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Abstract. In software architecture, components are intended to repre-
sent the computational units of a system and connectors are intended
to represent the interactions among those units. Making decisions about
the semantics of these interactions is a key part of the design process.
It is often very difficult, however, to choose the appropriate interaction
semantics due to the wide range of alternatives to choose from and the
complexity of the system behavior affected by these choices. Techniques
such as finite-state verification can be used to evaluate the impact of
these design choices on the overall system behavior.

This paper proposes an approach that allows designers to experiment
with alternative design choices of component interactions in a plug-and-
play manner. In this approach, connectors representing specific inter-
action semantics are composed from a library of predefined, reusable
building blocks. In addition, standard interfaces for components are de-
fined to reduce the impact of interaction changes on the components’
computations. This approach facilitates design-time verification by im-
proving the reusability of component models and by providing reusable
formal models for the connector building blocks, thereby reducing model-
construction time for finite-state verification.

1 Introduction

One of the distinguishing features of concurrent and distributed systems is the
importance of defining how sequential components interact with each other. Con-
sequently, software architecture description languages typically separate compo-
nents that represent computations from connectors that represent interactions
among these components [2,21,25,27]. Connectors are considered first-class de-
sign entities since they often capture some of the most important yet subtle
aspects of a system, such as non-determinism, interleavings of computations,
synchronization, and so on. These are concerns that can be particularly difficult
to fully comprehend in terms of their impact on the overall system behavior.
Adding to this difficulty is the wide variety of alternative choices for the inter-
action semantics. Choosing the appropriate interaction semantics for a connector
often involves not only a choice from commonly used interaction paradigms, such
as remote procedure call, message passing, and publish/subscribe, but also de-
cisions about such details as the particular type and size of a message buffer



or whether a communication should be synchronous or asynchronous. As a re-
sult, it is often necessary to make frequent changes to the design of connectors
in the course of experimenting with alternative interaction semantics. Design-
time verification can be useful in helping designers evaluate their design choices.
Typically, design-time verification uses finite-state verification techniques (e.g.,
SPIN [17], SMV [19], LTSA [22], FLAVERS [10]) to check whether certain prop-
erties of a system are satisfied. With design-time verification, designers can make
sure that desirable properties of a system still hold when a connector or a com-
ponent is modified. Usually several iterations involving proposing a design and
then verifying that design are needed.

Although it is often necessary to make frequent changes to the connector
semantics while designing a system, in practice it is often difficult and costly
to make these changes. Changing the specific semantics of a connector often
requires nontrivial changes to the components as well. For example, a change
from an asynchronous communication to a synchronous one may require making
changes to the components so that a callback can be placed to explicitly notify
the sender of the receipt of messages. This intertwined semantics of components
and connectors also complicates design-time verification. When using finite-state
verification techniques, for instance, it is necessary to build a formal model of the
system that represents the computation of each component and the interactions
between them. With the semantics of interactions intertwined with the semantics
of computations, changes made to the interactions will often result in not only
the re-construction of the connector models but also the component models.
When the process of changing and re-verifying a design needs to be repeated
frequently, the lack of reusability of the component and connector models could
significantly increase the cost of design-time verification.

In this paper, we describe an approach that allows designers to experiment
with alternative design choices of interaction semantics in a plug-and-play man-
ner. This approach provides a library of pre-defined, reusable building blocks
from which designers can construct connectors with a wide range of interaction
semantics. A connector can be specified by composing a selected subset of the
building blocks. Modifying the specification of a connector can be easily achieved
by adding, removing or replacing one or more of its building blocks. To mini-
mize the impact on components of changes to connectors, this approach also
proposes a set of standard interfaces that allow components to communicate
with each other through different connectors. This plug-and-play approach not
only improves the reusability of the designs of components and connectors, it
also provides savings in model construction time during design-time verification.
Specifically, pre-defined models are constructed for the library of building blocks,
which can then be reused in the modeling of any system that uses these building
blocks. In addition, since changes in the connectors often do not require changes
in the components, the component models can often be reused, reducing the
modeling cost when verification needs to be re-applied.

Section 2 describes the plug-and-play design approach. Section 3 shows how
verification can be supported. Section 4 illustrates the design and verification



of a small system using this approach. Section 5 describes related work, and
Section 6 discusses the current status and future directions of our work.

2 The Plug-and-Play Design Approach

To support plug-and-play design, our approach currently provides two kinds of
pre-defined building blocks: ports and channels. A connector is usually composed
from one or more of the ports and one or more of the channels. Ports work di-
rectly with the components’ standard interfaces and are responsible for hiding
the semantic differences between connectors from the components. Ports cap-
ture such aspects of interactions as under what conditions a component should
be blocked or whether a component should wait for an acknowledgement after
sending a message to another component. While such semantics can be eas-
ily embedded in components’ computation, with our approach those aspects of
interaction semantics are captured in the ports, as part of the connectors. Conse-
quently, changes in the interaction semantics can often be made completely in the
connectors and, thus, independently of the components’ computation. Channels
are used to represent the other aspects of interaction semantics represented by
a connector. For example, a channel may represent a message buffer for message
passing communication or an event service used in publish/subscribe systems.
More detailed discussion about the plug-and-play design approach can be found
in [35).

The rest of this section describes how this plug-and-play design approach is
realized for message passing, one of the most commonly used interaction mech-
anisms. We first present examples of building blocks that are derived from a
variety of commonly used message passing semantics. We then define standard
component interfaces and show how connectors and components communicate
with each other through a set of protocols.

2.1 Message Passing Building Blocks

Many languages, such as CSP [16], Occam [9)], and Linda |7} incorporate mes-
sage passing facilities. There are also message passing libraries such as MPI [28]
and PVM [14]. Although the fundamental message passing semantics come from
two basic operations, send and receive, there are a surprising number of varia-
tions in their semantics. For example, a message may be sent synchronously or
asynchronously and a component that receives messages may block or continue
when a requested message is not available. Other aspects of message passing
semantics also vary, such as how messages are stored in a buffer, how they are
delivered, and what kinds of information regarding the status of message delivery
are relayed to the sender or receiver components.

Based on a study of the most commonly used message passing semantics,
we have defined a set of building blocks for the construction of message passing
connectors. This set of building blocks consists of different kinds of send ports,
receive ports, and channels that together can be used to express a wide variety
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Fig. 1. A set of message passing building blocks

of message passing semantics. Figure 1 gives a few examples of these message
passing building blocks.

Figure 2(a) shows an example of how one may specify an asynchronous mes-
sage passing communication between a pair of sender and receiver components
using these building blocks. The connector is composed of an asynchronous block-
ing send port, a blocking receive port, and a channel that buffers one message.
Through this connector, the sender component sends a message without waiting
for an acknowledgement from the receiver but is blocked until the message is
stored in the channel. The receiver component blocks until a message can be
received. By replacing the asynchronous send port with a synchronous one from
the library, the new connector in Figure 2(b) allows the sender to block not only
until the message is stored in the channel but also until it has been delivered
to the receiver. Similarly, channels can also be easily replaced. For example, the
single-slot buffer can be replaced by a FIFO queue channel that holds up to
five messages, when at most five messages need to be buffered (as shown in Fig-
ure 2(c)). Moreover, the replacement of channels can be done independently of
the replacement of ports. This kind of “plug-and-play” development facilitates
experimentation with alternative interaction semantics.

As we can see from the description of the building blocks in the figure above,
channels are essentially message buffers that capture semantics such as the stor-
age and delivery of messages. A send port is a mediator between a sender com-
ponent and a channel. Different send ports provide different semantics by for-
warding and interleaving the messages between the sender component and the
channel in different ways. A similar notion applies to receive ports. To construct
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Fig. 3. Standard component interfaces

a message passing connector with specific semantics, one simply selects the ap-
propriate channel to store and deliver messages, and then selects the appropriate
ports from which components may send and receive messages.

2.2 Component Interfaces and Protocols among Building Blocks

Figure 3 shows the standard interfaces for components to send and receive mes-
sages. As shown in Figure 3(a), a sender component waits for a SendStatus mes-
sage from the connector after sending a message. This interface is designed to
work with connectors that implement different semantics for sending messages.
For example, in the case of asynchronous message passing, the connector should -
immediately return the SendStatus message to the sender component, allowing
the component to continue its execution. For synchronous message passing, how-
ever, the connector returns the SendStatus message after the sender’s message
has been delivered, thereby blocking the component until a message is received.
This difference is supported via the appropriate choice for the send port between
the component and the channel.
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Fig. 4. Example scenarios of message passing interactions: asynchronous blocking send
versus synchronous blocking send

Using a notation similar to Message Sequence Charts, Figure 4 illustrates
how a send port controls the interleaving of the messages between the compo-
nent and the channel to give different interaction semantics. Figure 4(a) shows
part of a scenario for an asynchronous blocking send. In this scenario, the Send-
Status message “sendOk” is delivered to the component immediately after the
message “m” is stored in the channel but before a “receiveOk” message is re-
ceived from the channel. In contrast, Figure 4(b) shows part of a scenario for a
synchronous blocking send. In this scenario, the SendStatus message “sendOk”
is not delivered to the component until after the message “m” has been stored
in the channel and has been received by the receiver (indicated by a “receiveQOk”
message from the channel). Notice that the same protocol is used between the
sender component and the send port, and between the send port and the chan-
nel, for both synchronous and asynchronous message passing. Switching between
asynchronous message passing and synchronous message passing can be achieved
simply by substituting one kind of send port for the other kind.

Similarly, in Figure 3(b), a component that wishes to receive a message first
sends a receive request to the port and waits for feedback (the RecuStatus mes-
sage) about whether the requested message has been successfully retrieved. It
then waits for a message from the receive port, either a real message (when the
receive is successful) or a null message (when the receive has failed). By always
having the receive port send back an explicit status message to the receiver
component, the same interface can be used for both blocking and nonblocking
semantics. A blocking receive port does not send the status back to the compo-
nent until a message has been successfully received from the channel and can be
delivered to the component. A nonblocking receive port sends a failure status
message immediately to the component when there is no message currently avail-
able in the channel, allowing the receiver component to continue its execution.

With the standard interfaces described here, changes in such design decisions
as the specific semantics for sending and receiving messages or the behavior of
the message buffers can be accomplished by simply replacing the send or receive



ports or the channels that are employed in the connector. So if verification re-
veals a problem in the behavior of the system due to inappropriate interactions
between components, the designer can often modify the connectors without need-
ing to change the components. Of course, taking advantage of certain kinds of
changes in the connectors may require changes in the components. For example,
a designer might replace an asynchronous blocking send port by an asynchronous
checking send port that informs the sender when the channel is full. But this
change will only lead to more efficient execution if the sending component is
designed to take advantage of the communication status information sent by the
port.

This approach is not restricted to message passing. Extensions to this ap-
proach to support other kinds of interaction mechanisms, such as the pub-
lish/subscribe and RPC (remote procedure call), are described in [34].

3 Verification Support for the Plug-and-Play Design
Approach

In addition to providing a convenient and efficient way to specify and experi-
ment with various interaction semantics, this approach also supports design-time
verification for checking specification properties of the system. For finite-state
verification techniques such as model checking, formal models of the system need
to be constructed before verification can be applied. In this approach, predefined
and reusable formal models can be created for each building block in the library.
Formal models of the selected building blocks are then composed at verification
time with formal models of the components to form a system model that is then
checked against the specified properties. Note that the designer is still responsible
for providing the models of the components and specifying the properties.

Through verification, designers may find unexpected behaviors or errors in
their system design. If the problems are caused by the interaction mechanisms,
changes can be made by simply adjusting the building blocks of the connectors,
perhaps without having to modify the components. When this occurs, there is
no need to recreate the component models. Moreover, predefined models for the
building blocks can be used in most cases to represent the modified interaction
mechanisms, also reducing the cost of model construction. In this section, we
describe how reusable models for the message passing building blocks can be
defined, how they can be composed to form different connectors, and how the
connector models are composed with component models using standard compo-
nent interfaces.

For an initial evaluation of our approach, we have chosen the widely used
SPIN model checker as the verifier along with its input language Promela as
the modeling language. In Promela, communicating components are defined as
processes using the keyword proctype. Communications between processes take
place through channels that provide either buffered or synchronous (when the
channel size is 0) message passing. A Promela channel can be declared using
the keyword chan, the size of the buffer, and the data type for each field of



the messages that can be accepted by the channel. The following Promela code
shows an example of a typical channel declaration and the basic operations for
sending and receiving messages.

/+ a channel of size 3 that takes messages of type short */
chan myChannel = [3] of {short};

/* sends a message of value 3 to myChannel »/
myChannel!3;

/* receives a message from myChannel
* and stores it in variable myMsg */
myChannel?myMsg;

/* receives a message from myChannel with a value
» that matches the constant 3 */
myChannel?3;

With the send operation “!”, the message is appended at the end of the
channel when the channel is not full; otherwise, the sending process is blocked.
With the receive operation “?”, the first message in the channel is retrieved.
When constants are used in one of the fields after “?”, only messages with values
that match the constants can be retrieved. The receiving process is blocked if the
value of the first message in the channel does not match the constant specified.
There are a number of variations for the send and receive operations supported
by Promela. For example, with the receive operation “??”, the first matching
message in the channel will be retrieved, and thus the receiving process does not
block as long as there is at least one matching message in the channel.

It is important to notice the difference between the Promela channels and
the channels used as building blocks for connectors in our architectural de-
signs. Promela channels are used for sending and receiving messages between
Promela processes. Promela channels can support only a limited number of sim-
ple message buffers, such as FIFO queues. On the other hand, our channels are
architecture-level building blocks for connectors that can capture essentially ar-
bitrary interaction semantics among components and are not necessarily message
buffers. For example, a channel in a publish/subscribe connector may represent
an event pool where delivery of events is based on subscription. Even when our
channels are used as building blocks for message passing connectors, they can
be much more complicated than simple message buffers. Such a channel may
be able to handle messages based on their priorities, notify components of the
current buffer status, or deliver messages to a group of interested components.
In the following discussion, we always refer to the native channels in Promela
as Promela channels to distinguish them from the architecture-level channels in
our approach. Here we model all the ports, channels, and components in a design
as communicating processes in Promela. We use Promela channels to model the
internal communications between components and ports and between ports and
channels.

Figure 5 shows the Promela model for a synchronous blocking send port. We
first define a set of signals that are used to represent the status of sending and
receiving a message. These signals are defined as the enumerated type mtype in



/* internal communication signals »/ .
mtype = {SEND_SUCC, SEND_FAIL, IN_OK, IN_FAIL, OUT_OK,
OUT_FAIL, RECV_OK, RECV_SUCC, RECV_FAIL};

typedef InternalMsg{
mtype signal;
byte port_pid;

typedef SynChan{
chan signal = [0] of {InternalMsg};
chan data = [0] of {DataMsg}
}
proctype SynBlSendPort(SynChan componentChan;
SynChan channelChan){
DataMsg m;
do
:: componentChan.data?m;
m.sender_id = _pid;
do
:: channelChan.data!m;
if
: channelChan.signal?IN_OK,eval(_pid);
break;
: channelChan.signal?IN_FAIL,eval{_pid);
fi;
od;
channelChan.signal 7RECV_OK,eval(_pid);
componentChan.signal ! SEND_SUCC,-1;
od;

Fig. 5. Promela model for a synchronous blocking send port

Promela. The type SynChan defines two Promela channels that are used for com-
munications between components and ports, and between ports and channels.
The Promela channel signal is used to communicate message delivery status sig-
nals, and the Promela channel data is used to communicate application-specific
data messages. The port is modeled as a Promela process (proctype) that takes
two parameters of type SynChan, one of which represents the set of Promela chan-
nels for the communication with the component (component), and the other set
of Promela channels for the communication with (channelChan).

The main part of the Promela code for the port is a loop in which the port
accepts a message from the component and forwards it to the channel, and then,
when the message has been accepted by the channel, forwards the appropriate
status message back to the component. As we can see from the model in Figure 5,
in Promela, a block of repeating statements is enclosed in a pair of do and od
keywords. A number of statement blocks can be selectively executed when the
loop is entered. The symbol :: is used to identify the beginning of a selective
block. A block is executable when the first statement in the block is enabled.
When more than one block is executable, one of them is selected arbitrarily. In
our model for the send port, we only need one selective block, since the send port
only has one thing to do, that is, to wait for a message m to be sent from the
component and then deliver it to the channel. When the component is ready to



proctype AsynNbSendPort(SynChan componentChan;
SynChan channelChan){
DataMsg m;
do
:: channelChan.signal?_,eval(_pid);

:: componentChan.data?m;
componentChan.signal ! SEND_SUCC, -1i;
m.sender_id = _pid;
channelChan.data!m

od

Fig. 6. Promela model for an asynchronous nonblocking send port

send a message, the statement componentChan.data?m is enabled and therefore
the rest of the statements can be executed.

As we can see from the model, after receiving a message from the component,
the send port attaches its own process ID _pid to the message. Since one channel
may be connected to multiple send ports, this _pid will be sent along with
the data message to the channel so that the channel can use it to notify the
appropriate port of the delivery status of the message. Any status signals that
are addressed to this port will be tagged with its process ID number.

The send port then tries to forward the message m to the channel
(channelChan.data!m). After that, it waits for a signal back from the channel
that indicates whether the message can be properly stored in its buffer. Such a
signal could either be IN_OK or IN_FAIL. To model this nondeterministic choice,
we use the selective statement if...fi in Promela that allows a selective execu-
tion of one of its blocks. The semantics of how blocks are selected are the same as
for the do. . .od statement described above. The send port makes sure that the
signals from the channel are indeed addressed to it by matching its own process
ID with the tag attached to the signal that is sent back. This is done by speci-
fying its process ID as a constant that must match in a receive statement. For
example, the receive statement channelChan.signal?IN_0K,eval(_pid) will
only be executed when both constants IN_OK (an enumerated type in Promela)
and eval (_pid) (eval(_pid) gives the constant value of _pid) match the values
in a message that can be retrieved from the channel.

Since this is a synchronous blocking send, if the channel sends back an
IN_FAIL signal, the port has to send the message to the channel again and keep
trying until an IN_OK signal is received indicating that the message has been
successfully stored in the channel. It then can break out of the loop and wait
for a RECV_OK signal from the channel which indicates that a receiver has suc-
cessful received the message. Finally, after receiving both IN_OK and RECV_OK
signals from the channel, the synchronous blocking send port sends the send
status message (SEND_SUCC) back to the sender component. If for some reason
the message cannot be successfully delivered to the receiver, the channel will
issue a RECV_FAIL signal instead of a RECV_OK signal. In this case, the statement
channelChan.signal?RECV_OK,eval(_pid) will not be able to execute and the
port process is blocked. Since the port cannot send a SEND_SUCC signal to the



proctype aSendComponent(SynChan sendPortChan){
DataMsg myMsg;

sendPortChan.data!myMsg;
/* sendStatus could be SEND_SUCC or SEND_FAIL »/
sendPortChan.signal?sendStatus,_;

Fig. 7. A sender component

component, the component is also blocked. This is consistent with the semantics
of synchronous message passing where the component is blocked until the mes-
sage is successfully delivered to the receiver. Notice that since the component
process does not care about the ID of the port, we simply send an invalid process
ID number -1 along with the SEND_SUCC signal.

As one may have guessed, the definition of an asynchronous blocking send
port is similar to its synchronous counterpart except that an asynchronous send
port immediately sends SEND_SUCC to the component after receiving IN_OK from
the channel. Similarly, for a nonblocking send port, SEND_SUCC may be sent to
the component before the message has been stored in the buffer by the channel.
Figure 6 shows the Promela model for an asynchronous nonblocking send port.
This port receives a message m from the component and immediately returns a
SEND_SUCC status signal to the sender component, regardless of whether message
m will be successfully stored in the channel or eventually received by the a
receiver component. In fact, the port ignores any signals sent from the channel
. using a wildcard receive channelChan.signal?_,eval(_pid) (in Promela
can be matched with any value).

Figure 7 shows the component interface for sending messages through a send
port. The component sends its message to the send port and immediately waits
for a status signal back. Depending on the specific semantics of the send port the
component is sending messages through, the status signal may be returned at
different stages of message delivery and may indicate either a failure (SEND_FAIL)
or success (SEND_SUCC) . But no matter what kind of send ports the component
is communicating with, the same interface can be used. As noted previously, this
often allows the model of the port to be changed or replaced without having to
change the model of the component. '

Similarly, Figure 8 shows the component interface for receiving a message. In
this model, a receiver component sends a receive request to the receive port and
then tries to receive a status signal from the port, followed by a data message
delivered by the channel. If recvStatus indicates RECV_SUCC, the message myMsg
is the actual requested message delivered by the channel. If recvStatus indicates
RECV_FAIL, the message myMsg is an empty message sent by the receive port as
a stub and therefore, should not be used by the component.

Such an interface for receiving messages makes it possible to support both
blocking and nonblocking semantics. Figure 9 shows the Promela model for a
blocking receive port. The receive port starts by waiting for a recvRequest mes-

s I



proctype aRecvComponent(SynChan recvPortChan){
DataMsg nyMsg;

recvPortChan.data!recvRequest;

/* recvStatus could be RECV_SUCC or RECV_FAIL =/
recvPortChan.signal?recvStatus,_;

/* myMsg should not be used when recvStatus is RECV_FAIL */
recvPortChan.data?myMsg;

Fig. 8. A receiver component

proctype BlRecvPort(SynChan componentChan;
SynChan channelChan){
DataMsg recvRequest,m;
do
:: componentChan.data?recvRequest;
do
:: channelChan.data!recvRequest;
if
: channelChan.signal?0UT_OK,_;
channelChan.data?m;
break;
: channelChan.signal?0UT_FAIL,_;
fi;
od;
componentChan.signal !RECV_SUCC,-1;
coxponentChan.data!m;
od;

Fig. 9. Promela model for a blocking receive port

sage from the component. When it arrives, it tries to send the request to the
channel until the request is confirmed by the channel (indicated by the OUT_OK
signal). After the port successfully retrieves a message m from the channel
(channelChan.data?m), it then sends a RECV_SUCC confirmation to the receiver
component followed by the message m delivered by the channel. A nonblocking
receive port would send a RECV_FAIL signal immediately to the component when
the receive request is rejected by the channel (indicated by signal OUT_FAIL). It
then sends an empty message to the receiver component as a stub to accommo-
date the standard interface of the receiver component.

Note that other variations of receive ports can be defined similarly. For ex-
ample, a receive port (whether blocking or nonblocking) may ask the channel to
keep the message (copy receive) that has been received in the buffer or to remove
it (remove receive). A receive port may also support selective receive where a
tag is used as the matching criteria to retrieve messages from a channel.

For message passing, channels are essentially buffers that store and deliver
messages. There are a number of different properties of a message buffer that
may affect the overall correctness of the system. For example, some channels
may notify the sender component when its buffer is full so that the component
may choose to send at a different moment; other channels block the sender



proctype single_slot_buffer (SynChan senderChan;
SynChan receiverChan){
DataMsg recvRequest, m, buffer;
bool buffer_empty = 1;
do
:: receiverChan.data?recvRequest;
if
: (buffer_empty && !recvRequest.selective)
|1 (Ybuffer_empty && recvRequest.selective
&& buffer.selectiveData
=1 recvRequest.selectiveData) ->
receiverChan.signal !QUT_OK,-1;
raeceiverChan.datalbuffer;
senderChan.signal !RECV_OK,buffer.sender_id;
if
:: recvRequest.remove ->
buffer_empty = 1
:: else
fi
: else ->
receiverChan.signal!OUT_FAIL,-1
fi
:: senderChan.data?m;
if
:: buffer_empty ->
senderChan.signal!IN_OK,-1;
buffer.data = m.data;
buffer. der_id = m.sender_id;
buffer.selectiveData = m.selectiveData;
buffer.selective = m.selective;
buffor.remove = m.remove;
buffer_empty = 0
it else —>
senderChan.signal ! IN_FAIL,-1

£i
od

Fig. 10. Promela model for a single-slot buffer channel

until space is available in the buffer; a third kind of channel may simply drop
messages that are sent after its buffer becomes full without notifying the sender.
Of course, channels may have buffers with different sizes and may implement
different message delivery policies. We have defined the Promela models for a
number of message passing channels that implement a variety of such semantics.

Figure 10 shows our model for a single-slot-buffer, a message buffer that
only holds one message. The process model of a message passing channel takes
two parameters of type SynChan. senderChan is used for the communication
with the send ports that components are using to send messages to the channel.
receiverChan is used for the communication with the receive ports that com-
ponents are using to receive messages from the channel. The channel accepts a
receive request from a receive port or a message forwarded by a send port, and
handles them according to the current status of its buffer. In this particular im-
plementation, the channel notifies the send port with an IN_FAIL signal when its
message buffer is full, and notifies the receive port with an OUT_FAIL signal when
no requested message is currently available in the buffer. This channel model can



be easily composed with a number of send and receive ports by matching the
Promela channels channelChan used by the send ports and the channelChan
used by the receive ports with the senderChan and receiverChan used by the
channel, respectively.

In addition to the single-slot buffer, we have defined the Promela models
for a variety of other types of channels, including one that stores and delivers
messages in a FIFO order and one that handles messages based on their priorities.
It is also possible to create a model for a channel that has a message buffer of
an arbitrary size. In this case, the Promela process of the channel takes an
additional parameter that specifies the size of the buffer. The models for these
channels can be instantiated with the size of the message buffer used in the
channel. This allows a range of similar message passing channels to be defined
by parameterizing the same model.

As we have described above, ports and channels are modeled as communi-
cating Promela processes and they can be connected through specific Promela
channels that handle the communications between them. To construct the model
for a connector, we can simply compose the pre-defined Promela processes for
its building blocks by matching the specific Promela channels associated with
them. Component models and connector models can be composed in a similar
way. When design decisions about the semantics of a connector are changed and
the system design needs to be re-verified, formal models of the system can be
modified by replacing the Promela processes of the existing building blocks of
the connector with those of the new ones. For example, when different semantics
for sending messages are needed for a component, we can substitute a different
send port for the existing one, and pass in the same Promela channels that allow
the new send port process to communicate properly with the Promela process
for the component. In Section 4, we give an example illustrating how system
models can be constructed from the building block models and how they can be
re-constructed when changes are made in the design of connectors.

Note that the Promela models we created for the message passing building
blocks are not necessarily the most efficient ones and there may be a number
of different ways to model them in Promela. Instead of aiming for elegance or
efficiency, our models are coded to clearly reflect the protocols that are used
by the building blocks. These models can often be simplified and optimized for
verification in a number of ways. We briefly discuss some possible optimizations
in Section 6.

Also note that our approach is not tied to any particular model checker or
modeling language. By using Promela and SPIN, we are only showing one possible
way of modeling our building blocks and applying design-time verification. In
fact, we have defined the same set of building blocks in the process algebra
FSP and used LTSA (the Labeled Transition System Analyzer) [22] to verify
the system designs. Somewhat different strategies may be appropriate when
modeling the building blocks in a different modeling language.
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4 The Single-lane Bridge Example

This section presents an example to illustrate how designers may use the building
blocks and the techniques we have described above in the design and verifica-
tion of a small message passing system. In particular, we show how design-time
verification may benefit from this plug-and-play approach by saving on model
construction time when repeated changes are made to the connectors in a soft-
ware architecture.

As an example, consider a bridge that is only wide enough to let through
a single lane of traffic at a time. An appropriate traffic control mechanism is
necessary to prevent crashes on the bridge. For this example, we assume traffic
control is managed by two controllers, one at each end of the bridge. Communi-
cation is allowed between two controllers as well as between cars and controllers.
To make the discussion easier to follow, we refer to cars entering the bridge from
one end as the blue cars and refer to that end’s controller as the blue controller;
similarly the cars and controller on the other end are referred to as the red cars
and the red controller, respectively, as shown in Figure 11. Blue cars send enter
requests to the blue controller when they try to enter the bridge and notify the
red controller when they exit the bridge. A similar situation applies to red cars.

There are a number of possible ways to control the traffic on the bridge. For
a simple version of the bridge example, which we refer to as “exactly-N-cars-
per-turn”, controllers may take turns to allow some fixed number (N) of cars
from their side to enter the bridge. A more efficient single-lane bridge system,
which we refer to as “at-most-/N-cars-per-turn”, may allow turns to be yielded
immediately by one controller to the other if there are no cars waiting to cross
the bridge from its side. No matter what traffic control mechanism is used, we
want to make sure the bridge is safe, that is, no cars traveling in the opposite
directions can be allowed on the bridge at the same time. Designing a bridge
system that ensures this safety property requires a careful design of not only the
components (cars and controllers) in the system, but also the specific semantics
of the connectors used for the interactions between the components.

In particular, a designer may have to decide whether it is more appropriate to
use message passing or event-based notification for the communication between
components; whether the communication between cars and controllers needs
to be synchronous or can be asynchronous; if message passing is chosen, what
types of buffers should be used to store messages; what happens if a message gets
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Fig. 12. An initial design of the “exactly-N-cars-per-turn” single-lane bridge example

dropped by a buffer, and so on. It is very easy to make mistakes on such matters
when choosing the appropriate interaction semantics. Design-time verification
can be very useful in evaluating the appropriateness of these design decisions.

For this example, message passing seems to be a natural choice for the com-
munications between components, but we still have to make sure the appropriate
message passing semantics are chosen for each connector. With our approach,
this can be achieved by selecting and composing a subset of the message pass-
ing building blocks from the library to define each connector, incorporating the
component designs provided by the designer, and then using design-time verifi-
cation to make sure that the resulting system design does not violate the safety
properties of the bridge.

Figure 12 shows an initial design of the “exactly-N-cars-per-turn” single-
lane bridge example. In this design, asynchronous message passing is chosen for
both the communication between the car and the controller on its entering side
and the communication between the car and the controller on the other side.
In this case, asynchronous blocking send ports are used for sending enter and
exit request messages from the cars to the controllers. A FIFO queue channel
is selected for buffering the enter request messages that are sent from different
car components to the same controller, so that the requests are processed by
the controller in a first-in-first-out order. A single-slot buffer channel may be
used for exit request messages. Finally, blocking receive ports are used by each
controller component to process enter and exit request messages. Notice that
with this version of the bridge example, no communication is necessary between
the two controllers.



To make sure that our bridge system does not cause cars traveling from
opposite directions to crash, we use finite-state verification to check our design.
In this case, not surprisingly, verification reports a violation of the property.
The cause of this violation is obviously that we have selected a wrong type of
send port for sending enter request messages. Instead of using an asynchronous
blocking send port, we should have used a synchronous blocking send port so that
the car component waits for an acknowledgement from the controller before it
tries to enter the bridge. With the plug-and-play approach, the erroneous design
can be easily corrected by replacing the asynchronous blocking send ports for
sending enter requests with synchronous ones; no changes in the components
are necessary. Verification needs to be applied again to confirm that the system
now satisfies the property. With this approach, re-applying verification does not
require the complete re-computation of the system model.

To apply design-time verification using SPIN, the Promela model of the over-
all system design needs to be constructed. With this approach, the system design
is composed of components and various message passing building blocks. There-
fore, a system model is simply a composition of all the Promela models for
the message passing building blocks and components in the system. Specifically,
models of the selected message passing building blocks are pre-defined and can
be simply included in the system model at verification time. In general, our
approach expects designers to provide formal models for the components that
employ the standard interfaces.

In principle, models of the components can be automatically extracted from
their designs in some suitable language. For the purpose of this example, however,
we constructed Promela models of the car and controller components manually.
To allow the component models to be composed properly with the building block
models, appropriate Promela channels are used to set up the connections between
component processes and building block processes at the start of the Promela
system. Due to space limitations, the complete Promela model for this version
of the bridge example is not given here, but it can be found in [34]. The safety
property of the bridge example is described in LTL (Linear Temporal Logic),
which can then be checked by SPIN against the Promela model of the system.

As we can see from this example, the pre-defined building block models can
be easily composed with component models to create a system model. These
pluggable models also make it easier to make changes in the model, especially
when such changes only involve the semantics of the connectors. Suppose that,
in order to improve traffic flow, the designer wishes to change the “exactly-N-
cars-per-turn” version of the bridge system into the “at-most-N-cars-per-turn”
version. This requires the addition of new communication between the controllers
and the modification of the controller components. Since this version of the
system has additional functionality, it is not unreasonable to have to change the
components to support this functionality. Still, however, we would like to limit
the impact of these changes and reuse models of the components and connectors
as much as possible.
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example

Figure 13 shows a possible design for the modified system, with two new
connectors between the controllers, one for the blue controller to notify the
red controller that no blue cars are waiting and one for the red controller to
notify the blue controller that no red cars are waiting. In this case the designer
chose synchronous blocking send, nonblocking receive, and a reliable single-slot
buffer. Since the controllers poll for messages from cars and from the other
controller, we must also change the connectors between the cars and controller to
have nonblocking receive semantics. To verify that this new system still prevents
crashes of cars traveling in opposite directions on the bridge, the component
models need to be modified to reflect the new communications. Models of the
new connectors, however, can be constructed from the library models of the
building blocks.

From this single-lane bridge example illustrated above, we can see that the
verification works in the same plug-and-play manner as the associated design
approach. Having reusable models for building blocks of connectors and hav-
ing the models of components stay relatively stable when only interactions are
changed reduces the cost of repeated verification in an iterative design process.
It therefore makes it easier and more efficient to experiment with alternative
design choices for interaction semantics.



5 Related Work

The limitations and frustrations of component-based software development are
well known (e.g., [11,18]). Previous work, such as [2,4,15,21,25,27], has pro-
posed treating connectors as first-class entities in component-based development,
although [15] in particular, has put the focus at a lower level of abstraction (pro-
gramming level) than what we are interested in here.

There are a number of approaches that provide support for connectors and
component composition. The Wright architecture description language [2], for
example, uses the CSP process algebra to describe arbitrary connectors. The Ar-
chitectural Interaction Diagrams (AIDs) approach {26] models connectors using
process algebra. Constraint automata based approaches have also been proposed
to specify and analyze the semantics of connectors composed from a set of prim-
itive channels [3,24]. In approaches like these, the burden is on the designer to
construct a model of a connector with the right semantics from powerful, but
low-level, primitives. Our approach is aimed at providing a library of building
blocks from which connectors representing a variety of interaction semantics
can be easily constructed, offering “ready-to-use” pieces that hide from the user
most of the details of how these pieces are actually constructed and modeled. As
we noted above, however, the actual formal models of our building blocks used
for verification could be built using any suitable formalisms with verification
support, including CSP or AIDs.

Another approach to support component composition is the mediator ap-
proach [31,32] which defines mediators as special components that are used to
modularize how other components interact with each other in terms of their
behavioral relationship. While providing a way of reasoning about the connec-
tions, the mediator approach does not support the compositional specification
of connectors as our approach does.

While our approach facilitates creating connectors from existing building
blocks, the connector wrapper approach [29,30] focuses on creating new connec-
tors by incrementally transforming existing ones. The connector wrappers can
be useful in reusing connector parts and supporting easy modification to connec-
tors. Because of its restricted internal representation of operational semantics,
however, this approach can only support connectors with limited kinds of inter-
action semantics. In contrast, our approach allows designers to explore a wide
range of interaction semantics by providing a set of building blocks that can be
expanded and that are not restricted to a specific formalism.

Although a similar notion of ports has been proposed in architectural de-
scription languages such as ACME [13] and ArchJava [1], in our approach, ports
are used to explicitly capture some of the most important aspects of interaction
semantics such as synchronization, and therefore are treated as parts of connec-
tors. Our definition of ports makes it possible to support standard component
interfaces that allow connectors to be modified or replaced with minimal impact
on the components. The term building blocks has been used in many different
contexts. For example, in [33], building blocks are referred to as parts of soft-



ware used to build a system. The building blocks in our approach are design-level
elements used to construct connectors representing interactions.

There has been extensive work on applying verification to systems employing
a specific type of component interactions. Qur approach, however, is intended
to provide a general framework that can support many kinds of mechanisms,
rather than being restricted to a single type. Specific techniques have been used
to model and reason about message passing systems. For example, in [5, 23],
message passing systems are specified in sets of adapted message sequence charts
(MSCs), and message channels are modeled as a finite-state automaton with
inputs and outputs. A procedure is then taken to construct one single automaton
that accepts all linearizations of the MSCs that meet the specification of the
channels. This automaton is then checked by standard techniques for emptiness
to decide whether the system satisfies the specification of the channel.

Work has been done on verifying implicit invocation or publish/subscribe
systems (e.g., Garlan et al. [6,12,36]). In this work, the semantics of pub-
lish/subscribe systems are defined along several dimensions, which is very similar
to what we have done for message passing. One of the limitations of the approach
is its restriction to publish/subscribe systems: the user specifies choices on the
dimensions, and a formal model, suitable for finite-state verification, is automat-
ically constructed. In order to apply that approach to other interaction mech-
anisms, a suitable specification formalism and a model generation tool would
have to be constructed. Our approach, on the other hand allows the verification
of systems with different interaction mechanisms by supporting small, reusable
formal models that can be used as building blocks to construct formal models
representing different kinds of interactions. One advantage of their approach,
however, is that both the formal models and the verifier may be optimized and
refined specifically for publish/subscribe systems.

6 Conclusion and Future Work

Choosing appropriate interaction semantics for the connectors in a software ar-
chitecture is often very difficult. In this paper, we present an approach that
allows designers to easily experiment with alternative design choices of inter-
action semantics and to use design-time verification to evaluate their decisions
based on the correctness of the overall system design. With this approach, com-
ponents can interact with each other through different connectors using only a
small set of standard interfaces. Because the interfaces usually do not need to
change when changes are made to the connectors, the impact of such changes
on the components is minimized. Qur approach also provides a library of pre-
defined building blocks to support the construction of a wide variety of different
types of connectors. This plug-and-play approach provides savings in model con-
struction time during design-time verification. With this approach, pre-defined
models can be constructed for the library of building blocks, which can then be
reused in the modeling of any system that uses these building blocks. In addition,
since changes in the connectors do not often require changes in the components,



the component models can often be reused, reducing the modeling cost when
verification needs to be re-applied.

We are currently developing a prototype tool that supports plug-and-play
design and design-time verification. This tool is implemented as an extension
of the ArchStudio architecture design environment [8]. With ArchStudio, de-
signers can model, visualize and analyze system architectures. Our extension
provides additional functionalities that allow designers to select specific inter-
action paradigms for component interactions, to specify connectors from pre-
defined building blocks, and to use finite-state verification to evaluate the de-
sign. In addition to the prototype tool, we are also working on extending the
current approach to support other kinds of interaction mechanisms such as pub-
lish/subscribe and remote procedure call. For evaluation, we are undertaking a
case study to evaluate how well this approach supports the design and verifi-
cation of microkernel-based embedded systems that are based on the CAmkES
component model [20]. Specifically, we plan to show how the set of building
blocks can represent a rich set of interaction semantics and how this approach
can be useful in practice to help produce high-quality designs and implementa-
tion.

We also plan to explore several important issues that are specific to the
modeling and verification aspect of our approach. One of these is the techniques
that can be applied to optimize and reduce the models created using our plug-
and-play approach to allow finite-state verification to be applied more efficiently.
As we have mentioned previously, our current models for the library of building
blocks are only intended for proof of concept and may not be the most efficient.
These models often have unnecessary blocking statements or redundant data
structures, which may unnecessarily increase the state space of the model. As an
extreme example, consider our Promela model of a FIFO queue channel. Instead
of implementing explicit data structures for buffering messages in FIFO order,
we simply use the native FIFO channel in Promela to handle the ordering of the
messages.

We expect optimization to be extremely important since decomposing con-
nectors into ports and channels that are modeled as separate processes introduces
additional concurrency into the model, exacerbating the state explosion that lim-
its finite-state verification. Without effective optimizations, our approach may
be restricted to only small systems. Therefore, techniques that can reduce the
size of the system model will be necessary to provide effective verification sup-
port. As an example of such a technique, commonly used connectors could be
recognized and specially optimized models could be made available instead of di-
rectly composing from the building block models. Note that the techniques that
are used for optimization may largely depend on the specific modeling language
and verification tool that are used.

Another concern with our approach is the ability to provide meaningful coun-
terexample traces when the verification fails. In finite-state verification, when a
property violation is found, a counterexample trace is usually provided to give
an example trace through the model that leads to the violation of the property.



With our approach, tracing an error may require delving into the details of the
models of the building blocks, which requires a low-level understanding of their
semantics. It would be helpful if our approach could provide a more meaningful
representation of the cause of a property violation. For example, it would be
useful to indicate that a deadlock in a system may be due to the use of a mes-
sage buffer that drops new messages when it is full. In this way, designers can
focus on the building blocks that appear to be problematic in the system and
experiment with alternative choices using the plug-and-play approach.
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