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Abstract

Message passing algorithms based on variational methods and belief propaga-
tion are widely used for approximate inference in a variety of directed and undi-
rected graphical models. However, inference can become extremely slow when
the cardinality of the state space of individual variables is high. In this paper
we explore sparse message passing to dramatically accelerate approximate infer-
ence. We show theoretically that sparse variational message passing iteratively
and monotonically minimizes the KL divergence between a variational approxi-
mation and a distribution of interest. Sparse variational message passing achieves
this by optimizing a lower bound on the partition function. We present exper-
iments confirming these results using a conditional random field for a difficult
stereo vision problem. We observe dramatic reductions in inference time with
no loss in approximation quality. Learning using sparse methods also improves
results over prior work using graph cuts.

1 Introduction

Belief propagation [10] and variational methods [6] are widely used techniques for inference in
probabilistic graphical models. Both techniques have been used for inference and learning in models
with applications ranging from text processing to computer vision [3, 5]. Winn and Bishop proposed
Variational Message Passing (VMP) [9] as a way to view many variational inference techniques and
represents a general purpose algorithm for approximate inference. The approach is similar in nature
to belief propagation (BP) in that messages propagate uncertainty in a graph and the computations
of messages when viewed in this framework have a similar form to BP. However, when used for
inference about hidden variables in a graphical model, unlike BP, VMP optimizes a lower bound on
the log probability of observed variables in the model.

As more large scale problems are addressed with probabilistic machine learning techniques, fast
inference can be particularly important. While experimental work and theoretical analysis of varia-
tional methods show that the asymptotic performance of other methods such as sampling [1] can be



superior, variational methods are comparatively fast for approximate inference. However, for many
real world problems, models containing variables with high cardinality state spaces arise. Under
these conditions the gains in terms of inference speed with variational methods can be diminished.
We are interested here in addressing this issue through constructing sparse variational methods which
also provide theoretical guarantees that the Kullback-Leibler (KL) divergence between approximate
distributions and true distributions are iteratively minimized.

In our empirical investigation here we focus upon approximate inference and learning in lattice struc-
tured Conditional Random Fields (CRFs) [7] applied to a real world stereo vision problem. How-
ever, our theoretical results and some experimental insights should be applicable to CRFs, MRFs
and Bayesian Networks with arbitrary structures. In our experiments we explore a CRF formula-
tion for stereo vision in which a lattice is constructed leading to energy functions with a traditional
structure—single variable terms and pairwise terms. Unlike purely energy based formulations, since
we cast the stereo problem as a CRF, we are able to view approximate inference and learning in the
model from the perspective of variational analysis.

The remainder of this paper is structured as follows: In section 2 we show how sparse variational
message passing minimizes the KL divergence between a variational approximation and a distri-
bution of interest. In section 3 we present a conditional random field to solve a real world stereo
vision problem and show how approximate inference is used to infer depth in an image as well as
for learning. Finally, in section 4 we present results comparing sparse BP and VMP with graph cuts
showing how sparse message passing can lead to an order of magnitude reduction in inference time
and using variational distributions for learning improve results over a point estimate given by graph
cuts.

2 Sparse mean field in a CRF

In the following exposition we derive the equations for mean field inference using a variational mes-
sage passing perspective [9]. We show that sparse VMP will iteratively minimize the KL divergence
between an approximation () and a true distribution P. Further, we present sparse VMP in the
context of CRFs and show that the functional we optimize is an upper bound on the negative log
conditional partition function.

2.1 General mean field

Let X; be a discrete random variable taking on values z; from a finite alphabet X = {0,..., N — 1},
where NN is the number of states. Let X denote the concatenation of all random variables, which
take on values denoted by x. Let y be the observation conditioned on. Given a general conditional
distribution

P(X|y):%F(X,y) with  Z (y ZFa:y

consider minimizing the KL divergence between an approximate distribution @) (X) and the true
distribution P (X | y), which is expressed as

St
= —(log F'(z,9))gx) — H(Q(X)) +log Z(y).

Thus, a free energy £ (Q (X)) and the KL divergence are related in the definition

LQX) = —(ogF (@.9)ox,  HQX)), (1)
KL(Q(X) | P(X |y) = L(Q(X)) +logZ(y). @)

If we define the energy of a configuration & as — log F' (x, y), the free energy for our model is the
expected energy under our variational distribution less the entropy of the approximating distribution
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Figure 1: The complete divergence KL (@ || P) can be decomposed into KL (Q; | Q;) + const.

At each step of sparse variational message passing we minimize KL (Q; I Q;) to within some €
which iteratively minimizes the global objective.

Q@ (X). Since the KL divergence is always greater than or equal to zero, £ (Q (X)) > —log Z (y)
and the KL divergence is zero when the free energy equals the negative log partition function. Impor-
tantly, since log Z (y) is constant for a given observation, minimizing the free energy also minimizes
the KL divergence.

Mean field updates will minimize KL (Q (X)) || P (X | y)) for a factored distribution Q (X) =
[, @ (X;). Under this @, we can express our objective as

£(Q(X)) — ZHQ (z:)log F (z,y) + Z_ZQ (z:)1og Q (w;) 3)

- ZQ (z;) (log F' (, y))ni# ooy — H(Q(X;)) — ZH (Q(X:), @
T i#£]

where we have factored out one of the @ (X;). Adding Lagrange multipliers to form a new func-

tional and solving for our update Q* (x;) we have

1
Q* (v;) = 7 exp <<logF (. y))]‘[i# Q(Xi)> ®
J

where Z; is a normalization constant computed for each update. (See Appendix I for the complete
derivation). Finally, iteratively updating each ) (X;) in this manner will monotonically decrease
L (Q (X)) and minimize our KL divergence.

2.2 Sparse updates

Given (2), (4) and (5) we can express KL (Q (X) || P (X | y)) as a function of a sparse update
Q' (X;), mean field update Q* (X;) and the other Q (X;), where i # j:

KL (Q(X) || P(X | y)) =KL(Q' (X)) || Q" (X;)) +log Z; +log Z (y) — Y H (Q(X3)) (©)
i#j
Since the last three terms of (6) are constant with respect to our update Q' (X;),
KL(Q (X) || P(X | y)) is minimized when Q (X;) = Q* (X).

If each X is restricted to the subset of values z; € A; C X', we may define sparse updates Q (X i)
in terms of the original update Q* (X;) and the indicator function 1x, (z;) for the restricted range:

. ]-X]- (x])

Q (z5) = TQ* (z5) (7
J



where the new normalization constant is

Zp=> Q ()= Y Q (z;) ®)

T;EX;

Thus the divergence between a sparse update and the original is

KL(Q (X)) Q" (X)) = Z”jz(,?”)@*<xj>log<<1g@@*<xj>> / Q*(%))

x J

1 *
= flogZéz Z Q" (z)

J zeX;

= —log Z]/-. )

As a consequence, it is straightforward and efficient to compute a sparse Q/ (X;) such that
KL (Q' (X;) || Q* (X;)) < e by sorting the Q* (z;) values and performing a sub-linear search
to satisfy the inequality. For example, if we wish to preserve 99% of the probability mass in the
sparse approximation we may set € = — log 0.99 = .01. Figure 1 illustrates the way in which sparse
VMP iteratively minimizes the KL(Q || P) after each iteration of message passing. Because of
the resulting sparsity of Q(X;), subsequent messages remain sparse. In section 4 we show how the
increase in inference speed can be dramatic.

3 Stereo vision and CRFs

The stereo vision problem is to estimate the disparity (horizontal displacement) at each pixel given
a rectified pair of images. It is common in MRF-based stereo vision methods to work with functions
of the form
—log F(z,y) = > U(zi,y) + Y _. V(i 2j,) (10)
i inj
where U is a data term that measures the compatibility between disparities x; and observed intensi-
ties y, and V' is a smoothness term between disparities at neighboring locations 7 ~ j [4].

We can construct a formal probabilistic model for stereo based on this function using a CRF with
the following construction

—log P(X|y) = —log F(X,y) + log Z(y), (11)
where
F(X,Y)=]]oX:v) [[¥(Xi X;,9) (12)
i i~

such that our CRF has the standard form

1
P(X|y)ZWHQ(XZ';ZJ)H\II(XMX%?J)' (13)

i i~j

3.1 Specific model

The CRF of (13) is a general form. Here we present the specific CRF we used for our experiments
in section 4, following the model proposed by [8]. The data term U simply measures the absolute
intensity difference between corresponding pixels, summed over all color bands. We use the measure
of Birchfield and Tomasi [2] for invariance to image sampling. The smoothness term V' is a gradient-
modulated Potts model [4, 8] with K = 3 parameters:

V(x“x]’y) B { Ok ifl‘i 7é €T, andgij € Bk- (14)

Here g;; is the color gradient between neighboring pixels ¢ and j, and the By, are three consecutive
gradient bins with interval breakpoints from the set {0, 4,8, co}. Let ©,, denote all the parameters.



Initial 8, Start

Initial 8, Converged

Learned 6, Start

Learned 6, Converged

Log Num. Pixels
3
\
\

S o o o

Log Num. Pixels

=)

Log Num. Pixels
S

=)

Log Num. Pixels
5, 5. 3 3

S

2 4
Entropy

o

2 4
Entropy

2 4
Entropy

o

2 4
Entropy

Figure 2: Histograms of approximate marginal entropies H (Q (X;)) from the variational distribu-
tions for each pixel after the first round and convergence of the mean field updates; values at the
initial and learned parameters O, are shown.

3.2 Parameter learning
Since the function F' (x, y) is parameterized by ©,,, these parameters may be learned in a maximum-

likelihood framework with labeled training pairs (x, y). The objective function and gradient for one
such example is

0(6,) log P (z | y; ©,) (15)
= logF(z,y:0,) —log Z (y) (16)
VO (®v> = <logF($ay;®v)>P(X\y;@v) _lOgF(may;eu)' (17)

The particular factorization of F (x,y) in (10) allows the expectation in (17) to be decomposed into
a sum of expectations over each term U (z;,y) and V' (z;, z;, y) using the corresponding marginals
P(X;|Y;0,)and P(X;, X; | y; ©,), respectively.

In previous work [8], graph cuts was used to find the most likely configuration and a point estimate
for P(X | y;0,) was used to calculate the gradient. This could potentially be problematic for
learning when the posterior is multi-modal or diffuse and unlike a delta function. Fortunately, the
variational distribution @ (X') provides approximate marginals that may be used in a straightforward
manner to calculate an approximate gradient. We show in our experiments that using these marginals
for learning is better than using a point estimate in situations when there is greater uncertainty in the
model.

4 Experiments

In this section we present the results of two experiments. The first compares sparse and traditional
mean field methods for approximate inference, showing how sparse message passing can greatly
accelerate free energy minimization. The second is an experiment in learning that compares the use
of approximate marginals from sparse mean field with a point estimate of the posterior marginals
from graph cuts.

As training and test data we use 6 stereo datasets with ground-truth disparities from the Middle-
bury stereo database (http://vision.middlebury.edu/stereo/data). These images
are roughly 450 x 370 pixels and have discretized disparities with N = 80 states. Thus, when there
are more than 600,000 messages of length IV to send in any round of mean field updates for one
image, shortening these to only a few states for most messages can dramatically reduce computation
time.

4.1 Inference

During inference, the variational distribution @ (X) provides approximate marginals ) (X;) that
may be used for calculating an approximate likelihood for a training instance. These marginals are
also used to calculate the mean field updates during free energy minimization. If these marginals
have many states with very low probability, discarding them will have minimal effect on the update.

Figure 2 shows histograms of the marginal entropies H (Q (X;)) during free energy minimization
with two sets of parameters, the initial parameters, ©, = 1, and the learned ©,. We initialize the
variational distributions @ (X;) to uniform and perform one round of updates. Although most pixels
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Figure 3: Comparison of CPU time for free energy minimization with sparse and dense mean field
updates using learned parameters ©,,.
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Figure 4: CPU time versus energy for graph cuts, sum-product belief propagation, and mean field
using learned parameters ©,. The latter two do not explicitly minimize the energy; we use the
maximum posterior marginal (MPM) prediction using the current approximate marginal at each
iteration.

have very low entropy, the initial model still has several with 2-4 bits of uncertainty. Once the model
parameters are learned, the marginal entropies after one round of mean field updates are much lower.
By the time the mean field updates converge and free energy is minimized, only a small percentage
(less than three percent) have more than a half bit of uncertainty.

Because the variational distribution has many states carrying low probability, we may greatly accel-
erate the update calculations by dropping these states according to our bound (9). Figure 3 shows
the free energy after each round of updates for both sparse and dense mean field. In all cases, sparse
mean field has nearly reached the free energy minimum before one round of dense mean field up-
dates is done. Importantly, the minimum free energy found with sparse updates is roughly the same
as its dense counterpart.



As a comparison, we show in Figure 4 the true energy log F' (x, y) on several images during each
iteration of several methods. It is important to note that only graph cuts explicitly minimizes this
energy, but it is demonstrative of the relative speed and behavior of the methods.

Table 1: Comparison of learning with sparse mean field and graph cuts. Err% is the percentage of
pixels with an incorrect disparity and RMS is the root mean square error. See text for details.

Training Testing
\ Training Method | Metric | Art | Books | Dolls | Laundry | Moebius | Reindeer
- En% | 414 ] 573 | 284 | 55.1 36.1 33.1
Initial Parameters RMS | 126 | 161 | 856 | 132 125 1.1
En% | 227 | 257 | 115 | 292 6.9 165
Graph Cuts (One Iter.) RMS | 683 | 104 | 329 | 791 9.05 450
En% | 22.0 | 217 | 117 | 249 47 1538
Graph Cuts (Convergence) [ prrs | 680 | 9.03 | 325 | 691 597 458
_ En% | 165 182 | 106 | 222 122 6.6
Sparse Mean Field (One Iter.) [ oy iq [626 | 867 | 248 | 584 4.64 3.62

(LA 2

Figure 5: Test images comparing prediction (using graph cuts) after one round of learning with
graph cuts (top) or sparse mean field (bottom). Occluded areas (black) are excluded during training
and testing since the stereo model does not account for occlusions.

4.2 Learning

As Figure 4 shows, graph cuts does a very good job of finding a minimum energy configuration. This
is useful for making a prediction in a good model. However, maximizing the log likelihood (16) for
learning requires marginals on the lattice. When the model is initialized, these marginals have higher
entropy (Figure 2) representing the uncertainty in the model. At this stage of learning, the point
estimate resulting from an energy minimization may not be a good approximation to the posterior
marginals. In fact, with initial parameters ©,, = 1, sparse mean field finds a lower free energy than
the graph cuts solution, if we take the graph cuts solution as a point estimate distribution having
zero entropy. We compare the results of learning using two methods for calculating the gradient:
sparse mean field and graph cuts. As demonstrated earlier, the model has the highest uncertainty
at the beginning of learning. It is at this point when sparse mean field has the greatest potential for
improvement over graph cuts. For learning we use an initial step size of 1 x 10~* and a simple
gradient descent algorithm with an adaptive rate. For prediction evaluation, we use graph cuts to
find the most probable labeling, regardless of training method.



Table 1 gives an evaluation of four parameter values. First, the results with the initial parameters
are given. Next, we show the results after one step of gradient descent using graph cuts to calculate
the gradient. In the third entry, the model is trained to convergence (the norm of the gradient is
sufficiently small) using graph cuts as the inference method throughout learning. Finally, we show
the results after one step of gradient descent using sparse mean field to calculate the gradient.

After one iteration, the training error with sparse mean field is markedly lower than that of the model
fully trained with graph cuts for inference. The test RMS is uniformly lower with sparse mean field
by at least one pixel. Although one image tests better in terms of absolute correctness (0/1-Loss),
learning with sparse mean field provides predictions that are closer to the true disparity. Figure 5
shows the corresponding images

5 Conclusions

In this paper, we have provided a framework for sparse variational message passing. We have shown
that calculating sparse updates to the approximating variational distribution can greatly reduce the
time required for inference in models with large state spaces. Furthermore, we can put a variational
bound on the cost of our approximation.

Not only is inference time reduced, but the resulting marginals provide better parameter estimates
when used for learning in a maximimum likelihood framework. Graph cuts is often the best at
finding a low energy solution in a given model. However, for model learning, a distribution over
configurations is required. We find that in models where there is more uncertainty (as in the early
stages of learning), sparse mean field provides a lower free energy than graph cuts. Thus, mean field
methods are a better approximation to the probability distribution used in learning.
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Appendix I

To compute our update we use a Lagrange multiplier form a new functional, such that
LQX)=L@QX)+> X\ [ZQ(xi)ll (18)

In this form, one can see that taking the functional derivatives with respect to each value @ (z;) we
have

0 ~
— X)) =—(logF 1 )+ N+ 1
50 L QX)) =~ g F(e.0)y o) T 108 Q) + N+ X, (19)
Setting (19) to zero, we have
log @ (z;) = — <108§F($7y)>1‘[#j oxy — N =X (20)

where each ); thus has the form

Aj =N +log Zexp <logF(:c,y)>H#j QX1

Zj
such that

1
Q" (z;) = 7z, P <<logF (@ Y))p,., Q(Xi)) 2n



