Improving Multi-Agent Learning through
Automated Supervisory Policy Adaptation

Chongjie Zhang
Computer Science Department
University of Massachusetts Amherst

Sherief Abdullah
Institute of Informatics
British University in Dubai

Victor Lesser
Computer Science Department
University of Massachusetts Amherst
UMass Computer Science Technical Report #08-03

January 29, 2008

Abstract

Multi-Agent Reinforcement Learning (MARL) algorithms suffer from slow
convergence and even divergence, especially in large-scale systems. In this work,
we develop a supervision framework to speed up the convergence of MARL al go-
rithms in a network of agents. Our framework defines a multi-level organizational
structure for automated supervision and a communication protocol for exchan ging
information between lower-level agents and higher-level supervising agents. The
abstracted states of lower-level agents travel upwards so that hi gher-level supervis-
ing agents generate a broader view of the state of the network. This broader view
is used in creating supervisory information which is passed down the hierarchy.
The supervisory policy adaptation then integrates supervisory information into ex-
isting MARL algorithms, guiding agents’ exploration of their state-action space.
Experimental results show that our framework increases both the likelihood and
the speed of convergence.

1 Introduction

A central challenge in multi-agent systems (MAS) research is to desi gn distributed co-
ordination mechanisms to agents that have only partial views of the whole system to
generate efficient solutions to complex, distributed problems. To effectively coordi-
nate their actions, agents need estimate the unobserved states of the system and adapt
their actions to the dynamics of the environment. Multi-agent reinforcement learning
(MARL) techniques have been extensively explored in such setting.

To scale up, previous research [2, 16, 5] has distributed the learning and restricted
each agent to using the information received only from its immediate neighbors to up-
date its estimates of the world states (i.e., Q-values for state-action pairs). However,

this constraint results in long latency to propagate the state information to agents fur-
ther away. Such latency can result in neighborhood information being outdated, hence
leading to mutually inconsistent views among agents. In addition, updating local es-
timates using information only from immediate neighbors can potentially suffer from
the "Count-to-Infinity” problem [13], where agent A’s estimate of the world state is
calculated from agent B’s estimate, which is calculated from from agent A’s estimate.
Therefore, such limited view for each agent and the non-stationarity of the environment
(all agents are simultaneously learning their own policies) causes MARLS to slowly
converge and even diverge. Furthermore, the slowness of MARL convergence is wors-
ened by the large policy search space. Each agent’s policy not only includes its local
state and actions but also some characteristics of the states and actions of its neighbor-
ing agents [2], or the state size of each agent may be proportional to the size of the
system [5].

Two paradigms have been studied to speed up the learning process. The first
paradigm is to reduce the policy search space. For example, the TPOL-RL [12] reduced
the state space by mapping states onto a limited number of action-dependent features.
The hierarchical multi-agent reinforcement learning [6] used the explicit task structure
to restrict the space of policies, where each agent learned joint abstract action-values
by communicating with each other only the state of high-level subtasks. The second
paradigm is to use heuristics to guide the policy search. The work [14] used both local
and global heuristics to accelerate the learning process in a decentralized multirobot
system. The local heuristic used only the local information and the global heuristic
used the information that was shared and required to be exactly the same among robots.
The Heuristically Accelerated Minimax-Q (HAMMQ) (8] incorporated heuristics into
the Minimax-Q algorithm to speed up its convergence rate, which shared the conver-
gence property with Minimax-Q. HAMMQ was intended for use only in a two-agent
configuration and further the authors did not discuss how heuristics were constructed.

This paper presents a supervision framework, called Automated Supervisory Pol-
icy Adaptation (ASPA), to accelerate the learning. ASPA follows the second paradigm
that uses heuristics to guide the policy search. The main contribution of ASPA is that
it defines a decentralized hierarchical supervision mechanism to automate the genera-
tion of heuristics (also called supervisory information) and uses a supervisory policy
adaptation that integrates heuristics into existing unsupervised MARL al gorithms (e.g.,
ReDVaLeR [3], WoLF-GIGA [4], WPL 1), etc.) in a generic manner to speed up
their convergence. The supervision mechanism is defined by a multi-level supervision
organization (a meta-organization built on top of the agents’ overlay network) and a
communication protocol for exchanging information between lower-level agents and
higher-level supervising agents.

The key idea of ASPA is as follows. Each level in the supervision organization
is an overlay network in itself. For example, Figure | shows a three-level supervi-
sion organizational structure. The abstracted states of lower-level agents travel up-
wards so that higher-level supervising agents can generate a broader view of the state
of the network. This broader view comes from not only information about the states of
lower-level agents but also information from neighboring supervising agents. In turn,
this broader view results in creating supervisory information which is passed down the
hierarchy. The supervisory information guides the learning of agents in collectively
exploring their state-action spaces more efficiently, and consequently results in faster
convergence. To provide up-to-date supervisory information, the process above is pe-
riodically repeated. The generation of broader views is based on the assumption that
agents will voluntarily share their state information. Our supervision mechanism also

y Supervisors
@ @ upervise

Workers

Figure 1: An organization structure for multi-level supervision

implicitly assume the original multi-agent system can be formed into a nearly decom-
posable hierarchy [10] of at least one level. For clarity, this paper limits the discussion
to the case where learning only happens in the bottom level, but ASPA does not restrict
how many levels and what levels use learning.

Inorder to evaluate ASPA, a simulated distributed task allocation application (DTAP)
adopted from the work [2] has been constructed. We chose one representative unsu-
pervised MARL algorithm, WPL [1], and compared its performance with and with-
out ASPA. Simulation results show that ASPA incorporated with some simple domain
knowledge not only dramatically speeds up the convergence rate, but also increases the
likelihood of convergence when an unsupervised MARL algorithm fails to converge.
ASPA also shows robustness when not all supervising agents work properly.

The rest of the paper is organized as follows. First, we present a multi-level organi-
zational structure used by the supervision mechanism. Then a communication protocol
is defined for agents at different levels. After that, we describe the supervisory pol-
icy adaptation that integrates supervisory information into MARL algorithms. ASPA
is then empirically evaluated on DTAP. Finally, we concludes this work and discusses
some future work,

2 Organizational Supervision

The supervision mechanism commonly exists in human organizations (e. 8., enterprises
and governments), whose purpose is to run an organization effectively and efficiently
to fulfill the organization goals. Typically, supervision involves gathering informa-
tion, making decisions, and providing directions to regulate and coordinate actions of
organization members. The practical effectiveness of the supervision in human organi-
zations, especially in large organizations, inspired us to introduce a similar mechanism
into multi-agent systems to improve the efficiency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay structure, ASPA adopts
a multi-level, clustered organizational structure. Agents in the original overlay net-
work, called workers, are clustered based on some measure (e.g., geographical dis-
tance). Each cluster is supervised by one agent, called the supervisor, and its member

agents are called subordinates. The supervisor role can be played by a dedicated agent
or one of the workers. If the number of supervisors is large, a group of higher-level
supervisors can be added, and so on, forming a multi-level supervision organization.
While, in this paper, our discussion focuses on the situation where each agent belongs
to only one cluster, ASPA is also suitable when clusters overlap.

Two supervisors at the same level are adjacent if and only if at least one subordinate
of one supervisor is adjacent to at least one subordinate of the other. Communication
links, which can be physical or logical, exist between adjacent workers, adjacent su-
pervisors, and subordinates and their supervisors. Figure 1 shows a three-level organi-
zational structure. The bottom level is the overlay network of workers which forms 9
clusters. A shaded circle represents a supervisor, which is responsible for a correspond-
ing cluster. Note that links between subordinates and their supervisors are omitted in
this figure.

1

3 Communication Protocol

Three types of communication messages, report, suggestion, and rule, are used in
ASPA. A worker’s report passes its activity data upwards to provide its supervisor with
a broader view. A supervisor’s report aggregates the information of reports from its
subordinates. A supervisor sends its report to its adjacent supervisors at the same level
in addition to its immediate supervisor (if any). The supervisor’s view is based on not
only the agents that it supervises (directly or indirectly) but also its neighboring super-
visors. This peer-supervisor communication allows each supervisor to make rational
local decisions when directions from its immediate supervisor are unavailable. To pre-
vent supervisors from being overwhelmed and reduce the communication overhead in
the network, the information is summarized (abstracted) in reports. Furthermore, re-
ports are only sent periodically.

Based upon this information, a supervisor employs its expertise, integrates direc-
tions from its superordinate supervisor, and provides supervisory information to its
subordinates. As in human organizations, rules and suggestions are used to transmit
supervisory information. A rule is defined as a tuple < ¢, F' >, where

¢ c: a condition specifying a set of satisfied states

e F': aset of forbidden actions for states specified by ¢
A suggestion is defined as a tuple < ¢, A,d >, where

e c: a condition specifying a set of satisfied states.

e A: aset of actions

e d: the suggestion degree, whose range is [—1, 1].

A suggestion with a negative degree, called a negative suggestion, urges a subordinate
not to do the specified actions. In contrast, a suggestion with a positive degree, called
a positive suggestion, encourages a subordinate to do the specified action. The greater
the absolute value of the suggestion degree, the stronger the impact of the suggestion
on the supervised agent.

1The top supervision level can have multiple supervisors.

Each rule contains a condition specifying states where it can be applied. Subordi-
nates are required to obey rules from their supervisors. Due to their imperativeness,
correct rules greatly improve the system efficiency, while incorrect rules can lead to
inefficient policies. Therefore, a supervisor requires domain knowledge, in addition
to information from its subordinates, to make rules that have a positive impact on the
organizational performance.

Rules are “hard” constraints on subordinates’ behavior. In contrast, suggestions
are “soft” constraints and allow a supervisor to express its preference for subordinates’
behavior. In our example use, a suggestion have a condition matching all states. A
supervisor knows that the system performance benefits from a subordinate doing a par-
ticular action more frequently. However, due to limited domain knowledge or limited
information about the subordinate’s local policy and surrounding environment, a super-
visor can only suggest the subordinate to do more of that action without telling when it
should and when it should not. Therefore, a subordinate does not rigidly adopt sugges-
tions. The effect of a suggestion on a subordinate’s local decision making may vary,
depending on its current policy and state. A supervisor will refine or cancel rules and
suggestions as new or updated information from its subordinates become available.

A set of rules are in conflict if they forbid all possible actions on some state(s). Two
suggestions are in conflict if one is positive and the other is negative and they share
some state(s) and action(s). A rule conflicts with a suggestion if a state-action pair is
forbidden by the rule but is encouraged by the suggestion. In our supervision mecha-
nism, we assume each supervisor is rational and will not generate rules and suggestions
that are in conflict. However, in a multi-level supervision structure, a supervisor’s local
decision may conflict with its superordinate direction. Rules have higher priority than

. suggestions. There are several strategies for resolving conflicts between rules or be-
tween suggestions, such as always taking its superordinate or local rule, stochastically
selecting a rule, or requesting additional information to make a decision. The strategy
choice depends on the application domain. Note that it may not always be wise to
select the superordinate decision, because, although the superordinate supervisor has a
broader view, its decision is based on abstracted information. Our strategy for resolv-
ing conflicts picks the most constraining rule and combines suggestions by summing
the degrees of the strongest positive suggestion and the strongest negative suggestion.

The supervisory organization defined above is robust, scalable, and immune to
single-point failures, because agents at each level are fully-distributed and able to make
local decision without the supervision of higher-level agents. Meanwhile, the super-
vision mechanism allows subordinates to utilize a more global view through rules and
suggestions from their supervisors in making more informed local decisions.

4 Supervisory Policy Adaptation

Using MARL, each agent gradually improves its action policy as it interacts with other
agents and the environment. A pure policy deterministically chooses one action for
each state. A mixed policy specifies a probability distribution over the available actions
for each state. Both can be represented as a function 7 (s, a), which specifies the proba-
bility that an agent will execute action a at state s. As arguedin [11], mixed policies can
work better than pure policies in partially observable environments, if both are limited
to act based on the current percept. Due to partial observability, most MARL algo-
rithms are designed to learn mixed policies. The rest of this section shows how mixed
policy MARL algorithms can take advantage of higher-level information specified by

rules, 4
suggestions report
Supervisory Report |
Policy |, Generator
. Adaptation |
Policy | Policy | Action ’ ‘»».\zitdapigd
Update Selection 4_] policy -\130 1cy
' | Policy " Action
1 | Update Selegtion |
feedback action'} statcl ?
?feedback action‘i, state
(a) (b)

Figure 2: Unsupervised MARL vs. Supervised MARL with ASPA

rules and suggestions to speed up convergence.

As shown in Figure 2 (a), a typical unsupervised MARL algorithm contains two
components: policy (or action-value function) update and action selection based on
the learned policy. One common method to speed up learning is to supply an agent
with additional reward to encolrage some particular actions [7). The use of the special
reward affects both policy update and action selection. In a multi-agent context, special
rewards may generate a policy that is undesirable in that they may distract from the
main goal, which is supported by the normal reward.

In contrast, ASPA directly biases the action selection without changing the policy
update process. Hence ASPA’s effect on the final learned policy is transient (can be
turned off at any time), while reward shaping has a permanent effect. As shown in
Figure 2 (b), ASPA’ supervisory policy adaptation integrates rules and suggestions
into the learned policy and then outputs an adapted policy. This adapted policy is
intended to control exploration and does not directly affect the learned policy. The
report generator summarizes the states that the agent has experienced and sends this
abstracted state to its supervisor.

As described previously, a rule explicitly specifies undesirable actions for some
states and is used to prune the state-action space. Suggestions, on the other hand, are
used to bias agent exploration. To integrate suggestions into MARL , ASPA uses the
strategy that the lower the probability of a state-action pair, the greater the effect a |
positive suggestion has on it and the less the effect a negative suggestion has on it.
The underlying idea is intuitive. If the agent’s local policy already agrees with the
supervisor’s suggestions, it is going to change its local policy very little (if at all);
otherwise, the agent follows the supervisor’s suggestions and makes a more si gnificant
change to its local policy.

Let R and G be the rule set and suggestion set, respectively, that a worker received
and 7 be its learned policy. We define R(s,a) = {r € R| state s satisfies the condition
r.cand ¢ € r.F}? and G(s,a) = {g € G state s satisfies the condition g.c and
a € g.A}. Then the adapted policy 74 for the action selection is generated by the

w

2We use "." as a projection operator. For example, r.c returns the rule condition of rule r.

supervisory policy adaptation:

0 if R(s,a) # 0
w(s,a) + 7(s,a) * n(s)
(s, a) = * deg(s,a) else if deg(s,a) <0
w(s,a) + (1 — w(s,a))
* 7)(s) * deg(s,a) elseif deg(s,a) >0

where 7)(s) is a state-dependent function ranging from [0, 1], and the function deg(s, a)
returns the degree of the satisfied suggestion. One assumption is that a MARL's state
contains enough information for checking whether a rule (or suggestion) is satisfied or
not.

We define the function deg(s, a) = maz({g.d > O|g € G(s,a)}) + min({g.d <
0lg € G(s,a)}). In the case where no clusters overlap (no suggestions are in conflict),
an agent only considers the strongest suggestion, either positive or negative. This defi-
nition is also applicable to the case where an agent belongs to multiple clusters and may
receive conflicting suggestions. Conflicting suggestions are integrated by summing the
degrees of the strongest positive suggestion and the strongest negative suggestion.

As similarly defined in the work [9], the function 7(s) determines the receptivity
for suggestions and allows the agent to selectively accept suggestions based on its
current state. For instance, if an agent becomes more confident in the effectiveness of
its local policy on state s because it has more experience with it, then 7(s) decreases as
learning progresses. In DTAP, we set 7j(s) = k/(k + visits(s)) where k is a constant
and visits(s) returns the number of visits on the state s.

Although a supervisor provides directions to its subordinates via rules and sugges-
tions as defined above, instead of explicit policies, the following proposition holds with
the integration developed above.

Proposition 1. Ifa supervisor knows the optimal policy for each subordinate and each
subordinate completely trusts the supervisor’s suggestions (that is, 7(s) = 1, for all
state s), then the supervisor can force each subordinate to execute the optimal policy
via the adapted policy ©4.

Proof. The supervisor requires each subordinate to send its local policy to it via report
messages. Consider an arbitrary subordinate. Let 7* be the optimal policy of this
subordinate, and 7 be its current local policy. To force this subordinate to execute the
optimal policy, for each state-action pair (s, a), the supervisor sends a suggestion <
s,{a},d > to this subordinate, where the suggestion degree d is defined as following:

Casel if n*(s,a) < 7(s,a), then d = w*(s,a)/n(s,a) — 1. Since -1 <d <0,then
WA((S, a) = (s, a)x(1+n(s)*deg(s, a)) = n(s, a)x(1+7*(s,a)/n(s,a)—1) =
w*(s,a).

Case2 if n*(s,a) > 7(s,a), then d = (n*(s,a) — n(s,a))/(1 — m(s,a)). Since
0 < d < 1, then n4(s,a) = 7(s,a) + n(s) * deg(s,a) * (1 — n(s,a)) =
m(s,a) + (1 — n(s,a)) * (7*(s,a) — 7(s,a))/(1 — n(s, a)) = n*(s,a).

Therefore, with the supervisor’s suggestion, the action choice of this subordinate is
based on the optimal policy. O

31f G(s, a) is empty, then deg(s, a) = 0.

To normalize 74 such that it sums to 1 for each state, the limit function from
GIGA [17] is applied with minor modifications so that every action is explored with
minimum probability ¢:

74 = limit(r?) = argmin,w,,h-d(x)lw" — x|

i.e., limit(w4) returns a valid policy that is closest to 74.

Note that our normalization implicitly solves the issue of rules in conflict. If a set
of rules forbids all actions on a state, then the probability of each action is set to 0.
After normalization, the probabilities of all actions are equal, that is, the action choice
becomes completely random. This strategy is reasonable when the agent does not know
the consequence of violating each rule.

Based upon the mechanism developed above for integrating suggestions and rules
into the learning process, both MARL and the organization supervision mechanism
can affect each other. Rules and suggestions provide bias for the action choice during
exploration and speed up the learning process. In turn, workers improve their perfor-
mance through learning and provide supervisors with new information to refine rules
and suggestions. Due to the pruning effect of rules, supervisors need to have a mecha-
nism to detect if a rule is overconstraining and then to refine the rule to allow workers
to properly explore the environment.-

S Experimental Results

To evaluate ASPA, we extended the simulator of a simplified DTAP [2] to incorporate
Poisson task arrival and exponential task service time. In the DTAP, agents are orga-
nized in an overlay network. Agent i executes tasks with rate w; work units per time
unit and receives tasks from the environment with rate \; tasks per time unit, where
tasks’ work units are under a Poisson distribution with mean ;. At each time unit,
an agent makes a decision for each task received during this time unit whether to ex-
ecute the task locally or send it to a neighboring agent for processing. A task to be
executed locally will be added to the local queue with unlimited queue length, where
tasks are executed on a first-come-first-serve basis. Agents interact via communication
messages and communication delay between two agents is proportional to the Manhat-
tan distance between them, one time unit per distance unit (each agent has a physical

location). The main goal of DTAP is to minimize the total service time of all tasks,

averaged by the number of tasks, ATST = E—Te—ﬂfi-.TfLm, where T, is the set of
tasks received during a time period 7 and T'ST(T') is the total service time that task T
spends in the system, which includes the routing time in the network, waiting time in

the local queue, and execution time.

5.1 Implementation

We assume agents in the overlay network are clustered using Manhattan distance. No
two clusters overlap. The agent closest to the center of each cluster is elected as the
supervisor. Supervisors also play the worker role. We assume that there is a routing
algorithm in the network that allows direct communication between subordinates and
their supervisors and between adjacent supervisors. Workers use the Wei ghted Policy
Learner (WPL) algorithm [1] to learn task allocation policies. Note that ASPA does
not depend on a specific MARL and the only requirement is that the MARL can learn

Algorithm 1: WPL: Weighted Policy Learner
begin
T « the reward for action a at state s
update Q-value table using < s,a,7 >
7 « average reward = }___ , 7(s,2)Q(s, a)
foreach actiona € A do
Aa) — Q(s,a) —F
if A(a) > 0 then A(a) — A(a)(1 — 7(a))
else A(a) — A(a)((a))
end
T limit(w + (A)
end

mixed policies. Algorithm 1 describes the policy update rule of WPL. WPL is a gra-
dient ascent algorithm which is based on the following strategy: learn fastest when the
policy gradient A changes its direction and gradually slow down learning if the gradient
remains in the same direction. A worker’s state is defined by a tuple {leyB,51,-..,5n),
where [, is the current work load (or total work units) in the local queue, 3 is the rate
of incoming task requests, and S; is the expected service time of a task if forwarded to
neighbor i. The state space is continuous and is dynamically discretized with the max-
imum and minimum values of each vector component, which are updated periodically
during the learning. The reward for forwarding a task to neighbor i is — S;.

Algorithm 2 shows the decision process that takes place at each worker on every
cycle. There are three types of messages generated by a worker: result, request, and
report. A result message (i, T', t} indicates that task T is completed at time ¢ after being
sent to neighbor 7, and is used to calculate TST(T') and update S; in the current state
with the following equation (adopted from Q-learning [15]): S; = a* S; + (1 — a) *
T'ST(T), where c is the decay rate. A result message for a task will be passed back
to all agents on the task routing path.* A request message (¢, T;) indicates a request
from neighbor i to execute task T. A report (i,l,n,T) is generated by agent i that
consists of the average work load ! of the workers over a period time 7 and the number
of workers n (which is 1 in a worker report). It is possible that more information, such
as average utilization and task arriving rates, can be added to allow supervisors to make
more informed decisions. An agent sends a report to its supervisor every 7 time period.

Algorithm 3 shows the decision process that takes place at each supervisor on every
cycle. Three types of messages are generated by supervisors: report, rule, and sugges-
tion. The creation of both reports and rules are based on subordinates’ reports. Let
reps be the set of reports from subordinates. A supervisor’s report sp aggregates data
in subordinates’ reports, where sp.n = Ererem r.n, spl = Zre,,eps (rd*r.n)/sp.n
and sp.7 = r.7 foranr € reps. ‘

We define one rule for DTAP, called load limit rule (limit), that specifies, for
all states whose work load exceeds limit, a worker should not add a new task to the
local queue. The limit is set with the information about the average load within a
cluster, so this rule helps balance load within the cluster. On the other hand, since
the worker’s state contains the load information, this rule can reduce the state-action

“The state update mechanism proposed in [2] can reduce the number of messages. This paper mainly
focuses on the supervision mechanism and the use of this feedback mechanism can help eliminate other
potential factors that affect the system performance.

Algorithm 2: Worker’s Decision Making Algorithm

begin

n « the identity of the worker

t. « the current time

if a task T in the local queue is done then
| send result (n,T,t.) to the T’s sender

end

MSGS «— messages received in this cycle

foreach result (i, 7', t) € MSGS do
update the current state s

if T is received from agent j (j # n) then
| send result message (n,T,t) to j
end
end
Use rules and suggestions from M SGS to update the integrated policy 7 A€
foreach request (i, T;) € MSGS do
choose and execute an action a based on 7 A€
update the current state s
learn(s,a)
end
collect work load information in the local queue
if t. is a reporting time then
| generate and send a report to its supervisor
end
end

Algorithm 3: Supervisor’s Decision Making Algorithm

begin
st keeps the latest rule received from its superordinate supervisor
ss keeps the latest suggestions received from its superordinate supervisor

if all subordinates’ reports for the current period are received then
generate an aggregated report rep

add rep to repList
r « generateRule(repList)
T « combine(r, sr)
distribute(r)
send rep to all peer supervisors and its superordinate supervisor
end
if all peer supervisors’ reports for the current period are received then
hc — clusters with higher average load
lc « clusters with lower average load
foreach cluster ¢ € hcdo
| sendNegativeSuggestions(c, ss)
end
stochastically choose one cluster c in Ic and
sendPositiveSuggestion(c, ss)

end

end

10

space for the MARL exploration. To generate a stable and accurate rule, a super-
visor keeps its own aggregated reports in repList, a fixed-length list. The function
generateRule(repList) returns aload limit rule (limit), where limit = 3°_ ;.. r.l/m
and m is the size of repList. The function combine(r, rs) chooses a more constrained

rule (i.e., with a lower load limit) between the local rule r and the superordinate rule sr.

The function distribute(r) sends rule 7 to subordinates. In order to avoid excessive
sending of rule messages, a supervisor sends a new rule iff the difference of load limits
between the new rule and the current rule exceeds a certain threshold.

The load limit rule forbids adding a task to the local queue only if the current load
is already greater than the limit. Therefore, it is possible that the work load in local
queue of a worker is greater than the load limit. For example, suppose agents in a
cluster do not receive external tasks by themselves. Initially, the cluster has few tasks
forwarded from its neighboring clusters and thus has a very low average load (e.g., 3),
from which a rule is generated. As time goes on, more and more tasks are forwarded to
the cluster and each agent is more likely to add tasks to its local queue, whose load is
close to 3. As a result, each local load is frequently greater than the load limit and the
average load of the cluster increases. From report messages, the supervisor can detect
that the current rule is over-constraining and generate a less constraining rule with a
higher load limit.

We utilize suggestions to balance the load across clusters. The creation of sug-
gestions is based on reports from peer supervisors. Let rep; and repy be the report
of supervisor ¢ and its neighboring supervisor k respectively, ¢; and ¢ be the cluster
supervised by supervisor ¢ and k respectively, m; be the number of subordinates of
cluster c; that are adjacent to cluster cy., and com_costy, be the communication cost be-
tween supervisor ¢ and supervisor k, which can be estimated from the communication
between them.

If repi.l — rep;.l > 0, supervisor ¢ considers cluster ¢, having a higher load.
Function sendNegativeSuggestions(ci, ss) creates a negative suggestion with de-
gree nd = (rep;.l/repy.l
—1)/m; to discourage forwarding tasks to cluster cy, combining it with the matching
suggestion (if exists) in ss from its superordinate supervisor, and then sending the com-
bined suggestion to subordinates adjacent to cluster c. Two suggestions match if they
share the same action set (i.e., both local decision and superordinate decision suggest
forwarding tasks to cluster c;) and some state(s). Our combination strategy is that if
the degrees of two matching suggestions have the same sign, the integrated suggestion
uses the degree of the stronger suggestion; otherwise, it uses the sum of two degrees.

Ifdif fi = rep;.l — repi.l — com_costy > 0, then cluster c; considers cluster cj
has a lower average load. In order to avoid “hot spot” problems, supervisor i proba-
bilistically selects one from the set of neighboring clusters with lower load, where the

Lre . s dif fi
'Ol = -
probability of selecting cluster ci is given by Pr(k) e &I where

the function neighbors(i) returns all neighboring clusters of supervisor i. Function
sendPositiveSuggestion(ck, ss) does the same thing as send N egativeSuggestions(ck, ss)
except that it sends a positive suggestion with degree pd = dif fi/rep;.l/m;. To
strengthen the effect of suggestions, if a suggestion with degree d is sent to subordinate

J and its neighbor n doesn’t receive the same suggestion, then a suggestion with degree

&d and action j is sent to n, where £ is the suggestion decay rate. To reduce network
overhead, a suggestion with degree less than a threshold (e.g., 0.05) will not be sent to
subordinates.

1

5.2 Results & Discussions

We have tested ASPA in the DTAP simulation mentioned above, where four measure-
ments are evaluated: the average total service time (ATST), the average number of
messages (AMSQG) per task, and the time of convergence (TOC). ATST indicates the
overall system performance, which can reflect the effectiveness of learning and super-
vision mechanism and can also be used to verify system stability (convergence) by
showing monotonic improvement in ATST as agents gain more experiences. AMSG
shows the overall communication overhead for finishing one task. To calculate TOC,
we take 10 sequential ATST values and then calculate the ratio of those values’ devia-
tion to their mean, If the ratio is less than a threshold (we use 0.025), then we consider
the system stable. TOC is the median time of the selected points.

ASPA does not pose any constraint on the network structure. However, as men-
‘tioned, we do implicitly assume the system is nearly-decomposable with a hierarchy
of at least one level. For clarity, Experiments were conducted using uniform two-
dimension grid networks of agents with different sizes: 6x6, 10x10, and 27x27, all of
which show similar results. But as the size of the system increases, the ASPA impact on
the system performance becomes greater. For brevity, we only present here the results
for the 27x27 grid. In each simulation run, ATST and AMSG are computed every 1000
time units to measure the progress of the system performance. Results are then aver-
aged over 10 simulation runs and the variance is computed across the runs. All agents
use WPL with learning rate 0.001. Workers send reports to their supervisors every 500
time units. Our experiments use the parameter 7(s) = 1000/(1000 + visits(s)) and
the suggestion decay rate £ = 0.5.

For simplicity, we assume that all agents have the same execution rate, Vi : w; = 1,
and that tasks are not decomposable. The service time of tasks are under a Poisson
distribution with mean . = 10. We tested three patterns of task arrival rates over the
27x27 grid:

Boundary Load where the 200 outermost agents receive tasks with A = 0.33 and
other agents receive no tasks from the external environment.

Center Load where the 121 agents in the centric 11x11 grid receive tasks with A =
0.5 and other agents receive no tasks from the external environment.

Uniform Load where all 729 agents receive tasks with A = 0.09.

We compared four structures: no supervision, local supervision, one-level supervi-
sion, and two-level supervision. In the local supervision structure, agents are their own
supervisors. With this structure, each agent gains a view only about itself and its neigh-
bors, which is not much different from its view in the organization without supervision.
So we use the local supervision structure to evaluate whether domain knowledge com-
bined with a limited view, which is used to create rules and suggestions, still improves
the system performance. In contrast, the performance of the two following structures
with supervision show the benefits of having a broader view combined with domain
knowledge. The one-level supervision structure has 81 clusters, each of which is a 3x3
grid and the agent at each cluster center is elected as the supervisor. The two-level
supervision structure forms from the one-level supervision structure by grouping 81
supervisors into 9 clusters, each of which is a 3x3 grid. The supervision structures with
three or more levels did not show further improvement over the two-level supervision
in our DTAP experiments. This is because a wide-range task transfer causes a long
routing time which offsets the reduction of the queuing time in each agent.

12

600] T T) 1] T T 1]
—5— No supervision
.| ~&— Local Supervision
- 400F 5 A8y —<=— One level i
? & —— Two levels
< 200}
0 A
0 05 1 1.5 2 25 3 35 4 45 5
Time *
2000 T T T T T L) ¥ ¥ T x 10
1500 _ .
- sy aaASBEED aBsgesaguaponotedag]
£ 1000} X —6— No supervision
< P -2~ Local Supervision
5001 - One level
e — seeeeaeals —— Two levels
0 SRRy g S TR R T Z T
0 0.5 1 15 2 25 3 3.5 4 45 5
. : Time x10
8, ~&~ No supenvision
\ -~ Local Supervision
L \ ~=- One level H
2] L —— Two levels
< v,

Figure 3: ATST for different structures, boundary load: top, center load: medium,
uniform load: bottom

13

Figure 3 plots the trend of ATST for different structures as agents learn. As ex-
pected, systems with one-level supervision or two-level supervision converge much
faster than that without supervision. The system with two-level supervision performs
better than with one-level supervision, because bottom-level supervisors create more
accurate rules and suggestions for workers by combining local decisions with superor-
dinate decisions which are based on a broader view. But as the system stabilizes, the
system load tends to be smoothly distributed among the agents and the broader view
of higher-level supervisors does not provide more information than that of lower-level
supervisors. Therefore two-level supervision and one-level supervision show almost
the same performance after stabilization.

Interestingly, local supervision improves its performance only after a certain period
of time, and at an early stage, it may even decrease system performance. With local
supervision, each worker is a supervisor, so a supervisor’s suggestion is based only on
the load information of its immediate neighboring workers, which can be incorrect at
early stages. For example, worker A with a high load has two neighbors worker B, with
alow load, and worker C, with a high load. As a result, worker A will create a positive
suggestion to itself to send more tasks to worker B and a negative suggestion to send
less tasks to worker C. In fact, all other neighbors of worker B have a very high load
and all other neighbors of work C have a very low load. Misleading suggestions based
on these incorrect information cause oscillation in worker policies and severely degrade
the normal learning process, resulting in a decreased performance. However, as time
passes, each agent learns a better policy; meanwhile, 7(s) decreases and suggestions
have less impact on the action choice. On the other hand, the load limit rule, based on
its own load history, can reduce the exploration space, resulting in faster convergence.

Under the boundary-load and uniform-load pattern, all systems show monotonic
decrease in ATST after a certain period of time, which indicates the stability (conver-
gence) of these systems. However, under the center-load pattern, the system without
supervision crashes and runs out of the computing resources before showing signs of
convergence. This happens because, using random exploration, agents in the inner
layer do not learn and propagate quickly enough knowledge that agents in the outside
layer are light-loaded. As a result, more and more tasks loop and reside in the center
11x11 grid where agents receive external tasks. This makes the system load severely
unbalanced and the system capability not well utilized. In contrast, the supervisory
information guides and coordinates the exploration of agents and allows them to learn
quickly to effectively route tasks.

Under the uniform-load pattern, the system load is actually not evenly distributed,
with a higher load around the center and a lower load on the boundary, but the load
difference is not as significant as that under boundary-load and center-load patterns.
Therefore supervision with a broader view improves the performance, though not as
significantly.

Figure 4 illustrates the communication overhead for different structures. Initially,
the system without supervision has lower AMSG. This is because supervision mecha-
nism increases the communication overhead for sending reports, rules and suggestions
and its encouragement of exploration at the early stage also increases the number of re-
quest and result messages. However, under the boundary-load and center-load patterns,
the supervision mechanism leads workers to learn how to route tasks effectively to bal-
ance the load much more quickly, which dramatically reduces the number of request
and result messages. As a result, these systems with supervision mechanism obtain
lower AMSG after a short period, as shown in the Figure 4. Under the uniform-load
pattern, the system does not benefit enough from supervision mechanism to offset the

14

s »- t‘
%’7’!"%, . o

-6— No supervision
Local Supervision
One leve!

*?-v%w-wh-wmmwwpw g

15

2 2.5 3 3.5 4 4.5
Time

T T
—©— No supervision
-+ Local Supervision
=- One level
-—— Two levels

1 R
(XRRRY] L e

ROTSSSERY
s

T
-6~ No supervisicn
-t Local Supervision ||
One level
—— Two levels

I

- A R |
ii =% Sf"‘ ['1—-1—;)\ b el
o 1 1 1 1 1 1 1 A 1
o o5 1 15 2 25 3 35 45 5
Time x 10*

Figure 4: AMSG for different structures, boundary load: top, center load: medium,

uniform load: bottom

15

communication overhead caused by the supervision mechanism. Table 1, Table 2, and
Table 3 show the different measures after agents have learned for 100000 time units.

Supervision ATST AMSG TOC
No 60.75 +£1.10 | 8.80 £0.22 | 61000
Local 37.44£0.51 | 7.27 £0.08 | 37000
One-level | 35.38+0.64 | 7.394+0.24 | 16000
Two-level | 35.96 +0.62 | 7.56 +0.17 | 14000

Table 1: Performance of different structures with boundary load

Supervision ATST AMSG TOC
No N/A N/A N/A
Local 1328 £33 | 32.89+3.15 | 30000
One-level | 36.95+0.45 | 10.24 £0.17 | 14000
Two-level | 37.12+0.81 | 11.07 £ 0.45 | 12000

Table 2: Performance of different structures with center load

Supervision ATST AMSG TOC
No 28.57+0.68 | 1.894+0.13 | 21000
Local 22.36 +0.42 | 2.17+0.08 | 19000
One-level | 24.46 £0.61 | 3.83 £ 0.38 | 9000
Two-level | 24.34+0.59 | 3.75+0.41 | 8000

Table 3: Performance of different structures with uniform load

To show the robustness of the multi-level supervision, we evaluated ASPA when
not all supervisors worked properly. Each supervisor has a probability fp of failing to
function during a report period. We assume that, when its supervisor fail to function,
a worker will use rules and suggestions last received from its supervisor. We tested
both one-level supervision and two-level supervision and they showed similar results.
Figure 5 shows the performance of one-level supervision with difference fp values. It
can be seen that ASPA still improves the learning in a reasonable degree when each
supervisor works properly with only one half probability >,

Inour simulation, we observed that supervisory information corresponding to coarse-
grained control tend to be more helpful than that corresponding to fine-grained control
in improving the system performance. Moreover, fine-grained may even decrease sys-
tem performance. Coarse-grained control considers and operates on the whole cluster
as one entity, while fine-grained control operates on individual cluster members. “Mov-
ing more tasks from my cluster to one of neighboring clusters” and “balancing the load
within the cluster” are examples of coarse-grained control . “Moving more tasks from a
high-loaded agent to a low-loaded agent along the shortest path” is an example of fine-
grained control. One explanation for this observation is that supervisory information
corresponding to coarse-grained control results in more coordination among agents’
exploration, speeding up the learning convergence. In contrast, in our simulation, due
to lack of detailed information of each cluster member, fine-grained control for some

SThis result may compromise when the task arriving pattern is changing continuously

16

400 T T T T T T v T I
ot - fp=0.0
#.# *‘-K -8- fp=0.2
o0 / ¥, - {p=0.5 H
+ kY —— {p=0.8
[/ \5. g = - fp=1.0
@ 200} ‘\ B
< \
%
100 ‘ I
B N 8
0
0 0.5 1 1.5 2 25 3 3.5 4 5
. Time X 10‘

20 DO T T T T T T T T T

ATST

Figure 5: Performance with different failure probabilities of supervisors, boundary
load: top, center load: bottom

17

individual members is not able to fully evaluate the impact on and from other agents.
As a result, the fine-grained control may interfere with the normal learning process of
other agents and the dynamics of other agents may degrade the fine-grained control.

We have explored different values of cluster size and found that system perfor-
mance decreases with cluster size that are either too small or too large . This is be-
cause, with too small a cluster size, supervisors do not collect enough information to
create correct rules and suggestions. With too large a cluster size, they are not able to
create rules and suggestions that are suitable for every subordinate. Therefore, there is
a trade-off for the cluster size.

Similarly, there is a trade-off for the length of the report period. A too short report
period causes a large variance of the abstracted state (also increases communication
overhead) and results in oscillating suggestions and rules. A too long report period
causes the supervisory information received by workers to be out-dated and as a result,
decreases the convergence rate.

6 Conclusion

This work presents ASPA, a scalable and robust supervision framework, that enables
efficient learning in large-scale multi-agent systems. In ASPA, the automated supervi-
sion mechanism fuses activity information of lower-level agents and generates super-
visory information that guides and coordinates agents’ learning process. This super-
vision mechanism continuously interacts with the learning process. Simulation results
obtained in a simplified distributed task allocation problem show that ASPA signifi-
cantly accelerates the learning process and reduces the communication overhead per
task due to the earlier convergence.

Future work includes providing a distributed algorithm for forming supervision
organizations (addressing agent clustering and supervisor election). The supervision
mechanism generates a broader view which potentially benefits the restructuring pro-
cess in the underlying network. Thus, another future direction is to explore an adaptive
reorganization algorithm that exploits information from the supervision mechanism. In
this work, learning only takes place in workers’ decision making. It would be interest-
ing to allow workers to learn how to integrate rules and suggestions and supervisors to
learn how to make rules and provide suggestions.

References

[1] Sherief Abdallah and Victor Lesser. Learning the task allocation game. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 2006.

[2] Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-
organization in a network of agents. In Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multi-Agent Systems, 2007.

[3] Bikramjit Banerjee and Jing Peng. Performance bounded reinforcement learn-
ing in strategic interactions. In Deborah L. McGuinness and George Ferguson,
editors, AAA/, pages 2-7. AAAI Press / The MIT Press, 2004.

[4] Michael Bowling. Convergence and no-regret in multiagent learning. In Advances
in Neural Information Processing Systems 17 (NIPS), pages 209-216, 2005.

18

[5] Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. InJack D. Cowan, Gerald Tesauro,
and Joshua Alspector, editors, Advances in Neural Information Processing Sys-
tems, volume 6, pages 671-678. Morgan Kaufmann Publishers, Inc., 1994.

[6] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical
multi-agent reinforcement learning. In Jorg P. Miiller, Elisabeth Andre, Sandip
Sen, and Claude Frasson, editors, Proceedings of the Fifth International Con-
Jerence on Autonomous Agents, pages 246-253, Montreal, Canada, 2001. ACM
Press. .

[7]1 Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under re-
ward transformations: theory and application to reward shaping. In Proc. 16th
International Conf. on Machine Learning, pages 278-287. Morgan Kaufmann,

_San Francisco, CA, 1999.

[8] Anna H. R. Costa Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro. Heuristic se-
lection of actions in multiagent reinforcement learning. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence, Hyderabad,
India, 2007.

[9] Michael T. Rosenstein and Andrew G. Barto. Supervised Actor-critic Reinforce-
ment Learning, pages 359-380. Learning and Approximate Dynamic Program-
ming: Scaling Up to the Real World. John Wiley and Sons, New York, j. si, a.
barto, w. powell, and d. wunsch edition, 2004.

[10] H. A. Simon. Nearly-decomposable systems, pages 99~103. The Sciences of the
Artificial. MIT Press, Cambridge, MA, 1969.

[11] Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvari.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287-308, 2000.

[12] Peter Stone and Manuela Veloso. Team-partitioned, opaque-transition reinforce-
ment learning. In Proceedings of the Third International Conference on Au-
tonomous Agents, pages 206-212. ACM Press, 1999.

[13] A.S. Tanenbaum. Computer Networks. Prentice Hall PTR, New York, 4th edition
edition, 2003.

[14] P. Tangamchit, J. Dolan, and P. Khosla. Learning-based task allocation in decen-
tralized multirobot systems, 2000.

A[lS] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3/4):279-
292, 1992.

[16] Haizheng Zhang and Victor Lesser. A reinforcement learning based distributed
search algorithm for hierarchical content sharing systems. In Proceedings of the
Sixth International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, 2007,

[17] Martin Zinkevich. Online convex programming and generalized infinitesimal gra-
dient ascent. In Tom Fawcett and Nina Mishra, editors, ICML, pages 928-936.
AAAI Press, 2003.

19

