A Unified Framework for the Automatic Generation of
System Tools and Components

ABSTRACT

Machine description languages have long been suggested as a means
for automatically generating simulator and compiler tools. Because
of the complex nature of computers, designing a language that can
describe concisely the intricate details of a machine is difficult. Fur-
thermore, how we describe the machine is often directly influenced
by the tools we wish to generate. Assemblers are centered around
the syntax of the assembly language, while a decoder for a func-
tional simulator is encoding centric. To generate a suite of related
tools we require a language that is generic enough such that we are
not restricted to a single tool’s point of view. In addition, we need
a framework that processes this language into a suitable form that
we can then translate easily to generate target tools.

Here we present a framework for building instruction set based
tools such as assemblers, disassemblers, and decoders for func-
tional simulators that are automatically generated from the CoGenT
instruction specification language, CISL. In particular, we describe
the key language features of CISL that enable the construction of
an intermediate representation called the i-graph and a framework
based upon the i-graph that enables modular construction of trans-
lators for generating tools.

Categories and Subject Descriptors

H.4 [Compilers and System Tools]: Miscellaneous

Keywords

Assembler, Disassembler, Architecture Description Language, Mix-
ins

1. INTRODUCTION

Building and extending computer systems requires many tools to
enable the construction of new software and hardware. For exam-
ple, exploring innovative architectural designs requires experimen-
tation with new features using functional and timing simulators.
To evaluate these new designs we require a suite of software tools
such as compilers, assemblers, disassemblers, linkers, loaders, and
debuggers, so that we can generate programs that take advantage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

of these new design features. Unfortunately, these tools are them-
selves difficult and time consuming to build by hand.

To alleviate these problems, architectural or machine description
languages (ADLs) have been proposed that automatically gener-
ate whole tools or parts of tools. This allows architecture-specific
details to be written independently from the general design of a par-
ticular tool. In addition, ADLs make it easy to modify the specifi-
cation of the machine for experimentation, and simplifies semantic
checking for consistency.

Unfortunately, tools make different demands on the ADL in terms
of the required level of granularity and point of view of the ma-
chine. For example, circuit level details are supported by some
languages [7, 23] for synthesis and layout, whereas others allow
one to specify information at the micro-architectural level [10, 13,
24] or instruction set level [19]. Furthermore, the structure of these
languages tends to reflect the intended target applications. For ex-
ample, compiler tools require information for register allocation,
relocation, procedure calling conventions, assembly syntax, and in-
struction encoding, whereas a functional simulator requires details
for fetching, decoding, and executing instructions.

To support the diverse requirements of these applications, it is
advantageous to provide a family of related languages based on
similar principles [1]. This allows descriptions to provide the level
of detail required by the target tool, but enables information to be
shared and extended by other specifications and tools.

Consider the information necessary for generating a timing-accurate

simulator, which requires structural information about the micro-
architecture components and their interconnections. To use this
simulator, however, we need to know how to decode individual in-
structions. Describing the decode unit at the structural level, how-
ever, is not useful in terms of overall timing. Because of this, most
timing-oriented languages provide hooks to use a decoder written
in an external programming language such as C or C++. A bet-
ter alternative is to provide hooks that facilitate connection with an
instruction set specification language.

Assuming we have a family of coordinated description languages,
they are of little use without the compilers and tools that process
these descriptions into a form in which it is straightforward to gen-
erate target tools. Furthermore, it is equally important that the ma-
chine specifications be represented in an intermediate form readily
manipulated by tool generators. Tool generators can then use this
representation as a database of machine information that they can
query for specific details, depending on the tool being generated.
This intermediate form is the basis of an extensible framework upon
which we build tool generators.

In summary, system tools are vitally important in building new
architectures for embedded systems. A family of machine descrip-
tion languages allows aspects of a machine to be specified accord-

ing to their level of granularity, as well as for target tools. The
structure of the intermediate form of an ADL is key in building the
generators that use it to produce target tools. An extensible frame-
work based on this intermediate form facilitates rapid construction
of tool generators.

We attempt to address these difficulties by making the following
contributions:

o CISL language constructs that facilitate the construction of a
unique intermediate representation (the i-graph).

e An algorithm for translating these language features into an
i-graph.

e A framework for collecting instruction set information from
the i-graph, translating this into tool-specific representations,
and generating target specific tools.

We organize the rest of the paper as follows: Section 2 provides
a brief overview of the CoGenT project, a family of related de-
scriptions and tools, and its instruction set ADL CISL; Section 3
presents our tool generation framework including the i-graph inter-
mediate form; Section 4 describes applications of our framework
to specific target tools; Section 5 describes related work; and Sec-
tion 6 offers some conclusions and future directions.

2. THE CISL LANGUAGE

The CoGenT project aims to generate tools, particularly compilers
and simulators, from a coordinated suite of ADLs. Compilers and
simulators for systems research are difficult to develop and coordi-
nate since each tool is complex in its own right, and both are de-
pendent on aspects of the target architecture. The CoGenT project
addresses this problem by providing three types of components:
multiple coordinated specification languages used for describing
various aspects of a computer architecture, including instruction
set and micro-architecture; a framework for building translators
that process these machine descriptions and generate tool compo-
nents; and a framework for building complete tools (such as an
assembler) from the translator output. CoGenT allows researchers
to explore innovative ideas quickly, by expressing new concepts in
domain specific languages and automatically generating the nec-
essary tools. Furthermore, it provides a consistent framework for
extending the set of translators, and thus the set of tools, that it can
generate. In the following sections, we focus on CISL, the CoGenT
instruction set language, and how we generate tools from these de-
scriptions.

Instruction set architectures come in varying degrees of com-
plexity. For example, the MIPS architecture [11] has a uniform
encoding and straightforward semantics. The SPARC [22] also has
a simple encoding, but the semantics are complicated by register
windows and branch delay slots. The x86 [6] is even more com-
plicated, with its variable length encoding and CISC style seman-
tics. And the PowerPC [9] and ARM [21] fall somewhere in the
middle. To describe accurately current and next generation archi-
tectures we require a specification language with constructs for de-
composing instructions both by their representation (i.e., encoding,
assembly syntax, etc.) and semantics (what they do). In addition,
the language must allow all properties of an instruction to be de-
fined naturally and flexibly enough to allow extensions for future
features. Lastly, the language must provide mechanisms to encour-
age description reuse.

CISL is a strongly typed, polymorphic, class-based instruction
set description language with a Java-like syntax. It focuses on pro-
viding language features for expressing instruction concepts at the
bit level and structures for managing their decomposition. CISL

provides three primary language constructs for describing instruc-
tions: classes, mixins, and attributes. Attributes define individual
properties of instructions; classes, along with single inheritance,
define the decomposition of an instruction set; and mixins are used
to specify characteristics that do not easily fall under the single in-
heritance of classes. We do not cover all the details of CISL syntax
and semantics here.! Rather, we focus on the features and strategies
that we use to generate system tools.

2.1 Attributes

An attribute in CISL looks very much like a method declaration in
conventional object-oriented programming languages such as Java
and C#. It has a name and an optional return type, and possibly
some formal parameters. The body of an attribute method is ei-
ther empty or contains a list of statements describing something
interesting about an instruction. Consider the following attribute
definitions from the PowerPC add instruction:

fun effect() {
GPR[RT] = GPR[RA] + GPR[RB];
}

fun string syntax() {
return "add%${A:oo_syntax}%{A:cc_syntax}
r${I:RT}, r%{I:RA}, r%{I:RB}"
}

The effect attribute describes the semantics of this instruction. It
performs addition on the values contained in registers GPR[RA]
and GPR[RB] and stores the result in register GPR[RT]. We dis-
cuss the reference to the register file GPR and the instruction fields
RT, RA, and RB in Section 2.1.1. The second attribute defines as-
sembly syntax for the instruction using our syntax description lan-
guage. We discuss the details of assembly syntax in our discussion
of assembler generation in Section 4.1.

A critical property of an attribute as a language construct, and a
main design goal of CISL, is its generality. The semantics of an
attribute and its relevance are deliberately left to be interpreted by
the translator tool that processes it. This allows one to add new
instruction set attributes when designing a new tool. For example,
when processing a CISL description to generate the semantic func-
tions for a functional simulator, the simulator generator looks for
the effect attribute. Other tools may ignore this attribute allowing
descriptions that need not be complete (an important feature for in-
struction set design). The only common analysis that is required
for all generator tools is that the description is recognized as a valid
CISL file syntactically. Other analysis, such as type checking se-
mantic descriptions is taken care of by a translator.

Attributes may also be generic. That is, the formal parameter
types may be left unspecified or partially specified. For example,
the following attribute definition in our CISL PowerPC description
specifies the semantics for calculating the effective address for the
“next instruction address” of a branch instruction:

fun setNIA(signed imm) {
NIA = calcEA((imm :: 0b00)!);
}

Its formal parameter is partially specified as being signed (but
given no size in bits). A call to this attribute will be valid only if
the type of the actual argument at least matches signed. The rest
of the type information is inferred based on the parameter at the call
site. (One way of thinking of this is that attribute calls are always
fully inlined, which is not a problem since CISL does not need, and
therefore does not allow, recursion.)

I'The final paper will direct readers to related publications.

2.1.1 The Store

The CISL examples given so far refer to pre-defined register files
(such as GPR). In CISL a separate description is given for all the
memories accessible to instructions in the system. This description
is known as the store and contains CISL type information for user
registers, system memory, and special registers (e.g., the processor
status register or PC). These memories are accessed using a syntax
similar to array dereferencing in Java.

2.2 Classes

Although attributes are sufficient for specifying the important fea-
tures of instructions, how we organize those attribute definitions is
even more important. CISL provides a class construct for grouping
together related attributes. Inheritance facilitates concise descrip-
tions of instruction fields and their decomposition. Consider the
instruction formats found in the PowerPC. CISL class definitions
readily capture these formats and their encodings, as shown in the
following complete definition of the PowerPC addi instruction:

class Instruction {
var bit[32] inst;
var bit[6] OPCD @ inst[0];}

class DForm extends Instruction {
var bit[5] fieldl @ inst[6];
var bit[5] RA @ inst[11];
var bit[16] field3 @ inst[16];}

class DForm RT SI extends DForm {
var bit[5] RT @ fieldl[O0];
var bit[16] SI @ field3[0];}

instruction class addi extends DForm_RT_SI {
fun encode() { OPCD = O0xO0E; }

fun syntax() {
return "addi r%{I:RT}, R%{I:RA}, %{I:SI}";
}

fun effect() {
if (RA == 0) GPR[RT]
else GPR[RT]

SI!;
GPR[RA] + SI!;}

}

A CISL class that does not extend another class is a root class. In
the PowerPC ISA, all instructions are 32 bits long and have a 6-
bit opcode field. Therefore, our PowerPC description has a single
root class called Instruction containing three variable (field)
declarations.

A CISL variable is either a concrete variable or a variable ref-
erence. A concrete variable declares a single bit or an array of bits
with type modifiers such as signed/unsigned or big/little (endian),
whereas a variable reference refers to a concrete variable or an-
other variable reference. In the code above, the Instruction
class declares a concrete variable called inst that is 32 bits long,
and a variable reference OPCD that defines the 6-bit opcode field
starting at bit 0 of the inst bit array. These two kinds of variables
allow encodings of instructions to be defined in a top-down fashion.
Concrete variables are declared to indicate the shape of the instruc-
tion word and references are used to refer to fields. The distinction
made between concrete and reference variables provides important
information to the translator tools (Section 4).

One completes the definition of an instruction by indicating that
its class is an instruction class (as in the addi class above). The
inheritance hierarchy up from an instruction class to a root class
defines one unique instruction and all of its properties. Although
the above example presents all the attribute definitions in an in-
struction class, that is not required. It is possible (and common) to
have attributes that occur at various points in the inheritance tree

and that are used in subclasses by “calling” the attribute (as men-
tioned in Section 2.1). In this case, we kept the example simple to
be illustrative and compact.

2.3 Mixins

Although classes are sufficient for describing much of the infor-
mation related to instructions, we often encounter situations where
properties are shared in a manner that is not easily captured by sin-
gle inheritance. Consider the shifter operand in an ARM [21] data-
processing instruction. There are 11 different forms represented by
this addressing mode, used by 16 different instructions, leading to a
total of 176 unique instruction formats and semantics (not to men-
tion the 16 different condition field opcodes). To define the format
for these instructions using only single inheritance would require
11 classes for each of the shifter operands and 16 classes that rep-
resent each of the data processing instructions, duplicated 11 times,
inheriting a different shifter operand class with each. This quickly
leads to an unwieldy description that is hard to read, understand,
and maintain. What we require is the notion of attaching variables
and attributes to classes without disrupting the class hierarchy. In
CISL we accomplish this task using mixins.

A mixin is similar in content to a class but is used by classes
rather than extended. When a class uses a mixin, the declarations in
the mixin become available to that class. In addition, it is possible
(and common) for a class to use more than one mixin. This does not
mean, however, that all the declarations in the used mixins become
available simultaneously. For example, a class declaration K that
uses mixins X and Y actually refers to two unique class definitions:
a class K that uses mixin X and a class K that uses mixin Y. In
effect, a mixin can be viewed as a kind of class constructor. The
following shows how we use mixins to describe the encoding for a
SPARC Idsb instruction with two different encodings for the i field:

mixin reg_access {
var bit i @ inst[13];
}

mixin direct_address extends reg_access {
fun encode() { 1 = 0; }

}

mixin offset_access extends reg_access {
fun encode() { i = 1; }

}

instruction class LDSB extends Format3
uses direct_address, offset_access {
fun encode() { op3 = 0b001001; }
}

We first define the mixin reg_access that provides the variable
reference declaration for the i field (which incidentally resides at
offset 13 in the instruction word inst). This mixin is then inher-
ited by two sub-mixins: direct_address and offset_access.
These two mixins define different encoding values for the i field
(0 and 1 respectively). The LDSB instruction class then uses both
mixins for two unique (non-conflicting) encodings defined over the
i field.

CISL descriptions are concise and explicit, giving the program-
mer control over formatting and semantics necessarily at the bit
level. However, a tool chain to process and analyze these descrip-
tions is at least as important as a legible description.

3. FRAMEWORK

We now discuss the framework depicted in Figure 1, which sup-
ports a number of operations. Namely: translation of a CISL de-
scription into an intermediate form called an i-graph; a reusable

Framework Lib
Sparc ——»|

PowerPC ——»|

ARM —| — Tools

%JQRH

i-graph

x86 —|

TL Front-end
Collectors
Translators
Generators

Itanium —

TL Description Files

Figure 1: Framework

library of strategies we call collectors for traversing the i-graph har-
vesting information; a library of franslators used to create abstract
representations of target tools (e.g., assemblers); and a set of gen-
erators for producing code for a specific tool suite.

3.1 The CISL Front-end

The first step towards generating target specific tools is parsing a
CISL description. The front-end allows specifications to import
other description files via an import <name>; statement. Fol-
lowing the parsing and abstract syntax tree construction of a CISL
description, the front-end generates a working set of classes and
mixins. Because architectures are often extended across successive
generations to include such things as larger register files and new
instructions, one can redefine or override classes and mixins. The
working set represents a specific architecture generation.

Given a working set, the front-end then performs standard se-
mantic checks (not including type checking). After the front-end
performs its checking phase it proceeds to generate the instruction
graph.

3.2 Instruction Graph

After the front-end parses the input files it has an abstract syntax
tree representation of the machine specification. This representa-
tion, however, is not necessarily the best form for processing and
generating tools. For example, we are most often interested in
the encoding of a complete instruction. The AST representation
has this information, but in general it is distributed across several
classes and mixins. The situation is similar for the attributes de-
scribing instruction semantics as well as assembly language syntax.
On the other hand, the tree representation of the class hierarchy is
useful for generating instruction decoders for functional simulators
and disassemblers. This, however, is complicated when a class uses
a mixin.

Hence, we desire a representation incorporating the contents of
each mixin into the classes that use it. In doing so, we keep the
structure of the class hierarchy for such things as decoding, while
at the same time providing a mechanism for retrieving complete
instruction information. We call this representation an instruction
graph or i-graph. The i-graph is a graph whose vertices are the
classes of the CISL description and whose edges represent the in-
heritance relationships between those classes.

Before we construct the i-graph, however, we begin by creating a
graph C whose nodes are the classes and mixins from the AST and
whose edges are the inheritance and uses (mixin) relationships. In
particular, we include only those classes that are either an instruc-
tion class or a class that is extended from an instruction class. In
addition, we maintain a set of mixins, MIXINROOTS, whose ele-
ments are those mixins that are extended by other mixins but do
not themselves inherit from anything. The class graph C and the
MIXINROOTS set are used as inputs to BUILD-IGRAPH as out-
lined in Algorithm 1 and depicted in Figure 2(A).

BUILD-IGRAPH first declares a map M that it uses to map
classes to a set of classes, the new graph I, and the set U that it
uses to remember the set of classes we have encountered that use

Algorithm 1: Builds an i-graph

Input: C—The class graph

MIXINROOTS —The set of root mixin nodes
Output: /—The i-graph
BUILD-IGRAPH(C,MIXINROOTYS)

(1) M : Map from classes to a set of classes

(2) 1:Graph

3) U:Set

(4) foreach m € MIXINROOT

3) Class ¢’ = new class

(6) foreach m; in path m —* u
@) D[¢'] :=D[c'] U D[m;]
8) D[¢'] :=D[c¢'] U D[u]

9 V1] :=V[Iu{c'}

(10) Mlc] :=M[u] U {¢'}

(1) U:=UUu

(12) foreach ¢ € (V[C] — U) A =MIXIN(c)
13) V[]:=V[IU {c}

(14) if (c,s) € E[C] A MIs] # {}

(15) foreach s’ € M[s]

(16) E[1] :=E[I] U (c,s)

(17) elseif (s,c) € E[C] A M[s] # {}
(18) foreach s’ € M[s]

(19) E[1] :=E[I] U (s/,)
(20) else

@1 E[1] := E[T] U (c, s)

(22) returnl

mixins. The first phase of the algorithm is to construct new classes
from classes that use mixins and to add the new members to the
i-graph. This is accomplished by the loop over MIXINROOTS in
lines 4-11. Because mixins have their own inheritance structure,
we start with the root mixin and follow the path through its sub-
mixins adding mixin declarations, D[m;], to the declarations of the
new class D[c/]. The loop terminates when we encounter a class u
that uses the mixin. We then add the declarations of u to our new
class ¢/, which we subsequently add as a new node to the i-graph
(I). We place an entry in M that maps the class u to the set of
classes that have been generated from it in the i-graph. This will
prove important for adding edges. Lastly, we add the class u to the
set U of classes that use mixins. Because a mixin may be used by
multiple classes, we actually perform the loop over the mixin inher-
itance paths for each leaf class. For the sake of clarity we omitted
this detail from Algorithm 1. The results of this transformation are
illustrated in Figure 2(B).

After we add the classes that incorporate the mixin declarations,
we add those classes that do not use mixins to the i-graph. That is,
those classes that are in C — U (excluding the mixins as t hey are
no longer useful). As we do this, we add the relevant edges to the
i-graph according to the following three rules for each class c:

e If we have an edge from class c¢ to class s in C (¢ extends a
class s) and we have a mapping from s to classes in I (i.e.,
Ms] # {}) we add an edge in I from c to each of the classes
s'inl;

e otherwise, if we have an edge from class s to class ¢ in C (¢
is extended by a class s) and we have mappings to classes in
I, we add an edge in I from each of the classes ' to c;

e otherwise, we add an edge from ¢ to s in 1.
These rules take into consideration the fact that a class that uses

multiple mixins in the original class graph may have multiple in-
stantiations in the i-graph. Because these original classes are never

MIXINROOTS = {q, , s} M
U

A)

B)

classes= O mixins = []

Figure 2: i-graph Construction

added to the i-graph directly, we must use the mappings to add the
edges to those classes that were generated from it. The resulting
i-graph now contains a set of vertices that are either classes from
the original graph or new classes that we generated from the mixins
and edges that represent the original inheritance relationship. Most
importantly, any unique path r —* i in the i-graph, where r is a
root class and i is an instruction class (or leaf), represents a unique
instruction in the target instruction set architecture. Figure 2(C)
shows the i-graph generated from this last transformation. In suc-
ceeding sections we discuss that part of the framework that uses
the i-graph as a database for collecting application specific infor-
mation, the translation of that information, and the generation of
target specific code.

3.3 Collectors

After the CISL front-end generates an i-graph, we can start har-
vesting the information that we care about. To facilitate easy con-
struction of generator tools and code re-use, we provide a library
of collectors that visit the i-graph in various ways. These collec-
tors can then be composed to gather information that is relevant
for a particular target tool. For example, a functional simulator re-
quires information related to the field encodings of an instruction,
in what order those fields should be decoded, and the instruction
semantics. An assembler requires encoding information but also
needs details related to the syntax of assembly instructions as well
as how symbols in the syntax are bound to the instruction fields in
the encoding.

Each collector considers a single instruction at a time. In the
context of an i-graph, this is a single path from a root vertex to a
leaf. This path, however, can be traveled in several different ways
using a particular visiting strategy. We can start at the root and
work fop-down to the leaf, we can start at the leaf and visit vertices
bottom-up until we reach a root node, or we can go top-down fol-
lowed by bottom-up in a single pass, or vice versa. How we visit
the vertices of the instruction paths depends on the type of infor-
mation we are gathering and how we will use it to generate a target
component.

Our framework initially defines several general collectors for
such things as gathering variables, variable references, and attributes.
These general collectors are extended to provide filtering capabili-
ties, such as collecting attributes having a particular name or gath-
ering attributes that are related in some way. For example, our as-
sembler generator tool expects a unique syntax attribute to be
defined for each instruction. This attribute, however, may refer-
ence other attributes of a given name that further define the syntax.
As such, we require a collector that only collects attributes that are
related to the specification of assembly syntax. We found this col-
lector pattern to occur frequently so we provide a general collector
for this task that can be re-used by several tool generator appli-

cations. These general collectors are then combined along with a
visiting strategy to form a multi-collector that collects all the infor-
mation relevant to a specific tool in a single pass over the i-graph.
These multi-collectors are also extensible to allow the collected in-
formation to be refined further to specialize the presentation of that
information to be used by a translator as depicted in Figure 3.

3.4 Translators

Once a collector has gathered the tool specific information, a trans-
lator is used to transform that information into a representation that
is useful for a specific tool suite. In other words, as a collector pro-
vides a particular view of the information it finds in the i-graph,
a translator presents a view of that information in the context of
a specific target tool. Our overall approach here is not much dif-
ferent than the phases used in compiler construction. The source
programming language is translated into an AST and then subse-
quently into a tuple or tree-like IR language (our collector phase).
This IR is then converted into a lower-level form that closely re-
sembles the target instructions but may still be independent of the
output format (our translator phase).

Thus, the job of a translator is two-fold: translate the information
provided by the collectors into a form that is suitable for a partic-
ular target tool suite; and perform any semantic checking on that
information to ensure correctness. Because the information pro-
vided by a collector is target-independent, the translator must use
that information to construct a representation that is in the context
of the particular application. For example, we may have two tar-
get simulator frameworks, for which we wish to generate decoders.
Each may have their own peculiarities such as how they interface to
the rest of the simulator and whether or not they are side-effecting
a simulated store or calculating timing. In effect, the translator is
the “glue” that binds the machine-specific information to the target-
specific tool.

In many cases, we require the output from a collector to satisfy
certain properties or conditions. For example, for encoding and
decoding applications we must be confident that the fields defined
for a particular instruction do not overlap and that the encodings
are disjoint (i.e., no two instructions have identical encodings) and
for functional simulators, in particular, we require that the seman-
tic effect of an instruction has valid semantics and types and we
may want to perform analysis and optimizations over the decode
tree. As we mentioned previously, the meaning of the attributes
and their contents are dictated by the translators. This allows dif-
ferent translators to apply semantics differently depending on the
target application.

Similar to collectors, translators can be composed in a pipeline
fashion to operate over the collector output. This facilitates the
sharing of translators that may be useful for two different tool gen-
erators that target the same tool suite or to provide a general trans-

Assembler Multi-Collector

—— Assembler Info

—| Encoding [Syntax

Instruction |-
Fields []

i-graph

Dis-assembler Multi-Collector

——— Disassembler Info

Figure 3: Using and Re-using Collectors

formation that can be used by several generator tools such as com-
mon semantic checks.

3.5 Generators

After the instruction set information is processed by translators,
their output representation flows to a generator to generate code in
the particular programming language for the target tool. Consider
an emitter module for a C compiler containing “emit” functions
for generating encoded instructions for a target machine. If the C
compiler is written in C, we would build a generator that would take
the output of an emitter translator and generate the machine specific
module in C. On the other hand, if the C compiler is written in Java,
we would generate Java code with a different generator.

Besides generating code for a target programming language, a
generator could just as easily generate input for another processing
tool. This allows us to easily integrate CISL and it’s framework
into a legacy tool generation scheme, to be utilized by tools written
in other languages, or even generate instruction set documentation
to be viewable in a web browser. The entire framework and infor-
mation flow is illustrated in Figure 4.

4. APPLICATIONS

In this section we demonstrate the effectiveness of our frame-
work with specific application examples. In particular, we show
how the CISL language and tool generator framework is used to-
gether to generate important components for an assembler and dis-
assembler. We conclude this section by mentioning other tools that
could benefit from using our approach.

The following examples will illustrate the flexibility of the Col-
lector, Translator, and Generator pattern. In each example, a set
of collectors sweeps the i-graph. Translators operate on this in-
formation, generating abstract operations (meta-ops) representing
procedures in a language and platform independent way. Lastly,
generators process meta-op trees and output platform-specific code
in a given language. This multi-phase approach gives CISL the
ability to specify assembler and disassembler construction in an ab-
stract way, and to generate assemblers and disassemblers for new
systems by simply writing new generators.

4.1 Generating Assemblers

The basic job of an assembler is to read in a file containing a pro-
gram for the target machine and generate a binary object file. To
accomplish this task, the assembler needs to know the syntax of
the assembly language and the encoding of its instructions. Most
assembly files also contain sections for program text and data as
well as special syntax for indicating the types of data, assembler
hints, important locations (such as the address of the current assem-
bly instruction), labels, and possibly more. An assembler usually
supports a rich notion of symbols, expressions, forward references,
name resolution, synthetic instructions (i.e., set instruction on the

SPARC and mr instruction on the PowerPC), and back-patching.
We focus here on generating the core part of an assembler i.e., pars-
ing assembly instructions and generating their binary encoding.

An assembler needs to extract three categories of information
from a CISL description: instruction syntax, encoding, and syn-
thetics (i.e., rewrite rules). We require the syntax of an instruction
in order to parse the assembly from a text file, the encoding for
emitting the binary representation, and the synthetics for specify-
ing alternate assembly syntax. First, we discuss how we specify
assembly syntax and synthetic instructions.

As mentioned previously, the collectors and translators dictate
the semantics of the attributes and their contents. Our assembler
collector expects each instruction to define a syntax attribute. This
attribute contains a format string representing the syntax of the in-
struction. A format string contains literal characters and directives
for describing how variable fields are either read (in the case of an
assembler) or written (in the case of a disassembler). In addition,
these directives describe the binding of symbolic names in the as-
sembly syntax to fields in the instruction encoding. This allows a
complete format string to be used for both mapping syntax to en-
coding and encoding to syntax.

4.1.1 Format Strings and Directives

The format of directives is: “%{directive-name:arguments}”, where
directive-name is an identifier and the arguments is a optional comma
separated list of arguments beginning with a colon. Consider the
syntax for a register on a typical RISC machine. It usually begins
with an 1’ followed by the integer number of the register. This is
accomplished using the I directive:

fun string syntax() {

return "r%{I:rd}"

}
For an assembler, we parse the character ’r’ followed by an integer
whose value is stored in instruction field rd. Alternatively, from
the standpoint of a disassembler, we generate the string containing
’r’ followed by the integer rd.

Additionally, we have specific directives for decimal, hexadeci-
mal, octal, and binary as well as more involved constructs such as
labels (L), conditionals (C), calls to attributes (A), and hooks (H)
for calling external code in the assembler application. Assemblers
usually require a back-patching pass to resolve label references, so
we created a special directive for labels to indicate their purpose,
such as storing mappings from label symbols to instruction offsets
as well as building a standard symbol table (useful for disassem-
bling). Here is an example of the SPARC call instruction using
labels:

fun syntax() {
return "call %{L:disp30}";
}
An assembler treats a label as an entry into a map from strings to
addresses and postpones binding the disp30 field until the first

Gcncrator
Multhollector Translator J Flex asm
Generator

Disassembler (D embler
‘(MultiCollector ‘ Translator

Java dasm
Generator

—> Disassembler

i-graph Decode — Simulator
‘ MultiCollector ‘ Translator

Figure 4: Framework Flow

pass is done. A disassembler uses the value of the disp30 field to
either generate or lookup a symbol (in a symbol table, for instance),
then printing this symbol rather than just the raw address.
Assembly syntax typically accepts several variations of a sin-
gle instruction. For instance, when specifying if condition codes
should be set (the "0’ and ’.” syntax for the PowerPC) or whether an
instruction is conditionally executed (e.g. the ARM). Other cases
include addressing modes that can be used with an instruction. We
use the C directive to specify this “conditional” syntax. This is
illustrated in the SPARC I/dsb instruction:
fun string syntax() {
return "ldsb [%r%{I:rsl} %{C:(simml3 == 0)(),
(simml3 < 0) (- %{I:simml3}),
(?)(+ %{I:simm13})}], sr3{I:rd}";
}

A conditional directive has arguments of the form (cond)(format)
where cond is a boolean expression on a field and format is a for-
mat string. For the example above, the string is conditional on
the simm13 instruction field. If the simm13 field equals O, the
format is empty; if simm13 is negative, the format string is “-
%{1:simm13}”; otherwise (indicated by ?) the format string is “+
%{L:simm13}”.

The A directive is used to “invoke” the attribute given as its ar-
gument. The target attribute must have a return type of string. This
string is substituted in the format string at the attribute directive.

4.1.2 Synthetic Instructions

We must also be able to describe the syntax of synthetic instruc-
tions. A synthetic instruction is an alternate syntax for a real in-
struction or a list of real instructions. In CISL, synthetic instruc-
tions are specified using the synthetic keyword as a modifier on a
class:
synthetic class cmpd {
fun syntax() {
return "cmpd %{I:bf}, %{I:ra}, %{I:rb}";
}
fun equivalent() {
return "cmp %{I:bf}, 1, %{I:ra}, %{I:rb}";
}
}

A synthetic class contains two attributes: the syntax attribute for
its own syntax and the equivalent attribute which describes the
effect in terms of non-synthetic instructions.

4.1.3 Collector Support

To generate assembler components you need syntax, encoding, and
synthetic information. These three collectors extend the NamedAt-
tributeCollector, which searches the i-graph looking for attributes
with a given name. The SyntaxCollector visits each class node in a
path and looks for attributes named syntax that return a string.

Because the syntax attribute can be declared at any point along the
instruction path (as can attributes it depends on), the collector must
be able to visit the i-graph in a bottom-up or top-down fashion. The
collector produces a list of attributes corresponding to the syntax of
a single instruction.

The EncodingCollector is the composition of two generic collec-
tors: a NamedAttributeCollector and a VariableCollector, used to
gather all the variables declared along a single path. The NamedAt-
tributeCollector collects all attributes named encode, which assign
encoding information to fields of the instruction. Its body consists
of a list of assignment statements called constraints. The left-hand
side of a constraint is either a real variable or a variable reference
and the right hand side is an integer. The result of this collector is
the complete format of an instruction and all its known encoding
information. Those fields without encoding information are set by
encoders (i.e., assemblers) or extracted by decoders (i.e., disassem-
blers, functional simulators).

The SyntheticCollector collects the syntax and equivalent
attributes from synthetic classes. Since these classes are not con-
tained in the i-graph we need to search the initial working set for all
synthetic classes. We then map from the format string in the syntax
attribute to the format string in the equivalent attribute (to generate
a rewrite rule).

All three collectors are composed to create the AssemblerCollec-
tor. This information is stored in a list of meta-instructions where
each meta-instruction contains all the information gathered from
each of the collectors mentioned above. After we build the list of
meta-instructions, translators are used to convert that information
into a form that can be used to generate an assembler. The syn-
tax of an assembly instruction will generate a lexer for parsing an
assembly file.

4.1.4 The Syntax Translator

Given the list of format strings collected for each instruction, the
SyntaxTranslator expands all attribute calls within the syntax for-
mat string. This proceeds until we reach a string without attribute
directives, which is parsed into a list of literal strings and format
directives.

Instruction encoding mandates the declaration of at least one
concrete variable. Subsequent reference variables can always be
mapped onto a concrete variable declarations (perhaps through sev-
eral layers of reference). These field references form a hierarchy of
types that define a function for accessing bits in the underlying con-
crete variable.

4.1.5 Assembler Meta-Ops

An assembler must manipulate information at the bit level to en-
code instructions. Because CoGenT is meant to generate tools for
many different languages and systems, we must be able to map our

"dsb [%r" %{lrsl} %{Ci(simmI3 ==0)0...} %{lxdl} ", %"

Declarations

Figure 5: Instruction Assembly Form

abstract assembler operations onto language specific operations and
constructs. For example, contrast C and Java. C hides very little
of the underlying machine, while Java insists on specific endian-
ness, signedness and bit widths for its data types. Even though
both languages have bit shift and masking operations C on a 64-
bit little endian machine would require very different code from
Java. The translator converts collected information into a language-
independent representation of meta-ops. A meta-op provides a lim-
ited set of operations that allow us to manipulate bits in an abstract
manner. This describes location, access patterns, and type of a par-
ticular field. These meta-ops are input to a target specific generator
that emits target code for each meta-op.

Figure 7 shows the translation of the BF field (a 3-bit field con-
tained in a PowerPC DForm instruction) into meta-ops. On the left,
we show the bit representation of a PowerPC instruction word. To
the right, are the CISL declarations for the fields. The instruction
word, inst, is a big unsigned 32 bit array; fieldl is a 5 bit ref-
erence starting at bit 6 in inst (note that indexing starts from the
left as these variables are big-endian). BF is a 3 bit reference on
fieldl atbitO.

Each variable reference is translated into meta-ops. This trans-
lation outputs a series of shift and mask meta-ops determined from
the size and endianness of the field. The endianness dictates whether
we generate a right or left shift, and the size determines the shift
size and mask value. The type hierarchy is traversed one level at a
time, building a tree of shift and mask meta-ops. The final meta-op
tree can be used directly or as a candidate for further processing
and optimization.

After the assembler translators have compiled the collector in-
formation, the assembler generators use this to generate code in the
target programming language. For example, generating a lexer file
with rules derived from the meta-op trees.

4.2 Generating Disassemblers

Disassemblers map binary encodings of instructions to assembler
syntax. Generating disassemblers is not much different than gen-
erating assemblers —the major difference is generating the decoder
tree. Using our framework, we leverage the assembler collectors
with an additional collector: DecoderTreeCollector. This collector
builds a tree from the class inheritance hierarchy. The tree nodes
hold decoder meta-ops that describe the fields of an instruction.
Note that the decoder generated for disassembly can also be used
(albeit with a different generator) as the decoding logic for a simu-
lator.

4.2.1 Disassembler Meta-Ops

The disassembler is constructed from five categories of meta-ops.
The extract meta-op, generated from CISL field references, de-
scribes how values are extracted from fields in much the same way

(SCOPE_ENTER)
(EXTRACT: field name=RT, ...)

(SCOPE_ENTER)
(TEST: field =
(idexp OPCD), (numexp 31)
(TEST: field =
(idexp XO), (numexp 53))
(FORMAT: "ldux %{I:RT},
S{I:RA}, ${I:RB}")
(SCOPE_EXIT)
(SCOPE_EXIT)

Disassembler Meta-ops

uint32_t inst
uint32 t OPCD

Mem[PC];
(inst >> 26) & Ox3F;

L.lil'lt327t fieldl = (inst >> 21) & Ox1F;
ﬁiét327t X0 = (inst >> 1) & Ox3FF;
L‘1i1'1t32_t RT = fieldl;

lf ((OPCD == 31) && (XO == 53) {

printf ("ldux %d, %d, %d\n", RT, RA, RB);
}

Generated C code

Figure 6: Disassembler Collection and Translation

that shift and mask meta-ops describe similar functionality in the
assembler. The ferch meta-op indicates that new bits must be fetched
from memory, and is the result of concrete field declarations. Proper
processing of these meta-ops ensures that the description does not
need to provide explicit figures for the number of fetched bits used
in the decode process. While this is a trivial matter with RISC ISAs,
it is extremely helpful for variable-length prefix-driven CISC ISAs
(such as Intel’s IA-32). test examines encoded constants and com-
pares them with existing fields, format describes the output syntax
for a particular (fully-resolved) instruction, and the scope meta-ops
allow subsequent translator and generator passes to infer the struc-
ture and scope of the other meta-ops.

Figure 6 shows the generated meta-ops from the decoder tree
of a subset of the PowerPC instruction set. We have omitted the
original CISL code due to space constraints. First, the value of RT
is extracted (through the reference to £ield1 from the instruction
word. Then, if OPCD is 31 and XO 53, the instruction is an 1dux
with the provided format.

4.2.2 Disassembler Translation and Generation

Translation and generation of the disassembler is straightforward.
Since the DecoderTreeCollector has already determined the control
structure of the resulting decode tree (based on how the information
is collected and how the scope meta-ops are positioned), the only
remaining task is to optimize this tree and translate into the imple-
mentation language.

4.3 Current Results and Further Applications

We currently have complete descriptions for the SPARC and Pow-
erPC, as well as partial ARM and AMD-64 descriptions. Our as-
sembler and disassembler generators are producing meta-op trees,
and we are in the process of implementing generators to produce
the stand-alone versions of these tools. We expect most of the soft-
ware and descriptions currently under development to be available
for download from the project web page in the near future.

As mentioned in the disassembler discussion, the decoder can be
used to generate decoding logic for a functional simulator. It is also

0 6 31
N A [
| |

SERRE

big unsigned bit[32] inst;
big unsigned bit[5] fieldl;

11 big unsigned bit[3] BF; —— (mask (rsh fieldl 2) 0x7)

(mask
(rsh (mask
(rsh inst 21)
0x1F) 2) 0x7)

\ (mask (rsh inst 21) O0x1F)

Instruction Bit Representation

TL Declarations

Meta-op Representation

Figure 7: Variable to Meta-op Translation

possible to see how Collectors gathering ef fect attributes would
be used to generate instruction semantic functions for a simulator.
Code emitter libraries can also be generated from the extracted en-
coding and syntax information.

S. RELATED WORK

CISL is not the first description language invented for ISAs.
Early description languages [2] were often tied to a specific ar-
chitecture family. Later languages (such as nML [3], SLED [16,
17, 19, 18], A-RTL [15], and MLRISC [4]) overcame this partic-
ular limitation. nML was designed for machine synthesis, how-
ever and was unsuitable for integration in multiple compiler tool
chains (a large goal of the CoGenT project). SLED is an instruc-
tion encoding description and has to be combined with A-RTL in
order to describe instruction semantics. This partitioning, in ad-
dition to an overly terse syntax causes the A-RTL + SLED sys-
tem to be unwieldy. MLRISC was designed almost completely for
compiler construction, and so was very attractive, however it has
a fixed input representation (MLTREE) which would require the
compiler writer to implement conversion routines between their IR
and MLTREE. This conflicted with the CoGenT project’s goal of
seamlessly integrating with existing compiler tool suites. In ad-
dition, the compiler focus of MLRISC made it a poor match for
the CoGenT goal of generating cycle-accurate timing simulators.
Project Maxwell [8] automatically generates several system tools
(assemblers, disassemblers) for several different architectures, but
it requires the specifications to be written in Java. This is a problem
because Java cannot express certain kinds of operations concisely
(e.g. sign-extension, rotation, or population count). Additionally,
the system lacks support for simulator components.

Architecture description languages (ADLs) such as Liberty [24],
LISA [13], EXPRESSION [5], and MADL [14] are focused on
simulator generation and synthesis and require internal extensions
or calls to external code to perform compiler or decoding tasks.
ADLs have also enjoyed recent popularity in the ASIP community,
where the goal is to generate a set of ISA extensions to greatly
speed the execution of a specific family of applications. LISA [20,
12] has been used to generate simulators and system tools (assem-
blers and debuggers). The Tensilica corporation [25] has developed
a description system to develop simulators and compiler tools for
ASIP design. However, their tool-generation system is proprietary.

The dream of being able to generate accurate simulators and ef-
ficient compiler and system tools from the same set of descriptions
is an old one. Many tools have been created over the years, but
because the problem is quite difficult many tools and languages
sacrificed generality in the face of ISA complexity. Many systems
are either heavily compiler-biased or simulator-biased. Some are
biased towards a specific family of architectures, or require a very
specific input IR in addition to a machine description. Because the
CoGenT project aims to be a general tool suite for compiler and
simulator generation, these more highly focused languages could

not be used. CISL is a general machine description language, that
nonetheless can be used to generate tools useful for both compila-
tion and simulation.

6. CONCLUSION AND FUTURE WORK

All low-level system tools, including compilers, simulators, assem-
blers, and disassemblers require detailed information concerning
the target architecture. Therefore, it is sensible to use a single de-
scription to generate all of these components. This paper has pre-
sented a new framework based on the CISL description language
for generating components regardless of the implementation lan-
guage. Specifically, we described an algorithm for generating a
graph-based intermediate representation, as well as a three phase
process for converting that representation into language-specific
utilities. We also have provided a detailed description of how to
leverage the features of our language and this framework to gener-
ate some commonly-required system tools.

As our system matures, we plan to generate functional simulators
in a variety of languages, components for compiler back-ends (such
as instruction schedulers and code generators), and other stand-
alone system tools (such as debuggers).

7. ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under grant number XXX-0000000. Any opin-
ions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

8. REFERENCES

[1] M. W. Bailey. CSDL: Reusable Computing Ssytem
Descriptions for Retargetable Systems Software. PhD thesis,
2000. Advisor-Jack W. Davidson.

[2] R. G. G. Cattell. Automatic derivation of code generators
from machine descriptions. ACM Transactions on
Programming Languages and Systems, 2(2):173-190, 1980.

[3] A.Fauth,J. V. Praet, and M. Freericks. Describing
instruction set processors using nml. In EDTC "95:
Proceedings of the 1995 European conference on Design and
Test, page 503, Washington, DC, USA, 1995. IEEE
Computer Society.

[4] L. George and A. Leung. MLRISC: A framework for
retargetable and optimizing compiler backends. Technical
report, Bell Laboratories and New York University, 2000.

[5] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: a language for architecture
exploration through compiler/simulator retargetability. In
DATE ’99: Proceedings of the conference on Design,
automation and test in Europe, page 100, New York, NY,
USA, 1999. ACM Press.

(6]

(7]
(8]

(9]

[10]

(1]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(191

[20]

[21]

Intel Corporation,
http://www.intel.com/products/processor/manuals/index.htm.
Intel 64 and 1A-32 Architectures Software Developer’s
Manual, 2007.

R. Lipsett, C. F. Schaefer, and C. Ussery. VHDL: Hardware

Description and Design. Kluwer Academic Publishers, 1989.

B. Mathiske, D. Simon, and D. Ungar. The project maxwell
assembler system. In PPPJ ’06. Proceedings of the 4th
international symposium on Principles and practice of
programming in Java, pages 3—12, New York, NY, USA,
2006. ACM Press.

C. May, E. Silha, R. Simpson, H. Warren, and

I. CORPORATE International Business Machines, editors.
The PowerPC architecture: a specification for a new family
of RISC processors. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1994.

C. W. Milner and J. Davidson. Quick piping: a fast,
high-level model for describing processor pipelines. In
Proceedings of the Joint Conference on Languages
Compilers and Tools for Embedded Systems (LCTES), pages
175-184, 2002.

MIPS Technologies Inc., http://www.mips.org. MIPS
Technologies, 2007.

S. Pees, A. Hoffmann, and H. Meyr. Retargetable compiled
simulation of embedded processors using a machine
description language. ACM Trans. Des. Autom. Electron.
Syst., 5(4):815-834, 2000.

S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr.

LISA —machine description language for cycle-accurate
models of programmable DSP architectures. In Design
Automation Conference, pages 933-938, 1999.

W. Qin, S. Rajagopalan, and S. Malik. A formal concurrency
model based architecture description language for synthesis
of software development tools. In LCTES ’04: Proceedings
of the 2004 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems,
pages 47-56, New York, NY, USA, 2004. ACM Press.

N. Ramsey. Using an ml-like language to specify the
semantics of machine instructions.

N. Ramsey and J. W. Davidson. Machine descriptions to
build tools for embedded systems. In ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’98), pages 172—188, June 1998.
Available as Springer Verlag LNCS 1474.

N. Ramsey and M. F. Fernandez. The New Jersey
machine-code toolkit. In Proceedings of the 1995 USENIX
Technical Conference, pages 289-302, New Orleans, LA,
Jan. 1995.

N. Ramsey and M. F. Fernandez. Automatic checking of
instruction specifications. In 1997 International Conference
on Software Engineering, pages 326-336, May 1997.

N. Ramsey and M. F. Fernandez. Specifying representations
of machine instructions. ACM Transactions on Programming
Languages and Systems, 19(3):492-524, May 1997.

O. Schliebusch, A. Chattopadhyay, D. Kammler, G. Ascheid,
R. Leupers, H. Meyr, and T. Kogel. A framework for
automated and optimized asip implementation supporting
multiple hardware description languages. In ASP-DAC ’05:
Proceedings of the 2005 conference on Asia South Pacific
design automation, pages 280-285, New York, NY, USA,
2005. ACM Press.

D. Seal. ARM Architecture Reference Manual.

(22]
(23]

[24]

[25]

Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

SPARC International Inc., http://www.sparc.com. The
SPARC Architecture Manual, 2007.

D. Thomas and P. Moorby. The Verilog Hardware
Description Language. Kluwer Academic Publishers, 1995.
M. Vachharajani, N. Vachharajani, and D. I. August. The
Liberty structural specification language: A high-level
modeling language for component reuse. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 195-206, June
2004.

A. Wang, E. Killian, D. Maydan, and C. Rowen.
Hardware/software instruction set configurability for
system-on-chip processors. In DAC ’01: Proceedings of the
38th conference on Design automation, pages 184—188, New
York, NY, USA, 2001. ACM Press.

