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Abstract. This paper describes our experiences precisely defining the processes 

associated with preparing and administrating chemotherapy and then using 

those process definitions as the basis for analyses aimed at finding and correct-

ing defects.  The work is a collaboration between medical professionals from a 

major regional cancer center and computer science researchers.  The work uses 

the Little-JIL language to create precise process definitions, the PROPEL system 

to specify precise process requirements, and the FLAVERS system to verify 

that the process definitions adhere to the requirement specifications.  The paper 

describes how these technologies were applied to successfully identify defects 

in the chemotherapy process.  Although this work is still ongoing, early experi-

ences suggest that this approach can help reduce medical errors and improve 

patient safety.  The work has also helped us to learn about the desiderata for 

process definition and analysis technologies that are expected to be more 

broadly applicable to other domains. 

1 Introduction: The Problem and Our Proposed Approach 

Medical errors cause approximately 98,000 patient deaths each year [1] in the 

United States. US Institute of Medicine (IOM) reports have suggested that the deliv-

ery of healthcare must fundamentally change to address medical errors (e.g., see [1] 

[2]).  In particular, these studies suggest that many serious medical errors result from 

system rather than individual failures, leading the IOM to advocate the development 

of healthcare systems that directly address patient safety. In particular, the IOM report 

states, “what is most disturbing is the absence of real progress… in information tech-

nology to improve clinical processes [italics ours]” ([1], pg. 3).  Thus, we have begun 

to investigate the application of software engineering process definition and analysis 

research to help reduce errors and improve safety in medical processes.  

Our preliminary research (e.g., [3]) showed that many current medical processes 

are described only at a high-level of generality and are often not defined completely 

and precisely. Because of this, healthcare providers can find themselves in situations 
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that are not directly addressed by the processes they learned, and thus they may be 

unsure whether their actions conform to recommended care guidelines. In addition, 

aspects of current process descriptions are frequently vague, ambiguous, or inconsis-

tent, allowing different providers to have different understandings of their specifics.   

Such descriptions may lead workers to believe they are following recommended 

guidelines when, in fact, their care has deviated, increasing the possibility of error.  

In the work described here, software engineering researchers and medical experts 

developed precise, rigorous definitions of medical processes that capture both the 

standard cases and exceptional situations that can arise.  The process definitions also 

capture the inherent concurrency and multi-tasking undertaken by busy healthcare 

providers, as well as details of the use of resources to perform the processes. Our in-

vestigations have indicated that there are somewhat different goals for defining and 

analyzing processes in different areas of medical practice, thus suggesting applying 

somewhat different approaches. For example, blood transfusion is primarily con-

cerned with identification issues and emergency care is focused on improved patient 

flow.   

In chemotherapy there seems to be an overriding concern for the identification and 

removal of process defects that create hazards to patient health and safety.  These 

concerns suggest the value of at least two complementary engineering approaches, 

namely fault tree analysis and finite-state verification, each applied to a precise defi-

nition of safety-critical processes.  Analysis of fault trees promises to indicate serious 

ramifications of incorrect performance of process steps [4, 5], while finite-state veri-

fication (e.g., [6, 7]) promises to identify sequences of tasks that, even if performed 

perfectly, could lead to safety violations [8, 9].  In this initial work in identifying and 

removing chemotherapy process defects, we focused on the latter, as the technologies 

to support it were more accessible to us.  In particular, this paper describes efforts to 

evaluate the effectiveness of defining medical processes using a rigorously defined 

language, formally encoding the requirements for that process, carrying out finite-

state verification of the processes to detect defects, and then improving the processes 

by defect removal. In the next section we present the Little-JIL process definition 

language and provide examples of how it was used to define a chemotherapy process. 

Section 3 describes and evaluates our experiences, and Section 4 overviews related 

work.  Section 5 suggests some future research directions. 

2 An Example:  Chemotherapy Preparation and Administration 

Chemotherapy is the use of chemical substances to treat disease. In its modern-day 

use, it refers primarily to the administration of cytotoxic drugs to treat cancer.  Che-

motherapy medications are typically highly toxic, and thus it is of overriding impor-

tance to be sure that the right patient receives the right medications in the right dos-

ages at the right times.   To assure this, elaborate processes are carried out that inte-

grate the efforts of such diverse medical personnel as doctors, nurses, pharmacists, 

and clerical workers.  Chemotherapy processes aim to speed the flow of treatment, 

while assuring that errors do not occur.  Checks are in place to guard against commit-

ting such errors. Preliminary examination of these processes suggested that they are 
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Figure 1 – A Little-JIL step icon. 

large and complex, and their growing complexity makes it increasingly difficult to be 

sure they provide sufficient protection against the commission of errors.   

Our work began by defining some example chemotherapy processes.  Earlier work 

in defining processes in such other domains as software development, scientific data 

processing [10], and e-government [11] suggested that a powerful process definition 

language would be needed.  We chose to use the Little-JIL process definition lan-

guage because our previous experience suggested that semantic features of this lan-

guage were likely to be effective in defining processes in the chemotherapy domain. 

2.1 Principal Features of Little-JIL 

Little-JIL [12, 13] was originally developed to define software development proc-

esses. A Little-JIL process definition has three components, an artifact collection, a 

resource repository, and a coordination specification. The artifact collection contains 

the items that are the products of the process.  The resource repository specifies the 

agents and capabilities that support performing the activities.  The coordination speci-

fication ties these together, specifying which agents and supplementary capabilities 

perform which activities on which artifacts at which time(s).   

A Little-JIL coordination specification has a visual representation, but is precisely 

defined (using finite-state automata), which makes it amenable to definitive analyses. 

Among the features of Little-JIL that distinguish it from most process languages are 

its 1) use of abstraction to support scalability and clarity, 2) use of scoping to make 

step parameterization clear, 3) facilities for specifying parallelism, 4) capabilities for 

dealing with exceptional conditions, and 5) clarity in specifying iteration.  

A Little-JIL coordination specification consists of hierarchically decomposed 

steps, where a step represents a task to be done by an assigned agent. Figure 1 shows 

the iconic representation of a single step. Each step has a name and a set of badges to 

represent control flow among its sub-steps, its interface (specifying its input/output 

artifacts and the resources it requires), the exceptions it handles, etc. A step with no 

sub-steps is a leaf step.  It represents an activity performed by an agent, without any 

process guidance.  A full description of Little-JIL is provided in [13].  Below we pre-

sent some Little-JIL features used in the example presented in this paper. 

Resources and Agents—Each Little-JIL step interface specifies the types of re-

sources required to support execution of the step.  Some examples of resources are 

physicians, infusion suites, and accesses to medical records.  Each step has one spe-

cially designated resource, called its agent, which is assigned responsibility for the 

performance of the step.  Little-JIL agents may be humans, groups of humans, or 

automated devices. 

Substep Decomposition—

Little-JIL steps may be 

decomposed into two kinds of 

substeps, ordinary substeps and 

exception handlers.  Ordinary 

substeps define how each step is 

executed and connected to its 

parent through edges annotated 
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by specifications of the artifacts that flow between parent and substep. Exception 

handlers define how exceptions thrown by the step’s descendants are handled.   

Step sequencing—A non-leaf step has a sequencing badge (an icon on the left of 

the step bar; e.g., the right arrow in Figure 1) that defines the order of substep execu-

tion. Little-JIL has four step kinds.  Our example uses two, namely, the sequential 

step (right arrow) indicating that substeps execute from left to right, and the parallel 

step (equal sign) indicating that substeps execute in any (possibly interleaved) order, 

although the order may be constrained by such factors as the lack of needed inputs.  

Data Channels—Data Channels are named entities that act like buffers, directly 

connecting specifically identified source step(s) with specifically identified destina-

tion step(s). This construct helps define how streaming data is handled and can also 

be used to synchronize concurrently executing steps.   

Exception Handling—A Little-JIL step can throw an exception when some aspect 

of step execution fails. This triggers execution of a matching exception handler de-

fined at an ancestor of the step that throws the exception.  

2.2 An Example Using Little-JIL to Define a Chemotherapy Process 

An example Little-JIL definition of a portion of a chemotherapy process is shown 

in Figure 2. This is the top-level coordination diagram of the process and thus repre-

sents it at a high level of abstraction. The entire Little-JIL process definition has more 

than 250 steps and thus cannot be shown in its entirety here.  Elicitation of the process 

required two semesters of weekly meetings between process developers and medical 

professionals. The part of the process presented here is concise but representative of 

many interesting issues that arise in defining and analyzing the full process.  

Figure 2 indicates that the process is decomposed into two substeps executing in 

parallel (note the equal sign in the step bar). Each substep is further decomposed 

down to the level of leaf steps for which the process definer is unable to, or uninter-

ested in, providing process detail and guidance.  

The first substep, prepare for and administer first cycle of chemotherapy, of the 

root step chemotherapy process is decomposed into six substeps to be executed in 

sequence (note the arrow pointing to the right in the step bar). The six substeps of 

prepare for and administer first cycle of chemotherapy are the major stages of the 

chemotherapy process: perform consultation and assessment is done by a Medical 

Doctor (MD); perform initial review of patient records by a Practice Registered Nurse 

(RN) and a Triage Medical Assistant; perform pharmacy task by a Pharmacist; per-

form patient teaching by a Nurse Practitioner; perform final tasks (day before chemo) 

by a Pharmacist and a Clinic RN; and the first day of chemo, is done again by a 

Pharmacist and a Clinic RN. 

The “consultation channel” (shown in Figure 2 as a comment elaborating the root 

step's interface, which is represented iconically by the circle above the step) is de-

clared at the root step, chemotherapy process, and is used to synchronize execution of 

the root’s two substeps, which execute in parallel with each other.  Create and proc-

ess consult note is a sequential step (note the arrow in the step bar), meaning that its 

substeps are executed in order. The step dictate consult note cannot start until perform 

patient consultation (not shown for lack of space), which is a substep of perform con-
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sultation and assessment, completes and writes a parameter to the “consultation chan-

nel,” i.e. an MD cannot dictate the consult note before evaluating the patient’s condi-

tion. On the other hand, there is flexibility in how long after consultation the MD may 

actually dictate the consult note.  Specifically, the consult note is primarily used for 

billing and legal purposes, and it does not directly affect the creation of a treatment 

plan or the administration of chemotherapy based on that treatment plan. Thus a doc-

tor may choose to dictate the consult note right after evaluating the patient or later, 

while the tasks in prepare for and administer first cycle of chemotherapy are already 

underway. This step sequencing flexibility is captured precisely by the coordination 

diagram in Figure 2, which shows the dictate consult note step potentially executing 

in parallel with the step perform consultation and assessment. These two steps syn-

chronize their efforts when the substep of perform patient consultation and assess-

ment step sends a parameter to the step dictate consult note via the “consultation 

channel.” 

 
 

 
Figure 2: A coordination diagram of Little-JIL chemotherapy process 

 

Figure 2 also shows that the root step chemotherapy process has a substep consider 

alternative treatment that acts as an exception handler (note the “X” sign on the che-

motherapy process step bar to which the step consider alternative treatment is con-

nected). In the step perform consultation and assessment in Figure 2, the doctor may 

determine that the patient's pathology report does not indicate cancer. In this case, the 

Pathology Report Does Not Indicate Cancer exception is thrown (the decomposition 

of the perform consultation and assessment step is not shown due to space limita-

tions). The exception propagates up the step decomposition tree until it reaches a 

matching handler. Thus, control is transferred to the exception handler step consider 

alternative treatment and appropriate action is taken. 
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Note that the diagrams in Figures 2 and 3 do not include all the information needed 

for completeness of a Little-JIL process definition. A diagram is created using the 

Little-JIL visual editor, which allows the developer to suppress visualization of proc-

ess details for the sake of clarity. Thus, Figures 2 and 3 do not display the resources 

and artifacts declarations in each step; just representing them by the circle above the 

step. 

 

 

 
Figure 3: The task decomposition of transcribe and place consult note in patient’s record 

 

To illustrate the use of process decomposition, Figure 3 decomposes the substep 

transcribe and place consult note in patient’s record of the root step chemo process. 

Although trivial at first glance, the diagram in Figure 3 supports some interesting 

complexities. First, note that transcribe and place consult note in patient’s record is 

the second substep of the sequential step create and process consult note (Figure 2). 

This, means that transcribe and place consult note in patient’s record cannot start 

until the step dictate consult note has completed. This sequencing mechanism is a 

faithful representation of the real world situation. In this process, the doctor dictates 

the consult note on the phone. The doctor’s message is recorded and triggers the tasks 

of the transcriber, who is external to the clinic. The transcriber listens to the message, 

transcribes the consult note, emails it to the doctor’s secretary and so on. 

Another interesting aspect of the diagram in Figure 3 is the diverse set of agents 

that execute the steps – Transcriber, Secretary, Medical Doctor, and Medical Records 

Clerk. Thus, the timely manner in which the step transcribe and place consult note in 

patient’s record is performed depends on the availability of all those agents. In a later 

section, we will see that the time of completion of the transcribe and place consult 

note in patient’s record step relative to the time of completion of other steps in the 

process is important for satisfying some of the properties of the process. 
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2.3 Using PROPEL and FLAVERS Analysis to Look for Process Defects 

In this section, we present a short, simplified example of the application of finite-

state verification to the chemotherapy process definition.  Finite-state verification 

techniques algorithmically check all possible paths through a model of a system to 

determine whether any execution of the system can violate a specified system prop-

erty.  In the work described here, we have used the FLAVERS [7] finite-state verifier, 

although other tools (e.g., [14]) could have been used.  Our model of the system is an 

annotated control flow graph derived from the Little-JIL process definition. For our 

purposes, a property is a specification of the requirements for some aspect of the be-

havior of the system. Thus, the property is a specification against which a system is to 

be verified. For example, a property might state that a certain event cannot occur until 

after some other event occurs. Our work focuses on developing such properties with 

the help of domain experts (chemotherapy medical professionals in this example), 

eliciting a process definition from domain experts, and finally comparing the process 

definition against the properties. If a property is violated, we change the process (as-

suming the property is correctly specified) and verify the modified process against the 

property. We iterate the above procedure until the process satisfies the property and 

thus the process is improved. 

In our analysis, properties are encoded as finite-state automata (FSA) and represent 

constraints on the sequences of events that could occur during executions of the proc-

ess.  

 

 
Figure 4: An FSA corresponding to the chemotherapy property “Before Chemotherapy Can Be Admin-

istered to a Patient, that Patient’s Consult Note Needs to Be Put in that Patient’s Record.” A transition 

labeled with ANY EVENT means that the transition is taken if any event from the alphabet of the FSA 

occurs. The ERROR STATE is a trap state, i.e. it is a non-accepting state, such that once the automaton 

enters that state, it remains in it regardless of what other events occur. 

 

The FSA in Figure 4 corresponds to the property “Before Chemotherapy Can Be 

Administered to a Patient, that Patient's Consult Note Needs to Be Put in that Patient's 

Record.” The events in this property are put consult note in patient's record and ad-

minister chemo. The event put consult note in patient's record is bound to the step file 

consult note in patient's record in Figure 3. The event administer chemo is bound to 

the step administer chemo drug which is a part of the subprocess decomposition of 

the step first day of chemo in Figure 2.  

At the start of execution of the process, the automaton in Figure 4 is assumed to be 

in its start state q0 (indicated by the triangle to the left of state q0). Execution of put 
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consult note in patient's record causes the FSA to transition from state q0 to state q1. 

Then if administer chemo is encountered during execution of the process, the FSA 

transitions from state q1 to state q2. The state q2 is an accepting state (indicated by 

doubled circle). Thus, put consult note in patient's record followed by administer 

chemo is a valid sequence of events in the chemotherapy process. On the other hand, 

if administer chemo occurs before put consult note in patient's record (the transition 

from state q0 to state q3 in the FSA shown in Figure 4), the automaton ends up in an 

ERROR state (q3) indicating that this causes the property to be violated. Also note 

that if consult note is put in patient's record does not occur at all, then the automaton 

will remain in its start state q0, which is also an accepting state thus indicating that 

the property is satisfied.  

In our project, automata such as the one in Figure 4, were generated by the PROPEL 

(PROPerty ELucidator) system [15, 16]. PROPEL facilitates the elucidation of proper-

ties by providing three different representations of a property—a question tree view, a 

disciplined English view, and a finite-state automaton view—and assuring that the 

three views automatically remain synchronized with each other. The different views 

aim to bridge the gap between the natural language in which the properties are elicited 

from domain experts and the rigorous, but usually not trivial to specify correctly, 

mathematical formalism of the finite-state automaton used by the verification tool 

FLAVERS.  Each view also explicitly indicates subtle choices that need to be made 

and questions that need to be answered in order to specify a property, such as whether 

certain events must always occur or whether other events can occur multiple times.  

For the example chemotherapy process, there are dozens of important safety and legal 

properties to be verified. Our experiments indicate that PROPEL is adept at supporting 

the definition of such properties. 

Having defined the process in Little-JIL and created the property automaton using 

PROPEL, we then used the finite-state verifier FLAVERS to check whether the process 

satisfies the property on all possible paths of execution. If it does not, i.e. if a process 

execution can drive the property automaton to a non-accepting state, then FLAVERS 

reports the violation and produces a trace of the process execution that leads to the 

property violation. The verification example in this paper may appear relatively 

straightforward, given the simple property, but we note that it entails considerable 

challenges. The fact that the root step chemotherapy process is parallel requires that 

FLAVERS explore all possible execution interleavings of the substeps, creating a 

very large space of alternatives to be explored.  The use of channels further compli-

cates the verification. The fact that the chemotherapy process is of a significant size 

(more than 250 steps) makes the verification state space very large. FLAVERS em-

ploys optimization techniques and thus can usually cope with the verification of prop-

erties of processes whose size is similar to that of this chemotherapy process. 

In fact, FLAVERS reported that this chemotherapy process example can violate the 

property presented in Figure 4, and it produced a trace of a valid execution of the 

process where administer chemo drug occurs before file consult note in patient's re-

cord completes. Although a channel imposes some synchronization between the par-

allel activities in the process, the verifier detected that concurrent execution can allow 

at least one execution sequence that leads to a property violation. Thus, this result 

identified a process defect, but it also raises an interesting question about whether 
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For example, the chemotherapy process relies heavily on a paper copy of a treatment 

plan, which is an artifact created at the earlier stages of the process and then verified 

independently and signed by medical professionals. However, doctors enter changes 

to a treatment plan electronically, which sometimes leads to inconsistencies between 

the current electronic version and the paper copy that circulates among the medical 

professionals. The artifact model of Little-JIL and the need to precisely describe and 

distinguish between paper and electronic records led to the discovery of such issues. 

The expressive power of Little-JIL proved to be useful for the definition of the 

process in the chemotherapy case study. The powerful exception handling mecha-

nisms in the language enabled the process definition to reflect the real world process 

more accurately. The capabilities the language provides for modeling resources (both 

agent and non-agent) and artifacts were an important part of the specification of the 

process. The synchronization mechanism and channel support for specifying direct 

communication between steps was also useful in this process definition. Hierarchy 

and abstraction were beneficial in helping to keep down the size of the chemotherapy 

process and the many different levels of abstraction at which it was defined. 

The graphical notations in Little-JIL facilitated the communication of computer 

science concepts to the medical professionals. We usually tried to present the process 

to the medical professionals in textual, natural language form, but we were often 

asked to show the Little-JIL diagrams as they provide clearer understandings.  While 

medical professionals are unlikely to ever write their own process definitions in Lit-

tle-JIL, our experiences suggest that it is not unreasonable to expect they will be both 

able and willing to read Little-JIL process definitions. 

The task of interviewing domain experts and specifying precisely the high level 

goals and requirements that the medical process needs to meet, proved to be benefi-

cial. We worked on identifying properties at a higher level of abstraction, a level at 

which the property’s events are not tightly coupled to concrete steps in the process  

definition, but rather are used to capture universal safety and legal goals that need to 

be satisfied no matter how the process is implemented. This approach introduced a 

different perspective and helped medical professionals view the process in a new 

light. Instead of focusing only on “what is being done”, the process was approached 

by asking questions like “Why is this done?” and “What goal is met by this sequence 

of steps?” Such types of questions also helped expose deficiencies in the process and 

triggered discussions about how to address them. While considering the motivation 

behind parts of the process and the objectives that certain sequences of steps are try-

ing to achieve, the medical professionals often identified steps that were either mis-

placed or missing from the process guidelines.  Thus, property elicitation itself played 

an important role in enhancing the process. 

PROPEL was of great value in facilitating the correct specification of properties. 

Previous experience indicated that specifying a property in a mathematical formalism, 

like a finite-state automaton or a temporal logic, is often not trivial and subtleties are 

often not captured easily or correctly.   For example, consider the requirement that if 

patient height and weight data (used to determine correct dosage) are “stale” (i.e. the 

measurements are not recent enough), then height and weight must be remeasured 

before administration of chemotherapy.  A correct formal specification of this must 

address such issues as whether the data can become stale several times and, if so, 

whether a single remeasurement is sufficient, whether the data always becomes stale, 
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sec&i1n s$1#s &$a& 1+r 8eri0ica&i1n a22r1ac$ c1+l3 i3en&i0/ real 8i1la&i1ns an3 2in7

21in& #eaBnesses in &$e 2r1cess5 Je ex2ec& &$a& #$en #e Ce?in &1 anal/Ke m1re 

c1m2lica&e3 2r12er&ies 18er lar?er 2r1cesses &$a& $i3e 21&en&ial c1nc+rrenc/, 1+r a27

2r1ac$ #ill lea3 &1 &$e 3isc18er/ 10 m1re 3e0ec&s in &$e 2r1cess5 

Je n1&e &$a& as &$e siKe 10 &$e 2r1cess +n3er 8eri0ica&i1n increases, s1 31es &$e 

s&a&e s2ace &$a& nee3s &1 Ce ex2l1re35 =ar?e 2r1cesses, liBe &$e c$em1&$era2/ 1ne, 

#i&$ in$eren& 2arallelism an3 c1m2lex exce2&i1n $an3lin? s2eci0ica&i1ns, s&ress &$e 

im21r&ance 10 +&iliKin? 8eri0iers &$a& scale #ell5 D& &$is 21in&, 1+r #1rB in3ica&es &$a& 

&$e 2er01rmance 10 &$e G=DH<RS s/s&em seems &1 Ce ca2aCle 10 acce2&aCle scalin?5 

G1r exam2le, &$e 8eri0ica&i1n 10 &$e 2r12er&/ 2resen&e3 in Gi?5 4 &11B less &$an &en 

sec1n3s 10 c1m2+&in? &ime r+nnin? 1n a s&an3ar3 3esB&12 c1m2+&er5 

!"#$%&'(%)#*+,-#

T$ere $as Ceen s1me recen& #1rB +sin? 2r1cess 3e0ini&i1n an3 anal/sis &1 im2r18e 

me3ical 2r1cesses5  G1r exam2le, &$e 9r1&1c+re II 2r1Nec& O17Q $as ?1als &$a& are q+i&e 

similar &1 1+rs in &$a&  me3ical 2r1&1c1ls are 01rmall/ s2eci0ie3 an3 8eri0ie35 Ds 2ar& 

10 &$a& 2r1Nec&,  a 2r1&1c1l 01r Na+n3ice an3 i&s 2r12er&ies #ere m13ele3 in &$e DsCr+ 

lan?+a?eO1RQ5 T$e 2r1&1c1l &$a& #as anal/Ke3 c1nsis&s 10 4S 2lans T#$ere &$e 2lans 

seem &1 Ce similar &1 =i&&le7FI= s&e2sU, #$ereas &$e c$em1&$era2/ 2r1cess &$a& #e 

anal/Ke3 c1nsis&s 10 18er 25S s&e2s5 T$e =i&&le7FI= 2r1cess 3e0ini&i1n s+221r&s m1re 

3e&aile3 re2resen&a&i1n 10 &$e 2r1cess, incl+3in? s+221r& 01r exce2&i1ns an3 c1m2lex 

a?en& in&erac&i1ns5 T$e 9r1&1c+re researc$ers als1 enc1+n&ere3 amCi?+1+s +se 10 

me3ical &erms, inc1m2le&e in01rma&i1n, an3 inc1nsis&encies &$a& ma/ s+221r& 3i00eren& 

c1ncl+si1ns5  In an1&$er s&+3/ &$a& #as als1 2ar& 10 &$e 9r1&1c+re II 2r1Nec&O1XQ, &$e 

DsCr+ m13el 10 &$e Na+n3ice 2r1&1c1l an3 i&s 2r12er&ies #ere 8eri0ie3 +sin? &$e SMH 

m13el c$ecBer5 

N1+meir $as als1 2+rs+e3 similar ?1als, C+& +sin? a n1&a&i1n liBe UM= &1 3e0ine 

2r1cesses OXQ5  O&$ers Te5?5, O2SQU, 8ie# me3ical 2r1cesses as #1rB0l1#s an3 +se a 

#1rB0l1#7liBe lan?+a?e &1 3e0ine 2r1cesses an3 3ri8e &$eir exec+&i1n5  \+&, #e n1&e 

&$a& &$ese 2r1Nec&s seem &1 2lace less em2$asis 1n anal/sis5 

T$ere $a8e Ceen 1&$er a22r1ac$es &1 im2r18in? me3ical sa0e&/ as #ell, C+& m+c$ 

10 &$e em2$asis 10 &$is #1rB $as Ceen &ar?e&e3 &1#ar3s q+ali&/ c1n&r1l meas+res O21Q, 

err1r re21r&in? s/s&ems O22Q, an3 2r1cess a+&1ma&i1n in laC1ra&1r/ se&&in?s O23Q, s+c$ 

as &$1se #$ere Cl113 2r13+c&s are 2re2are3 01r a3minis&ra&i1n5  In 1&$er #1rB, \a/e7
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sian belief net-or0s 1a2e been used as t1e basis for discrete e2ent simulations of 

medical scenarios and to guide treatment 8lanning 9e:g:; <#=>?: 

Many languages and diagrammatic notations 1a2e been used to define 8rocesses:  

Some incor8orated use of a 8rocedural language <#C>:  Dt1ers used rules <#E> and 

modified Fetri Gets <#H> to define 8rocesses:  More recently; t1e -or0flo- <#I> and 

electronic commerce <#J> communities are 8ursuing similar researc1: Gone of t1ese 

a88roac1es; 1o-e2er; seem able to su88ort 8rocess definitions t1at are bot1 clear and 

8recise enoug1: Main failings of t1ese a88roac1es include inadeKuate s8ecification of 

exce8tion 1andling; -ea0 facilities for controlling concurrency; lac0 of resource man-

agement; and inadeKuate s8ecification of artifact flo-s:  

N1ere 1as also been considerable -or0 on t1e analysis of code and models of sys-

tems:  Finite-state 2erification; or model c1ec0ing 9e:g:; <E; H; "=>?; a88roac1es con-

struct a finite model t1at re8resents all 8ossible executions of t1e system and t1en 

analyPe t1at model algorit1mically to detect executions t1at 2iolate a 8articular 8ro8-

erty s8ecified by t1e analyst:  A maRor concern of t1ese tec1niKues is controlling t1e 

siPe of t1e state-s8ace model; -1ile maintaining analytic 8recision: Dur team 1as ana-

lyPed and e2aluated 2arious finite-state 2erification a88roac1es <ST>; and de2elo8ed 

2erifiers suc1 as FUAVEXS <H> and IGCA <S">:   Dur -or0 seems to be among t1e 

first t1at 1as a88lied FSV a88roac1es to 8rocess definitions <"E>: 

!"#$%&'()*i%&#

N1e finite-state 2erification a88roac1 8resented in t1is 8a8er su88orts c1ec0ing 

-1et1er or not a 8rocess satisfies certain 8ro8erties; but it assumes t1at all agents in-

2ol2ed in t1e 8rocess 8erform t1eir tas0s -it1out errors: [o-e2er; 1uman errors do 

occur in medical 8rocesses and t1us com8lementary forms of analysis are also useful: 

N1us; for exam8le; -e 1a2e used a blood transfusion 8rocess definition as t1e basis 

for t1e automatic generation of a fault tree re8resentation of t1is 8rocess and 1a2e 

used t1e fault tree to identify single 8oints of failure in t1e 8rocess; t1ereby reducing 

its 2ulnerability to failure <C>: Similarly; our studies of delays in a 1os8ital Emergency 

De8artment 9ED? 1a2e underscored t1e 8otential for resource management to im8ro2e 

efficiency in t1e ED]s 8rocesses <S#>:   In res8onse; -e are de2elo8ing tec1nologies to 

create discrete e2ent simulations from 8rocess definitions in order to su88ort reason-

ing about 1o- to im8ro2e efficiency t1roug1 better resource management:  

In conclusion; -e obser2e t1at t1is -or0 1as s1o-n considerable 8romise and 1as 

suggested extensions in se2eral directions:  ^e 8ro8ose to 8ursue furt1er researc1 in 

t1is domain:  ^e ex8ect t1at t1is researc1 -ill 8ro2ide furt1er insig1ts into 1o- 8roc-

ess definition and analysis tec1nology can 1el8 im8ro2e t1e safety and efficiency of 

t1e 8rocesses in t1is critical domain: 
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