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ABSTRACT
Memory errors are a notorious source of security vulnera-
bilities that can lead to service interruptions, information
leakage and unauthorized access. Because such errors are
also difficult to debug, the absence of timely patches can
leave users vulnerable to attack for long periods of time. A
variety of approaches have been introduced to combat these
errors, but these often incur large runtime overheads and
generally abort on errors, threatening availability.

This paper presents Archipelago, a runtime system that
takes advantage of available address space to substantially
reduce the likelihood that a memory error will impact pro-
gram execution. Archipelago randomly allocates heap ob-
jects far apart in virtual address space, effectively isolating
each object from buffer overflows. Archipelago also pro-
tects against dangling pointer errors by preserving the con-
tents of freed objects after they are freed. Archipelago thus
trades virtual address space—a plentiful resource on 64-bit
systems—for significantly improved program reliability and
security, while limiting physical memory consumption by
tracking the working set of an application and compacting
cold objects. We show that Archipelago allows applications
to continue to run correctly in the face of thousands of mem-
ory errors. Across a suite of server applications, Archipe-
lago’s performance overhead is 6% on average (between -7%
and 22%), making it especially suitable to protect servers
that have known security vulnerabilities due to heap mem-
ory errors.

1. INTRODUCTION
Memory errors in C and C++ programs continue to be a
significant problem. They are hard to debug and often easy
to exploit. Memory-based attacks are an effective way to
compromise Internet servers, either by crashing them, which
causes service interruptions and data loss, or by making
them execute arbitrary code. Because these bugs are dif-
ficult to debug, it can take weeks before even critical errors
are repaired [31], leaving applications vulnerable to attack.

A variety of approaches have been developed to help pro-
grammers avoid memory errors. These approaches can be
roughly classified into three categories: testing tools, garbage
collectors, and compiler-based tools. Testing tools, such
as Valgrind [22, 29] and Purify [14], impose performance
overheads that only make their use feasible during testing.
Conservative garbage collectors [6] only protect against dan-
gling pointer errors and provide no protection against buf-
fer overflows. Compiler-based approaches [1, 2, 9, 11, 17,
21, 24, 32, 34] typically incur unacceptably-large runtime
overheads or require programmer intervention, and also re-
quire source code, which may not be available. They also
generally abort program execution in response to memory
errors, reducing availability and leaving systems vulnerable
to denial-of-service attacks.

Contributions: This paper presents Archipelago, a run-
time system that significantly improves the resilience of ap-
plications to heap-based memory errors.1 Archipelago treats
heap objects as individual islands, surrounded by stretches
of unused address space. On modern architectures, espe-
cially 64-bit systems, virtual address space is a plentiful re-
source. Archipelago trades this plentiful resource for a high
degree of probabilistic memory safety [3]; in other words,
Archipelago can use available virtual memory to significantly
increase the likelihood that a program will run correctly in
the face of memory errors.

To control physical memory consumption, Archipelago lever-
ages the following key insight: once the distance between ob-
jects crosses a certain threshold, each page will hold exactly
one (small) object. At this point, additional address-space
expansion is free: the virtual memory system does not need
to allocate physical frames for unused address space between
objects. Archipelago takes advantage of this insight and
directly allocates one object per page, leaving the virtual
address space between objects uncommitted. It further lim-
its physical memory consumption by selectively compacting
pages of the heap that are infrequently used.

The class of applications that are most sensitive to mem-
ory errors and associated security vulnerabilities are servers:
they are attractive, high-value targets that are connected
directly to the Internet. We show that Archipelago can pro-
vide high levels of safety and reliability for this class of ap-
plications. We show that Archipelago can let applications

1An archipelago is an expanse of water with many scattered is-
lands, such as the Aegean Sea.



run even in the face of thousands of memory errors, while
keeping performance impact to acceptably-low levels. Archi-
pelago slows down execution of a range of server applications
by just 6% on average (from -7% to 22%). This modest per-
formance impact makes Archipelago a realistic approach to
protect deployed server applications against known and un-
known heap-based security vulnerabilities.

While the primary focus of this work is using available mem-
ory to increase the availability and security of networked
server applications, Archipelago can also detect memory er-
rors. In this mode, Archipelago is both more efficient and
more thorough than standard memory debugging tools. Be-
cause it generally allows programs to run despite memory
errors, it can detect multiple heap overflows in a single exe-
cution, rather than halting on the first error.

The rest of the paper is organized as follows. Section 2.2
reviews operating system support for virtual memory, and
explains probabilistic memory safety. Section 3 describes
the software architecture of Archipelago in detail. Section 4
evaluates the effectiveness of Archipelago at withstanding
memory errors and measures its overhead. Section 5 de-
scribes how Archipelago detects buffer overflows, and com-
pares its use in this mode to two widely-used memory de-
buggers. Section 6 surveys related work, Section 7 discusses
future directions, and Section 8 concludes.

2. BACKGROUND
2.1 Virtual Memory
Because Archipelago makes extensive use of operating sys-
tem support for virtual memory management that may not
be familiar, we define some key terms and concepts here.

A key distinction is that between virtual and physical mem-
ory. Virtual memory refers to the full addressable range
of memory. This range does not necessarily correspond to
the architecture’s word size—on x86-64 architectures, the
addressable range is 48 bits (i.e., 248 bytes). Operating sys-
tems map virtual memory to available physical memory. On
64-bit systems, virtual memory is plentiful while physical
memory is in relatively short supply (e.g., on the order of
1–8 gigabytes (230–233) bytes).

Virtual memory is divided into pages that are typically 4K
chunks. Pages can be in three states: unmapped, reserved,
and committed. An unmapped page is not available for use
by the process, and access to it triggers a segmentation vio-
lation.

When a process obtains a page from the system via mmap,
the virtual address range is reserved so that a subsequent
call to mmap is guaranteed to return virtual memory from a
different range. However, a reserved page does not initially
have an associated physical page frame.

When a reserved page is touched for the first time, the page
is committed : a physical page frame is allocated and asso-
ciated with the virtual page. The kernel initializes all page
contents to zero when they are first touched. Subsequent
touches do not result in any page faults unless, due to mem-
ory pressure, the page is evicted to disk. In this case, the
page’s contents are generally written to the disk, and then

the page is decommitted (but remains reserved). A subse-
quent touch triggers a page fault, and the kernel will fill the
page with the contents previously saved on disk.

Operating systems allow programmers to control the state
of pages via the madvise system call. A Unix application
can invoke madvise(MADV_FREE) to inform the kernel that a
range of pages is available to be reclaimed, and that there
is no need to write the contents to disk. This call thus
decommits a page’s physical frame, making it available for
reuse by the system. Archipelago makes use of madvise to
limit its physical memory footprint, as Section 3.1 describes.
madvise can also be used to provide hints to guide the virtual
memory manager’s page replacement algorithm, a feature
that Archipelago also uses.

Additionally, an application can protect access to a page
so that accesses trigger a signal, even if the page has been
committed. For example, an application can invoke mpro-
tect(...,PROT_NONE) on a range of pages: future attempts
to read, write, or execute memory on this page will trig-
ger a segmentation violation. By installing a custom signal
handler to handle these segmentation violations, an appli-
cation can selectively intercept reads or writes to particular
pages. Archipelago uses these memory protection calls to
let it perform compaction of cold objects (see Section 3.2).

2.2 Probabilistic Memory Safety
The motivation for our work comes from the ideas of infinite
heaps and probabilistic memory safety originally introduced
by Berger and Zorn [3].

An infinite heap memory manager is an ideal, unrealizable
runtime system that allows programs containing memory er-
rors to execute soundly and to completion. In such a system,
the heap area is infinitely large and can never be exhausted.
All objects are allocated fresh, infinitely far away from each
other, and are never deallocated.

Because every object is infinitely far away from any other
object, buffer overflows become benign, and dangling point-
ers also vanish since objects are never deallocated or reused.
A portable correct C program cannot tell the difference be-
tween an infinite heap memory manager and a normal al-
locator, while a program containing memory errors would
execute correctly for reasons outlined above, as long as it
does not contain uninitialized reads.

Of course, it is impossible to build a true infinite heap mem-
ory manager. However, one can approximate its behavior
by using an M-heap—a heap that is M times larger than
needed. By placing objects uniformly randomly across an
M -heap, we get the expected minimum separation between
any two objects of M – 1 objects, and therefore overflows
that are smaller become benign with high probability. By
randomizing the choice of freed objects to reuse, we min-
imize the likelihood of recently freed objects being over-
written, and therefore of a malignant dangling pointer er-
ror. This heap thus provides probabilistic memory safety, a
probabilistic guarantee that memory errors occurring in the
program are benign during its execution.



1 void * malloc (size_t size) {
2 if (size <= PAGE_SIZE) {
3 // object fits on a page
4 // obtain random page from the pool
5 void *page = getRandomPage ();
6 }
7 if (page == NULL) {
8 // object doesn’t fit on the page
9 //or pool is full

10 //mmap memory directly
11 void *pages =
12 mmap(roundUpToPageSize(size),
13 MAP_ANONYMOUS );
14 }
15 if (page == NULL) {
16 //mmap failed
17 return NULL;
18 }
19 //add coloring
20 void *ptr =
21 getRandomColoring(page , size);
22 // register page(s) as part
23 //of working set
24 registerActivePages(page , ptr , size);
25 return ptr;
26 }

Figure 1: Pseudo-code for Archipelago’s malloc.

In an M -heap, the likelihood of no live objects being over-
written by an overflow N objects in size is (1 − 1

M )N [3].

Based on this formula, it is clear that one way to increase the
probability of correct execution in the presence of memory
error is to make the heap expansion factor (M) large. For
example, M = 100 yields a 99% probability that a buffer
overflow smaller or equal to the size of an object will be
benign. It is impractical, however, to run DieHard system
with large values of M because of its correspondingly large
physical memory consumption (see Section 4).

Archipelago achieves these probabilistic guarantees against
buffer overflows while consuming only a correspondingly large
amount of virtual memory. It effectively controls physical
memory consumption and provides lower CPU overheads
than a comparably-sized DieHard heap, as Sections 4.2 and
4.3 show.

3. ARCHIPELAGO ARCHITECTURE
Archipelago consists of two parts: a randomizing memory al-
locator and a cold storage module, which controls the overall
physical memory consumption of the program. These parts
are compiled into a dynamically-linked library that, when
pre-loaded before an executable, replaces standard memory
management routines, such as malloc and free, with calls
to the Archipelago allocator.

3.1 Object-Per-Page Allocator

Key to Archipelago’s protection from memory errors is its
object-per-page memory allocator. It is constructed using

1 void free (void * ptr) {
2 // retrieve size
3 size_t size = getObjectSize(ptr);
4 //get first page
5 void *page = getStartPage(ptr);
6 // unregister pages being deleted
7 unregisterActivePages(page , ptr , size);
8 // discard pages
9 //that have been compacted

10 discardCompactedPages(page , ptr , size);
11 if (size <= PAGE_SIZE) {
12 // object fits on page:
13 // discard contents
14 madvise(page , MADV_FREE );
15 } else {
16 // object doesn’t fit on page:
17 //unmap it
18 munmap(page ,
19 roundUpToPageSize(size ));
20 }
21 }

Figure 2: Pseudo-code for Archipelago’s free.

the Heap Layers infrastructure [5]. As implied by its name,
the object-per-page allocator places each allocated object on
a separate virtual memory page. It reserves (but does not
commit) a large fraction of the address space using mmap,
and uses it as a pool from which to draw pages to satisfy
allocation requests. Figures 3.1 and 3.1 present pseudo-code
for malloc and free.

The size of the pool of available pages is a parameter to
Archipelago (defaulting to 512 megabytes) that represents
the trade-off between the protection Archipelago provides
and its virtual memory consumption. A larger pool will
provide more robust protection against errors, but at the
cost of increased virtual memory consumption. Note that in
case of memory pressure, the virtual memory manager will
reclaim all committed but unused pages in the pool first,
making the footprint of the application independent of the
pool size.

Allocation: Objects are placed on pages randomly chosen
from the pool (Figure 3.1, line 5). The object-per-page allo-
cator uses a bit array to distinguish between used (allocated)
and unused pages in the pool, and probes in the bit array
to perform this random selection. In order to bound the ex-
pected number of probes to find an empty page, the object-
per-page allocator always keeps the pool no more than half
full. This strategy bounds the worst-case expected number
of probes to a small constant (2).

Notice that since pages in the pool are allocated randomly,
no locality of reference exists between pages in the pool. We
give a hint to the virtual memory manager that no local-
ity exists and that it should not prefetch pages within the
pool using madvise (not shown in the code). Together with
mmap, madvise ensures that pages are not instantiated in the
physical memory until they are actually needed.



To reduce cache conflicts, Archipelago uses colors to place
objects on pages: objects are placed at random offsets on
pages, taking care to keep objects within their pages’ bound-
aries (lines 20–21). Coloring helps reduce L2 misses due to
cache conflicts and thus improves performance (we do not
report these results here due to space limitations).

Deallocation: When an object smaller than a page in size
is deleted, the object-per-page allocator marks the page as
free (Figure 3.1, lines 5–10). Moreover, it instructs the vir-
tual memory manager using madvise to discard the contents
of the page without writing them to disk, therefore reduc-
ing the overall runtime overhead of the system due to page
eviction (line 14).

Large objects: Objects that do not fit on a single page are
treated specially by the object-per-page allocator. Archipe-
lago currently does not search for ranges of free pages in the
pool but instead allocates memory directly using mmap (Fig-
ure 3.1, lines 7–13). When the memory pool gets more than
half full, all objects are allocated via mmapto avoid costly
probes for free pages in the pool.

Because current Linux kernels randomize locations of memory-
mapped objects in the address space, the object-per-page
allocator need not take further action. When an object
that was allocated using mmap is freed, its memory is im-
mediately released back to the operating system using mun-
map(Figure 3.1, lines 18–19).

3.2 Exploiting Working Sets
Running programs with the object-per-page allocator alone
would consume so much physical memory that it would be
impractical for deployed programs. In order to limit its
physical memory consumption, Archipelago relies on the ob-
served temporal locality of memory accesses in most pro-
grams, or the so-called working set hypothesis. A program
at any given time has a working set, a (hopefully) small
subset of all live objects on which the program is actively
operating.

The notion of a working set is extensively used in the vir-
tual memory managers [8], which attempt to keep just the
working sets of running programs in memory while storing
rarely used data in secondary storage.

Archipelago follows a similar design: it tracks the working
set of a program, moves objects not in the working set into a
more compact representation, and returns the physical pages
they occupied to the OS.

Operating systems typically rely on hardware-managed dirty
and reference bits that give them precise information about
which pages are being used. While a similar approach can be
implemented in user-space with memory protection mecha-
nisms, the cost of such an approach would be prohibitively
high compared to the cost of making a mistake and com-
pacting a page that is in the working set.

Instead, Archipelago uses a cheap approximation of the work-
ing set. Archipelago keeps all the pages occupied by live
objects in a bounded FIFO queue. In our current imple-
mentation, the size of the FIFO queue is fixed at startup

1 void deflate (void *page) {
2 // allocate space in cold store
3 void *coldStore = coldHeap.malloc(
4 hotPages[page]->getDataSize ());
5 // move the data
6 memcpy(coldStore ,
7 hotPages[page]->getDataStart (),
8 size);
9 // return physical page to OS

10 madvise(page , MADV_FREE );
11 // set trap on future accesses
12 mprotect(page , PROT_NONE );
13 // mark page as cold
14 coldPaged[page] = hotPages[page];
15 hotPages.remove(page);
16 // remember the location of the data
17 coldPages[page].
18 setColdStore(coldStore );
19 }
20

21 bool inflate (void *page) {
22 // check page was deflated before
23 if (! coldPages.hasKey(page))
24 return false;
25 // enable access to the page
26 mprotect(page , PROT_READ | PROT_WRITE );
27 // restore data
28 memcpy(coldPages[page]. getStart(),
29 coldPages[page]. getColdStore (),
30 coldPages[page]. getSize ());
31 // free the cold space
32 coldHeap.free(
33 coldPages[page]. getColdStore ());
34 // mark page as hot
35 hotPages[page] = coldPages[page]
36 coldPages.remove(page);
37 return true;
38 }
39

40 void sigsegv_handler(void *addr) {
41 if (! inflate(getPageStart(addr ))) {
42 fprintf(stderr , "Overflow !\n")
43 exit (-1);
44 }
45 }

Figure 3: Pseudo-code for Archipelago’s compaction
and uncompaction routines.

time, either read in from an environment variable or de-
faulting to 5000 objects. Pages are added to the back of the
queue at allocation time. As the queue becomes full, pages
at the front of the queue are removed and compacted. Upon
access to a compacted page, the page is restored and added
to the end of the queue as well.

3.3 Cold Storage
Archipelago contains functionality that compacts pages not
in the current working set, thus reducing its physical mem-
ory requirements. It uses an in-memory compaction mecha-
nism that stores compacted objects in a separate heap man-



aged by the general-purpose Lea allocator [19].

When a page is compacted, its non-zero contents are copied
out into this internal heap. Then, any accesses to the page
are disabled by mprotect, so that Archipelago receives a
protection violation signal the next time the application tries
to access the page. Finally, the virtual memory manager is
instructed using madvise not to write the page contents to
disk.

Archipelago installs a custom signal handler to receive pro-
tection violation signals and restore objects back from cold
storage. When the handler receives a signal, it first checks
whether the application was trying to access a page in cold
storage. If it was, the handler has to restore that page in or-
der for the application to continue. The handler unprotects
the page and restores the data on it from cold storage. It
also places the page back on the queue of active pages, and
frees the space used to hold the page’s data in cold storage.
Control then passes back to the application, which can now
safely continue.

While compacting pages imposes additional runtime over-
head, it effectively controls physical memory overhead, as
Section 4.3 shows.

4. EVALUATION
In our evaluation, we answer the following questions:

1. What is the runtime overhead of using Archipelago
with server applications?

2. What is the memory overhead of using Archipelago
with server applications?

3. How effective is Archipelago against both injected faults
and real errors?

4.1 Experimental Methodology
We perform our evaluation on a quiescent dual-processor
with 8 gigabytes of RAM. Each processor is a 4-core 64-bit
Intel Xeon running at 2.33 Ghz and equipped with a 4MB
L2 cache.

We compare Archipelago to the GNU C library, which uses
a variant of the Lea allocator [19], and to DieHard, version
1.1. This version, available from the project website, is an
adaptive variant that dynamically grows its heap [4], and so
is more space-efficient than the original, published descrip-
tion [3].

One important caveat is that we run all experiments on a
particular version of a recent Linux kernel, version 2.6.21-
mm2. This kernel version uses a more sophisticated algo-
rithm for managing physical memory pages that were ini-
tially used by applications, but then returned to the kernel.
This page laundering process updates a number of kernel
data structures and potentially writes the page’s contents to
secondary storage. Linux kernel versions up to and includ-
ing 2.6.21 launder pages eagerly whenever an application
calls madvise. However, Linux version 2.6.21-mm2 launders
pages lazily, waiting until more physical memory pages are

actually needed. In the absence of memory pressure, this
policy improves our system’s performance on an allocation-
intensive microbenchmark by a factor of two: madvise is
on Archipelago’s normal deallocation path. Because of its
performance advantages for ordinary workloads, we expect
that this patch, or one similar to it, will be adopted in future
versions of the Linux kernel.

4.2 Performance Overhead
To quantify the performance overhead of using Archipelago,
we measure the performance of a range of server applications
running with and without Archipelago. All observed vari-
ances were below 1%. In our experiments, Archipelago uses
a memory pool 512MB in size. We also compare perfor-
mance against DieHard with two different heap multiplier
values: 2 and 1024. The first multiplier provides perfor-
mance and protection similar to the results reported in the
original DieHard paper, while the second multiplier more
closely approaches the level of protection that Archipelago
achieves.

We use three different server applications: the thttpd web
server, the bftpd ftp server, and an openssh server. For the
first two, we record total throughput achieved with 50 simul-
taneous clients issuing 100 requests each. For the openssh
server, we record the time it takes to perform authentication,
spawn a shell, and disconnect, averaged over 10 runs.

We focus on the CPU impact of our benchmarks by per-
forming all our experiments over the loop-back interface, so
that any performance impact is not swamped by network
latency. These measured runtime overheads are thus con-
servative estimates of the performance overhead one would
see in practice.

Figure 4 presents the results of these experiments, normal-
ized to GNU libc. These results show that Archipelago
can protect servers without unduly sacrificing server perfor-
mance. The performance overhead we observe is generally
less than 20%. thttpd running with Archipelago repeatably
performs better than with GNU libc; we do not yet fully
understand why.

To evaluate the worst-case overhead one could expect for
Archipelago, we also measure the performance impact of
Archipelago on a well-known, extremely allocation-intensive
benchmark, espresso. espresso allocates and deallocates ap-
proximately 1.5 million objects in less than a second. This
allocation rate far exceeds that of a typical server applica-
tion. In our experiments, we run espresso with all four allo-
cators we use in our server experiments. Compared to GNU
libc, espresso runs 3.34, 7.24 and 7.32 times slower with
DieHard-2, DieHard-1024 and Archipelago, respectively.

4.3 Space Overhead
We evaluate the additional memory consumption incurred
by using Archipelago, and compare this to DieHard and
GNU libc.

Figure 5 shows virtual memory consumption of three differ-
ent servers in our experiments. Due to the fact that Archipe-
lago preallocates a large memory pool at start-up, its virtual
memory consumption is always high compared to GNU libc.
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Figure 4: Performance across a range of server ap-
plications (smaller is better), normalized to GNU
libc.

A large fraction—more than 70%—of that allocated space
is never actually committed to memory. The high mem-
ory consumption of bftpd is explained by the fact that it
forks three processes for every connected client. In our ex-
periments, we use 50 simultaneous clients, and measure the
total memory used by all bftpd processes, which includes the
overheads of Archipelago in each bftpd process.

Figures 6(a) and 6(b) show resident memory consumption of
thttpd, bftpd, and sshd during our experiments without and
with memory pressure, respectively. We simulate memory
pressure by locking pages in memory so that only about
512MB is usable by the entire system. Our experiments
show that Archipelago uses less memory than DieHard-1024
and uses on average 3 to 5 times as much memory as GNU
libc. This number is much lower for thttpd and sshd, which
do not spawn multiple processes. It is important to note
that memory consumption with Archipelago in the absence
of memory pressure is artificially inflated, because Linux
reclaims available pages only under memory pressure.

4.4 Avoiding Injected Faults
We evaluate the effectiveness of Archipelago in tackling mem-
ory errors by using two different types of fault injectors: an
overflow injector and a dangling pointer injector. We inject
faults into espresso running with GNU libc, DieHard and
Archipelago. We perform all our injection experiments 100
times, and record the number of times that espresso pro-
duces correct output. Table 1 summarizes these results.

Buffer overflows: We perform three sets of experiments
with the overflow injector. We inject 8-byte overflows with
0.01 probability, 4K overflows with 0.001 probability, and 8K
overflows with 0.0001 probability. These probabilities cor-
respond to thousands, hundreds, and tens of injected faults,
respectively.

In this set of experiments, GNU libc crashes every time,
as expected. Archipelago substantially outperforms both
variants of DieHard across the range of overflow sizes and
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86

Figure 5: Virtual memory usage of GNU libc, Die-
Hard, and Archipelago, across a range of server ap-
plications.

frequencies. With small and frequent overflows, Archipelago
runs correctly every time. DieHard-1024 does reasonably
well, running correctly 77% of the time, while DieHard-2
only runs correctly 29% of the time.

With large but infrequent overflows, Archipelago runs cor-
rectly 68% of the time. In this case, DieHard-1024 runs
correctly only 23% of the time, while DieHard-2 crashes ev-
ery time. Even in the worst case of large and reasonably
frequent overflows, Archipelago lets espresso run correctly
42% of the time, while it only runs 2% of the time with
DieHard-1024 (DieHard-2 crashes every time in this case).

These results show that Archipelago provides excellent pro-
tection against buffer overflows and offers dramatic improve-
ment over DieHard, even with an expansion factor of 1024.

Dangling pointers: Archipelago’s design goal was to limit
the impact of buffer overflows, but it also provides a mea-
sure of protection against dangling pointers. To measure
the impact of dangling pointers on runtime systems, we in-
jected dangling pointer faults that free objects 5, 10 and 20
allocations early with probabilities 0.01, 0.001 and 0.0001,
respectively.

These experiments show that, as expected, DieHard-1024
offers better protection from dangling pointer errors than
Archipelago. This result is explained by the fact that DieHard-
1024 has vastly more available object slots for reuse than
Archipelago does. Archipelago has fewer potential slots to
place new objects, since it only allows one object per page.
Archipelago also instructs the operating system that all freed
objects are available for the operating system to reuse at its
discretion. If the operating system reuses a page, the orig-
inal contents will be lost, and access through a dangling
pointer to this data will trigger a fault. Nonetheless, Archi-
pelago provides substantial protection against these errors,
running correctly 29% of the time in the first experiment,
67% of the time in the second, and 98% in the third.
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(a) Resident memory usage, without memory pressure.
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(b) Resident memory usage, with memory pressure.

Figure 6: Resident memory usage with and without memory pressure. Under memory pressure, Linux
quickly reclaims Archipelago’s uncommitted pages, making its physical memory consumption strictly lower
than with DieHard-1024.

Injection experiments (% correct executions)
espresso GNU libc DieHard-2 DieHard-1024 Archipelago

buffer overflows
8 bytes, p = 0.01 0% 29% 77% 100%
8K, p = 0.0001 0% 0% 23% 68%
4K, p = 0.001 0% 0% 2% 42%

dangling pointers
5 mallocs, p = 0.01 0% 8% 91% 29%
10 mallocs, p = 0.001 0% 75% 100% 67%
20 mallocs, p = 0.0001 0% 96% 100% 98%

Table 1: The performance of various runtime systems in response to injected memory errors (Section 4.4).
Archipelago provides the best protection against overflows of all sizes and frequencies, and reasonable pro-
tection against dangling pointer errors (all executions fail with GNU libc).

4.5 Avoiding Real Buffer Overflows
To evaluate the effectiveness of Archipelago against real-
life buffer overflows, we reproduce two well-known buffer
overflow-based exploits: one in the pine mail reader, and
the other in the Squid web cache proxy.

We reproduce an exploit in pine version 4.44. The exploit
is a buffer overflow that can be triggered by a maliciously
formed email message and causes pine to crash and fail to
restart until the message is manually removed. When we
place a maliciously formed message in a user’s mailbox, pine
with GNU libc crashes whenever the user attempts to open
a mailbox. However, when running with Archipelago, pine
successfully opens the mailbox and performs all standard
operations with messages in it, including the malicious mes-
sage, without any user-noticeable slowdown.

We also test Archipelago’s ability to withstand a heap buffer
overflow for the squid web cache. For version 2.3.STABLE5,
a maliciously formed request causes a buffer overflow that
corrupts heap meta-data (this causes GNU libc to termi-
nate). When running with Archipelago, squid consistently
handles the malicious request correctly, without crashing.

5. OVERFLOW DETECTION
Archipelago not only lets programs to run in the face of
memory errors, but can also be used to detect and report
these errors. Archipelago detects these errors using three
separate approaches. First, Archipelago clears all memory
pool pages before their first use. Because every page is
initialized to zero, any non-zero value past the end of an
object’s allocated space indicates an overflow. Archipelago
scans the contents of a page past an allocated object on
every free.

Second, Archipelago piggybacks buffer overflow detection
onto page compaction, letting it discover overflows before
an object is deallocated. Whenever a page is compacted,
Archipelago recomputes the actual size of the object on that
page by scanning it backwards until the first non-zero word.
As above, any non-zero past the end indicates an overflow.

Finally, if an overflow touches a protected or unmapped
page, Archipelago reports this as a heap overflow.



5.1 Evaluation
To evaluate Archipelago’s buffer overflow detection, we com-
pare it to Valgrind (using the Memcheck tool [29]) and Elec-
tric Fence [25]. These tools differ substantially from Archi-
pelago in their approaches. Valgrind uses heavyweight dy-
namic binary instrumentation to insert run-time checks; the
Memcheck tool detects a wide range of memory errors (not
just heap overflows) throughout program execution. Elec-
tric Fence is a debugging allocator that, like Archipelago,
allocates heap objects on separate pages. It allocates three
pages for every object: one page for the object itself (placed
at the end), and a memory-protected page before and af-
ter the object. Electric Fence aborts whenever an overflow
causes a memory protection fault.

We measure Archipelago’s overhead in overflow detection
mode by running espresso, which effectively measures its
worst-case performance. Archipelago is more efficient than
Electric Fence (10.5x faster) and Valgrind (4.65x faster).

We then ran all three tools on pine, attempting to detect
the buffer overflow we exploit in Section 4.5. Both Elec-
tric Fence and Valgrind successfully detect a single buffer
overflow, but then abort the computation. However, Archi-
pelago allows pine to safely continue execution and detects
a second overflow. This experiment demonstrates Archipe-
lago’s advantage over other tools: it can detect multiple heap
overflows in a single run.

6. RELATED WORK
This section first discusses past work that exploits large ad-
dress spaces, and then describes related work in the spheres
of memory management, fault tolerance, and software en-
gineering that address the problem of memory errors in
C/C++ programs.

The advent of 64-bit processors sparked research in operat-
ing systems designed for large address spaces [7]. Druschel
and Peterson point out that this address space is sufficiently
large that it can be used to provide high performance protec-
tion and security by hiding processes from each other [13].
Anonymous RPC (ARPC) uses random placement of pro-
cesses in a large address space to eliminate expensive hard-
ware context switches on cross-domain RPC calls [33]. We
are also leveraging a large address space, but instead of us-
ing the space to protect independent processes from each
other, we are isolating individual objects from memory er-
rors within the same process.

Archipelago builds on the ideas of Berger and Zorn’s Die-
Hard system [3]. Like DieHard, Archipelago uses a ran-
domized memory manager to provide protection from buf-
fer overflows and dangling pointer errors. Unlike DieHard,
Archipelago achieves high reliability by dramatically increas-
ing the size of the address space and does not use replication.
By exploiting both standard OS mechanisms and common
program behavior, Archipelago provides greater resilience to
buffer overflow errors with moderate and acceptable CPU
and memory overhead.

Exterminator is another runtime system that, like DieHard,
is based on randomized, overprovisioned heaps [23]. The
focus of Exterminator is on automatic error detection and

correction based on accumulating data from multiple exe-
cutions. While Archipelago can also be used for overflow
detection, it is closer in spirit to DieHard, and unlike Ex-
terminator, provides greater error tolerance without the re-
quirement that errors first be detected.

A number of compiler-assisted approaches have been intro-
duced to combat memory errors. Semantics provided by
Archipelago to programs containing buffer overflows are sim-
ilar to those of Rinard et al.’s Boundless Memory Blocks [27].
Because Boundless Memory Blocks uses a fixed-size LRU
cache to store the values of out-of-bounds writes, accesses
to out-of-bounds addresses are undefined if the object has
been evicted from the cache. A number of other unsound
approaches have been proposed [12, 28]. Dhurjati et al.
use pool allocation to provide an efficient form of memory
safety that guarantees that structure fields are referenced
with the correct type. While they guarantee type-safety,
there is no guarantee that the object the programmer had
intended to access is correctly accessed [12]. Unlike this
previous work, Archipelago provides a strong, quantifiable
probabilistic guarantee that the intended program behavior
will be preserved.

More traditional safe-C compilers [30, 21, 24] use modified
versions of C and some combination of static analysis and
dynamic checks to provide protection from memory errors.
Cyclone [17, 30] augments C with an advanced type system
to provide safe explicit memory management. CCured [21]
inserts dynamic checks that ensure safety into the compiled
program and uses static analysis to eliminate checks from
places where memory errors cannot occur. CRED [24] only
targets string buffer overflows, and inserts dynamic checks
on memory accesses that use out-of-bounds pointers. All of
these techniques are aimed at detecting memory errors and
terminating the program in response. Archipelago, on the
other hand, is aimed at avoiding memory errors and allowing
the program to continue running correctly.

Like Archipelago, Rx can help avoid memory errors [26]. It
performs periodic checkpointing of program execution, and
when an error occurs, it re-runs the program from a check-
point in a modified environment. In response to crashes,
Rx pads allocations to avoid buffer overflows, and delays
reuse of freed memory to prevent dangling pointers. Two
fundamental limitations of Rx are that it only works with
applications that allow replay, and cannot cope with errors
that do not result in crashes. Archipelago does not suffer
from either of these limitations.

Dangling pointer errors have been addressed in several ways
in previous work. Dhurjati et al. employ a clever use of vir-
tual memory page mapping and protection to allow them to
detect dangling pointers at low cost [10]. While Archipelago
also uses virtual memory protection, our focus is on provid-
ing resilience to buffer overflows with less emphasis on dan-
gling pointers. Garbage collection is an alternative runtime
system that provides safety from dangling pointer errors.
The most commonly used garbage collector for C programs
is Boehm-Demers-Weiser conservative garbage collector [6].
Unlike Archipelago, garbage collection provides no protec-
tion against buffer overflow errors. Garbage collection also
imposes significant space and time overheads to achieve rea-



sonable performance [15].

Finally, a number of testing tools and debugging alloca-
tors [18, 20, 25] can aid programmers in debugging mem-
ory errors. Valgrind [22, 29] and Purify [14] use binary in-
strumentation or emulation to detect memory errors at run-
time. They typically incur prohibitively high overhead both
in terms of performance (up to 25X) and space (10X), mak-
ing them only suitable during testing. Electric Fence [25]
uses page protection to detect buffer overflow and dangling
pointer errors. As we show in section 5, Electric Fence incurs
high performance overhead and memory overhead, especially
when used to detect dangling pointer errors. Unlike both of
these systems, Archipelago can detect multiple heap buffer
overflows in a single execution.

7. FUTURE WORK
There are a number of ways that the current Archipelago
implementation can be improved. We intend to explore
adaptively sizing the memory pool size to achieve the opti-
mal trade-off between performance overhead and resilience
to errors. Our current implementation has a static FIFO
size, and we intend to investigate techniques to grow and
shrink the FIFO size just as an OS virtual memory manager
adapts working set size. Because our approach uses very
large virtual address spaces with sparsely mapped pages, we
will investigate how OS support for sparse page tables can
improve Archipelago performance. Hardware TLBs have re-
mained relatively small despite enormous growth in physical
memory sizes over the last two decades. We anticipate that
TLB designs that better accomodate large sparse virtual
memories, such as those proposed by Huck and Hays [16],
will significantly benefit Archipelago’s performance.

8. CONCLUSION
Archipelago is a runtime system that provides protection

from memory errors for unmodified C programs. It pro-
vides probabilistic protection from both buffer overflows and
dangling pointer errors with high probability. Archipelago
spreads objects far apart in the address space and random-
izes the choice of freed objects to reuse, giving applications
an illusion of infinite-size heap and protecting them from
memory errors. It leverages the virtual memory subsystem
of the underlying OS to efficiently provide a high level of
memory safety to target programs at low cost.

We show analytically and empirically that Archipelago in-
creases the resilience of programs to memory errors. Our
evaluation shows that Archipelago is effective against real
and injected memory errors. We show that it allows pro-
grams to correctly execute through hundreds and even thou-
sands of memory errors, which is a significant improvement
over current state-of-the-art systems. We also show how our
system can be used to debug buffer overflow errors.

We further demonstrate that the overhead of using Archi-
pelago is more than acceptable across a range of different
server applications, both in terms of CPU performance and
memory usage. We believe Archipelago is especially suitable
for deployment in order to protect servers that have known
security vulnerabilities due to heap memory errors.
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