
Rigorously Defining and Analyzing Medical Processes:

An Experience Report

Stefan Christov, Bin Chen, George S. Avrunin, Lori A. Clarke, Leon J. Osterweil

Laboratory for Advanced Software Engineering Research (LASER)

University of Massachusetts at Amherst, Amherst, MA 01003

{christov, chenbin, avrunin, clarke, ljo} @ cs.umass.edu

David Brown, Lucinda Cassells, Wilson Mertens

D’Amour Center for Cancer Care, 3350 Main Street, Springfield, MA 01199

{david.brown, lucy.cassells, wilson.mertens} @ bhs.org

Abstract. This paper describes our experiences precisely defining the processes

associated with preparing and administrating chemotherapy and then using

those process definitions as the basis for analyses aimed at finding and correct-

ing defects. The work is a collaboration between medical professionals from a

major regional cancer center and computer science researchers. The work uses

the Little-JIL language to create precise process definitions, the PROPEL system

to specify precise process requirements, and the FLAVERS system to verify

that the process definitions adhere to the requirement specifications. The paper

describes how these technologies were applied to successfully identify defects

in the chemotherapy process. Although this work is still ongoing, early experi-

ences suggest that this approach can help reduce medical errors and improve

patient safety. The work has also helped us to learn about the desiderata for

process definition and analysis technologies that are expected to be more

broadly applicable to other domains.

1 Introduction: The Problem and Our Proposed Approach

Medical errors cause approximately 98,000 patient deaths each year [1] in the

United States. US Institute of Medicine (IOM) reports have suggested that the deliv-

ery of healthcare must fundamentally change to address medical errors (e.g., see [1]

[2]). In particular, these studies suggest that many serious medical errors result from

system rather than individual failures, leading the IOM to advocate the development

of healthcare systems that directly address patient safety. In particular, the IOM report

states, “what is most disturbing is the absence of real progress… in information tech-

nology to improve clinical processes [italics ours]” ([1], pg. 3). Thus, we have begun

to investigate the application of software engineering process definition and analysis

research to help reduce errors and improve safety in medical processes.

Our preliminary research (e.g., [3]) showed that many current medical processes

are described only at a high-level of generality and are often not defined completely

and precisely. Because of this, healthcare providers can find themselves in situations

 2

that are not directly addressed by the processes they learned, and thus they may be

unsure whether their actions conform to recommended care guidelines. In addition,

aspects of current process descriptions are frequently vague, ambiguous, or inconsis-

tent, allowing different providers to have different understandings of their specifics.

Such descriptions may lead workers to believe they are following recommended

guidelines when, in fact, their care has deviated, increasing the possibility of error.

In the work described here, software engineering researchers and medical experts

developed precise, rigorous definitions of medical processes that capture both the

standard cases and exceptional situations that can arise. The process definitions also

capture the inherent concurrency and multi-tasking undertaken by busy healthcare

providers, as well as details of the use of resources to perform the processes. Our in-

vestigations have indicated that there are somewhat different goals for defining and

analyzing processes in different areas of medical practice, thus suggesting applying

somewhat different approaches. For example, blood transfusion is primarily con-

cerned with identification issues and emergency care is focused on improved patient

flow.

In chemotherapy there seems to be an overriding concern for the identification and

removal of process defects that create hazards to patient health and safety. These

concerns suggest the value of at least two complementary engineering approaches,

namely fault tree analysis and finite-state verification, each applied to a precise defi-

nition of safety-critical processes. Analysis of fault trees promises to indicate serious

ramifications of incorrect performance of process steps [4, 5], while finite-state veri-

fication (e.g., [6, 7]) promises to identify sequences of tasks that, even if performed

perfectly, could lead to safety violations [8, 9]. In this initial work in identifying and

removing chemotherapy process defects, we focused on the latter, as the technologies

to support it were more accessible to us. In particular, this paper describes efforts to

evaluate the effectiveness of defining medical processes using a rigorously defined

language, formally encoding the requirements for that process, carrying out finite-

state verification of the processes to detect defects, and then improving the processes

by defect removal. In the next section we present the Little-JIL process definition

language and provide examples of how it was used to define a chemotherapy process.

Section 3 describes and evaluates our experiences, and Section 4 overviews related

work. Section 5 suggests some future research directions.

2 An Example: Chemotherapy Preparation and Administration

Chemotherapy is the use of chemical substances to treat disease. In its modern-day

use, it refers primarily to the administration of cytotoxic drugs to treat cancer. Che-

motherapy medications are typically highly toxic, and thus it is of overriding impor-

tance to be sure that the right patient receives the right medications in the right dos-

ages at the right times. To assure this, elaborate processes are carried out that inte-

grate the efforts of such diverse medical personnel as doctors, nurses, pharmacists,

and clerical workers. Chemotherapy processes aim to speed the flow of treatment,

while assuring that errors do not occur. Checks are in place to guard against commit-

ting such errors. Preliminary examination of these processes suggested that they are

 3

Figure 1 – A Little-JIL step icon.

large and complex, and their growing complexity makes it increasingly difficult to be

sure they provide sufficient protection against the commission of errors.

Our work began by defining some example chemotherapy processes. Earlier work

in defining processes in such other domains as software development, scientific data

processing [10], and e-government [11] suggested that a powerful process definition

language would be needed. We chose to use the Little-JIL process definition lan-

guage because our previous experience suggested that semantic features of this lan-

guage were likely to be effective in defining processes in the chemotherapy domain.

2.1 Principal Features of Little-JIL

Little-JIL [12, 13] was originally developed to define software development proc-

esses. A Little-JIL process definition has three components, an artifact collection, a

resource repository, and a coordination specification. The artifact collection contains

the items that are the products of the process. The resource repository specifies the

agents and capabilities that support performing the activities. The coordination speci-

fication ties these together, specifying which agents and supplementary capabilities

perform which activities on which artifacts at which time(s).

A Little-JIL coordination specification has a visual representation, but is precisely

defined (using finite-state automata), which makes it amenable to definitive analyses.

Among the features of Little-JIL that distinguish it from most process languages are

its 1) use of abstraction to support scalability and clarity, 2) use of scoping to make

step parameterization clear, 3) facilities for specifying parallelism, 4) capabilities for

dealing with exceptional conditions, and 5) clarity in specifying iteration.

A Little-JIL coordination specification consists of hierarchically decomposed

steps, where a step represents a task to be done by an assigned agent. Figure 1 shows

the iconic representation of a single step. Each step has a name and a set of badges to

represent control flow among its sub-steps, its interface (specifying its input/output

artifacts and the resources it requires), the exceptions it handles, etc. A step with no

sub-steps is a leaf step. It represents an activity performed by an agent, without any

process guidance. A full description of Little-JIL is provided in [13]. Below we pre-

sent some Little-JIL features used in the example presented in this paper.

Resources and Agents—Each Little-JIL step interface specifies the types of re-

sources required to support execution of the step. Some examples of resources are

physicians, infusion suites, and accesses to medical records. Each step has one spe-

cially designated resource, called its agent, which is assigned responsibility for the

performance of the step. Little-JIL agents may be humans, groups of humans, or

automated devices.

Substep Decomposition—

Little-JIL steps may be

decomposed into two kinds of

substeps, ordinary substeps and

exception handlers. Ordinary

substeps define how each step is

executed and connected to its

parent through edges annotated

 4

by specifications of the artifacts that flow between parent and substep. Exception

handlers define how exceptions thrown by the step’s descendants are handled.

Step sequencing—A non-leaf step has a sequencing badge (an icon on the left of

the step bar; e.g., the right arrow in Figure 1) that defines the order of substep execu-

tion. Little-JIL has four step kinds. Our example uses two, namely, the sequential

step (right arrow) indicating that substeps execute from left to right, and the parallel

step (equal sign) indicating that substeps execute in any (possibly interleaved) order,

although the order may be constrained by such factors as the lack of needed inputs.

Data Channels—Data Channels are named entities that act like buffers, directly

connecting specifically identified source step(s) with specifically identified destina-

tion step(s). This construct helps define how streaming data is handled and can also

be used to synchronize concurrently executing steps.

Exception Handling—A Little-JIL step can throw an exception when some aspect

of step execution fails. This triggers execution of a matching exception handler de-

fined at an ancestor of the step that throws the exception.

2.2 An Example Using Little-JIL to Define a Chemotherapy Process

An example Little-JIL definition of a portion of a chemotherapy process is shown

in Figure 2. This is the top-level coordination diagram of the process and thus repre-

sents it at a high level of abstraction. The entire Little-JIL process definition has more

than 250 steps and thus cannot be shown in its entirety here. Elicitation of the process

required two semesters of weekly meetings between process developers and medical

professionals. The part of the process presented here is concise but representative of

many interesting issues that arise in defining and analyzing the full process.

Figure 2 indicates that the process is decomposed into two substeps executing in

parallel (note the equal sign in the step bar). Each substep is further decomposed

down to the level of leaf steps for which the process definer is unable to, or uninter-

ested in, providing process detail and guidance.

The first substep, prepare for and administer first cycle of chemotherapy, of the

root step chemotherapy process is decomposed into six substeps to be executed in

sequence (note the arrow pointing to the right in the step bar). The six substeps of

prepare for and administer first cycle of chemotherapy are the major stages of the

chemotherapy process: perform consultation and assessment is done by a Medical

Doctor (MD); perform initial review of patient records by a Practice Registered Nurse

(RN) and a Triage Medical Assistant; perform pharmacy task by a Pharmacist; per-

form patient teaching by a Nurse Practitioner; perform final tasks (day before chemo)

by a Pharmacist and a Clinic RN; and the first day of chemo, is done again by a

Pharmacist and a Clinic RN.

The “consultation channel” (shown in Figure 2 as a comment elaborating the root

step's interface, which is represented iconically by the circle above the step) is de-

clared at the root step, chemotherapy process, and is used to synchronize execution of

the root’s two substeps, which execute in parallel with each other. Create and proc-

ess consult note is a sequential step (note the arrow in the step bar), meaning that its

substeps are executed in order. The step dictate consult note cannot start until perform

patient consultation (not shown for lack of space), which is a substep of perform con-

 5

sultation and assessment, completes and writes a parameter to the “consultation chan-

nel,” i.e. an MD cannot dictate the consult note before evaluating the patient’s condi-

tion. On the other hand, there is flexibility in how long after consultation the MD may

actually dictate the consult note. Specifically, the consult note is primarily used for

billing and legal purposes, and it does not directly affect the creation of a treatment

plan or the administration of chemotherapy based on that treatment plan. Thus a doc-

tor may choose to dictate the consult note right after evaluating the patient or later,

while the tasks in prepare for and administer first cycle of chemotherapy are already

underway. This step sequencing flexibility is captured precisely by the coordination

diagram in Figure 2, which shows the dictate consult note step potentially executing

in parallel with the step perform consultation and assessment. These two steps syn-

chronize their efforts when the substep of perform patient consultation and assess-

ment step sends a parameter to the step dictate consult note via the “consultation

channel.”

Figure 2: A coordination diagram of Little-JIL chemotherapy process

Figure 2 also shows that the root step chemotherapy process has a substep consider

alternative treatment that acts as an exception handler (note the “X” sign on the che-

motherapy process step bar to which the step consider alternative treatment is con-

nected). In the step perform consultation and assessment in Figure 2, the doctor may

determine that the patient's pathology report does not indicate cancer. In this case, the

Pathology Report Does Not Indicate Cancer exception is thrown (the decomposition

of the perform consultation and assessment step is not shown due to space limita-

tions). The exception propagates up the step decomposition tree until it reaches a

matching handler. Thus, control is transferred to the exception handler step consider

alternative treatment and appropriate action is taken.

 6

Note that the diagrams in Figures 2 and 3 do not include all the information needed

for completeness of a Little-JIL process definition. A diagram is created using the

Little-JIL visual editor, which allows the developer to suppress visualization of proc-

ess details for the sake of clarity. Thus, Figures 2 and 3 do not display the resources

and artifacts declarations in each step; just representing them by the circle above the

step.

Figure 3: The task decomposition of transcribe and place consult note in patient’s record

To illustrate the use of process decomposition, Figure 3 decomposes the substep

transcribe and place consult note in patient’s record of the root step chemo process.

Although trivial at first glance, the diagram in Figure 3 supports some interesting

complexities. First, note that transcribe and place consult note in patient’s record is

the second substep of the sequential step create and process consult note (Figure 2).

This, means that transcribe and place consult note in patient’s record cannot start

until the step dictate consult note has completed. This sequencing mechanism is a

faithful representation of the real world situation. In this process, the doctor dictates

the consult note on the phone. The doctor’s message is recorded and triggers the tasks

of the transcriber, who is external to the clinic. The transcriber listens to the message,

transcribes the consult note, emails it to the doctor’s secretary and so on.

Another interesting aspect of the diagram in Figure 3 is the diverse set of agents

that execute the steps – Transcriber, Secretary, Medical Doctor, and Medical Records

Clerk. Thus, the timely manner in which the step transcribe and place consult note in

patient’s record is performed depends on the availability of all those agents. In a later

section, we will see that the time of completion of the transcribe and place consult

note in patient’s record step relative to the time of completion of other steps in the

process is important for satisfying some of the properties of the process.

 7

2.3 Using PROPEL and FLAVERS Analysis to Look for Process Defects

In this section, we present a short, simplified example of the application of finite-

state verification to the chemotherapy process definition. Finite-state verification

techniques algorithmically check all possible paths through a model of a system to

determine whether any execution of the system can violate a specified system prop-

erty. In the work described here, we have used the FLAVERS [7] finite-state verifier,

although other tools (e.g., [14]) could have been used. Our model of the system is an

annotated control flow graph derived from the Little-JIL process definition. For our

purposes, a property is a specification of the requirements for some aspect of the be-

havior of the system. Thus, the property is a specification against which a system is to

be verified. For example, a property might state that a certain event cannot occur until

after some other event occurs. Our work focuses on developing such properties with

the help of domain experts (chemotherapy medical professionals in this example),

eliciting a process definition from domain experts, and finally comparing the process

definition against the properties. If a property is violated, we change the process (as-

suming the property is correctly specified) and verify the modified process against the

property. We iterate the above procedure until the process satisfies the property and

thus the process is improved.

In our analysis, properties are encoded as finite-state automata (FSA) and represent

constraints on the sequences of events that could occur during executions of the proc-

ess.

Figure 4: An FSA corresponding to the chemotherapy property “Before Chemotherapy Can Be Admin-

istered to a Patient, that Patient’s Consult Note Needs to Be Put in that Patient’s Record.” A transition

labeled with ANY EVENT means that the transition is taken if any event from the alphabet of the FSA

occurs. The ERROR STATE is a trap state, i.e. it is a non-accepting state, such that once the automaton

enters that state, it remains in it regardless of what other events occur.

The FSA in Figure 4 corresponds to the property “Before Chemotherapy Can Be

Administered to a Patient, that Patient's Consult Note Needs to Be Put in that Patient's

Record.” The events in this property are put consult note in patient's record and ad-

minister chemo. The event put consult note in patient's record is bound to the step file

consult note in patient's record in Figure 3. The event administer chemo is bound to

the step administer chemo drug which is a part of the subprocess decomposition of

the step first day of chemo in Figure 2.

At the start of execution of the process, the automaton in Figure 4 is assumed to be

in its start state q0 (indicated by the triangle to the left of state q0). Execution of put

 8

consult note in patient's record causes the FSA to transition from state q0 to state q1.

Then if administer chemo is encountered during execution of the process, the FSA

transitions from state q1 to state q2. The state q2 is an accepting state (indicated by

doubled circle). Thus, put consult note in patient's record followed by administer

chemo is a valid sequence of events in the chemotherapy process. On the other hand,

if administer chemo occurs before put consult note in patient's record (the transition

from state q0 to state q3 in the FSA shown in Figure 4), the automaton ends up in an

ERROR state (q3) indicating that this causes the property to be violated. Also note

that if consult note is put in patient's record does not occur at all, then the automaton

will remain in its start state q0, which is also an accepting state thus indicating that

the property is satisfied.

In our project, automata such as the one in Figure 4, were generated by the PROPEL

(PROPerty ELucidator) system [15, 16]. PROPEL facilitates the elucidation of proper-

ties by providing three different representations of a property—a question tree view, a

disciplined English view, and a finite-state automaton view—and assuring that the

three views automatically remain synchronized with each other. The different views

aim to bridge the gap between the natural language in which the properties are elicited

from domain experts and the rigorous, but usually not trivial to specify correctly,

mathematical formalism of the finite-state automaton used by the verification tool

FLAVERS. Each view also explicitly indicates subtle choices that need to be made

and questions that need to be answered in order to specify a property, such as whether

certain events must always occur or whether other events can occur multiple times.

For the example chemotherapy process, there are dozens of important safety and legal

properties to be verified. Our experiments indicate that PROPEL is adept at supporting

the definition of such properties.

Having defined the process in Little-JIL and created the property automaton using

PROPEL, we then used the finite-state verifier FLAVERS to check whether the process

satisfies the property on all possible paths of execution. If it does not, i.e. if a process

execution can drive the property automaton to a non-accepting state, then FLAVERS

reports the violation and produces a trace of the process execution that leads to the

property violation. The verification example in this paper may appear relatively

straightforward, given the simple property, but we note that it entails considerable

challenges. The fact that the root step chemotherapy process is parallel requires that

FLAVERS explore all possible execution interleavings of the substeps, creating a

very large space of alternatives to be explored. The use of channels further compli-

cates the verification. The fact that the chemotherapy process is of a significant size

(more than 250 steps) makes the verification state space very large. FLAVERS em-

ploys optimization techniques and thus can usually cope with the verification of prop-

erties of processes whose size is similar to that of this chemotherapy process.

In fact, FLAVERS reported that this chemotherapy process example can violate the

property presented in Figure 4, and it produced a trace of a valid execution of the

process where administer chemo drug occurs before file consult note in patient's re-

cord completes. Although a channel imposes some synchronization between the par-

allel activities in the process, the verifier detected that concurrent execution can allow

at least one execution sequence that leads to a property violation. Thus, this result

identified a process defect, but it also raises an interesting question about whether

 "

le%al and pri,ac. issues ma. 2a,e recei,ed muc2 less attention t2an medical sa5et.

issues and t2us ma. not be 5ull. addressed b. standard medical processes7

!"#$%p'ri'*+'#a*-#$.a/0a1i2*#

8orkin% wit2 t2e c2emot2erap. process su%%ests t2at our approac2 can lead to

impro,ements in t2e processes7 8e were able to identi5. process de5ects and raise

issues resultin% in de5ect elimination7 T2e medical pro5essionals in,ol,ed in t2e pro-

=ect 2a,e 5ound bene5it in t2is work7 T2e. are e,en considerin% usin% t2e 5ormal

process de5inition as t2e basis 5or trainin% documents and %uidelines 5or medical sta557

T2e ,er. task o5 elicitin% details 5rom t2e medical pro5essionals about t2e c2emo-

t2erap. process and capturin% t2ose details 5ormall. in Little-?IL lead to t2e disco,er.

o5 man. o5 t2e problematic aspects in t2e process7 Ane o5 t2e 5irst obser,ations a5ter

inter,iewin% se,eral di55erent medical pro5essionals was t2at t2e terminolo%. used 5or

t2e c2emot2erap. process %uidelines contained some inconsistencies7 For exampleD

words like E,eri5.FD Econ5irmFD Ec2eckFD Ematc2FD and EconsistentF were used loosel.7

T2e same word used at di55erent times or in di55erent contexts o5ten 2ad di55erent

meanin%sD e,en w2en used b. t2e same indi,idual7 Since man. o5 t2e critical errors

t2at ma. occur in a process like c2emot2erap. ma. arise 5rom ne%lectin% small details

He7%7 not c2eckin% to see i5 t2e patient 2ei%2t or wei%2t measurements on w2ic2 t2e

c2emot2erap. dose is based are su55icientl. up-to-dateID we 2ad to de,elop a precise

namin% template t2at disambi%uated t2e use o5 di55erent terms7 T2usD our experience

su%%ests t2at t2e e55ort o5 de5inin% and anal.Jin% complex medical processes can

bene5it i5 some kind o5 ontolo%ical structure o5 t2e domain knowled%e is present7

8e also 5ound t2at process %uidelines usuall. contain adeKuate details w2en de-

scribin% commonD standard scenarios7 Lowe,erD process %uidelines did not pro,ide

enou%2 detailsD or o5ten an. detailsD 5or 2andlin% man. non-t.pical cases7 For exam-

pleD t2ere were places in t2e process w2ere an a%ent con5irms t2e correctness o5 some

in5ormation andD i5 t2e con5irmation succeedsD t2e a%ent continues on wit2 t2e rest o5

t2e de5ined tasks7 Lowe,erD i5 t2e con5irmation 5ailsD t2en in man. cases t2e process

lacked speci5ic instructions detailin% 2ow t2e a%ent s2ould proceed7 In some casesD we

noted t2at di55erent a%ents were 2andlin% t2e exception di55erentl. dependin% on per-

sonal st.leD le,el o5 experienceD and t2e indi,idual approac2 o5 ot2er medical pro5es-

sionals in,ol,ed in t2e reco,er. 5rom t2e 5ailure7 82ile modelin% t2e process wit2

Little-?ILD t2e ric2 exception 2andlin% semantics o5 t2e lan%ua%e 5orced us to t2ink

about exceptional scenarios and ask speci5ic Kuestions about t2e exact process to be

executed 5ollowin% t2e t2rowin% o5 an exceptionD t2e a%ents in,ol,ed in resol,in% t2at

exceptionD and t2e place in t2e process to w2ic2 control %ets trans5erred once t2e ex-

ception 2as been 2andled7 Muestions like E82at do .ou do w2en t2e c2eck .ou make

5ailsNF and E82ic2 task do .ou proceed wit2 and w2ic2 tasks do .ou need to redo

w2en .ou 2a,e resol,ed t2e problemNF t.picall. tri%%ered discussions amon% t2e

medical pro5essionals t2at resulted in more complete and ri%orous speci5ication o5

2ow to deal wit2 t2ese exceptional casesD t2us impro,in% t2e process o,erall7

T2e resource and arti5act modelin% capabilities o5 Little-?IL also led to interestin%

Kuestions durin% t2e inter,iewin% sta%e t2at exposed some de5iciencies in t2e process7

 10

For example, the chemotherapy process relies heavily on a paper copy of a treatment

plan, which is an artifact created at the earlier stages of the process and then verified

independently and signed by medical professionals. However, doctors enter changes

to a treatment plan electronically, which sometimes leads to inconsistencies between

the current electronic version and the paper copy that circulates among the medical

professionals. The artifact model of Little-JIL and the need to precisely describe and

distinguish between paper and electronic records led to the discovery of such issues.

The expressive power of Little-JIL proved to be useful for the definition of the

process in the chemotherapy case study. The powerful exception handling mecha-

nisms in the language enabled the process definition to reflect the real world process

more accurately. The capabilities the language provides for modeling resources (both

agent and non-agent) and artifacts were an important part of the specification of the

process. The synchronization mechanism and channel support for specifying direct

communication between steps was also useful in this process definition. Hierarchy

and abstraction were beneficial in helping to keep down the size of the chemotherapy

process and the many different levels of abstraction at which it was defined.

The graphical notations in Little-JIL facilitated the communication of computer

science concepts to the medical professionals. We usually tried to present the process

to the medical professionals in textual, natural language form, but we were often

asked to show the Little-JIL diagrams as they provide clearer understandings. While

medical professionals are unlikely to ever write their own process definitions in Lit-

tle-JIL, our experiences suggest that it is not unreasonable to expect they will be both

able and willing to read Little-JIL process definitions.

The task of interviewing domain experts and specifying precisely the high level

goals and requirements that the medical process needs to meet, proved to be benefi-

cial. We worked on identifying properties at a higher level of abstraction, a level at

which the property’s events are not tightly coupled to concrete steps in the process

definition, but rather are used to capture universal safety and legal goals that need to

be satisfied no matter how the process is implemented. This approach introduced a

different perspective and helped medical professionals view the process in a new

light. Instead of focusing only on “what is being done”, the process was approached

by asking questions like “Why is this done?” and “What goal is met by this sequence

of steps?” Such types of questions also helped expose deficiencies in the process and

triggered discussions about how to address them. While considering the motivation

behind parts of the process and the objectives that certain sequences of steps are try-

ing to achieve, the medical professionals often identified steps that were either mis-

placed or missing from the process guidelines. Thus, property elicitation itself played

an important role in enhancing the process.

PROPEL was of great value in facilitating the correct specification of properties.

Previous experience indicated that specifying a property in a mathematical formalism,

like a finite-state automaton or a temporal logic, is often not trivial and subtleties are

often not captured easily or correctly. For example, consider the requirement that if

patient height and weight data (used to determine correct dosage) are “stale” (i.e. the

measurements are not recent enough), then height and weight must be remeasured

before administration of chemotherapy. A correct formal specification of this must

address such issues as whether the data can become stale several times and, if so,

whether a single remeasurement is sufficient, whether the data always becomes stale,

 11

#$e&$er remeas+remen& is necessar/ i0 c$em1&$era2/ is n1& a3minis&ere3 01r s1me

reas1n, e&c5 In a33i&i1n &1 &$e 0ini&e7s&a&e a+&1ma&1n 8ie# 10 a 2r12er&/, 9RO9<= 2r17

8i3es na&+ral lan?+a?e &em2la&e, #$ere +sers selec& 2$rases, an3 a q+es&i1n &ree 8ie#

&$a& ex2lici&l/ asBs q+es&i1ns, liBe &$e 1nes aC18e5 Dll &$ree 10 &$ese 8ie#s are eq+i8a7

len& an3 assis& &$e +ser in ca2&+rin? &$e s+C&le&ies 10 &$e 2r12er&/5

S1 0ar 1+r e001r&s $a8e 01c+se3 1n ca2&+rin? &$e c$em1&$era2/ 2r1cess in =i&&le7FI=

an3 s2eci0/in? 2r12er&ies +sin? 9RO9<=5 O+r ini&ial +se 10 G=DH<RS 01c+se3 1n

8eri0/in? rela&i8el/ sim2le 2r12er&ies, an3 m1s& 10 &$em #ere sa&is0ie35 In m1s& 10 &$e

cases #$en &$e 8eri0ier 3e&ec&e3 a 8i1la&i1n, i& #as 3+e &1 an 1missi1n 1r err1r in &$e

2r1cess 3e0ini&i1n 1r 2r12er&/ s2eci0ica&i1n5 I1#e8er, &$e exam2le in &$e 2re8i1+s

sec&i1n s$1#s &$a& 1+r 8eri0ica&i1n a22r1ac$ c1+l3 i3en&i0/ real 8i1la&i1ns an3 2in7

21in& #eaBnesses in &$e 2r1cess5 Je ex2ec& &$a& #$en #e Ce?in &1 anal/Ke m1re

c1m2lica&e3 2r12er&ies 18er lar?er 2r1cesses &$a& $i3e 21&en&ial c1nc+rrenc/, 1+r a27

2r1ac$ #ill lea3 &1 &$e 3isc18er/ 10 m1re 3e0ec&s in &$e 2r1cess5

Je n1&e &$a& as &$e siKe 10 &$e 2r1cess +n3er 8eri0ica&i1n increases, s1 31es &$e

s&a&e s2ace &$a& nee3s &1 Ce ex2l1re35 =ar?e 2r1cesses, liBe &$e c$em1&$era2/ 1ne,

#i&$ in$eren& 2arallelism an3 c1m2lex exce2&i1n $an3lin? s2eci0ica&i1ns, s&ress &$e

im21r&ance 10 +&iliKin? 8eri0iers &$a& scale #ell5 D& &$is 21in&, 1+r #1rB in3ica&es &$a&

&$e 2er01rmance 10 &$e G=DH<RS s/s&em seems &1 Ce ca2aCle 10 acce2&aCle scalin?5

G1r exam2le, &$e 8eri0ica&i1n 10 &$e 2r12er&/ 2resen&e3 in Gi?5 4 &11B less &$an &en

sec1n3s 10 c1m2+&in? &ime r+nnin? 1n a s&an3ar3 3esB&12 c1m2+&er5

!"#$%&'(%)#*+,-#

T$ere $as Ceen s1me recen& #1rB +sin? 2r1cess 3e0ini&i1n an3 anal/sis &1 im2r18e

me3ical 2r1cesses5 G1r exam2le, &$e 9r1&1c+re II 2r1Nec& O17Q $as ?1als &$a& are q+i&e

similar &1 1+rs in &$a& me3ical 2r1&1c1ls are 01rmall/ s2eci0ie3 an3 8eri0ie35 Ds 2ar&

10 &$a& 2r1Nec&, a 2r1&1c1l 01r Na+n3ice an3 i&s 2r12er&ies #ere m13ele3 in &$e DsCr+

lan?+a?eO1RQ5 T$e 2r1&1c1l &$a& #as anal/Ke3 c1nsis&s 10 4S 2lans T#$ere &$e 2lans

seem &1 Ce similar &1 =i&&le7FI= s&e2sU, #$ereas &$e c$em1&$era2/ 2r1cess &$a& #e

anal/Ke3 c1nsis&s 10 18er 25S s&e2s5 T$e =i&&le7FI= 2r1cess 3e0ini&i1n s+221r&s m1re

3e&aile3 re2resen&a&i1n 10 &$e 2r1cess, incl+3in? s+221r& 01r exce2&i1ns an3 c1m2lex

a?en& in&erac&i1ns5 T$e 9r1&1c+re researc$ers als1 enc1+n&ere3 amCi?+1+s +se 10

me3ical &erms, inc1m2le&e in01rma&i1n, an3 inc1nsis&encies &$a& ma/ s+221r& 3i00eren&

c1ncl+si1ns5 In an1&$er s&+3/ &$a& #as als1 2ar& 10 &$e 9r1&1c+re II 2r1Nec&O1XQ, &$e

DsCr+ m13el 10 &$e Na+n3ice 2r1&1c1l an3 i&s 2r12er&ies #ere 8eri0ie3 +sin? &$e SMH

m13el c$ecBer5

N1+meir $as als1 2+rs+e3 similar ?1als, C+& +sin? a n1&a&i1n liBe UM= &1 3e0ine

2r1cesses OXQ5 O&$ers Te5?5, O2SQU, 8ie# me3ical 2r1cesses as #1rB0l1#s an3 +se a

#1rB0l1#7liBe lan?+a?e &1 3e0ine 2r1cesses an3 3ri8e &$eir exec+&i1n5 \+&, #e n1&e

&$a& &$ese 2r1Nec&s seem &1 2lace less em2$asis 1n anal/sis5

T$ere $a8e Ceen 1&$er a22r1ac$es &1 im2r18in? me3ical sa0e&/ as #ell, C+& m+c$

10 &$e em2$asis 10 &$is #1rB $as Ceen &ar?e&e3 &1#ar3s q+ali&/ c1n&r1l meas+res O21Q,

err1r re21r&in? s/s&ems O22Q, an3 2r1cess a+&1ma&i1n in laC1ra&1r/ se&&in?s O23Q, s+c$

as &$1se #$ere Cl113 2r13+c&s are 2re2are3 01r a3minis&ra&i1n5 In 1&$er #1rB, \a/e7

 "#

sian belief net-or0s 1a2e been used as t1e basis for discrete e2ent simulations of

medical scenarios and to guide treatment 8lanning 9e:g:; <#=>?:

Many languages and diagrammatic notations 1a2e been used to define 8rocesses:

Some incor8orated use of a 8rocedural language <#C>: Dt1ers used rules <#E> and

modified Fetri Gets <#H> to define 8rocesses: More recently; t1e -or0flo- <#I> and

electronic commerce <#J> communities are 8ursuing similar researc1: Gone of t1ese

a88roac1es; 1o-e2er; seem able to su88ort 8rocess definitions t1at are bot1 clear and

8recise enoug1: Main failings of t1ese a88roac1es include inadeKuate s8ecification of

exce8tion 1andling; -ea0 facilities for controlling concurrency; lac0 of resource man-

agement; and inadeKuate s8ecification of artifact flo-s:

N1ere 1as also been considerable -or0 on t1e analysis of code and models of sys-

tems: Finite-state 2erification; or model c1ec0ing 9e:g:; <E; H; "=>?; a88roac1es con-

struct a finite model t1at re8resents all 8ossible executions of t1e system and t1en

analyPe t1at model algorit1mically to detect executions t1at 2iolate a 8articular 8ro8-

erty s8ecified by t1e analyst: A maRor concern of t1ese tec1niKues is controlling t1e

siPe of t1e state-s8ace model; -1ile maintaining analytic 8recision: Dur team 1as ana-

lyPed and e2aluated 2arious finite-state 2erification a88roac1es <ST>; and de2elo8ed

2erifiers suc1 as FUAVEXS <H> and IGCA <S">: Dur -or0 seems to be among t1e

first t1at 1as a88lied FSV a88roac1es to 8rocess definitions <"E>:

!"#$%&'()*i%&#

N1e finite-state 2erification a88roac1 8resented in t1is 8a8er su88orts c1ec0ing

-1et1er or not a 8rocess satisfies certain 8ro8erties; but it assumes t1at all agents in-

2ol2ed in t1e 8rocess 8erform t1eir tas0s -it1out errors: [o-e2er; 1uman errors do

occur in medical 8rocesses and t1us com8lementary forms of analysis are also useful:

N1us; for exam8le; -e 1a2e used a blood transfusion 8rocess definition as t1e basis

for t1e automatic generation of a fault tree re8resentation of t1is 8rocess and 1a2e

used t1e fault tree to identify single 8oints of failure in t1e 8rocess; t1ereby reducing

its 2ulnerability to failure <C>: Similarly; our studies of delays in a 1os8ital Emergency

De8artment 9ED? 1a2e underscored t1e 8otential for resource management to im8ro2e

efficiency in t1e ED]s 8rocesses <S#>: In res8onse; -e are de2elo8ing tec1nologies to

create discrete e2ent simulations from 8rocess definitions in order to su88ort reason-

ing about 1o- to im8ro2e efficiency t1roug1 better resource management:

In conclusion; -e obser2e t1at t1is -or0 1as s1o-n considerable 8romise and 1as

suggested extensions in se2eral directions: ^e 8ro8ose to 8ursue furt1er researc1 in

t1is domain: ^e ex8ect t1at t1is researc1 -ill 8ro2ide furt1er insig1ts into 1o- 8roc-

ess definition and analysis tec1nology can 1el8 im8ro2e t1e safety and efficiency of

t1e 8rocesses in t1is critical domain:

 "#

Ac#no&led*+ents

$%is researc% was -unded by t%e 45 6ational 5cience 9oundation under :ward 6o.

<<9=>?@A>A" and by t%e 4. 5. Bepartment o- Be-enseE:rmy Fesearc% G--ice under

:wards 6o. B::B"H=>#="=>"## and B::B"H=>"="=>IJ?. $%e 4.5. Kovernment is

aut%oriMed to reproduce and distribute reprints -or Kovernmental purposes notwit%=

standing any copyrig%t annotation t%ereon. $%e views and conclusions contained

%erein are t%ose o- t%e aut%ors and s%ould not be interpreted as necessarily represent=

ing t%e o--icial policies or endorsements, eit%er ePpressed or implied, o- t%e 4.5. 6a=

tional 5cience 9oundation, 4. 5. Bepartment o- Be-enseE:rmy Fesearc% G--ice, or

t%e 4.5. Kovernment.

$%e aut%ors grate-ully acQnowledge t%e worQ o- 5andy Rise, Sarbara Terner, and

:aron <ass, w%o made maUor contributions to t%e development o- Tittle=VWT, to Fa=

c%el <obleig% and Wrene Fos, w%o %elped elicit t%e c%emot%erapy process and proper=

ties, and to many members o- t%e sta-- o- t%e BX:mour <enter -or <ancer <are, w%o

graciously donated t%eir time and ePpertise.

/e0erences

!" $%&'()"*"(+%,,-./'(0"1"(2%'/345%'(1"6" 7845"9: *% ;,, -5 <=>/': ?=-34-'. / 6/@8,

<8/3A& 6B5A8>" C/A-%'/3 DE/48>B F,855(G/5&-'.A%'(2+ 7!HHH9

I" J8-4(F"F"(+%>KA%'(G"2"(L,%55>/'(0"<"(M/'N-/'.(L" 7845"9: ?=-34-'. / ?8AA8, 283-O8,B

6B5A8>: D '8P ;'.-'88,-'.Q<8/3A&E/,8 F/,A'8,5&-K" C/A-%'/3 DE/48>-85 F,855(G/5&-'.A%'"

2+ 7IRRS9

T" <8''8>/'(;"<"(+%U38-.&(J")"(M,848,-EV($"($/AWX?/558AA(;"(DO,='-'(L"D"(+3/,V8(

)"D"(Y5A8,P8-3()"0"(D'4,W8N8P5V-(+"(18,,-./'($"(<8''8>/'(F")": Z'E,8/5-'. K/A-8'A

6/@8AB /'4 ;@@-E-8'EB -' *,/'5@=5-%' *&8,/KB =5-'. M%,>/3 F,%E855 28@-'-A-%'5" *,/'5@=5-%'

184-E-'8 J8O-8P5 21 7IRR[9 \HXS[

\" ?=,.>8-8,(0": M/-3=,8 1%48 /'4 ;@@8EA D'/3B5-5: D' DKK3-E/A-%' -' J84=E-'. J-5V -'

?3%%4 *,/'5@=5-%'"]=/3-AB Z>K,%O8>8'A 28 7IRRI9 TT!XTTH

S" +&8'(?"(DO,='-'(L"6"(+3/,V8()"D"(Y5A8,P8-3()"0": D=A%>/A-E M/=3A *,88 28,-O/A-%'

@,%>)-AA38X0Z) F,%E855 28@-'-A-%'5" 6FGQFJY6Z1 IRR^(_%3" TH^^" 6K,-'.8,X_8,3/.)C+6(

6&/'.&/-(+&-'/ 7IRR^9 !SRX!S`

^" ;"1" +3/,V8(0"(L,=>U8,.(Y"(F8384(2": 1%483 +&8EV-'." 1Z* F,855 7IRRR9

[" 2PB8,(1"?"(+3/,V8()"D"(+%U38-.&(0"1"(C/=>%O-E&(L": M3%P D'/3B5-5 @%, _8,-@B-'.

F,%K8,A-85 %@ +%'E=,,8'A 6%@AP/,8 6B5A8>5" D+1 *,/'5" %' 6%@AP/,8 ;'.-'88,-'. /'4 18A&X

%4%3%.B 13(4) 7IRR\9 TSHX\TR

`" +%U38-.&(0"1"(+3/,V8()"D"(Y5A8,P8-3()"0": _8,-@B-'. F,%K8,A-85 %@ F,%E855 28@-'-A-%'5"

D+1 6ZL6YM* Z'A3" 6B>K" %' 6%@AP/,8 *85A-'. a D'/3B5-5" D+1 F,855(F%,A3/'4(YJ 7IRRR9

H^X!R!

H" C%=>8-,(J": J/4-%3%.B Z'A8,K,8A/A-%' F,%E855 1%483-'." 0%=,'/3 %@ ?-%>84-E/3 Z'@%,>/AX

-E5 39(2) 7IRR^9 !RTX!!\

!R" ?%%58(;"J"(;33-5%'(D"1"(Y5A8,P8-3()"0"(+3/,V8()"(F%4%,%W&'B(J"(</438B(0")"(G-58(

D"(M%5A8,(2"J": ;'5=,-'. ,83-/U38 4/A/58A5 @%, 8'O-,%'>8'A/3 >%4835 /'4 @%,8E/5A5" ;E%3%.-E/3

Z'@%,>/A-E5 7-' K,8559 7IRR[9

!!" 6E&P8-V(+"1"(Y5A8,P8-3()"0"(6%'4&8->8,(C"(*&%>/5(+": D'/3BW-'. F,%E85585 @%, ;X

L%O8,'>8'A 28O83%K>8'A: *&8 ;>8,.8'E8 %@ F,%E855 1%483-'.)/'.=/.85" 0%=,'/3 %@ ;X

L%O8,'>8'A 1(4) 7IRR\9 ^TX`H

 14

12. Cass, A.G., Lerner, B.S., McCall, E.K., et al: Little-JIL/Juliette: A Process Definition Lan-

guage and Interpreter. Intl Conf. on Software Engineering, Limerick, Ireland (2000) 754-758

13. Wise, A.: Little-JIL 1.5 Language Report. Lab. for Advanced SW Eng. Research (LASER),

Dept. of Comp. Sci, UMass, Amherst (2006)

14. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2004)

15. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An Approach To Sup-

port-ing Property Elucidation. 24th Intl. Conf. on Software Engineering, Orlando, FL (2002)

11-21

16. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User Guidance for Creating Precise and Ac-

ces-sible Property Specifications. 14th ACM Symposium on the Foundations of Software Engi-

neering, Portland, OR (2006) 208-218

17. Protocure II, http://www.protocure.org. (2006)

18. Teije, A.t., Marcos, M., Balser, M., Croonenborg, J.v., Duelli, C., Harmelen, F.v., Lucas,

P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving Medical Protocols by Formal

Methods. Artificial Intell. in Medicine 36(3) (2006) 193-209

19. Baumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of Medical Guide-

lines by Model Checking – A Case Study. 13th International SPIN Workshop (2006) 219-233

20. Ruffolo, M., Curio, R., Gallucci, L.: Process Management in Health Care: A System for

Preventing Risks and Medical Errors. Business Process Mgmt (2005) 334-343

21. Voak, D., Chapman, J.F., Phillips, P.: Quality of transfusion practice beyond the blood

transfusion laboratory is essential to prevent ABO-incompatible death. Transfusion Medicine

10 (2000) 95-96

22. Battles, J.B., Kaplan, H.S., Schaaf, T.W.v.d., Shea, C.E.: The Attributes of Medical Event

Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine 122 (1998)

231-238

23. Galel, S.A., Richards, C.A.: Practical Approaches to Improve Laboratory Performance and

Transfusion Safety. Am. J. Clinical Pathology 107 (Suppl 1) (1997) S43-S49

24. Gaag, L.C.v.d., Renooji, S., Witteman, C.L.M., Aleman, B.M.P., Taal, B.G.: Probabili-ties

for a Probabilistic Network: A Case-Study in Oesophageal Cancer. Artificial Intelli-gence in

Medicine 25(2) (2002) 123-148

25. Sutton, S.M.J., Heimbigner, D.M., Osterweil, L.J.: APPL/A: A Language for Software-

Process Programming. ACM Trans. on Software Engineering and Methodology 4(3) (1995)

221-286

26. Ben-Shaul, I.Z., Kaiser, G.: A Paradigm for Decentralized Process Modeling and its Reali-

zation in the Oz Environment. 16th Intl. Conference on Software Engineering (1994) 179-188

27. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Process Model Evolution in the SPADE Environ-

ment. IEEE Transactions on Software Engineering 19(12) (1993)

28. Paul, S., Park, E., Chaar, J.: RainMan: A Workflow System for the Internet. Usenix

Sympo-sium on Internet Technologies and Systems (1997)

29. Grosof, B., Labrou, Y., Chan, H.Y.: A Declarative Approach to Business Rules in Con-

tracts: Courteous Logic Programs in XML. ACM Conf. on Electronic Commerce (EC 99),

Denver, CO (1999) 68-77

30. Avrunin, G.S., Corbett, J.C., Dwyer, M.B.: Benchmarking Finite-State Verifiers. Software

Tools for Technology Transfer 2 (2000) 317-320

31. Corbett, J.C., Avrunin, G.S.: Using Integer Programming to Verify General Safety and

Liveness Properties. Formal Methods in System Design 6 (1995) 97-123

32. Raunak, M.S., Osterweil, L.J.: Effective Resource Allocation for Process Simulation: A

Position Paper. 6th Intl. Workshop on Software Process Simulation and Modeling (ProSIM

2005), St. Louis, MO (2005)

