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Abstract

Errors in map-making tasks using computer
vision are sparse. We demonstrate this by
considering the construction of digital ele-
vation models that employ stereo matching
algorithms to triangulate real-world points.
This sparsity, coupled with a geometric the-
ory of errors recently developed by the au-
thors, allows for autonomous agents to cal-
culate their own precision independently of
ground truth. We connect these develop-
ments with recent advances in the mathemat-
ics of sparse signal reconstruction or com-
pressed sensing. The theory presented here
extends the autonomy of 3-D model recon-
structions discovered in the 1990s to their er-
rors.

1. Introduction

Autonomy of robots or intelligent sensors depends
on developing algorithms that can assess their own
performance independent of ground truth. Consider
an Aerial Mapping Appliance (AMA) that must con-
struct a map or 3-D model of the world based on pho-
tographs. Researchers in computer vision discovered
in the 1990s that a faithful 3-D model of an imaged
scene was possible without any knowledge of the po-
sitions, or orientations of the camera that took the
photographs (Beardsley et al., 1996). This reconstruc-
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tion is even possible without knowing the internal pa-
rameters of the camera (Pollefeys et al., 1999). The
geometry of multiple images contains all the necessary
information to do this reconstruction. This indepen-
dence of 3-D model reconstruction from ground truth
(in this case, camera positions, etc.) raises the possi-
bility that the errors in the reconstruction can also be
recovered autonomously by an intelligent agent such
as the AMA.

Autonomous error estimation for 3-D model recon-
struction was recently demonstrated to be possible by
the authors (Corrada-Emmanuel et al., 2007; Corrada-
Emmanuel & Schultz, 2008). The theory depends on
making a distinction between accuracy and precision.
Knowledge of accuracy is not possible without ground
truth. Precision can be estimated autonomously. This
paper will demonstrate that autonomous precision es-
timation is also related to the mathematics of sparse
signal reconstruction or compressed sensing (Donoho,
2006a). The precision errors of measurements, not just
the measurements, are sparse themselves. This spar-
sity is the key to their reconstruction.

2. The distinction between geometric
accuracy and precision

The concepts of accuracy and precision are well known
to all scientists. The Machine Learning community
knows these concepts as bias and variance (Bishop,
2007). Bias refers to how far an estimate is from the
true value. Variance captures how noisy that estimate
is given the measurements used to compute it. Our
meaning of accuracy and precision in 3-D models is
analogous to bias and variance but not equivalent. Our
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definitions are geometrical in nature.

Imagine that one had a set of 3-D models of a scene.
Furthermore, along with the models one also has the
ground truth or exact locations of points in the scene.
The total error of the models can be defined as

∑

models

∑

points

[!xmodel(point) − !xtrue(point)]2 (1)

We can decrease the total error in the models by ap-
plying a global transformation to all the models. For
example, the models may be systematically off by 1
meter in some direction. The geometric precision of
the models is defined as the minimum possible total
error after application of a global transformation to
all the models:

min
T

∑

models

∑

points

[T (!xmodel(point)) − !xtrue(point)]2 .

(2)
The geometric accuracy is defined as difference be-
tween the total error and the geometric precision.

We describe some simple examples to clarify these def-
initions. Imagine a 3-D model reconstruction that is
merely a translated example of the real world, i.e. all
locations are off by 1 meter to the North. The recon-
struction has an accuracy error of 1 meter and zero
precision error. A model with zero accuracy error but
some precision error can be created by taking a per-
fect reconstruction and individually randomizing the
elevation of the reconstruction with zero mean.

The concept of geometric accuracy can thus be cap-
tured by a successive set of transformations that the
reader may want to view as encompassing the usual
hierarchy of projective, affine and euclidean transfor-
mations (Hartley & Zisserman, 2000; Faugeras et al.,
2001) or some subset of them. The rest of this paper
will use the words accuracy and precision as shorthand
for these geometric definitions.

2.1. Autonomous elevation difference
equations and geometric precision

Our central claim is that precision can be estimated
autonomously even as the accuracy of the models is
completely unknown. Autonomous geometric preci-
sion error estimation is possible by creating quantities
that are invariant under global accuracy transforma-
tions. In this paper we will consider one such quantity
that is useful for characterizing the precision errors in
DEMs and has been discussed in our previous papers

(Corrada-Emmanuel et al., 2007):

∆E,M (x, y) =
1
E

E∑

i=1

Zi −
1
M

M∑

j=1

Zj (3)

=
1
E

E∑

i=1

δi −
1
M

M∑

j=1

δj . (4)

A DEM i is a collection of elevation postings at differ-
ent (x,y) locations, {Zi(x, y)}. The precision error in
each posting is denoted by δi(x, y), so in general one
can write

Zi(x, y) = Ztrue(x, y) + δi(x, y). (5)

By picking the integers E and M less than or equal
to the number of DEMs, we guarantee that the true
value of the elevation cancels out at each posting since

1
E

∗ (E ∗ Ztrue) −
1
M

∗ (M ∗ Ztrue) = 0 (6)

so that equation 4 follows from equation 3.

By considering all possible values E and M one can
find a set of linearly independent equations for the el-
evation precision errors. We call this independent set
the autonomous difference equations. Note that these
equations are not being used to construct a better esti-
mate of the true elevation by performing some simple
averaging over them. Their sole purpose is to probe
the errors in the reconstructed elevations. More gen-
eral expressions that take into account x and y posi-
tion errors can be constructed but we defer discussion
of these to future papers.

Equation 3 can be calculated from the observable ele-
vations. The task of the autonomous agent is to esti-
mate the precision errors {δi} in equation 4 and how
they are correlated with each other. Once the agent
knows these correlations, the precision error of a fused
estimated can be decreased while possibly increasing
its accuracy error. This may be a suitable action to
take since in many computer vision tasks accuracy is
cheaper to fix than precision, a point we clarify in our
concluding remarks.

3. The covariance matrix for precision
errors

An AMA or robot on a mapping mission will not know
beforehand what errors it will make during its activi-
ties. Sensors could systematically malfunction. Light-
ing conditions may be unfavorable at certain viewing
angles. These and other factors will inevitably mean
that repeated measurements of the same scene will be
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partly correlated, or their precision may vary widely.
How should the 3-D models obtained from different
vantage points be fused? How fast is the precision er-
ror in the reconstructions decreasing as a function of
the collected images? Has the AMA attained a desired
precision level and therefore completed its mission?
Autonomous mission planning by robots requires an-
swers to these questions.

We argue that a principled approach to answering
these questions must rely on an autonomous estima-
tion of the covariance matrix of the 3-D models. Hav-
ing multiple measurements whose errors are strongly
correlated is not much better than a single measure-
ment, for example. Knowing the covariance matrix
would allow the agent to discard bad data, understand
its rate of error decrease as a function of data collec-
tion, and provide a fused estimate that monotonically
improves with time.

The covariance matrix for DEM errors is composed of
entries of the form < δiδj >. It is impossible, gener-
ally, to calculate this covariance matrix given a set of
measurements. We explain this fully by constructing a
linear algebra system for the covariance matrix based
on the autonomous difference equations (eqs. 3 and
4) to demonstrate that it defines an under-determined
system – one where we have less equations that un-
knowns.

3.1. An under-determined linear algebra
system for the covariance matrix entries

Squaring the autonomous difference equations and av-
eraging over all the posting locations (x, y) gives a set
of linear equations for all the entries in the covariance
matrix. We denote this system by

S = Φ∆. (7)

The vector S is the “signal” of the DEM precision
errors. Its components are calculated using equation
3. The matrix Φ consists of the rational fractions that
come from expanding the square of equation 4. The
vector ∆ are the entries < δiδj > of the covariance
matrix that we want to estimate.

Equation 7 defines an under-determined linear system
because the number of independent entries in the co-
variance matrix is n(n + 1)/2 given n measurements
(the matrix is symmetric). The number of indepen-
dent equations that can be constructed from the au-
tonomous difference equations is equal to n(n+1)/2−
n. Therefore, the system is always under-determined
by n equations.

3.2. The correlated-pair error model

This limitation was circumvented in our earlier papers
(Corrada-Emmanuel et al., 2007) by assuming that the
covariance matrix had the simple form





∗ ∗ 0 0 . . .
∗ ∗ 0 0 . . .
0 0 ∗ ∗ . . .
0 0 ∗ ∗ . . .
...

...
...

...
. . .




(8)

The block-diagonal shape came from our production
of two DEMs from every photographic pair, a practice
that differs from the usual photogrammetric conven-
tion of producing a single DEM from a photographic
pair. We assumed that only the two DEMs from
the same photographic pair were correlated with each
other. These correlated-pair DEMs gave rise to the
block-diagonal form of the covariance matrix. In ef-
fect, we assumed that the covariance matrix was sparse
since this correlated-pair model only requires n + n/2
non-zero terms to be estimated for the covariance ma-
trix.

3.2.1. Asymmetry in computer vision stereo
matching

The reason one can produce two different DEMs
from two photographs is that stereo matching algo-
rithms may not be perfectly symmetric in their out-
put (Brown et al., 2003). This means that a DEM
produced by matching image A to image B, which we
denote by A → B, will not lead to the same DEM
as doing B → A. Of course, the resulting DEM pair
(A → B, B → A) is highly correlated. The correlated-
pair error model in equation 8 is meant to capture
this unknown, but possibly large, cross-correlation be-
tween the errors in the pair. One can readily calculate
that this block-diagonal error model allows one to cal-
culate the precision error exactly whenever three or
more photographs overlap on the same scene.

4. Sparsity of geometric precision error

As useful as the correlated-pair error model may be in
certain circumstances it is a model and therefore can-
not form the foundation of a robust process for error
estimation. It is conceivable that DEMs from unre-
lated photographs could become correlated in their er-
rors due to environmental factors or even instrument
malfunction. A robust estimation of the covariance
matrix should not depend on any assumptions of how
DEMs are correlated.

Recent developments in the mathematics of sparse
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signal reconstruction or compressed sensing (Donoho,
2006a) offer us a mathematical procedure to deal with
this situation. During a mapping mission photographs
taken from different viewing positions and orienta-
tions will lead to mapping errors that are uncorrelated
but occasionally may have strong correlations between
them. We just do not know a priori which DEMs will
be correlated with each other, only that these cross-
correlations will be sparse. As we noted in section 3.1,
the linear system is at the margin of being completely
determined being shy by just n equations. If the co-
variance matrix was sparse enough in the sense that
on the order of n independent entries were zero, the
estimation would be robust.

Therefore, we hypothesize that precision errors in
mapping are themselves a sparse signal and that the
under-determined linear system 7 can be solved by
#1-minimization (Donoho, 2006b)

min ||∆||1 subject to S = Φ∆. (9)

This provides a data-driven approach to the covari-
ance matrix estimation that would have wide applica-
bility since it is model independent. The problem can
be solved as a convex optimization problem (Donoho,
2006b) by recasting it as the equivalent linear program:

min
∑

i

ui subject to (10)

ui +∆i ≥ 0 (11)
ui −∆i ≥ 0 (12)
Φ∆ = S (13)

In the experimental section of the paper we will show
that this approach reconstructs a covariance matrix for
the precision errors that is very close to the correlated-
pair model (eq. 8). Some off-diagonal terms hypoth-
esized to be zero are about 5 times smaller than the
in-pair cross correlation. We emphasize that this spar-
sity of errors hypothesis is an experimental assertion.
No mathematical proof can be given that this spar-
sity condition can be met. The applicability of the
assertion is based on the experimental realization of
the AMA and the features of the terrain. A device
built with stable imaging sensors of high quality that
is mapping a reasonably static terrain would be a good
candidate for a suitable condition that meets our spar-
sity assumption.

5. More data means higher resolution
error maps

The name compressed sensing comes from the realiza-
tion that sparsity implies a low-dimensional or com-

pressible signal. If pictures of a natural scene taken
with a n × n CCD can always be compressed, why
take n2 measurements? The imaging of the scene can
be compressed by using less pixels and then recon-
structed with an under-determined linear system. This
has been dramatically demonstrated by the Rice Uni-
versity one-pixel camera (Wakin et al., 2006). About
1,000 measurements with a single pixel reproduced im-
ages captured by a 4,000 pixel CCD. Compressed sens-
ing implies that we are wasting effort by taking too
many measurements.

The error theory presented here gives a different per-
spective on this issue. Yes, reconstructing a 3-D model
of the world can be done with less measurements.
However, errors are an important aspect of all mea-
surements. How confident can we be of any particular
reconstruction? The only way to understand this is to
produce not just maps of the territory that is being
mapped, i.e. DEMs, but to also produce error maps
of the same territory. The procedure for precision er-
ror estimation depends on averaging over all postings
that a collection of DEMs have in common. Sparsity
is only present after this averaging. The error map
therefore has a much lower resolution than the DEM
itself. Multiple measurements are needed to increase
the resolution of this error map. In this view, no mea-
surement is ever wasted – it leads to higher resolution
in the error map of the measurements.

This suggests that the resolution of the error map
should be studied by decreasing the map area that
is used to create the average covariance matrix of the
precision errors. As the averaging area is diminished,
various cross-correlations between different DEMs will
start to turn on. At some point, the number of these
off-diagonal terms will be large enough to violate the
condition of sparsity and the resolution limit of the er-
ror map would be reached. This resolution limit may
vary across the mapped area and would naturally de-
pend on the particular dataset. This phenomenon will
be demonstrated in the experimental section.

6. Experimental results

We demonstrate the formalism for sparse precision er-
ror estimation by using a set of four aerial images taken
of a desert terrain in the Twenty-Nine Palms region
in California, USA. The images have been arbitrarily
labeled as {A, B,C, D}. Four photographs allow us
to produce 4*3=12 DEMs from all possible matching
chains of the form i → j. A blunder removal pro-
cess, however, automatically identified that two of the
DEMs ( B → D, and D → B) differed in their eleva-
tion estimates by more than one meter for all postings.
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(a) Correlated-pair model covariance matrix (b) !1 minimization covariance matrix

Figure 1. Comparison of the covariance matrix obtained with !1-minimization versus that obtained by using the correlated-
pair error model

This pair was excluded from our calculations so the re-
sults presented here involve the remaining 10 DEMs.

6.1. Random reconstructions via
#1-minimization

For 10 DEMs there are on the order of fifty thousand
ways to write equation 4. The number of indepen-
dent equations in this set is 45. An independent set
selected from all possible permutations of the differ-
ence equations leads to a different reconstruction ma-
trix Φ. To carry out the #1-minimization estimate of
the 10x10 covariance matrix for the DEMs, we ran-
domly selected ten different linearly independent sets
and their corresponding Φ matrices. This was done
to study the numerical stability of the reconstruction
procedure. The statistical average was done over an
overlap region of the DEMS that spanned the postings
500 to 1500 where 2000 by 2000 was the original size of
the individual DEMs. This was done to exclude edge
effects and increase the density of postings on which
all DEMs gave an elevation estimate. Only postings
for which we had a full 10 measurements were used.
The number of postings was equal to 940,010 out of
a possible million. Each posting represents an area of
(0.38 m)2.

The reconstruction of the covariance matrix is shown
in figure 1(b). The covariance matrix is presented
as a 10x10 image with the largest values the darkest.
For comparison, the covariance matrix reconstructed

with the correlated-pair error model is shown in fig-
ure 1(a). No numerically significant variation in the
reconstructed covariance matrix was observed with 10
randomly selected Φ matrices so a single figure is suf-
ficient to summarize the results. Note that about 12
entries in the covariance matrix are practically zero
– two more than the 10 entries required to define a
well-determined linear system.

The numerical values of the block diagonal terms
are summarized in tables 1(a) and 1(b). The #1-
minimization procedure has increased the correlations
and variances for 4 out of 5 of the DEM pairs. Note
that the largest cross-correlation, other than those in
the block-diagonal, is 0.21. This is about half the
smallest cross-correlation on the block-diagonal.

Is this error reconstruction correct? At this time we
can point to its self-consistent character as strong evi-
dence for its correctness. Neither the autonomous ele-
vation difference equations or the #1-minimization pro-
cedure assume that certain DEMs are strongly corre-
lated. Yet the empirically reconstructed matrix clearly
shows that the 10 DEMs have a strong 5-pair structure
exemplified by the block-diagonal structure. The re-
construction has ‘discovered’ that we used DEMs from
asymmetric matching pairs.

Another self-consistent feature of the reconstruction is
that the more precise a DEM is, the smaller its cross-
correlation with its asymmetric pair becomes. This is
a behavior that we would expect from a system that
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is producing increasingly precise estimates.

6.2. Horizontal resolution of the precision
error covariance matrix

The self-consistent character of the reconstruction can
be exploited further. The linear program that recovers
the error does not have as a side constraint any require-
ments that the diagonal terms are strictly positive, as
they should be for a covariance matrix. Nor does the
#1-minimization require that cross-correlations need to
satisfy the inequality

∣∣∣∣∣∣
< δiδj >√

< δ2
i >< δ2

j >

∣∣∣∣∣∣
≤ 1. (14)

The output of the linear program just turns out to sat-
isfy these constraints for this particular dataset. The
breakdown in these constraints can be used to probe
how much resolution can be obtained in the error map
of the DEMs.

To study the resolution limit of #1-minimization pro-
cedure, we shrank the size of the area in the maps over
which the difference equations were averaged. We have
no independent way of verifying the validity of the re-
construction except the self-consistency check that the
reconstructed vector does indeed represent a covari-
ance matrix. Its diagonal terms should be positive and
dimensionless cross-correlations should have an abso-
lute value less that one.

Surprisingly the resolution of the covariance matrix for
this data is on the order of 5x5 postings. We show an
example of the covariance matrix for a patch encom-
passing the postings 500 to 505 in both directions in
figure 2(a). The covariance matrix for the patch en-
compassing the postings 500 to 510 is shown in figure
2(b). The breakdown in reconstruction for the 5x5
patch is most evident in the cross-correlations related
to the DEM in position 9. For this particular patch the
variance of DEM 9 is calculated as 1.1 10−5 m2 and
the variance of DEM 1 is calculated as 1.0 10−1 m2.
The dimensionless cross-correlation between them has
a value of 30.0 – the #1-minimization has not produced
a proper covariance matrix for this small patch.

No breakdown is found in the 10x10 patch. Similar
results were obtained over a handful of other patches
over the mapped scene. Interestingly, an earlier paper
by the authors had found that for this dataset the
horizontal decorrelation length was in the order of 5
postings, a result that was obtained by a “cheating”
experiment that used ray-tracing to establish a pseudo
ground truth against which the error at the individual
posting level could be calculated.

7. Conclusions and future work

We conclude by discussing the utility of estimating
precision error even while neglecting or increasing the
accuracy error. Geometric accuracy is defined by a
global set of transformations. The parameters needed
to define it are finite and readily extracted by knowing
at most the location for three points in the world. In
that sense, accuracy is cheap to obtain. Precision, on
the other hand, captures the local variability of the
3-D model reconstructions. The parameters needed
to model it, if one wished to do so, are correspond-
ingly large. Therefore, 3-D model precision is expen-
sive for the user to correct since it involves multiple
measurements spread over the whole scene. Therefore,
the autonomous error estimation algorithm presented
here should have application in computer vision tasks
where accuracy is not needed. An example of such a
task is species identification by shape where the res-
olution is more important than the absolute size or
orientation of the objects. Many more examples can
be thought of, where accuracy is not relevant but pre-
cision is. One obvious class of problems for which this
algorithm would not be helpful is those that require
accurate geolocation of an object in the scene. A rea-
sonable guarantee of accuracy can be obtained by us-
ing proper external references (GPS, attitude-heading
sensors, etc.) but this algorithm is invariant to their
accuracy error.

The present paper has demonstrated that the covari-
ance matrix of the geometric precision errors can be
measured autonomously by robots. Future work lies in
exploiting the symmetries in the observed matrices to
understand their source in the photogrammetric pro-
cedure that produced them. In this view, the observed
error signal is indicative of mathematical groups. For
example, some of the error may be explainable by is-
sues related to the handling of p photographs. An-
other source of error would be related to uncertainty in
the relative orientations and positions of the cameras
that is used for the 3-D model reconstructions. The
first source of error can be analyzed by considering
the permutation group Sp and the second by consider-
ing groups like the 3-D rotation group SU(2). These
groups can be used to Fourier analyze the observed
covariance matrices as we detail in the following sec-
tions.

7.1. Permutation theory of errors in maps
from p photographs

The covariance matrix for DEMS produced from asym-
metric pairs of p photographs has dimensionality of
p(p − 1)(p(p − 1) + 1)/2. The symmetry group of p
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DEM < δ2
i > < δiδj > /

√
< δ2

i >< δ2
j >

AB 0.055 0.57BA 0.061
AC 0.048 0.52CA 0.048
AD 0.049 0.55DA 0.043
BC 0.126 0.75CB 0.119
CD 0.111 0.72DC 0.093

(a) !1-minimization

DEM < δ2
i > < δiδj > /

√
< δ2

i >< δ2
j >

AB 0.048 0.50BA 0.053
AC 0.054 0.57CA 0.054
AD 0.041 0.44DA 0.036
BC 0.115 0.73CB 0.108
CD 0.104 0.71DC 0.089

(b) Correlated-pair error model

Table 1. Covariance matrix entries along the block diagonal for the ten DEMs in the 29 Palms dataset. Variance is in
units of m2.

(a) Covariance matrix for a patch of size 5x5 (b) Covariance matrix for a patch of size 10x10
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photographs Sp can be used to induce a representa-
tion in this space as follows.

Given an element π from Sn define the matrix Mπ in
covariance matrix space by defining its entries on the
DEMs {i → j} as follows:

Mi→j,k→l = 1 if π(i) → π(j) = k → l, (15)

and 0 otherwise.

This induced representation can be used to Fourier
analyze the covariance matrices for the DEMs pro-
duced by matching pairs of photographs. Since the
number of elements in the symmetry group is equal
to p!, these induced representations can only capture
the full dimensions of the covariance matrix when
p(p − 1)(p(p − 1) + 1)/2 < p! or p > 5, a regime that
can easily be reached in practical applications.

This Fourier decomposition would also shed experi-
mental light on the question of sparsity of precision
errors. The symmetry the #1-minimization covariance
matrix suggests, for example, that the variation has a
strong component were the second pair is decoupled
from the rest.

7.2. Incomplete error projections by extending
a DEM’s matching chain

The representation of DEMs by the Sp group presented
in the previous section can be quickly overwhelmed by
increasing the matching chains that are used to pro-
duce DEMs. For example, one could consider making
DEMs from three photographs by matching A to B and
then B to C. The resulting DEMs would be indexed by
symbols of the form i → j → k. These DEMs would
not all be equal because the matching process is not
perfect. This allows one to create p(p−1)(p−2) DEMs
from p photographs. One can immediately see that
this can be extended to p long matching chains. So
for example, we could create so many DEMs that the
dimensionality of the covariance matrix would over-
whelm the dimensionality of the Sp group.

Fourier analyzing the precision error with representa-
tions of the Sp would therefore fail to capture the er-
ror variability of DEMs produced from long matching
chains. In other words, our error model has only pro-
jected out a particular symmetry in the observed error
pattern. Other sources of error would contribute their
own symmetry to the observed error. For example,
uncertainty in the relative positions and orientations
could be detected by Fourier analyzing the error co-
variance matrix with induced representations of the
3-D translation and rotations groups.
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