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Abstract

A database view is a dynamic virtual table composed of the result set of a query, often executed over
different underlying databases. The view maintenance problem concerns how a view is refreshed when the
data sources are updated. We study the view maintenance problem when self-interested database managers
from different institutions are involved, each concerned about the privacy of its database. We regard view
maintenance as an incremental, sequential process where an action taken at a stage affects what happens at
later stages. The contribution of this paper is twofold. First, we formulate the view maintenance problem
as a sequential game of incomplete information where at every stage, each database manager decides what
information to disclose, if any, without knowledge of the number or nature of updates at other managers.
This allows us to adopt a satisficing approach where the final view need not reflect 100% of the databases
updates. Second, we present an anytime algorithm for calculating e-Bayes-Nash equilibria that allows us to
solve the large games which our problem translates to. Our algorithm is not restricted to games originating
from the view maintenance problem; it can be used to solve general games of incomplete information. In
addition, experimental results demonstrate our algorithm’s attractive anytime behavior which allows it to
find good-enough solutions to large games within reasonable amounts of time.

1 Introduction

A database view is a dynamic, virtual table composed of the result set of a query executed over one or more
data sources. A view provides a temporary, selective representation of database fields from the underlying
sources. The view maintenance problem [3, 5, 7, 13, 23] concerns how a view is refreshed when its underlying
data sources are updated. This problem has been extensively studied in settings where view refreshing is
expensive due to factors like the communication cost of transferring large amounts of data.

We study the view maintenance problem when self-interested database managers from different institutions
are involved, each concerned about the privacy of its database. In this setting, a database manager has to
decide how much it contributes to refreshing the view, and consequently how much privacy loss it suffers,
based on the cost of disclosing various pieces of information and the reward received by the set of managers
as a whole for maintaining the view. Because a manager’s final payoff also depends on the actions of other
managers, each manager needs to reason about the nature and number of updates at other databases, what
they can reveal in the future and the probability of their revealing it.

The contribution of this work is two-fold. First, we formulate the view maintenance problem as a sequential
game of incomplete information. Second, we propose a general anytime algorithm for approximately solving
games of incomplete information by searching the space of strategy profiles for an approximate equilibrium.
Our algorithm has three novel features: 1) it collapses the game tree as a pre-processing step, resulting in more
tractable trees; 2) it generates local measures that guide the search by indicating which parts of a strategy
profile are least stable (and therefore yield the most improvement if remedied); 3) it proposes a global measure
of the stability of a profile as a whole by calculating upper bounds on players’ regrets when playing this profile.

Both of our contributions mark a departure form previous related work. Previous work on the view main-
tenance problem considered a setting where there is a single database manager who reveals all necessary clues
in one go. Our setting is different in having multiple managers who reveal information incrementally. Also,
unlike the work in [5] and [23], we reason about the tradeoff between the amount of communicated information
and how up-to-date the view is in a game-theoretic way. Even when there are multiple database managers,
previous work assumed their cooperation. As far as we know, we present the first work to consider the view
maintenance problem with multiple self-interested database managers, a setting that is likely to increase in
prevalence with the popularity of web sites drawing information from various competing sources.

Some work (e.g. [10] and [21]) considers the problem of computing the result of a query defined over
private datasources, a special case of the Secure Multi-party Computation (SMC) problem [35]. The difference
between this kind of work and ours is that in SMC, the parties follow a protocol to carry out a computation.
In our problem, each party is a decision maker that can accept or refuse to contribute to different parts of the
computation based on costs and rewards; the involved parties do not follow a pre-set protocol, and thus the
computation does not necessarily proceed to completion. Our problem is a decision-making problem rather
than a protocol design one.



Our algorithm is different from work in the area of incomplete information games in the following respects:
1) it deals with sequential rather than the 1-shot or repeated games which have attracted the most atten-
tion so far; 2) it does not make assumptions about the interaction graph [17, 31, 32, 34] of the players (i.e.
no assumptions about how or which players interact with each other); 3) unlike domain-specific algorithms
(e.g. [18, 9]), our algorithm is not restricted to games originating from the view maintenance problem; it can
be used to solve general games of incomplete information. Our algorithm demonstrates attractive anytime
behavior which allows it to find good-enough solutions to large games within reasonable amounts of time.

This document is organized as follows. Chapter 2 presents the context in which we set our view maintenance
problem. Chapter 3 gives a brief background on games and equilibria, presenting the problem of finding an
equilibrium as a search process. Chapter 4 shows how we abstract the view maintenance problem and formulate
it as a game. Our anytime search algorithm is presented in Chapter 5. Chapter 6 shows experimental results.
Related work is discussed and compared in Chapter 7. We conclude and discuss areas of future work in
Chapter 8.

2 View Maintenance with Self-Interested Database Managers

The view maintenance problem [5, 20, 23, 7] concerns how database views are refreshed when base relations
-tables from which data populating the views is extracted- in the underlying databases are updated. This
problem has been extensively studied in settings where view refreshing is expensive (e.g. because the amount
of data to be communicated from databases to the view owner is large). In this section we detail the setting
in which we consider the view maintenance problem and discuss the merits of the approach we take to solve
it. We end the section with the assumptions we make in solving the view maintenance problem.

2.1 Setting

In our setting, the database managers (DBMs) disclose some information about their database updates in
order to provide the application server responsible for the dynamic web page (henceforth referred to as the
view holder or VH) with a more up-to-date view. In return, VH gives the coalition of DBMs a reward that
depends on how much information about their respective updates they disclosed and how much is still hidden.
The reward is divided equally among the DBMs; VH does not care about the individual contributions of the
DBMs. Typically, no individual DBM can determine what the refreshed view should be. Different courses of
actions incur different privacy costs for different coalition members. The question is which course of actions
to pursue, given that each DBM wants to maximize its net payoff. We investigate the tension between the
self-interested behavior trying to minimize privacy loss and the cooperative behavior necessary for the coalition
to collect a reward.

In our setting, the updates made to the base relations are processed in batches; the process of refreshing
the view happens at intervals rather than continuously as updates are made. These intervals can be fixed in
length or can depend on the number of updates made (run the refresh process after z updates are made). At
the end of an interval, the updates made since the last refresh make up the input to the refresh process. We
assume that the VH gives the DBMs T time steps to (partially) update the view. There are therefore T'
decision points for each DBM.

In this work, we are mainly concerned with conjunctive queries. Conjunctive queries were first introduced
by Chandra et. al [6] and include a large number of queries used in practice. A conjunctive query takes the
form (z1, 2, ..., 25) k41, .., Tm-A1 A Az A ... A, where each A; is an atomic formula R;(y1, ...y;) where each y
is either a variable or a constant and each R; is a relation. The atomic formulas specify which tuples in a base
relation match the query. An example conjunctive query is “List all departments that sell pens and pencils”
given a relation Sales(Department,Item). This query would be written as (z)Sales(z, pens) ASales(z, pencils).

Conjunctive queries can be used to represent queries involving selections, projections and joins, known as
select-project-join queries. For example, the query “List the names of authors of books published by PHI”
over relations Books(bookI D, title, publisher, authorI D) and Authors(authorID,name,city) can be written
as (z)3x1, w2, 3, v4.Books(x1,xa, PHI, x3) N Authors(zs,x,zs). Note how the join was achieved by using
the same variable as the foreign key in Books and the primary key in Authors. Primary keys enforce entity
integrity by uniquely identifying entity instances. Foreign keys enforce referential integrity by completing an
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Figure 1: The View Maintenance Problem

association between two entities. The original definition of conjunctive queries does not allow for comparisons
between data values, but the class of conjunctive queries was extended to include built-in predicates which are
arithmetic comparisons.

2.2 Owur Approach

Our proposed approach has two distinguishing features. First, we regard refreshing the view as an incremental
process where at each step, each DBM decides what to disclose given everything the DBMs have disclosed so
far, the cost of available actions and the expected reward from each. A DBM therefore needs to reason about
the long-term as well as the immediate effects of its actions. An action with a low privacy cost (short term
cost) could lead to a situation where actions with high cost are required (long term cost). This reasoning must
deal with the uncertainty associated with not knowing the private information of the other DBMs. Second,
we adopt a satisficing approach where the final view need not reflect 100% of the databases updates. This
creates a tradeoff between the amount of privacy given up by different DBMs and the quality of the final view
(and thus the DBMs’ final reward).

Our incremental satisficing approach has the advantage of offering the DBMs a continuum of options,
rather than a binary decision of whether to fully refresh the view or not. This continuum allows the DBMs to
reason about the privacy-freshness tradeoff at a much finer granularity. If the privacy cost of fully refreshing
the view is C' and the reward given by the VH at the end is R, then if C' > R, an all-or-nothing approach
would result in the DBMs deciding not to reveal anything. On the other hand, if it is the case that there is a
partial refresh that costs C' — €; and results in reward R — e and C' — ¢; < R — €3, the DBMs will go ahead
and provide information needed for this partial refresh.

We concern ourselves with a continuum of information that can be disclosed about the updates to the
underlying databases . Along this continuum, a DBM can display any fraction of changed tuples. However,
there are some satisficing behaviors that cannot be represented using our model. For example, our reward
function (detailed later) cannot model a setting where the user is satisfied knowing there were more insertions
than deletions, and does not care about more information regarding the particular insertions and deletions.

There are at least 2 reasons that motivate a satisficing approach in the view maintenance problem in
particular, and situations where databases reveal information about themselves in general. For the view main-
tenance problem, the all-or-nothing approach may not be necessary if the user has different preferences for
the different kinds of database updates. For example, a user can tolerate being presented with out-of-date
records (i.e. not all deletions are reflected in the view), but cannot tolerate missing any tuples that have been



inserted. In this case, the V H can get the DBMs to disclose as many insertions as possible by increasing the
penalty and reward associated with missing insertions. The DBMs will find that the way to maximize their
payoffs is to disclose more insertions than other types of change.

The second example of motivating situation is not restricted to the view maintenance problem and involves
any type of information disclosure. Consider an information seeking agent who needs to make a decision
whether to invest in obtaining a large body of information which may or may not turn out to be useful to him.
With an all-or-nothing approach, the agent is forced to make the decision up front, which involves high risk.
With the ability to obtain crude information initially, followed by finer levels of detail, this agent can obtain
as much information as necessary to provide him with an adequate level of confidence in his decision before
potentially investing in obtaining the whole body of data. One example can be an investigator who cannot
have access to a certain sensitive database without going through the process of obtaining a subpoena. If he
can get partial information about this database that helps him decide whether it actually contains relevant
information, he will make a more informed decision on whether or not to go with the subpoena process.
Another example is a marketing firm that needs demographic data about a certain neighborhood to decide
whether to launch a campaign there. Partial information about the income levels in the neighborhood can help
the firm reach a better decision. Generally, an incremental satisficing approach is suitable where a decision
needs to be made whether to seek more information, and the quality of this decision increases with increased
knowledge about the nature of information sought.

2.3 Assumptions

We make the following assumptions regarding the setting of the View Maintenance problem:

e The view query is known to all DBMs and information disclosed by a DBM is available to V H as well
as all other DBMs

e No individual DBM can tell what the refreshed view should be
e Each DBM incurs its own privacy and communication costs
e Rewards are divided equally among all DBMs, regardless of their contribution

e The cost and reward of a piece of information are not necessarily related. The former depends on the
privacy/communication cost as incurred by the revealing DBM. The latter only depends on the user
preferences concerning the relation(s) and the type of change in question, as detailed below

e Revealing tuples of the same type (e.g. all inserted tuples) incurs the same cost for a DBM. In principle,
our approach can handle different costs for different tuples. However, in this case we have to distinguish
between the actions of revealing different tuples, which would result in a much higher branching factor
of the game tree derived from an instance of the View Maintenance problem.

e The view refresh decision process is invoked periodically. Every invocation is a decision process that
considers all changes that happened since the last invocation, in addition to left-over changes from the
last decision process.

3 Games and Searching for Equilibria

In this section we give a brief background on games, their types and their solutions, with particular emphasis
on sequential games of incomplete informaiton. We then describe how the process of finding an equilibrium is
framed as a search process and what it means to search for an approximate equilibrium.

3.1 Background: Games and Their Solutions

The field of game theory focuses on situations where self-interested players (also referred to as agents) make
decisions that affect each other and affect a common environment. Each agent tries to respond to the decision-
making strategies of the others in a way that maximizes his own reward. These situations are typically called
games. Games can be divided along several axes. Perfect recall (vs. imperfect recall) games involve players
who never forget actions, whether theirs or others’, once they observe them. In games of incomplete infor-
mation (vs. perfect information), a player does not know what moves have already been played by other



players, resulting in uncertainty about the current state of the world and multiple game situations being in-
distinguishable to that player. Games can also be classified by the number of stages (decision-making points)
they contain; 1-stage games involve only one stage of decision making while in sequential games, players take
moves after observing moves of chance (e.g., a roll of a die) and moves of the other players. Sequential games
are also referred to as extensive form games (EFGs). An EFG consist of multiple stages where each stage is
a game. Actions taken at a stage affect the game that will be played at the next stage, thereby making it
necessary to think about long-term consequences of actions.

In game theory, a solution concept is any rule for specifying predictions as to how players are expected to
behave in any given game. A solution concept may specify more than one prediction for a given game, where
the selection among these predictions in a specific real situation may depend on the environment . A solution
is a strategy profile that prescribes, for each agent, what it should do under every possible contingency in
the form of a probability distribution over actions available at that contingency. The solution is usually an
equilibrium set of strategies (according to some notion of equilibrium), one for each player, where no player
stands to gain by unilaterally deviating from its strategy. The general opinion is that reaching an equilibrium
is a desirable state of affairs since it provides stability to the set of players. Another advantage of playing an
equilibrium strategy is that a player can do no worse, even if his strategy is revealed to the opponents. Some
researchers, however, find the quest for equilibrium unjustified, as in [30]. One objection concerns the fact
that there may exist multiple equilibria and simply finding one of them is not enough; we need to make sure
that all players play the same equilibrium.

Formally, an EFG is a tuple < I,V, E, P, H,u,p > where:

e [ is the set of players

The pair(V, E) is a finite directed tree with nodes V' and edges E and Z is the set of terminal nodes

Player : V \ Z — I determines which player moves at each decision node. Player induces a partition
over V' \ Z and Player; = {x € V' \ Z|Player(z) = i} is the set of nodes at which player i moves

e H ={Hy,...,H,} is the set of information sets, one for each player. Each H; is a partition of Player;.
The information set of a node z is denoted as h(z)

A;(h) is the set of actions available at information set h € H;

e u: Z — R is the utility function defined over the set of terminal nodes. For z € Z, u;(x) is the payoff
to player 7 if the game ends at node x

p is the transition probability of chance moves

3.2 Games of Incomplete Information

Games of incomplete information are used to model situations where each player has private information,
his type, that affects his own payoffs but is unknown to the other players. However, the prior probability
distribution over agents’ types is common knowledge. Such game of incomplete information, where an agent is
missing some information about one or more aspects of the other agents, is transformed to a game of imperfect
information where the the agent knows some probability distribution over the missing information, but does
not have perfect knowledge of what it is exactly [15]. This transformation is effected by adding random moves
of Nature assigning a type for each player according to the prior distribution. A player cannot observe moves of
Nature that assign other players types. Additionally, the rules of the game may stipulate that certain actions
by other players are not observable by this player. As a result, a player may not be able to distinguish among a
set of nodes in the game tree if all these nodes have the same observable history from this players prespective.
An information set is a set of nodes (members of the information set) indistinguishable to a player. Conse-
quently, a player makes its decision as a function of the information set, rather than the particular node, it is at.

In incomplete information games, the first n levels of the game tree represent chance nodes where at level
i, Nature assigns player i’s type with probability specified by the commonly known probability distribution
over i’s type space. A strateqy o for player i is a complete plan covering all possible contingencies for every
possible type. For each information set h € H;, a behavior strategy is o;(h) € A(A;(h)) where A(A4;(h)) is
the set of all probability distributions over actions available at information set h. A strategy profile is a set



of strategies 0 = (01, ...,04,), one per player. We write o_; = (o1,...,04-1,0i+1, -..,0n) to denote the set of
strategies of all players except 1.

Notions of Equilibrium

As mentioned earlier, the goal in competitive settings is typically to find a strategy profile from which no player
has motivation to deviate. In games of perfect information, the Nash equilibrium is the used solution concept.
A strategy profile o for a game I' =< I,V, E, P, H, A, u,p > is a Nash equilibrium if u;(c;,0_;) > ui(o},0_;)
for all i € I and all of. Some additional requirements led to the appearance of equilibrium refinements;
definitins of equilibria that stipulate more conditions than the basic no-deviation condition. For example,
these refinements may aim to maximize some measure of social utility, guarantee that a player acts rationally
even at nodes in the game tree that would not be reached if the equilibrium profile is played, or guard against
players reacting to incredible threats.

A Bayesian Nash equilibrium (BNE) of a game with incomplete information I" corresponds to the Nash
equilibrium of the normal form game derived from I'. BNE is defined as a strategy profile and beliefs specified
for each player about the types of the other players. The expected payoff for each player is maximized given
their beliefs about the other players’ types and given the strategies played by the other players. When using
this notion of equilibria, the players may reach an unrealistic equilibrium that does not make sense. The reason
is a phenomenon known as incredible threats where a player ¢ tries to avoid a threat made by another player
j but the threat is implausible in that j would not carry out the threat if it is playing rationally.

To remedy the incredible threats problem of NEs and BNEs, we need to ensure that players make a rational
decision even at nodes off the equilibrium path. In other words, players should play rationally in every subgmae;
a part of the game tree that does not cut across any information set. In games of complete information, every
node is the root of a subgame and this equilibrium refinement is called subgame perfect equilibrium. In games
of incomplete information, however, a game generally has only one subgame, which is the game itself. Perfect
Bayesian equilibrium is an equilibrium refinement that specifies a belief-strategy pair that satisfy the following
condition: the beliefs are consistent with the strategy and the strategy is rational given the beliefs. A player’s
belief is, for every one of his information sets, a probability distribution over members of the information set
reflecting the player’s beliefs about being at each member of the set.

3.3 Searching The Space Of Strategy Profiles
3.3.1 A strategy profile as a point in space

As mentioned earlier, at each h € H;, o specifies a probability distribution over actions available at information
set h. It is therefore straightforward to think of a strategy profile as a point in multi-dimensional space. The
dimensionality of the space is

o> (i) 1)

i=1 he H;

where each dimension extends from 0 to 1. For each player ¢, for each of his information sets h, there is a
dimension for each action available to ¢ at h, except the last action which is assigned the probability left over
from the other actions. Because probabilities of actions at an information set must add up to 1, not all points
in the space correspond to valid strategy profiles. The search for a Bayes-Nash Equilibrium (BNE) is a search
in this multi-dimensional space for a point that satisfies the equilibrium condition: given the other player’s
part of the profile represented by the point, no player would like to deviate from its strategy.

3.3.2 Constraints on a BNE

A point in the above multi-dimensional space is a BNE if it satisfies certain constraints which guarantee that
at each information set of each player, either the player takes the action with the highest expected payoff with
probability 1, or the player is indifferent between actions, in which case the probability distribution over these
actions does not matter. This ensures that no player has any motivation to deviate from the prescribed strategy.

Because our game is a sequential one, we had to devise a set of constraints different from those used for
1-stage games (e.g. [34]). The set of constraints on a strategy profile o is as follows. For each information set



h, for every pair of actions a and b available at h, there is a constraint defined over the difference between their
expected values F(a) — E(b). For any action a, E(a) is expressed in terms of probabilities of actions along all
paths in the game tree that include a, as well as probabilities of chance moves along these paths. Based on
the probabilities assigned by ¢ to playing a and b at h, the type of the constraint is determined to be GTE,
LTE, EQ or DC (don’t care) as follows:

if (0 <o(h,a) <1)A(0<o(h,b) <1) then type = EQ
else if o(h,a) == 1 then type = GTE

else if o(h,b) ==1 then type = LTE

else type = DC

Basically the above constraints make sure that if the player is indifferent between 2 actions, these actions
should indeed have equal expected payoffs. If, on the other hand, the player chooses a certain action all the
time, its expected payoff should be at least as much as that of the non-preferred action. When both actions
have 0 probability, we do not care how their expected payoffs compare.

3.3.3 Approximate BNEs

It is straight forward to see that a point satisfying the above constraints at each information set is indeed
a BNE. However, consider the situation where some of these constraints are violated. For example, what if
E(a) — E(b) = 0.5 for a constraint of type FQ? In this case, the player has a motivation of magnitude 0.5 to
deviate from the prescribed strategy at this information set, assuming the rest of the strategy profile (other
player’s strategy, as well as this player’s strategy at other information sets) is unchanged. For a constraint c,
we denote how much it is violated by .. For example, 6. = 0.5 if F(a) — E(b) = 0.5 and type=EQ, but §. = 0
if type=GTE. § is known in literature as regret.

As will be seen in the chapter on Related Work, a search for an exact equilibrium corresponds to a
Constraint Satisfaction Problem. The search for an approximate equilibrium where some s are non-zero can
be thought of as a Constraint Optimization Problem (COP). In both cases, the variables are the probabilities
of actions and the constraints are as described above. In this work, we try to find an approximate equilibrium
by solving a COP.

4 View Maintenance as a Game

In this section we detail how the view maintenance problem is formulated as a sequential game of incomplete
information. We start by presenting the abstraction we will be using, then give a formal definition of the view
maintenance game. We conclude the section with discussions of two elements of the game; the reward function
and the type probabilities.

4.1 Problem Abstraction

Consider 2 base relations; Authors and Books with DBMs DBM 4 and DBMpg. Consider a view whose query is
"SELECT Title, Author FROM Books, Authors WHERE Books.Pages > 600 AND Authors.City = Manhattan"
displaying the titles of all books with more than 600 pages whose authors live in Manhattan. Denoting insertion
by ¢ and deletion by d, the elements of the vector vfl” =< i{l”, d{l” > represent the number of ¢ and d updates
made to relation R; since the last maintenance process. While vgll shows the counts of all the changes made,
v}, =< i, d},. > shows counts for only those tuples that are judged by DBMj to be potentially relevant (PR)
to the view, i.e. tuples that meet the selection filter specified by the view query for R;. For the conjunctive
view queries we consider, a tuple ¢ in relation R is potentially relevant to the view if it meets the selection
filter specified by query’s atomic formula for R. In our example, a tuple in the books relation is potentially
relevant if the book has more than 600 pages. Depending on whether the tuple(s) from other relation(s) that
a tuple joins with (which we henceforth refer to as complementary tuples) meet their respective filters, the
update may or may not actually be relevant to the view.

We believe elements of the vector v, represent strategic information that DBM; would not like to reveal.
The importance of this information is if DBM; has many PR tuples, it may want to withhold this fact and
wait for some D BM; to disclose tuples rather than go ahead and disclose tuples itself. In this case, D BM;, not

knowing exactly how many PR tuples DBM; has, may worry that not enough reward is being accumulated



and thus choose to disclose its own tuples. This situation is clearly to DBMj’s advantage.

The decision problem is therefore as follows. At each of the T' time steps of the view maintenance process,
each DBM decides which piece of information to reveal; a potentially relevant changed tuple, the complemen-
tary tuple of an already relvealed tuple, or nothing. At the end of T' time steps, the V H gives the DBMs a
reward that depends on the information revealed.

4.2 The View Maintenance Game

Our view maintenance problem can be formulated as a sequential game of incomplete information. Let n be
the number of relations and assume each DBM is responsible for exactly 1 relation. Let ¢ € {i,d} denote a
change made to a relation, which can be insertion or deletion. Let p? be the probability that a relation has &
changes of type ¢ € {i,d}. For simplicity, we assume this probability is independent of the particular relation
in question. The view maintenance game therefore has the following components !:

e I = {DBM,,...,DBM,}

e A;(h) is the set of pieces of information that player j possesses but has not revealed on the path from
the root to members of the information set h

o The type space of player j is 7; = {vi. | 0 < vl [c] < v],[c] Vc € {i,d}}; each type corresponds to a
pair of possible counts of PR tuples for the 2 kinds of change. If there are m tuples as a whole affected
by a given kind of change, the number of PR tuples is anywhere in [0,m]. The size of the type space is
therefore |T| = I, 43 (v, [c] +1) 2

o The transition probability of the chance move assigning player j’s type is p € A(T;) where A(T}) is the
set of all probability distributions over 7;. Assuming the numbers of ¢ and d changes are independent,
. )
the probability of a type is p(v),) = Hce{i,d}pzp”[c]
e The payoff u(z) at a terminal node z is determined by the sequence of actions taken on the path from
the root to z. We need to specify, for each action, the cost to the player disclosing the information and
the common reward that all players get when this information

e T specifies the number of stages in the game

4.2.1 Types and Type Probabilities

We assume that initially, each DBM; discloses its ’UZ”. Alternatively, this information can be obtained from
statistics about how many changes of each type are made to the database, on average. We now discuss some
techniques that can be used to generate the probability distribution over the types of DBM; (i.e. values of v},.).

The probability of a given U{;r can be estimated from historical statistics. A simple technique is keeping a
running average of the number of changes made between each two consecutive refresh processes. Estimating
these counts is actually of broader importance to the databases community. There has been work on estimat-
ing the selectivity of a given query, i.e. the number of tuples that match it [24, 22]. One area where such an
estimate is useful is in query optimization where a database management system tries to evaluate the costs of
different query execution plans. In order to do this, the optimizer needs to estimate the number of tuples that

make up the inputs to the various stages of an execution plan.

Selectivity estimation can done based on very simplified and unrealistic assumptions about the underlying
data distribution. Some commercial database management systems make the attribute value independence
assumption under which a system considers attributes probabilities individually and the joint probabilities
are derived by multiplying the individual probabilities. Real-life data rarely satisfy this assumption. More
involved approaches use sampling-based estimations [14]. Sampling-based techniques are based on the fact
that a large data set can be well represented by a small random sample of the data elements. The selectivity
estimation problem gets more complicated when a query involves multiple attributes in a relation. In this

1We assume that moves are sequential rather than simultaneous; a player taking an action can observe all earlier actions.
2To see how vy, affects the reward function, we follow the argument in [28] whereby information affecting the set of actions
available to a player can be thought of as affecting the player’s reward function. We can think of all the actions being available

all the time, with the resulting payoffs depending on the private information.



case, the selectivity depends on these attributes’ joint data distribution, i.e. the frequencies of all combination
of attribute values [24].

4.2.2 Reward Function

The particular reward function used is key in deciding whether the DBM s will actually end up doing what
we desire them to do; refresh the view as much as possible within their individual requirements to suffer the
least privacy loss possible. We considered the following different reward functions and their suitability to our
setting.

e Reward based on the fraction of changes disclosed

e Reward based on the relevance of the disclosed changes to the view. This has the advantage of ignor-
ing extraneous information and encouraging DBM s to disclose those pieces of information that most
contribute to the utility of the view user

e Each piece of disclosed information has an associated reward, regardless of its relevance

It is clear that the first option is not viable because the amount of change itself is unknown and cannot
be determined unless all changes are actually disclosed. For the game theory formulation, the second option
is not suitable either for the following reasons. First, the size of the game would be huge if reward were based
on relevance. Suppose the DBM of the Books relation Mp discloses a books tuple ¢p affected by a certain
change. Now the Authors DBM DBM,4 can choose to disclose the complementary tuple of tg; ct. To reason
about this action at planning time, DBM 4 needs to attach a reward to it. If this reward is to depend on
whether ct is relevant, this relevance information must be considered at planning time, i.e. DBM 4 has to plan
for both contingencies, relevant and irrelevant. In an incomplete information game, this information would be
part of a player’s type. For n complementary tuples, there would be 2™ different types necessary to represent
possession of this information alone. The size of the game tree would increase significantly and it would be
impractical to plan for every possible relevance contingency.

The second reason for the inadequacy of a relevance-based reward function can be explained at a higher
level. In the preliminary experiments we have conducted so far, sometimes D BM 4 reveals a tuple that incurs
short term loss in the hope that DBMp will reveal its complementary tuple and both agents get rewarded
(regardless of relevance). If the reward were based on relevance, DBM4 would not be so sure that a future
gain will overcome its immediate loss. It does not know whether the complementary tuple will turn out to be
relevant, so it will be reluctant to disclose its own tuple.

We are therefore left with the third reward function which includes 2 components, one for the privacy cost
of an action and another for the reward the V H associates with it. First, we discuss the reward component.
We base the reward for a piece of information on 3 factors: 1) the type of change (i or d); 2) the base relation
affected by the change and 3) whether the information represents a main tuple or the complementary of an
already disclosed tuple. The rationale is that user preferences can be such that one type of change is more
important than the other and some relations need to be more up-to-date than others. The third factor allows
the VH to express different preferences for knowing different kinds of information. As in the case of rewards,
disclosing different pieces of information incurs different amounts of privacy, communication and other kinds
of costs. The incurred cost can also depend on what has been revealed so far (e.g. privacy costs can be sub-
or super-additive).

5 Anytime Algorithm for Computing Approximate BNE

In this chapter we propose a simple algorithm that first collapses the game tree by making “obvious” decisions
and backing up values wherever possible. The algorithm then tries to satisfy constraints derived from the
collapsed game tree “as much as possible” by generating a random initial point and iteratively improving it
until either some user-defined stability measure on the strategy profile is reached or no further improvement is
possible. In the latter case, the point is randomly perturbed and the process repeats. The following sections
elaborate on these steps.



5.1 Collapsing the Game Tree

Our experiments in building game trees from instances of the view maintenance problem show that the size
of the raw game tree is quite large. Examining raw trees shows that there are some nodes at which decision
making is not complicated by the incompleteness of information. These are nodes where a player would choose
to reveal the same piece of information, regardless of the type of the other player. We therefore collapse the
raw tree using the following simple algorithm. Initially, all nodes are roots of collapsible subtrees. The main
idea is to work from the leaves of the tree upward, finding out which nodes are indeed roots of collapsible
subtrees. For each such node, collapse its subtree using simple backups. The node becomes a terminal node
whose payoffs reflect backed up values. Algorithm 1 shows how this is done.

for all [evel such that 0 < level < 2T do
collapsible[level] = non-terminal nodes at depth level
end for
for all [evel such that 0 < [evel < 2T do
for all node in collapsible[level] do
turnPlayer = Player(node)
if ((|h(node)] ==1) v
(|AturnPlayer(h(n0de))|:: ) \%
(best action is the same across h(node))) then
node.payoff = (argmax,c cpirgren C-payoff.turnPlayer).payoff
delete all children of node
end if
remove all ancestors of node from their respective
collapsible[level] arrays
end for
end for

Algorithm 1: Simple algorithm for collapsing trees

Figure 2 shows examples of collapsing. Action nodes are in circles enclosing the number of the acting
player. Terminal nodes are shown in black circles with a pair of numbers specifying the associated payoff for
each player. A dotted box encloses nodes in the same information set. The three situations where a node
can be collapsed are shown; 1) incompleteness of information does not affect the player’s decision (the best
action is the same regardless of which particular node the player is at), 2) node in a singleton information
set and 3) node with a single available action. Because we work from the leaves upward, a node eligible for
collapsing always has terminal children. As will be detailed when we present our experimental results, this
simple collapsing algorithm is very effective for game trees derived from the view maintenance problem.

5.2 Iteratively Improving A Point

To iteratively improve a point, we need to address the following issues:

1. Which component(s) of the point (strategy profile) should we improve? Should we focus on improving
individual constraints or the profile as a whole?

2. How should we explore the space? How do we generate neighboring points to which we can move?

3. How do we assess a point? What measure of a point indicates the algorithm is moving in the right
direction in the multi-dimensional space?

5.2.1 What should we improve?

Improving individual constraints or the profile as a whole amounts to making local or global changes to
a profile, respectively. A local change tries to improve a constraint associated with some information set
h € H; to reduce the regret of player i at h. A global change completely overhauls one or both players’
strategies to get to a more “stable” point; one at which the players’ motivations to deviate is lower. Owing to
the complexity of overhauling a profile, we improve individual constraints with the hope of effecting a global
improvement through local changes. Because it is not easy to determine which local changes produce the largest




Figure 2: Collapsible Subtrees: (a) action b is the best across the information set (b) singleton information
set (c) single available action

global improvement, we use ds as heuristics to decide which parts of a strategy profile are more important
to improve. Constraints with high Js are associated with information sets with high regrets. Therefore when
iteratively improving a point, our algorithm greedily attempts to improve the constraint with the highest §
first. Empirical observations indicate that this heuristic is indeed useful; improving constraints with high ds
results in more stable points. We quantify the notion of stability later in the text.

5.2.2 Generating potential next points

For each variable (action probability) v involved in the constraint with the maximum 6, we calculate the
required change in v to bring § down to 0, assuming all other variables are unchanged. We assess the impact of
each potential change on the ds of other constraints by evaluating the partial derivatives of affected constraints
w.r.t. v. A change that results in a point with greater than or equal stability than the current point is
admitted, and the resulting point is added to the list of Potential Next Points (PNPs). Algorithm 2 shows
how this is done.

¢ = constraint with maximum §.. ¢ = f(v1, ..., vg)
for all j in 1..k do

A = required change in v; to make J. = 0

o' = point obtained by making change A;

if stability(o') > stability(c) then

PNP.add(o")

end if

end for

Algorithm 2: Generating potential next points

The approach described above is actually one of two ways we try to decrease a given §.. Instead of changing
the probabilities of actions involved in the constraint E(a) — E(b) as done above, we can alternatively switch
the player’s preference for a and b by switching their probabilities. This way, a situation where o(a,h) = 0,
o(b,h) = 1 and E(a) — E(b) = 0.5 is rectified by switching the probabilities of a and b, thereby satisfying
the constraint. We generate points from these reversals and as with the first approach, we assess the broader
impact of the change and decide whether to admit the points to PNP.




5.2.3 Assessing a point

Now that we have a set of PNPs, we need to move to the most stable PNP. Even though §s determine which
part of the profile to improve first, these local measures do not provide good basis for comparing the stability
of different points. The problem is that each ¢ specifies the additional reward a player gets if it deviates at a
single information set. This does not say anything about the player’s potential gains if it deviates at multiple
information sets; the gains are at least as large as the largest §, but can be much larger. We therefore need a
global measure that specifies a player’s overall motivation to deviate from (or completely overhaul) its strategy.

Following the notion of e-BNE, we consider a profile stable if no player stands to make more than €% more
reward by deviating from (or completely overhauling) its prescribed strategy. We define a global measure called
Mazimum Overall Motivation(MOM) to deviate. MOM(o) is the maximum, over all players, upper bound on
motivation to deviate from o assuming strategies of other players are held constant. MOM is therefore an
upper bound on €. The lower the MOM, the more stable ¢ is. Approximating an equilibrium this way makes
sense because practically, a player will not want to take on the difficult task of calculating its best response
strategy if it knows that it stands to increase its payoff by no more than €¢%. We capitalize on this “inertia”
and offer each player a “good enough” response to the others’ strategies.

We propose a simple way of calculating MOM. To calculate the upper bound on the motivation of player
1 at point o, we build a modified game [';¢ypeqieq from the original game I'. T'yepeqieq is a single-player perfect
information game where ¢ plays with Nature which we construct as follows. Each node n € h where h € H;
and j # 7 is changed to a chance node where the probability of Nature playing action a is o(h,a). In addition,
the information sets in the original game tree are revealed, i.e. i is granted full access to the history of play
including the moves of Nature that determined players’ types, thereby removing i’s uncertainty about where
it is within a given information set. I'ycyeqaied, being a perfect information game, can be solved by doing simple
backups. i’s payoff in I'yeyeqieq is an upper bound on the payoff of its best response strategy in I', since ¢
can do no better than having perfect information. Because of the simplicity of doing backups, we can quickly
evaluate MOMs for a large number of PNPs.

To summarize, we use a local measure (§) to generate PNPs and a global measure (MOM) to assess and
compare points. The global measure indicates how stable a point is, but does not give indication of how it
should be improved. The local measure indicates where it may be effective to try to improve.

Table 1 shows three kinds of payoffs achieved by two players playing a strategy profile o in an example
game and how they are used to calculate MOM(c). Payoff(o) is the payoff from playing o in the original game
I'. PBR is a player’s payoff from its best response strategy; the best he can get in " given that his opponent’s
strategy is fixed. It is obtained by calculating the player’s payoff in a transformed game where opponent nodes
are changed to chance nodes with action probabilities as dictated by o. PPI is the payoff when playing the
perfect information game I';.cpeqieq- Note that this quantity is easier to calculate than PBR, which is why we
use it in calculating MOM. Since PBR cannot exceed PPI, the overall motivation calculated using PPI is an
upper bound on a player’s percentage regret. MOM is just the maximum overall motivation over all players.
It is easy to see that the following relation holds:

Payoff(oc) < PBR(c) < PPI(o0)

In other words, a player’s payoff from playing o cannot exceed that from playing its best response which in
turn cannot exceed its payoff when all information sets are revealed. In the example shown in the table, player
1 would not benefit from having its information sets revealed (its PBR=PPI). This means that even player 2’s
disclosing its type would not help player 1 get higher reward.

6 Experimental Results

In this section we provide experimental results for two aspects of our algorithm. First, we examine the results
of collapsing game trees. We then demonstrate the performance of our anytime search algorithm on collapsed
game trees. We consider trees from derived from instances of the view maintenance problem as well as general
trees. We conclude with important remarks on the presented results.



Table 1: Calculating Maximum Overall Motivation

| Quantity | Player 1 | Player 2 |
Payoff(o) 8.97 7.88
Payoff of B.R.(PBR) 10.39 8.48
Payoff in T',cpearea (PPI) 10.39 9.09
Overall Motivation 15.85% | 15.26%
(PPI-Payoff(c))/PPI * 100%
MOM 15.85%

Table 2: Collapsing VM trees

T Vall Raw Avg %
Size | Reduction

<1,1> 716 84.3
9 <1,2> 2253 89.5
<2,1> 2253 88.8
<2,2> 6847 84.7
3 <1,1> 3608 91.2
<2,1> 15423 88.9
<3,1>(5) | 36232 92.9

6.1 The Effect of Collapsing

The first set of experiments we conducted investigates the efficacy of our collapsing algorithm for trees from
random instances of the view maintenance problem (henceforth called VM trees) as well as general trees. Ta-
ble 2 shows the result of collapsing VM trees. Both players have the same type space (vg;). Unless indicated
otherwise in brackets, we generated 10 random instances per configuration for a total of 65 instances. As
can be seen, the size of the collapsed tree is roughly an order of magnitude smaller than the raw tree. This
pre-processing step is therefore very useful for providing our anytime algorithm with tractable input.

To see how much general game trees collapse, we generated trees where both players have the same num-
ber of types and the same number of actions is available at each information set. We generated 10 random
trees for each configuration < T, numTypes,numActions > where 1 < T < 4, 2 < numTypes < 3 and
2 < numActions < 3 (N/A entries were too large to generate). Payoffs were generated randomly in the range
[0,15]. Table 3 shows the raw tree size and average percentage reduction for these configurations.

Clearly, trees derived from the view maintenance problem are much more susceptible to collapsing than
general trees. To understand why this is the case, we need to remember the source of uncertainty faced by a
player in a VM tree. With imperfect information about player j’s type, player 7 is uncertain about the number
and nature of tuples yet undisclosed by j. However, there is no uncertainty regarding the payoffs of actions.
This results in the lowest level of the tree always collapsing, making it more likely that levels higher up in the
tree collapse as well (a node is eligible for collapsing only if its children are terminals).

6.2 Performance of the Anytime Search Algorithm

Our second set of experiments investigates the performance of our anytime algorithm on VM trees as well as
general trees. For VM trees, randomly generated costs and rewards sometimes result in a tree which collapses
to an empty game. This happens if, for example, it is always lucrative to disclose all information regardless
of any uncertainty. Out of the 65 VM trees reported in Table 2, 52 collapse to non-empty games. For each
of these 52 trees, we ran our search algorithm 3 times starting from different random points. Table 4 shows
the results binned by tree size and amount of time taken to reach a regret of 5% or less. The table shows the
percentage of trees in each size bin for which the algorithm could reach the desired regret within the indicated
time range. As can be seen, for most of the trees in any given bin, the algorithm demonstrates good anytime
behavior by reaching the required level of regret within 100s.

General trees proved to be more challenging. Table 5 shows the time taken to reach a regret of 5% or less



Table 3: Collapsing general trees with 2 (top) and 3 (bottom) types per player
#Actions=2 #Actions=3

T | Raw Avg % Raw Avg %
Size | Reduction | Size | Reduction

1 34 23.5 58 15.5

2 130 25.5 490 21.9

3 | 514 27.3 4378 22.3
42050 | 249 |N/A| NJ/A

1 70 11.1 124 4.4

2 | 286 11.7 1096 7.5

3 | 1150 13.5 9844 7.9
44606 | 126 | N/A| NJ/A

Table 4: Anytime performance on VM trees (threshold=5%)

Tree <20 | 21-100 | 101-500 | 501-1000 | > 1000
Size secs secs secs secs secs
0-200 100% - - - -
200-400 94% 2% 2% - 2%
400-1000 | 45.8% | 41.7% 8.3% 4.2% -
1000-2000 | 19% 50% 4.2% - 16.7%
2000-3600 - 63% 18.5% - 18.5%

(we omitted time bin 500-1000 seconds because it is empty) for 73 random trees, each solved 3 times starting
from random points. For the first 3 tree size bins, the algorithm manages to reach the desired regret level
most of the time. For trees with more than 800 nodes, however, the algorithm needs an unreasonable amount
of time and possibly never gets to the threshold. The situation is much better if we set the desired regret to
be 10%, as shown in Table 6. Relaxing the threshold gets us a solution within 500 seconds in at least 75%
of the cases. We plan to investigate what characteristics of trees derived from the view maintenance problem
make them more amenable to an algorithm like ours.

Remarks

Some remarks about our results are in order:

e It should be noted that there are many possibilities for fine-tuning the search algorithm (e.g. random
restarts and changing the magnitudes of random perturbations as the search proceeds), but we leave this
for future work.

e It is important to remember that a strategy profile provides players with a plan of action for every type
with non-zero probability in the game definition. Therefore we only need to run the search algorithm when
the players’ type spaces, or the probability distributions over them, change. In the view maintenance
problem, database managers can continue using a strategy as long as the number of potentially relevant
tuples and the probability distributions over them are unchanged. So the time taken to calculate a
strategy profile is amortized over all the view maintenance episodes for which the profile is valid.

Table 5: Anytime performance on general trees (threshold=5%)

Tree Num. of | <20 | 21-100 | 101-500 | > 2000

Size Trees secs secs secs secs

0-200 105 63.8% | 6.7% - 29.5%
200-400 75 56% 22.7% 8% 13.3%
400-600 9 11.1% | 77.8% 11.1% _
800-1100 30 _ 10% 10% 80%




Table 6: Anytime performance on general trees (threshold=10%)

Tree Num. of | <20 | 21-100 | 101-500 | > 2000

Size Trees secs secs secs secs

0-200 105 88.6% - _ 11.4%
200-400 75 90.7% | 5.3% - 4%
400-600 9 88.9% | 11.1% - _
800-1100 30 6.7% 30% 40% 23.3%

e Finally, we would like to note that for most of the games reported in this work, Gambit [26], a library
of tools and algorithms for the construction and analysis of games, was unable to find a solution. We
omit a detailed comparison because Gambit only returns exact, rather than approximate, equilibria, so
we could not assess its progress during execution.

7 Related Work

In this section we survey work done in the areas our work relates to; view maintenance, collaboration among
self-interested database systems and game theory. Wherever possible, we highlight the differences between our
approach and those taken in the related efforts we discuss.

7.1 View Invalidation and Maintenance

The view invalidation problem - deciding whether a set of database updates invalidates a view - has been
the subject of many studies ([5, 20, 23, 7]). The approach in [7] compares templates characterizing database
updates and the view query to decide whether the updates are potentially relevant, in which case the templates
are instantiated to check for actual relevance. Polling queries are used in [5] to decide whether the view is
invalid. The invalidation module incrementally polls the DBMs and determines each poll query based on
results of previous polls until a decision regarding the freshness of the view is reached. The tradeoff involved
is that between the amount of polling and the decision quality (precise, over- and under-invalidation).

Unlike our setting, most of the work done in view invalidation assumes DBMs are cooperative and is there-
fore not concerned about privacy. One exception is [23] where the tradeoff between privacy and scalability
(which is affected by unnecessary invalidations) is considered. Clues are sent, along with encrypted queries
and updates, to help the entity responsible for caching results determine whether the cache was invalidated.
A DBM decides offline what kind of clues should be sent based on the update and view templates. Two
schemes for calculating clues are considered. One scheme calculates the clues necessary to guarantee precise
invalidations while the other generates clues only when the invalidation savings exceeds the cost of generating
the clues. The setting involves a single database manager who reveals all necessary clues in one go.

Our setting differs from the above in having multiple managers who reveal information incrementally. Also,
unlike the work in [5] and [23], we reason about the tradeoff between the amount of polling/clues/privacy loss
and how up-to-date the view is in a game-theoretic way.

The view maintenance problem is concerned with keeping the view up-to-date when the underlying databases
change. Since it is often wasteful to recompute the view from scratch, several approaches have been suggested
to implement incremental view maintenance where algorithms compute changes to the view in response to
changes in the underlying databases (e.g. [13, 3]).

There has been much work on preserving privacy when answering queries about a database. The query-view
security problem considers the amount of privacy lost, if any, in publishing a given view of a database [27].
From this work, we borrow the notions that different pieces of information have different privacy costs (e.g.
a database manager may be unwilling to reveal an employee’s salary but willing to reveal his department)
and that this cost may depend on the information revealed so far. Sometimes the total loss is super-additive
(e.g. when the other party can infer a third piece of information from 2 revealed pieces), while at others it
is sub-additive (in the extreme case, the new piece of information can be inferred from previously disclosed



information). For simplicity, rather than calculate these privacy costs, we consider them part of the problem
specification.

7.2 Untrusted, Distributed Database Systems

A database view on a number of base relations is usually defined by a query involving selections and joins
over a subset of attributes of these relations. The fact that the DBMs in our setting belong to different
institutions raises concerns similar to those encountered in secure distributed databases, a line of work which
has become increasingly relevant with the increase in database outsourcing. One concern in outsourcing and
distributing a database to multiple servers is allowing normal execution of queries without sacrificing privacy.
Some approaches to achieving this balance encrypt data before storing it in the (untrusted) external database.
To avoid the overhead of encryption and decryption, [1] suggests an approach where the client partitions its
data across logically independent database systems (that cannot communicate with each other) in a way that
ensures that the exposure of the contents of any one database does not result in a violation of privacy. Privacy
in this work is defined as a set of constraints where each constraint is a set of attributes that an adversary
should not be able to infer in its entirety on gaining access to a single database. A means of breaking down a
query into sub-queries to be executed at the different databases is given, as well as a way of piecing together
the results from these databases.

The difference between the above situation and our view maintenance problem is that in the former, privacy
is the concern of an a single external entity that is trying to achieve it using distribution. In our problem,
privacy is the concern of the database managers themselves. We do not have one entity vs. the adversary.
Rather, we have multiple entities who all have privacy concerns when dealing with each other.

The problem of executing a query over distributed database systems that do not trust each other is an
example of a more general problem known as Secure MultiParty Computation (SMC) [35]. In a multi-party
computation (MPC), each participant has private data and the participants want to compute the value of
a public function over their variables. A MPC protocol is secure if no participant can learn more from the
description of the public function and the result of the global calculation than what he can learn from his
own variables. In the distributed database case, the participants are the different database systems and the
computation is a query to be executed over the various relations in the systems.

There has been work that focuses on providing SMC protocols for specific kinds of computations. [10] con-
siders the problem of computing the intersection of private datasets of two parties, where the datasets contain
lists of elements taken from a large domain. [21] presents protocols for distributed computation of relational
intersections and equi-joins such that each site gains no information about the tuples that do not intersect
or join with its own. Other work, for example [2], addresses the broader problem of privacy-preserving data
mining.

The difference between the SMC problem and ours is that in SMC, the parties follow a protocol to carry out
a computation to completion under conditions of security. In our problem, each party is a decision maker who
can accept or refuse to contribute to different parts of the computation based on his costs and benefits of doing
so. Therefore in our case, the multi-party computation does not necessarily proceed to completion. Rather,
it only proceeds as long as it is worth it for the involved parties. So our problem is more a decision-making
problem than a protocol design one.

Another kind of cost that is often discussed in distributed databases is the communication cost incurred
in moving data to the site where they will be operated on. In [8], the authors address the problem of
communication-efficient implementation of the SQL join operator in a sensor database; a sensor network
viewed as a distributed database system where each sensor generates a stream of tuples. The distributed
implementation of SQL queries in these systems must minimize communication cost, otherwise communicating
the enormous amount of data present in a typical sensor network would pose a serious burden on the sensors’
limited batteries. The key to reducing communication is solving the operator placement problem [33]; finding
the best point in the network at which to perform specific processing in order to minimize communication
without over-burdening lower-capability devices.



Table 7: Related Work in Game Theory

Complete Information Incomplete Information
Authors: Kearns, Littman, Singh Authors: Singh, Soni, Wellman
Tree Venue: NIPS’01[17], UAT’01[16] Venue: EC-04[31]

Solution: Approx. Exact for limited games | Solution: Approx.

Approach: Constraint satisfaction by Approach: Constraint satisfaction by

sweeps up&down tree sweeps up&down tree

Authors:Vickery, Koller Authors: Soni, Singh, Wellman
General Graph Venue: AAAT02[34] Venue: AAMAS’07[32]

Solution: Approx. Solution: Approx.

Approach:Hill climbing, Constraint Approach: CSP algorithms-like

satisfaction, Cost minimization node and arc consistency

7.3 Games with Incomplete Information

Most of the game-theoretic literature gives examples of fairly simple games with incomplete information where
a leader agent moves first according to its type and the other player, whose move depends on the observed
action of the leader and the follower’s own type, follows. Some work discusses games that repeat at every stage,
thus making it easier for agents to maintain and update beliefs about others’ types and act accordingly. A large
fraction of work, however, is descriptive in nature; it describes what constitutes an equilibrium strategy profile,
for instance, but does not detail how to find it. Until recently, there has been a dearth of work that deals
with computational aspects of finding equilibria efficiently, especially in games with imperfect information.
Koller and Pfeffer [19] voice a similar concern and mention some of the consequences of this slow advance
in computational game theory. Theirs is one of 2 major works addressing computationally solving imperfect
information games; an end-to-end system called Gala which accepts a game description in a human-readable,
intuitive format, analyzes it and outputs strategy profiles that make rational sense from a game-theoretic point
of view. The other major contribution in this field is that by McKelvey and McLennan [26, 25]; Gambit is a
game-theoretic software package with tools and algorithms for the construction and analysis of different types
of games.

There have been several attempts in the past to efficiently find approximate equilibria. Most of these
attempts address 1-stage games. We discuss some attempts that are most related to our approach and note
why they are inadequate for the sequential games we consider. Table 7 gives pointers to some of the works
that try to find approximate (and sometimes exact) solutions efficiently by exploiting the structure in agent
interaction where possible. The argument is that even in games with several players, there is a locality of
interaction that can be captured by a neighborhood graph showing which players have payoffs that are af-
fected by which players’ strategies. These graphical games have the advantage that if the neighborhood graph
is sparse, compact payoff functions can be defined for the game, resulting in representational savings. More
importantly, computational savings can be obtained when calculating (approximate) equilibria. The main
question is, therefore, whether a given algorithm scales well with respect to the number of players, rather than
the number of strategies per player.

The 4 efforts shown in Table 7 address the 4 combinations of games with complete/incomplete information
whose neighborhood graph is a tree/general graph.

1. Tree Games with Complete Information

The work by Kearns, Littman and Singh on games with complete information and acyclic graphs (henceforth
referred to as the KLS algorithm) can be said to have ushered in approaches for the other 3 types of games.
The main idea is to have a pair of sweeps up and down the tree which together effect something close to
variable elimination in a Constraint Satisfaction Problem (CSP) generated by the graphical game. In the
upward sweep from leaves to root, each node x passes to its parent y a table D(u,, 1t,y) indexed by the strate-
gies of  and y. If x is a leaf node, D(uy,1y) = 1 if p, is a best response to p,. If  is an internal node,
D(pg, py) = 1if py is a best response to u, and to some strategy profile of x’s children. At the root, a strat-
egy for the root is chosen based on the tables passed up to it by its children, and a downward sweep begins,
in which each parent node dictates a strategy for each of its children based on what its own parent has dictated.



The discretization technique presented in the KLS paper was carried over to all the other papers in our
table. Because the space of mixed strategies is continuous, it is necessary to discretize the strategy space
of each player to be able to apply constraint satisfaction-like algorithms. The discretization is simple and
depends on restricting the probabilities assigned to an action by a strategy to be multiples of some factor 7.
The granularity of the discretization affects how close we can get to an exact equilibrium.

Comparing KLS algorithm to ours, we see that KLS provides an exact solution (it solves a CSP rather than
a COP) to an approximation of the original problem (obtained through the discretization technique). Our
algorithm provides an approximate solution (e-BNE) to the original problem. In fact, even if we discretized
the type spaces of the players in our games, it would still be intractable to use backup-based CSP algorithms
for variables with finite domains. The main problem is that in 1-shot games, the CSP has a variable for each
player i denoting i’s strategy; a probability distribution, for each of i’s types, over the actions available at the
one and only decision point that ¢ faces when it is of a certain type. In sequential games, however, a player’s
strategy is a probability distribution over a sequence of actions. The space of strategies is therefore enormous,
even if discretized. Alternatively, consider a formulation of the CSP derived from a sequential game with a
variable per information set. A variable’s domain is the set of all probability distributions over actions at the
corresponding information set. In our games, the sequential nature of the decision-making process implies
that a decision made at one point affects what should be done in the future. This results in a CSP that has
multiple, densely connected variables per player in addition to the interactions among players.

2. Tree Games with Incomplete Information

The KLS algorithm was extended by Singh, Soni and Wellman[31] to find approximate BNEs in tree games
with incomplete information. The extension is trivial for the case of discrete type spaces; each type is mapped
to a discretized unconditional strategy. The number of strategies for an agent is exponential in the size of type
space and the number of actions available to it. For continuous types, the paper is restricted to games with a
certain class of payoff functions.

3. Arbitrary Graphical Games with Complete Information

The work of Vickery and Koller [34] is perhaps the closest to ours in terms of how the space of strategy profiles
is searched. Their hill-climbing algorithm does function minimization where the function is the sum of regrets
over all players. They iterate over the steps of choosing a strategy to change, calculating the new strategy
and updating affected regrets in a way that is close to ours. However, an important difference is that because
theirs is a 1-stage game, their strategy space for a player is its set of actions, rather than sequences of actions
as in our case.

In addition to hill-climbing, Vickery and Koller propose a cost minimization algorithm that operates on
games with arbitrary neighborhood graphs. Their third and most interesting contribution is highlighting the
analogy between graphical games and Bayesian networks and using subgame decomposition techniques inspired
by the clique tree algorithm for Bayesian network inference. Each subgame is solved using hill-climbing and
the results combined using a CSP approach.

La Mura and Pearson [29] also address games with complete information. However, they use simulated
annealing and do not exploit locality of interactions among players. The decision of whether to accept a new
point during simulated annealing is made in a decentralized way, thus eliminating the requirement that payoffs
be common knowledge.

4. Arbitrary Graphical Games with Incomplete Information

Soni, Singh and Wellman propose the PureProp algorithm for games with incomplete information and arbi-
trary graphs [32]. Again, a CSP is derived from a game, but here the domain of a variable corresponding to
a player is the space of strategy profiles of the player’s neighbors in the game graph, including itself. The
motivation for this formulation is having binary constraints, as opposed to the work in [34] which has non-
binary constraints. PureProp operates on the constraints in a way familiar to CSPs; node and arc consistency
followed by backtracking search over the reduced variables domains.



The main advantages of the family of algorithms surveyed above is that they are decentralized. There is
no central calculating entity that has access to all payoff information. Instead, localized message passing is
enough to reach an (approximate) equilibrium. This decentralized calculation allows scaling w.r.t. the number
of players. However, they are all limited to 1-shot games. But just as game structure can be exploited to
better solve 1-shot games, it can be exploited to perform the key computational step of algorithms originally
due to Govindan and Wilson [12], making them tractable for finding exact equilibria in graphical games [4] in
a way that scales with the number of players.

One of the few works concerned with large sequential games of incomplete information is that by Gilpin
and Sandholm [11]. They automatically abstract games in such a way that any equilibrium in the smaller
(abstracted) game corresponds directly to an equilibrium in the original game. However, the original game
must satisfy the condition of having an ordered signal space.

In addition to work like the above that tries to solve abstract games in a domain-independent manner, some
work starts from a certain domain and formulates the problem as a game. However, instead of solving the
game using generic game-theoretic ways, knowledge about the domain is leveraged to capitalize on whatever
special features there are. For example, the work in [9] analyzes bilateral multi-issue negotiation between self-
interested agents. The situation can be thought of as a game where agents decide how to allocate the issues
between them so as to maximize their individual utilities. This game is solved in way that is strongly depen-
dent on the particular type of problems being solved. This has the advantage of exploiting special features of
the domain, but suffers from being very limited in applicability. A similar approach is taken in [18] where the
setting has a large number of players who must make individual investment decisions related to security (e.g.
physical, financial), but in which the ultimate safety of each participant may depend in a complex way on the
actions of the entire population. Again, the situation is formulated as a game but the way and equilibrium is
found is specific to their setting.

In this work, we approached the game without drawing on specific features of the View Maintenance
problem, but in future work, we plan to investigate what benefits can be obtained from doing so.

8 Conclusion and Future Work

The view maintenance problem concerns how a view is refreshed when its underlying data sources are updated.
This problem has been extensively studied in settings where view refreshing is expensive. We investigate the
view maintenance problem when self-interested database managers from different institutions are involved,
each concerned about the privacy of its database. As far as we know, we present the first work to consider the
view maintenance problem with multiple self-interested database managers, a setting that is likely to increase
in prevalence with the popularity of web sites drawing information from various competing sources. We regard
view maintenance as an incremental, sequential process and adopt a satisficing approach where the final view
need not reflect 100% of the databases updates.

This work has two main contributions. First, we formulate the view maintenance problem as a sequential
game of incomplete information. Second, we propose a general anytime algorithm for approximately solving
general games of incomplete information by searching the space of strategy profiles for an e-Bayes-Nash equi-
librium. Our algorithm has three novel features: it collapses the game tree as a pre-processing step, resulting in
more tractable trees; it generates local measures that guide the search by indicating which parts of a strategy
profile are least stable; it proposes a global measure of the stability of a profile as a whole by calculating upper
bounds on players’ regrets when playing this profile.

Experimental results demonstrate our algorithm’s attractive anytime behavior which allows it to find good-
enough solutions to large games within reasonable amounts of time. Experiments were conducted using two
types of trees; general game trees and trees derived from instances of the view maintenance problem. Col-
lapsing general trees yields a reduction in the number of nodes in a tree by 4-27%. Collapsing is much more
effective for view maintenance trees, resulting in collapsed trees roughly an order of magnitude smaller than
the original trees. Experiments on finding an approximate equilibrium to the view maintenance game also
produced encouraging results. For view maintenance trees, our anytime search algorithm demonstrates good
anytime behavior by reaching a regret level of 5% within 100 seconds for most trees. General game trees are
more challenging for the 5% regret level, but the results are much better for the 10% level. Depending on the



application, the regret level can be adjusted to the maximum tolerable regret.

The main conclusion we draw from our results is that in domains where approximate equilibria are ac-
ceptable, simple techniques prove to be effective in dealing with sequential games of incomplete information,
a class of games notorious for its intractability. A simple pre-processing step significantly reduced the size of
game trees, especially those derived from the view maintenance problem. A fairly simple search algorithm
was able to navigate the huge space of strategy profiles and reach a reasonably low regret within hundreds of
seconds in most cases.

We envision several potential directions for future work. Experimental results showed that our search
algorithm performs better on game trees derived from the view maintenance problem than it does on general
trees. We would like to gain more insight into why this is the case and what special features of view maintenance
trees make them easier to solve. A related future direction is to devise a domain-specific algorithm that
capitalizes on these special features to solve view maintenance trees more efficiently. A third direction concerns
the kind of equilibrium we search for. Currently, we search for Bayes-Nash equilibria. However, it is known
in game theory literature that some of these equilibria may be unrealistic due to a phenomenon known as
”incredible threats”. Therefore we would like to investigate how we can search for policies that meet refined
notions of equilibrium (e.g. Perfect Bayes equilibria). Yet another interesting issue we would like to investigate
is whether our search algorithm can be modified to more cleverly "navigate” the policy space, something which
requires some kind of description of the space’s topology, or a heuristic for coming up with one.
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