be reduced; potentially im-
proving grasp performance. Furthermore, the success
rate of the model is affected by the number of shared
affordances that is used. Although we do not know
a priori how many shared affordances there may be
among the training data, in the current implementation
we specify a fixed number of affordances. If this number
is too small, the covariances for the position distribution
of the affordance will be large, so it may take a number
of samples to find one that is close enough to the
object to successfully grasp it. The expected number
of affordances used is a function of the number of
data points and α. Nonparametric Bayesian approaches
similar to hierarchical LDA proposed in [12] can be
used to estimate the number of affordances from the data
itself.
In order to see how affordances were shared among

different objects, we computed Table I using a single
sample of the posterior to show the composition of each
affordance. Each column corresponds to an affordance,
and each row denotes the training set of objects. An “x”
indicates that some training grasp from this object was
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Affordance
1 2 3 4 5 6 7 8 9 10

babo x x
babo-1 x
blocks x x
blocks-1 x x
blocks-2 x
boy x
coke can x x
comet x x
green can x x
jelly x x
lawn box x
oxyclean x x
oxyclean-2 x
purex x x
purex-1 x
red coffee x x x
tp x x
vase x
whisky-2 x

TABLE I
EACH “X” DENOTES A GRASP ON THE OBJECT IN THE ROW WAS

USED BY THE AFFORDANCE DENOTED IN THE COLUMN.

used to determine the parameters of the affordance in
that column. Columns with multiple “x”s indicate an
affordance that used training examples from multiple
objects. In this sample, it can be seen that 7 out of 10
affordances incorporate training examples from multiple
objects. Once the sampler has been run for enough
iterations, we can expect subsequent samples to contain
very similar assignments. Different runs of the sampler
produce similar sets of affordances, although the actual
assignments to particular affordances will differ (e.g., the
assignment found in affordance 1 in this sample may be
the assignment in affordance 5 in another sample).
In these experiments, there was no secondary analysis

of the candidate grasps; the affordance distribution was
sampled and the candidate was attempted. Since the
model represents the affordance as a distribution, an im-
proved method could incorporate additional knowledge
about the object into the candidate selection. For exam-
ple, by sampling a number of candidates and choosing
the one closest to the object (that was not inside the
object—the model has no notion about the size of the
object being grasped).
Another way to improve the model is to provide

it with more training examples that correspond to the
different positions where an object might be grasped.
Furthermore, the success rate of the model is affected by
the number of shared affordances that is used. Although
we do not know a priori how many shared affordances

Fig. 7. This figure shows how the mallet can be segmented into
multiple blobs, and each blob can be used to generate grasp positions
independently.

there may be among the training data, in the current im-
plementation we specify a fixed number of affordances.
If this number is too small, the covariances for the
position distribution of the affordance will be large, so
it may take a number of samples to find one that is
close enough to the object to successfully grasp it. The
expected number of affordances used is a function of the
number of data points and α. Nonparametric Bayesian
approaches similar to hierarchical LDA proposed in [12]
can be used to estimate the number of affordances from
the data itself.

A. More Complex Objects
Using this visual feature model, one can use multiple

blob covariances to represent a single object: the model
will generate grasps for each covariance, and they must
then be transformed into the base frame. Again, the
model has no notion of the geometry of the object
being grasped, so secondary processing should be used
to select those grasps that have a high likelihood of
failure. As an example, we presented a mallet that was
segmented into two blobs, as shown in Figure 7.
Using the model from the previous section, we gen-

erated grasps from each of the two blobs. Additional
processing was required to discard some of these can-
didates, as they suggested grasps that collided with the
mallet. For example, the model generated side grasps for
the handle of the mallet that would collide with the head
of the mallet. Figure 8 shows feasible candidate grasps
suggested by the model.

VII. CONCLUSIONS
We have presented a hierarchical, statistical model

for representing grasp affordances among a collection

8



Fig. 8. This figure shows a composite image of some of the grasps
generated by the system for the mallet.

of objects, based on latent topic models. The model
provides a way of summarizing the data provided by a
teleoperator in a way that can be applied to new objects.
Note that although we call this an affordance model,

there is no notion linking each “affordance” represented
in the model to the functions performed on the object.
The model provides a sort of proto-affordance, in that
the model gives a distribution over the likely places to
grasp the object, but a higher level process must be able
to choose among them to perform the task at hand. One
could imagine a process whereby the functions of an
object are associated with features of the object. This
could be integrated with the model proposed here, where
the affordance model is used to generate possible grasp
locations, and based on that set, further processing is
performed to associate a function with each proposed
grasp location. The robot could then choose a grasp that
suited the functional requirements of the task.
This document presents preliminary results using the

shared affordance model. A more complete document,
suitable for a peer-reviewed publication is forthcoming,
and will deal with issues in this presentation. These
include more complete experimental results that address
the difficulties the model had with generating grasps for
certain objects.

APPENDIX

A. Distributions

1) Dirichlet: A sample from aK-dimensional Dirich-
let distribution is a point in the (K − 1)-simplex; thus
these samples can represent a discrete distribution over
K objects, and has the following probability density

using a symmetric parameter:

Dirichlet(θ |α) =
Γ(Kα)
Γ(α)K

K∏

i=1

θα−1
i , (19)

where α > 0, and Γ(x) is the Gamma function.
2) Inverse-Wishart: This distribution is parameterized

by scale ψ and degrees of freedom u. The scale matrix ψ
is a symmetric, positive definite matrix of size k×k [9].
The likelihood is:

p(b |ψ, u) = K−1|ψ|u/2|b|−(u+k+1)/2

× exp
(
−1

2
tr(ψb−1)

)
, (20)

where b is positive definite and the normalization con-
stant is:

K = 2uk/2πk(k−1)/4
k∏

i=1

Γ
(

u + 1 − i

2

)
. (21)

3) Dimroth-Watson: This distribution is parameter-
ized by mode q and concentration κ:

p(q | q̂,κ) =
1

1F1(1
2 ; 3

2 ;κ)
exp

(
κ(q · q̂)2

)
, (22)

where 1F1(·) is a confluent hypergeometric function.
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