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Abstract With the availability of powerful computational and communication 

capabilities, scientists now readily access large, complicated derived datasets and build 

on those results to produce, through further processing, yet other derived datasets of 

interest to themselves and others. These scientific processes must be clearly documented 

so that scientists can evaluate the soundness of the scientific processes used to create 

these datasets, reproduce these results, and build upon them in responsible and 

appropriate ways. Here, we present the concept of an analytic web, which defines the 

scientific processes employed and the details of the exact application of those processes 

in creating derived datasets. The work described here is similar to work often referred to 

as “scientific workflow”, but emphasizes the need for semantically richer, more 

rigorously defined process definition languages, such as those that were first developed to 

define software engineering processes. This paper illustrates the information that might 

comprise an analytic web for a scientific process for measuring and analyzing the flux of 

water through a forested watershed. This is a complex and demanding scientific process 

that illustrates the benefits of using a semantically rich executable language for defining 

the process, supporting automatic creation of process provenance data, assuring data 

reproducibility, and serving as the basis for analysis of the data’s scientific soundness.  

1 Introduction 

1.1 The Problem 

Modern computation and communication systems have dramatically changed the way in 

which science is done. These systems enable scientists to work with datasets and to create 

models of their research subjects that are far larger and more detailed than were possible 

in the past. Faster computing speeds enable far more ambitious analyses of these models, 

leading to the production of far greater quantities of derived scientific datasets. Ever 

faster global networks make these datasets accessible to scientists around the world. 

While these new computational and communications capabilities have opened up the 
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possibility of exciting new research, they have also lead to new challenges and problems. 

When new datasets, often the products of extensive processing, are generated, they are 

most often promulgated without adequate documentation that describes their creation. If 

scientists are to make appropriate use of the datasets produced by others and avoid 

misuse by inappropriate application of subsequent processing, then it is imperative to 

know how such datasets were produced. Indeed, before scientific results can be accepted, 

they should be reproduced by other scientists, as such reproducibility is a fundamental 

requirement for results to be confirmed. Consequently, the very conduct of science 

requires that the way in which scientific results are produced be carefully documented for 

others.  

An obvious way to address these problems is to associate as an annotation a precise 

description of a dataset along with each dataset itself . Such annotations, essentially data 

items that describe data, are called metadata. There have already been many calls for the 

use of metadata, which typically document such details as the date of generation of a 

dataset, the name of the investigator, and perhaps some specifications of the hardware 

and software systems used. We argue that it is necessary to go further. We suggest that a 

particular type of metadata annotation, process provenance metadata, be attached to all 

datasets, and when necessary to individual data items. The benefits of such process 

provenance metadata include facilitation of the reproduction of the data by others, 

expedited identification of data items and datasets of interest, and better understanding of 

which forms of subsequent processing should, and should not, be applied to data items 

and datasets.  

It is our view that concepts drawn from the domain of software engineering can provide 

the basis for the generation and association of such process provenance metadata with the 

derived data items and datasets.  

1.2 Analytic Webs 

Scientific datasets can be viewed as products emerging from a distributed enterprise: 

input datasets may be stored and retrieved remotely, analytic services may be obtained 

from external sources, and the datasets that are the products of a scientist’s work are 

increasingly likely to be made directly accessible. The totality of data and capabilities 

produced and consumed by a working scientific team in pursuit of a particular scientific 

objective can be thought of as a scientific (usually online) data processing enterprise, and 

we refer to it by the term analytic web [Boose, et.al. 2007; Ellison, et. al. 2006; 

Osterweil, et.al. 2005].   One view might be that the purpose of an analytic web is to 

expedite the participation of a scientific team in the marketplaces of scientific 

investigation. From this view there is then a need to provide strong support for two 

distinct activities that scientists engage in routinely, namely the production of datasets for 

such marketplaces and the consumption of datasets from such marketplaces, for use in 

their subsequent scientific investigation.  

Production: As raw data are collected by individual investigators or by sensors, 

they may be pre-processed with data loggers, field computers, etc.; for example, 

many environmental measurements (e.g., temperature, solar radiation, carbon 
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flux, water flow) are sampled at high frequencies but only hourly averages are 

stored. Individual researchers take these data and post-process them, entering 

them into data repositories such as spreadsheets, checking them for errors, and 

transforming them into datasets used for analysis by the investigators themselves 

or by others. These datasets are often stored on the investigator’s personal 

computer, where they might be further analyzed (and in the process new datasets 

may be created) and condensed for publication. The producers of these datasets 

could use help in managing the execution of these increasingly intricate processes, 

in documenting exactly what processing was applied to which data items, and in 

reasoning about the soundness of the resulting data items and datasets. These data 

items and datasets, on which publications are often based, should be archived on 

institutional servers or within national repositories, where it is expected that they 

may be accessed and used by others: i.e., dataset consumers. 

Consumption: Datasets collected by other investigators increasingly are available 

via the Internet and may be reanalyzed to verify existing models and results or 

used to generate new models, hypotheses, and scientific insights. We refer to this 

use of previously existing datasets as dataset consumption. It is not atypical for a 

consumer who synthesizes datasets to subsequently become a producer of new 

(synthetic) datasets that are consumed by others (who then may become producers 

of further datasets).  

The conceptualization of dataset production and consumption suggests specific ways in 

which an analytic web should support a scientific team’s activities. Support for 

production should consist of facilities for generating and storing new data items and  

datasets. In recognition that others may consume these datasets, the datasets and when 

necessary the individual data items should be annotated with precise process provenance 

metadata, and the analytic web should provide facilities for accessing such metadata and 

evaluating its subsequent use. This may entail reproducing the dataset, evaluating its use 

in further scientific data processing, or using the process generation metadata as a guide 

to generation of other datasets. 

To make this conceptual vision of an analytic web a useful reality, we propose that a 

specific analytic web be realized by a set of tools aimed at creating, analyzing, and 

managing two types of closely interrelated graph structures, namely Dataset Derivation 

Graphs (DDGs) and Process Derivation Graphs (PDGs). The purpose of a DDG is to 

organize datasets into a structure based upon the way in which the datasets are derived 

from each other. The purpose of a PDG is to define precisely the processes by which 

these derivations are performed. The PDG also serves as the vehicle for executing the 

process definition and generating subsequent data items and datasets. Moreover, 

execution of a PDG can result in the automatic creation of the DDG for each of these data 

items and datasets.  

In this paper we provide a concrete example of the way in which an analytic web can 

support the activities of a specific scientific research team. This example illustrates that 

DDGs are likely to be large structures that need to be defined in detail and with great 

care. Thus, this example illustrates the importance of automatically executing the PDG 

and, during that execution, automatically generating the corresponding DDGs. A major 

objective of this example is to demonstrate a set of semantic features that seem essential 
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in a process definition language employed to define the PDGs used by actual working 

scientific teams. An existing process definition language, Little-JIL [Wise 2006; Wise, 

et.al. 2000; Cass, et.al. 2000], incorporates many of these semantic features. Key features 

of Little-JIL are highly effective in defining the PDGs needed to support our example 

scientific process, but some important semantic features are missing.  

2 Motivating Example 

Measuring and forecasting water flux and storage in the ecosystem (including ground 

water, soils, surface water, snow pack, vegetation, and atmospheric boundary layer) is of 

tremendous importance to society, of pressing interest to scientists, and a central focus of 

major scientific investigation efforts, such as the NEON project [NEON URL] and the 

Waters Initiative [WATERS URL] (formed from the synergies of CUASHI [CUASHI 

URL] and CLEANER [CLEANER URL]). Such forecasts require detailed hydrological 

measurements of natural and human-dominated ecosystems; these measurements 

increasingly are coming from vast networks of real-time sensor systems that may be 

subjected to elaborate real-time adjustments and considerable, perhaps iterative, post-

processing over the ensuing months or years. Producers of such datasets could use help in 

systematically and correctly applying various processing and analysis tools. Consumers 

of these datasets will require support to help them understand the datasets, to reproduce 

them if desired, and to use them appropriately in further processing. 

To address this scientific problem, a group of ecologists at the Harvard Forest Long-Term 

Ecological Research (LTER) [Harvard Forest URL] site is currently designing a real-time 

system for estimating water budgets for two small, forested watersheds at their site. Their 

system is being designed to calculate change in water storage using the water balance 

equation: dS = P – ET – Q, where the change in water storage (dS) is a linear function of 

precipitation (P), evapotranspiration (ET), and surface discharge or streamflow (Q). The 

complete system will include additional measurements of snow pack, soil moisture, 

ground water, etc. Equation inputs come initially from five streams of real-time data from 

three sources:  

• Precipitation (P) – 15-minute precipitation totals (P1, P2) measured at two rain 

gauges. Two gauges are used in order to minimize gaps in the data. 

• Surface Discharge (Q) – 15-minute average stream flow values measured at a stream 

gauge. Short gaps in Q caused by sensor failure, excessive ice build-up, etc. can be 

filled by modeling Q as a function of preceding measurements of P and Q. 

• Evapotranspiration (ET) – 30-minute average ET values measured at an eddy-flux 

(micro-meteorological) tower.  

• Photosynthetically active radiation (PAR) – 30-minute average PAR values 

measured at the eddy-flux tower. PAR is measured continuously because over short 

time spans (up to several weeks) PAR is the environmental variable most often highly 

correlated with ET. Thus, PAR can be used to estimate ET when it cannot be 

accurately measured due to instrument failure, moisture on the sonic anemometers 
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within the eddy-covariance system, very low air turbulence, or unfavorable 

interactions of wind with local topography.  

• This system will incorporate three features that are typical of virtually any sensor 

network and raise challenging issues for dataset producers as well as dataset 

consumers: 

1. Real-time quality control entails non-trivial processing, much of it determined on the 

fly, which may cause different data items in a dataset to have different process 

provenance. For example such systems may incorporate duplicate sensors (here P1 and 

P2), real-time modeling (yielding estimatesQ̂  and
!

ET  of Q and ET, respectively), and 

rules for value selection. Thus, in this case the two precipitation measurements are to be 

compared and specific actions taken if the values differ by more than a specified amount. 

To check for instrument problems, Q and ET are to be compared to their modeled values 

( Q̂  and
!

ET ) using respectively (i) verified runoff models and recent precipitation and 

flow values and (ii) regressions of recent ET and PAR values. Modeled values also may 

be substituted (imputed) for measured values when sensors fail or wind conditions do not 

support reliable eddy-flux measurements.  

2. Regularly scheduled post-processing of data (e.g., after 30 days) is used so that 

individual imputed data values can be computed using models that take into account 

values coming from both preceding and subsequent measurements. This feature is 

necessary because real-time modeling is retrospective only (i.e., based on past data). 

Thus, post-processing is important especially for times when the ecosystem is undergoing 

rapid change (e.g., during spring leaf-out or when soils become saturated during heavy or 

prolonged precipitation).  

3. Alternative past measurements also may become available and may then be included in 

additional datasets. This may be desirable, for example, to make use of recent 

measurements that did not arrive in time for real-time processing, corrections of earlier 

measurements as a result of later detection of sensor drift, or replacement or imputation 

of faulty or missing values with measurements from other sources. Note that the 

substitution of alternative measurements must be accompanied by post-processing of a 

sufficient number of preceding and subsequent values to ensure that any “ripple effects” 

– possible impacts on subsequent modeled values – are accounted for. This indicates 

another way in which it becomes possible for each data item of a dataset to be the product 

of a different process.  

Figure 1 is a data flow graph (DFG) representation of the water budget process. In this 

data flow graph, rounded boxes represent types of tools or subprocesses and types of 

datasets are represented by boxes with a clipped corner. Edges connecting these boxes 

represent the flow of data or datasets into and out of the tools and subprocesses. In this 

figure, the Real-time Selection Criteria box represents the on-the-fly processing of the 

Real-time Data that is used to create new or updated Models and to update the model 

variables Q̂  and
!

ET . Similarly, the Retrospective Selection Criteria and the 

Alternative Selection Criteria boxes represent the reprocessing of the Real-time and 

Retrospective Data, respectively, and can also result in new Models and updated model 
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values.  In subsequent sections of this paper we indicate shortcomings of this DFG 

representation and suggest another graph notation that seems to offer better facilities for 

representing complex processes such as this one. 

3 Proposed Model of an Analytic Web 

As noted above, we propose that the realization of an analytic web be centered on the 

production and management of two complementary graph structures, a Dataset 

Derivation Graph (DDG) and a Process Derivation Graph (PDG). Both types of graphs 

are illustrated for this example. 

3.1    Dataset Derivation Graph  

A DDG documents the specific data items or dataset instances created when a producer 

applies processes (e.g. perhaps defined using a PDG), using specific tools and 

Figure 1: A data flow graph of the water budget process (To make the diagram easier 

to understand, each processing loop, real-time, retrospective, and alternative 

processing as well as model maintenance, is represented in a different color, with 

each edge colored by the same color as the node it emanates from.) 
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subprocesses on specific input data items or dataset instances. A DDG thus contains 

detailed metadata about the process sequences used to build all of its datasets. This 

metadata is thus an example of the process provenance metadata needed to inform 

consumers about how a dataset was generated and to support reproduction of the dataset 

by other scientists. A DDG, as depicted in Figure 2, uses rectangles to represent specific 

data items and dataset instances and ovals to represent specific tools or subprocess 

instances. There is an edge from each data item and dataset instance node to the process 

instance node from which it was derived (unless the data item or dataset instance 

represents raw data that was not previously processed). Each oval process instance node 

is connected by one or more edges to the data item(s) and dataset instance(s) that it used 

as input(s) to derive the indicated output data item or dataset instance. Each time a 

process is executed, a new set of data items and dataset instances is created, and these 

data items and dataset instances, as well as the process instances that created them, must 

be added as nodes of the evolving DDG. Each DDG node instance can be stored 

independently with a unique URL for identification.  

Data items and dataset instances, such as those represented by DDG nodes, are the usual 

focus of scientific attention and thus are the objects intended to be documented with 

metadata such as specified by Ecological Metadata Language (EML) [EML URL]. For 

example, Transpiration Data For 2/26/06 is a specific instance of type transpiration 

data and, thus is depicted in Figure 2 by a box. Figure 2 also shows that Aaron’s outlier 

rejection parameters is another dataset instance. These two instances are taken as 

inputs by a specific processing tool, namely Reject Outlying Data, to produce the output 

dataset instance, Cleaned 2/26/06 Data. This dataset instance is, in turn, taken as input 

 

Figure 2: An example of a Dataset Derivation Graph 
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to the processing tool Least Squares Interpolation using System R 9/22/06, 

producing as output the dataset instance Cleaned, Interpolated 2/26/06 Data. Note that 

the specification of the specific interpolation tool, complete with version number and date 

of application, are important as they specify precisely which tool or system was applied 

to the dataset instance. Different versions of a tool may produce different results. 

Consumers who want to fully understand the provenance of a dataset, and producers who 

want to reproduce it exactly, require the documentation provided by a DDG: the specific 

datasets and tools that were actually used. The quantity and intricacy of this 

documentation is considerable, but it can be produced automatically with the aid of a 

suitable suite of tools, as described below. 

To make this clearer, Figure 3 illustrates a DDG that could have been generated by 

executing a sequence of tools and subprocesses represented as a path through the boxes in 

the diagram shown in Figure 1. Note that this DDG shows the result of two iterations, 

represented by two traversals through a loop in the diagram in Figure 1, resulting in the 

creation of three instances of Revised Data, denoted here by Revised Data 1, Revised 

Data 2, and Revised Data 3. Revised Data 1 is simply the set of data items that resulted 

from filtering the initial real-time data stream by applying some specific filtering 

criterion. This generally results in a dataset where some data item values are missing, 

most often due to intentional deletion. Revised Data 2 results from applying 

initial Q̂ and
!

ET models to this dataset, thereby filling in missing data item values and 

replacing others. Revised Data 3 results from creating and applying a second pair of Q̂  

and
!

ET models, (e.g., from regularly scheduled post-processing) and applying them to 

Revised Data 2. This DDG provides documentation of the exact processing steps that 

were taken to produce these datasets. It specifies what datasets must be generated to 

reproduce these processing steps, and thus the dataset that is their final result. 

3.2  Process Derivation Graphs 

A Process Derivation Graph (PDG) is a precise representation of the sequences of steps 

used to process the data items and datasets in performing a scientific process (and thereby 

can be used as the basis for generating DDGs).  According to this definition, we note that 

a DFG,, could in relatively simple cases be used as a PDG. But for complex scientific 

processes, DFGs usually do not accurately describe the allowed sequence of process steps 

since they often do not distinguish between those paths that are intended to be part of the 

scientific process and those that are not. For example, the DFG in Figure 1 does not 

preclude the retroactive processing loop from preceding the real-time processing loop for 

the same dataset. For this reason, such diagrams are typically unreliable for specifying 

which paths through the graph can be used safely to generate additional DDG nodes. The 

challenges indicated in Section 2 suggest that a PDG should instead be defined by means 

of a language that incorporates a diverse and powerful set of semantic features in order to 

suffice as an adequate representation of a scientific process. Among the desirable features 

are: hierarchical decomposition, abstraction mechanisms; concurrent processing; 

exception management and reaction to contingencies; and methods for dealing with 

streaming real-time data.  
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Hierarchical Decomposition: Hierarchy is commonly used to simplify the 

representation of large and complex processes, which can become quite cumbersome, 

unless high-level abstract processes can first be introduced and their details subsequently 

and separately elaborated. Such a facility is typically effective for dealing with 

complexity.  

Abstraction:  It is not enough simply to illustrate processes hierarchically. In addition it 

seems necessary to take the modular processing abstractions that scientists think in terms 

of, and use actual process execution contexts to tailor and specialize the abstractions into 

specific processing steps that fit the specific execution context.   Modern programming 

languages support the use of abstraction in this way as an effective approach for dealing 

with the substantial challenges of complexity and scaling. One key mechanism for using 

context information to tailor abstractions is by binding artifacts as inputs and outputs to 

individual subprocesses. This capability is tantamount to a capability for passing 

arguments to a procedure that can perform differently in different contexts. Further, 

different instantiations of a process may offer different exception handlers (see below), 

thereby establishing different execution contexts.  

Concurrency: Many scientific processes and activities can occur simultaneously (in 

parallel). For example, data streams from various sensors may be processed in parallel. In 

addition, there may be a (much slower) parallel activity of generating new models and 

 

Figure 3: The DDG showing the complete provenance of Revised Data 3 
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Figure 4: A Little-JIL step icon 

evaluating both new and existing models. It is important to be able to represent accurately 

the concurrency of these various activities so that the right data items are handled by the 

right processing steps at the right times. There are, in addition, situations in which it is 

important to synchronize activities taking place in parallel. Both producers and 

consumers need a clear picture of such concurrency and synchronization to assure them 

that what has been defined is indeed what is desired. 

Exception Management: In the real world, a broad range of contingencies can arise that 

require specialized reactions. In handling real-time data streams, for example, it is 

necessary to deal with sensor failures in ways that do not interfere with the continued 

flow of data. Different failure modes may dictate different responses. Suitably powerful 

process language features are needed to support the specification of such exception 

management.  

The focus of the rest of this paper is on demonstrating how these semantic capabilities are 

needed by delving into the details of the Harvard Forest water budget estimation process. 

Our view is that these needs are projected most clearly by using a specific process 

definition language. We use Little-JIL, a visual process definition language originally 

developed for defining software engineering processes, as an example of a language that 

incorporates many of the features needed in order to define the PDG of an analytic web 

sufficiently completely and precisely. Little-JIL is a high-level language that can produce 

hierarchically structured definitions of scientific processes that can be invoked in 

different contexts. Little-JIL has precise, executable semantics (defined by finite-state 

automata). Among its key features are facilities for scoping to determine context, for 

specifying parallel processing, for procedural abstraction, for handling exceptional 

conditions, and for specifying and controlling iteration. Limitations of Little-JIL that 

arise in supporting the definition of the process in this example are also pointed out. 

3.3   Semantics of Little-JIL 

A process is defined in Little-JIL using hierarchically decomposed steps (Figure 4), 

where a step represents a task to be done by an assigned agent. Each step has a name and 

a set of badges to represent control flow among its sub-steps, its interface (a specification 

of its input and output data), the exceptions it handles, etc. A step with no substeps is 

called a leaf step and represents an activity to be performed by an agent, without any 

guidance from the process.  

Resources and Agents: As part of its interface, each Little-JIL step contains a 

specification of the type of agent that is required to assume responsibility for the step’s 

execution. The agent specification is a specification of a capability. It is assumed that this 

specification will be considered by a separate Resource Manager that maintains a 

repository of available resources, along with 

their capabilities. The Resource Manager is 

expected to identify a specific resource 

instance to be bound as the Agent in 

response to the step’s need for a specified 

capability. Little-JIL agents may be either 

humans or automated devices. There are 

cases where either might be appropriate or 
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where there are multiple capable agents and then the choice should be made by the 

Resource Manager, rather than being dictated by the process definition. A step may also 

specify the need for resources other than the agent. 

 

Substep Decomposition: Little-JIL steps may be decomposed into substeps of two 

different kinds, ordinary substeps and exception handlers. The ordinary substeps define 

the details of just how the step is to be executed. The substeps are connected to the parent 

step by edges, which may be annotated by specifications of the artifacts that flow 

between parent and substep, and also by cardinality specifications. Cardinality 

specifications define the number of times the substep is to be instantiated and may be a 

fixed number, a Kleene * (for zero or more times), a Kleene + (for one or more times), or 

a Boolean expression (indicating whether the substep is to be instantiated or not). 

Exception handlers define the way in which exceptions thrown by the step’s descendants 

are to be handled. The edge connecting an exception handler to its parent is annotated 

with the type of the exception being handled, as well as an indication of how execution is 

to continue after the exception has been handled. 

 

Step sequencing: Every non-leaf step has a sequencing badge (an icon embedded in the 

left portion of the step bar; e.g., the right arrow in Figure 4), which defines the order in 

which its substeps execute. For example, a sequential step (right arrow) indicates that its 

substeps are to be executed sequentially from left to right and is only considered 

completed after all of its substeps have completed. A parallel step (equal sign) indicates 

that its substeps can be executed in any (possibly arbitrarily interleaved) order. It, too, is 

considered completed after all of its substeps have completed. A choice step (circle 

slashed with a horizontal line) indicates that the human executing the step is to make a 

choice between any of the step’s substeps. A try step (right arrow with an X on its tail) 

mandates a sequence in which substeps are to be tried in any order until one completes 

successfully. 

 

Artifacts and artifact flows: An artifact is an entity (e.g., a datum or dataset) that is 

used or produced by a step. Parameter declarations are specified in the interface to a step 

(circle atop the step bar) as lists of the artifacts used by the step (IN parameters) and the 

artifacts produced by the step (OUT parameters). Artifact flow through steps can be 

defined to take place in either of two different ways, 1) hierarchically, as the flow of 

artifacts between parent and child steps, and 2) by means of channels. The flow of 

artifacts between parent and child steps is (as noted above) indicated by attaching to the 

edges between parent and child identification of the artifacts as well as arrows indicating 

the direction of flow of each artifact.  

 

Channels: Channels are named entities that directly (without the need for hierarchical 

flow) deliver artifacts produced by specifically identified source step(s) as arguments to 

specific destination step(s). A Little-JIL channel is defined at present as a FIFO queue. 

Steps that use the channel either write to the end of the channel, take data from the front 

of the channel, or read, without removing, data from the front of the channel.  The 

channel construct can be used as a vehicle to coordinate and synchronize steps executing 

in parallel. On the other hand, as the example below shows, it is restrictive to use only a 
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FIFO queue to model the channel’s handling of data. A more complete understanding of 

what is needed for the clear and precise definition of models of scientific data processes 

is emerging from examples such as this. 

 

Requisites:  Requisites are optional and enable the checking of a specified condition 

either as a precondition for step execution or as a postcondition check to assure that the 

step execution has been completed acceptably. A downward arrowhead to the left of the 

step bar represents a prerequisite, and an upward arrowhead to the right of the step bar 

represents a post-requisite. If a requisite fails, an exception is triggered.  

 

Exception Handling: A step in Little-JIL can define exceptional conditions when some 

aspects of the step’s execution fail (e.g., one of the step’s requisites is violated). This 

violation triggers the execution of a matching exception handler associated with the 

parent of the step that throws the exception. An exception handler is represented as a step 

attached by an edge to an X on the right of the step bar (as shown in Figure 4). Of 

particular importance is the Little-JIL facility for specifying how execution proceeds after 

completion of the exception handler. Little-JIL currently supports four different ways that 

execution can proceed after the successful execution of an exception handler. 

 

Scoping and Recursion: The parent step and all of its descendants represent a scope, 

specifying what data is considered local to that scope. Little-JIL also supports recursive 

execution of steps, which specifies the iterative application of a process step to specified 

inputs.  

4 Using Little-JIL to define and execute a PDG and to create a DDG 

The purpose of the Water Budget process is to provide estimates of the rate of change of 

water storage dS over various time intervals on the basis of time-ordered sequences of 

readings from sensors that measure various parameters. While this process may at first 

glance appear to be relatively straightforward, there are a number of aspects of the fully 

elaborated process that are challenging to define precisely. One aspect of this complexity 

is that the process is long-running because the time intervals can be as long as months or 

years. In addition, a number of contingencies can arise during execution. For example, 

malfunctioning sensors may produce large numbers of incorrect readings or may not 

produce readings at all over extended periods of time. Researchers continually develop 

new models to use to interpolate when sensor data is unavailable or considered to be 

unacceptable, and they continually attempt to validate these new models on previously 

collected datasets. This leads to a proliferation of derived datasets, each incorporating 

interpolated values that come from the applications of different combinations of models. 

Clearly all such datasets must be distinguished from each other, and the differences in the 

ways in which the various data items in each dataset were derived also must be carefully 

documented. One way to do this is to distinguish the different data items, and the datasets 

containing them, based upon differences in their derivation histories. This problem bears 

very strong similarities to problems in software configuration management, where, for 

example, executables can be created by loading different combinations of modules and 
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libraries, each of which might have been created by applying different compiler versions 

to different source code versions.  

Below we describe selected aspects of a Little-JIL definition of the Water Budget process 

that illustrate some of the difficulties that arise in defining scientific processes and some 

of the useful semantic features that are desirable in a process definition language used to 

define the PDG in an analytic web. Although simplified for this presentation, the process 

defined in this section is representative of the process actually used at Harvard Forest. 

The process step definitions are illustrated here by step diagrams that have been created 

using the Little-JIL editor. In the interest of reducing clutter, the editor does not depict all 

the details and annotations of all step definitions unless specifically requested by the user. 

The user may obtain complete detailed information about any aspect of a process 

definition by moving the cursor over the appropriate icon. We also append to each figure 

a legend that contains additional explanatory information. Information about a step 

begins with the name of the step, followed by specifications of the input and output 

parameter types for that step, and when appropriate the channels that are used by the step 

and the types of data items that are carried by these channels. For some steps there is also 

a specification of exceptions that may be thrown by the step and/or exceptions that may 

be handled by the step. For edges, the information begins with a specification of the pair 

of steps that define the edge, followed by information about parameter flow between 

parent and child steps. Note that there may also be comments that informally describe the 

general purpose or approach of a step or edge. Much of the information being provided 

by these legends could be specified through extension of existing annotation schemes, 

such as EML. Thus, a process language such as Little-JIL can provide a useful and 

natural complement to existing approaches to the specification of scientific processes and 

the provenance of their datasets.  

4.1 The Sensor Data Management step: use of decomposition and 

concurrency 

We begin by describing the step Sensor Data Management shown in Figure 5. Sensor 

Data Management, the root of the Water Budget process, is a parallel step consisting of 

the execution of three substeps; one, Get Measurements, collects data from the sensors, 

another,  Model Stream Data Gen, creates new predictive models for this data, and the 

third, Process Data, processes the data for publication. The collected data and created 

models are communicated to Process Data via channels that are declared in Sensor 

Data Management and are accessible to all of its substeps. The sensorStream channel is 

declared to be a FIFO channel, so that data is removed in the order in which it is put into 

the channel. The modelStream channel is a singleton channel, meaning that at most one 

item can be in the channel at a time. 

The first two substeps are described in Sections 4.2 and 4.5 below. The third substep, 

Model Stream Data Gen, represents the generation of new models. The annotation 

indicates that this step is done by human experts, each of whom executes a different 

instantiation (as indicated by the Kleene * on the edge leading into this step) of this step, 

thereby allowing for the parallel and asynchronous generation of new models. The use of 

a channel allows for the possibility that new models can be dynamically placed into the 
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channel at any time during the execution of this process. Doing so makes the model 

available for application to subsequent data items. Note also that there is a different step 

for the generation of each type of model. Gen New P Model is the step that is 

responsible for the generation of new P models, while Gen New Q Model is responsible 

for the generation of new Q models. The example shows only two such substeps for 

simplicity, but the complete process definition would require a substep for each model 

type. 

Because each of these steps can be executed in parallel, each can proceed at its own pace. 

Sensor data streams in as it is generated and new models are derived as needed by human 

scientists, presumably at a far slower pace. The processing of the data streams (including 

application of the models as needed) is driven by interval timers and human curiosity. 

Little-JIL clearly represents this parallelism and indicates which models are applied to 

which data items as part of which datasets. 

  

Step: Sensor data management 

FIFO channel SensorStream sensorStream = new SensorStream(); 

Singleton channel ModelStream modelStream = new ModelStream(); 

 

Step: Model Stream Data Gen 

Agent: human expert 

Figure 5: The Sensor Data Management step 
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4.2 The Get Measurements step: support for multiple data streams 

The step Get Measurements, elaborated in Figure 6, reads and processes the values 

from the sensors and sends the results to the real time stream. This is done by having a 

different subprocess, Get Met Station Data, Get Flux Tower Data, and Get Stream 

Gauge Data, take responsibility for examining the three types of data sources.  Note, 

that each of these substeps can execute independently and in parallel with the other two, 

and each may throw a different type of exception if difficulties arise with their sensors. 

Step: Get Measurements 

Outputs: ETreading et; Qreading q; PrecReading p1, p2; PARreading par;  

 VPDreading vpd; UStarReading uStar; // written to the channel sensorStream 

Output assertions: all output values are marked with flag set to measured 

 

Step: Get Met Station Data 

Outputs: PrecReading p1, p2; 

Exception caught: “Sensor Down” with “Handle MS Sensor Timeout” 

 

Step: Get P1 

Outputs: PrecReading p1; 

Exception raised: “Sensor Down” 

 

Step: Get Flux Tower Data 
Outputs: ETreading et; PARreading par; VPDreading vpd; UStarReading uStar; 

Exception caught: “Sensor Down” with “Handle FT Sensor Timeout” 

 

Step: Get Stream Gauge Data 

Outputs: Qreading q; 

Exception caught: “Sensor Down” with “Handle SG Timeout” 

Figure 6: The Get Measurements step 
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The Get Met Station Data step has two substeps, Get P1 and Get P2, each of which is 

responsible for dealing with measurements coming from one of the two precipitation 

measurement gauges. Similarly, the Get Flux Tower Data step has four substeps, each 

of which is responsible for handling data items coming from each of the various sensors 

on the flux tower and Get Stream Gauge Data has one substep for handling surface 

discharge data.  

The substeps that access the individual data items also are responsible for annotating each 

data item with some provenance information. At present this consists of attaching very 

rudimentary provenance information, specifically a date/time stamp and a quality flag. 

Shortly we describe the quality flag that is currently used and indicate how a DDG 

improves significantly upon the weaknesses of the current quality flag.  

4.3 The Handle MS Sensor Timeout step: use of exception management  

Each substep of the Get Measurements step is responsible for acquiring data from its 

sensors. And, each is also responsible for defining the subprocess to be employed if 

exceptional conditions arise. Here we describe how Get Met Station Data does this 

exception handling. The other two substeps of the Get Measurements step, Get Flux 

Tower Data and Get Stream Gauge Data, carry out their responsibilities similarly to 

Get Met Station Data. The final output of the Get Measurements step is exactly one 

datum of each of the types P1, P2, ET, Q, PAR, VPD, and UStar, each accompanied 

by provenance annotations. 

The Get Met Station Data step deals with situations where some, or all, of the expected 

data items do not arrive by throwing an exception. For example, the substep Get P1 

attempts to obtain a precipitation reading from meteorological sensor 1. If this access 

succeeds, then the value is passed as P1, annotated with the observation date and time 

and with the measured quality attribute. The Get P1 step is also responsible, however, 

for determining when new P1 data is not available and then, subsequently, for throwing 

an exception that is to be handled by Handle MS Sensor Timeout step, passing the 

identifier of this sensor (namely sensor #1) as a parameter.  

In this context, the Handle MS Sensor Timeout step, shown in Figure 7, is specified as 

the handler for the Sensor Timeout exception that can be thrown in the Get Met 

Station Data step. The Handle MS Sensor Timeout begins its processing by choosing, 

based on the value of the input parameter, Reread Precipitation 1 or Reread 

Precipitation 2. We do not show the details of either Reread Precipitation step here, 

but include these steps only to illustrate that it is possible for the developers of this 

process to decide that unusual (and presumably expensive) measures might be taken 

under these circumstances to attempt to extract the desired data directly from the sensor, 

rather than from the data stream. If this direct request to the sensor succeeds then output 

of this step is annotated with the date and time and quality flag. If however the selected 

Reread Precipitation (1 or 2) step fails (e.g. because the sensor is inoperative), a 

Sensor Down exception is thrown (inside of the Handle MS Sensor Timeout 

exception handler itself). The Sensor Down handler executes the Get Airport step, 

which attempts to obtain the desired reading by getting it from a local airport. Here again, 
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nested exception handling capabilities are used to define the handling of still further 

failure. Thus, if the Get Airport step succeeds, then the resulting data item is annotated 

with the date and time, source, and the measured quality attribute. If the Get Airport step 

also fails (e.g. because the airport is also unable to provide the precipitation data), then it 

must also throw an exception, which would then be caught by the Put Null Reading step 

of the Get Airport exception handler, to produce as output a null value for P1 (or P2) 

and a quality attribute “missing”. A “missing” value will not take place unless all three 

exception-handling alternatives have been explored in sequence. Little-JIL’s exception-

handling capabilities make the way in which these alternatives are explored relatively 

easy to follow. Certainly a variety of other sequences of exception handling could have 

been defined equally well.  

 
Step: Handle MS Sensor Timeout 

Inputs: PrecipitationSourceID precSourceID; 

Outputs: PrecipitationReading p; 

Exceptions caught: “Sensor Down” with “Sensor Down Handler” 

 

Step: Choose Source 

Outputs: PrecipitationReadingFlagged measuredP; 

Exceptions raised: “Sensor Down” (if selected alternative does not succeed) 

 

Step: Sensor Down 

Outputs: PrecipitationReadingFlagged measuredOrMissingP; 

Exceptions caught: “Airport Data Read Failure” with “Put Null Reading” 

 

Step: Get Airport 

Outputs: PrecipitationReadingFlagged measuredOrMissingP; 

Exceptions raised: “Airport Data Read Failure” 

 

Step: Put Null Reading 

Outputs: NullReadingFlagged nullReading; 

Figure 7: The Handle MS Sensor Timeout exception handler step 
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4.4 Using the Little-JIL process definition to create the DDG 

The above process results in the creation of two data items, P1 and P2, each of which 

might have been arrived at in a number of different ways. Specifically, each of the two 

measurements might be arrived at by any of the following sequences of process steps: 

 1. Pi arrives in a timely fashion and is recorded.  

2. Pi does not arrive in time, a timeout exception is thrown, Reread Precipitation is 

executed, and Pi is obtained.  

 3. Pi does not arrive in time, a timeout exception is thrown, Reread Precipitation is 

executed, Pi still does not arrive, a Sensor Down exception is thrown, the Airport 

Read step is executed, and Pi arrives. 

 4. Pi does not arrive in time, a timeout exception is thrown, Reread Precipitation is 

executed, Pi still does not arrive, a Sensor Down exception is thrown, the Airport 

Read step is executed, Pi does not arrive, an Airport Data Read Failure exception 

is thrown, the Put Null Value step is executed, providing a null value for Pi. 

The differences among these four possibilities are important to subsequent process steps. 

Accordingly the current process specifies that a quality flag, mentioned previously, be 

attached to Pi. This quality flag is currently a simple annotation, at this point having the 

following values:  

missing - no measured value is available (e.g. because the sensor is down);  

measured – the measured value is available, but it is unknown whether or not it is 

within prespecified bounds; 

Unfortunately, the current process specifies that Pi is annotated as measured in all of the 

first three of the cases we have just enumerated, making it impossible to distinguish 

among them. In the fourth case, the data item is annotated as “missing”; again leaving out 

all of the details describing what alternatives had been tried. Clearly this simple 

annotation flag is inadequate. Instead, we note that each of the four different sequences of 

process steps can be thought of as a different trace through the process, illustrating the 

importance of annotating each value with process provenance information, as provided in 

the DDG.  

Examples of the DDGs that represent cases #3 and #4 are provided in Figure 8. Note that 

the boxes in this figure represent actual data instances, namely the actual data values that 

are bound at execution time to the type specifications in the process definition. Thus, for 

example, one of the boxes at the top of Figure 8 is annotated by sensor1 null @”try1 

time”, indicating that this box represents the actual (null) value that was delivered at the 

specific time, “try 1 time”. The adjacent box likewise represents the specific (null) value 

that was delivered at the specific time “try 2 time”.  

The ovals in Figure 8 represent the process step instances that were the actual producers 

and consumers of the actual data items. Thus, there is an oval labeled Get Airport that 

indicates that an instance of the Get Airport step was used to generate the data item in 

the box shown below this oval. This step instance represents the instance of Get Airport 
that was invoked as the process’s response to the two null readings. Two arrows from this 
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oval connect it to two boxes, representing the fact that the values represented by these 

boxes were used as inputs to the step represented by that oval. In this case, the use that is 

made of these data items is simply to note that they are both Null, causing the Get 

Airport step to be executed to produce this output. Other ovals may make more 

substantive use of their inputs in generating their outputs. Thus, for example, in the left-

hand DDG of Figure 8, the result of the execution of the instance of the Get Airport step 

is an actual value, annotated with date and time information, which is taken as the final 

value of Pi. In this case, no actual step is used to generate that value, and instead the 

DDG indicates that the value is produced as a consequence of the parameter binding 

operation that occurs as an integral part of the execution of every step. The fact that this 

oval does not represent an actual step is indicated by the use of italics in its annotation. In 

the other case, a null reading is obtained, and a null value is then the final value of P1. 

Clearly such DDGs provide much more useful information about the provenance of the 

resulting value of P1 than a mere annotation, measured or missing. 

Although the structures shown in Figure 8 seem to be large annotations, they can be 

represented efficiently as sequences of pointers to process definition steps, parameter 

values, and the actual data item instances. Further, these pointers can be generated quite 

easily as side effects of the actual execution of the process that is represented by the PDG 

shown in the preceding figures. In many cases the DDGs can be generated at a modest 

incremental cost of the execution of the process and, with the appropriate encodings, can 

be represented relatively efficiently in those cases where the intermediate datasets are 

already being stored. 

Figure 8: The DDG of the original acquisition of P data
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4.5 The Process Data step: alternative approaches to processing the data 

The second subprocess, Process Data, in the root Sensor Data Management process, 

shown in Figure 5, is described and elaborated in Figure 9. This step takes input from 

sensors and investigators, as described above, and produces a time-ordered sequence 

denoted <dS>, where each dS estimates change in water storage over the previous time 

interval. Note that <dS> (also dS) is a type and that <dS> instances are generated by 

each of three different subprocesses of Process Data, namely RT Periodic 

Processing, PP Periodic Processing, and Alt Model Processing. Process Data 

indicates that these three subprocesses can be executed in parallel, but whether the actual 

executions of these steps overlap in time will depend on decisions of the agents bound to 

perform these substeps and, most importantly, upon the availability of the input data.  

At a high-level, RT Periodic Processing produces a <dS> dataset every 24 hours, 

based on the data that was collected over the proceeding 24 hour period. PP Periodic 

Processing also produces a <dS> dataset every 24 hours, but it is for a 24 hour period 

30 days before. This subprocess has the advantage of doing interpolation that uses data 

obtained both prior and subsequently to the data in need of interpolation. Alt Model 

Processing allows investigators to experiment with alternative models and time periods. 

Here we describe each of these subprocesses in turn. Note that in the DDG, it is important 

to know which subprocess was responsible for generating each of the different <dS> 

instances and their different individual data items. As illustrated above, the process 

definitions offer a natural basis for generating DDGs that document these differences. 

Step: RT Periodic Processing 

Comments: the channels sensorStream and modelStream are accessed from an enclosing scope 

Outputs: seqofdS <dS>; 

Figure 9: The Process Data step 
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4.6 The RT Periodic Processing step: handling of real-time streaming data  

The RT Periodic Processing step is connected to its parent by an edge annotated with a 

Kleene +, prescribing that the Little-JIL interpreter will keep instantiating a new instance 

of this child step indefinitely (the decision to terminate iteration is made by the agent 

bound to the iterated child step). The agent for this step is an interval timer that initiates 

step execution every 24 hours. The Get RT Datum step specifies the actual processing 

of the real-time data and the rate of execution is determined by the availability of data 

from the sensors and the resources required for the processing of that data. 

Observe that good software engineering concepts have contributed to the clarity of this 

process definition: the Kleene + annotation provides a clear specification of the desired 

iteration, an agent specification defines periodicity, and hierarchical decomposition is 

used to hide details of data gathering until there is interest in seeing them. 

4.7 The Get RT Datum step: dealing with individual data items 

The Get RT Datum step, shown in Figure 10, defines the heart of the Water Budget 

process, specifying the way in which the real-time data items are subjected to cleaning. 

This step retrieves the readings collected from the sensors as they become available, 

filters the readings to ensure each reading is within predefined bounds, tags each reading 

to indicate how it was obtained, and appends readings to corresponding time-ordered 

sequences. This step is defined as the sequential execution of its substeps and results in 

 
Step: Get RT Datum 

Inputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par}; SetOfVPD {vpd}; 

 SetOfUStar {uStar} 

ET et; Q q; P p; PAR par; VPD vpd; UStar uStar; // taken from the channel 

sensorStream 

Outputs: SetOfETout {et}; SetOfQout {q}; SetOfPout {p}; SetOfPARout {par}; 

SetOfVPDout {vpd}; SetOfUStarOut {uStar}; 

 

Step: Select Values of P 

Inputs: PrecReading p1, p2;  

Outputs: PrecReading p;  

Figure 10: The Get RT Datum step 
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an instance of dS, which has data items of type ET, Q, P, PAR, VPD and UStar as its 

components. The set dS is then appended to the time ordered sequence <dS> as each 

new set of data items is processed.  

The first and second substeps of Get RT Datum are relatively straightforward, but each 

adds further useful provenance information to data items. The Check Ranges step takes 

as input a measurement artifact that was output by a sensor and determines whether it is 

beyond preset bounds. While the details of the range checking are not particularly 

difficult or interesting as process features, the specification of the details of the check are 

important provenance information that should be associated with the data item. 

Figure 11 shows the DDG that results from the application of such a filter. The box 

labeled Filter Range Data represents the specific values used in applying the filtering to 

the data item, and the oval labeled Check Ranges represents the application of that step 

to the value represented by the box labeled P1, using the values specified by Filter 

Range Data. This results in the creation of a new instance that is bound to the variable 

P1. Note that this DDG documents the exact quality criterion that was applied in 

checking the plausibility of the resulting data item.  If an investigator wanted to 

experiment with a more stringent, or more relaxed, filtering criterion, it could be 

reapplied to the previous data items available from this provenance documentation, thus 

potentially allowing for the application and evaluation of alternative scientific models 

 

Figure 11: The DDG representing the application of range filtering 
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using previously gathered (and alternatively processed) models. 

Similarly, the Select Values of P step selects one of the two values P1 and P2 and 

assigns it as its output artifact, namely P. This example suggests the importance of using 

a PDG language that supports the specification of the agent. In this case, this selection is 

done by specifying “Expert P Selector” as the type of the agent that is to be assigned to 

this step. Note that this specification does not preclude the possibility that the agent might 

be a human or an automated agent having expertise in selecting the preferred value. The 

choice of which agent to bind to this step is made by the scientist or it could be relegated 

to an automated resource management system, which would presumably use other 

execution state data as the basis for this decision. Little-JIL would document this choice 

in the DDG, as illustrated in Figure 12. Note that this figure shows the case where Sensor 

2 had succeeded in delivering a datum on the first request and where the human agent 

decided to accept this value as the final value of P. The figure contains an italicized 

annotation indicating that the chosen value was the one provided by P2, but the actual 

DDG need only contain the value. The fact that this value had been provided by P2 

would be inferable by inspecting the two input values to the Select Values of P step, 

both of which would be available as nodes in the DDG.  
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The comparison of measured and modeled values (like the comparison of redundant 

sensors) also provides a form of real-time quality control and may provide an early 

warning of a sensor problem. The essence of the Apply Models step, in the Get RT 

Datum step of Figure 10, is to effect the use of an empirical formula, called a model, to 

fill in data readings in such cases. As noted above, these models have been created by 

scientists for the purpose of interpolating values in place of those that are missing or 

suspect. The models are designed to provide replacements for such values, by using other 

data items and formulas that are believed to accurately capture the relations of these data 

items to the missing or suspect data. There are generally a number of alternative models 

that can be applied in these circumstances, as these models are the subjects of 

considerable research. The model selected and applied to a data item is important 

provenance information that should be attached to that item. We indicate the way in 

which this additional provenance information is generated as part of the execution of the 

Apply Models step of the Water Budget example.  

The models themselves are often structured into sets of models of different types, for 

example, different types of regression models (e.g. linear or second-order) or different 

probabilistic models. The suitability of a model is then evaluated by a human, perhaps 

supported by various statistical tools. Eventually a model is chosen and then used to 

 

Figure 12: The DDG representing the selection of P as a choice between P1 and 

P2 
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create a data value, which is substituted for the original data value. As this sort of synergy 

between humans and tools in the evaluation and application of models seems to be at the 

heart of many scientific activities, it is important to detail it here and to demonstrate the 

challenges of representing such a process and documenting the human choices made. 

4.8 The Apply Models step: use of abstraction 

The purpose of the Apply Models step is to replace the data readings obtained from the 

sensors when the quality attribute of the reading is either missing or determined to be out 

of range (by the Check Ranges step). Although models can be applied to any number of 

data items, Figure 13 shows the application of models to only two types of data, P and Q. 

The definition of this step illustrates the value of abstraction in defining processes, since 

here the Apply A Model step is simply instantiated once for each type of data requiring 

the application of a model. Each Apply A Model substep has a prerequisite (not shown 

here) whose purpose is to examine the incoming data item and determine whether it has a 

quality attribute of “missing” or “out of range”. Either attribute causes the prerequisite to 

be satisfied and the main body of the step to be executed. 

Also note that the output of this step is a triple of items, namely the original P value 

(P.original), a replacement P value that has been produced by the model that has been 

selected (P.modeled), and an identifier (PModelID) indicating which model was used to 

generate the replacement value. In fact, the first and third elements of this triple are 

redundant with information contained in the DDG, which provides more precise detail 

about the way in which P was derived. The  triple specified here is included as an 

indication that such annotations might be derived and included to help users by providing 

such information as documentation. Thus, this step provides the basis for distinguishing 

among different data items and different data streams that have been produced by 

different applications of different models by different scientists at different times. Note, 

in addition, that all three of the steps are carried out by agents who are required to be of 

type “HumanExpert”. Each of the two substeps is defined to have as “local data” a set of 

readings that can be used by a selected model in computing the model-generated output 

of this step. Thus it is important that the language used to define the PDG for this process 

allows for the possibility of such “local data”. Further the example illustrates the value of 

incorporating scoping semantics into the language in order to support specification of 

how such “local data” can be collected and held in the defined local scope, presumably in 

any way that the model and its agent decides.  
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4.9 The Apply A Model step: synergizing the efforts of humans and tools, 

and representing a history of human decision-making 

The purpose of this step is to consider iteratively each of a set of models selected from 

the pool of models available, and then to select and apply the model that appears to be 

most effective in replacing the datum that has been identified for replacement. The step is 

comprised of two substeps, executed in sequence. The step also incorporates an exception 

handler to deal with the case in which no model is selected and applied. 

The first substep of Apply A Model, Eval Models is shown in Figure 14 and is the 

iterative consideration of the set of candidate models. Note that the agent for this step is 

identified as being of type “Model selector”. The Resource Repository used top support 

the execution of this process is responsible for identifying the agent instance to be bound 

to this step. It is conceivable that this agent might be a human or might be an automated 

system that is capable of performing preliminary evaluations of models. This process 

does not mandate either, but allows the runtime agent binding capability to make that 

choice from among the alternatives that the process designer has established.  

Eval Models iteratively evaluates each model in the collection of currently available 

models by first checking the model’s applicability (represented by the pre-requisite) and 

then consulting an expert to evaluate the model and the results that it gives. Note that 

Eval Selected Model is to be executed by an agent of type “human expert”, indicating 

that human expertise is required. We do not show the details of this step, but it might 

entail the use of statistical tools to study various aspects of how well the data suggested 

by the model seems to fit with the other data being collected. In this case, although a 

 
Step: Apply Models 

Outputs: ModeledPtriple (P.original, P.modeled, PModelID);  

ModeledQtriple (Q.original, Q.modeled, QModelID); 

 

Step: Apply A Model 

Inputs: PrecReading p; 

Outputs: ModeledPtriple (P.original, P.modeled, PModelID); 

Comments: the modelStream from Sensor Data Management is used in this step 

 

Step: Apply A Model 

Inputs: Qreading q; 

Outputs: ModeledQtriple (Q.original, Q.modeled, QModelID); 

Comments: the channel modelStream from Sensor Data Management is used in this step 

Figure 13: The Apply Models step 
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human expert executes Eval Model, some of its substeps might well be executed by 

automated agents (e.g. statistical tools).  

The edge leading into Eval Model has a Kleene + annotation, indicating that this step is 

to be instantiated as many times as there are models. Combined with the pre-requisite, the 

net effect of this is to instantiate a step for the consideration of only those models that the 

step’s agent deems worthwhile. It is important to note that Eval Models also has access 

to a cache of data values collected and stored locally to this step that can be used to help 

in deciding the suitability of each candidate model. 

The output of the Eval Models step is a set of pairs, where each pair consists of a model 

and the output that it produces. Once this stream of sets of ordered pairs has been created 

 

Step: Apply a Model  

Outputs: ModeledDatumTriple modeledDatum =  

 new ModeledDatumTriple (sensorDatum.original, sensorDatum.modeled, modelID); 

Exceptions caught: “No Model Selected” with “No Model Selected Handler” 

 

Step: Eval Models 

Inputs: SensorReading sensorDatum; Cache readingsCache; 

Outputs: SetOfModelIDandDatumPairs {datumPairs}; // 

 where datumPairs=new DatumPairTuple( ModelID, SensorDatum.modeled); 

 

Step: Select Best Model 

Agent: human expert 

Inputs: Cache readingsCache; SensorReading sensorDatum.original; 

 SetOfModelIDandDatumPairs datumPairs // 

  where datumPairs=new DatumPairTuple(ModelID, SensorDatum.modeled); 

Outputs: ModeledDatumTriple modeledDatumTriple = 

  new ModeledDatumTriple(sensorDatum.original, sensorDatum.modeled, modelID); 

Exceptions raised: No Model Selected 

 

Step: Eval Model 

Inputs: SensorReading sensorDatum; Cache readingsCache; ModelType model; 

Outputs: DatumPairTuple = new DatumPairTuple(ModelID, SensorDatum.modeled); 

Figure 14: The Apply a Model step 
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the next substep of Apply A Model, Select Best Model, considers all of these candidate 

models and selects the one deemed best. Note that a “human expert” is required to 

perform the Select Best Model step, requiring a scientist to use expert judgment to 

select the model that seems to produce the best value. In this example, this value then 

becomes a third component of the ordered triple, namely (sensordatum.original, 

sensordatum.modeled, Model ID), that is the final output of the Apply A Model step. 

Again, the first and third elements of this triple are redundant with the more precise 

derivation information contained in the DDG and should be regarded as documentation 

intended to be of value to the user. 

Figure 15 provides an example of a DDG that might be generated from one possible 

execution of this step. In this case, it is assumed that three different models (shown as 

PModel1, PModel2, and PModel3) are selected from the channel containing the 

accesses to all possible P Models. Each of the three is subsequently evaluated by the Eval 

Selected Model step, using Cached Data, the set of data instances that has been 

cached by the process, thereby producing three instances of Sensor Datum (namely 

Sensor Datum 1, Sensor Datum 2, and Sensor Datum 3). These three instances of 

Sensor Datum, as well as the three models that produced them are then shown to be 

inputs to the Select Best Model step, which then produces as its output the ordered 

triple (sensordatum.original, sensordatum.modeled, Model ID), where the original 

sensor datum, which was an input parameter to this step, is now referred to as 

sensordatum.original.  

Note that the two DDGs described in Figure 12 and Figure 15 are both necessary to 

provide the complete provenance of SensorDatum.modeled. The DDG in Figure 15 

represents the evolution of SensorDatum.modeled from the datum that was selected as 

 

Figure 15:The DDG representing the selection and application of a model to 

generate a modeled value for P 
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the result of the process depicted in Figure 14. This combined DDG is depicted in Figure 

16. This DDG accurately documents that it is this P value that is bound as the actual 

datum taken as the subject for consideration for replacement by the alternative models.  

After Apply Models has executed, the new values that have been obtained from all of the 

sensors are appended to the end of the data streams that are being accumulated by the RT 

Periodic Processing step (Figure 9). As described above, some of these newly 

appended data items are modeled, rather than measured. Here again each datum in the 

data stream is shown to be a packet that contains information that is redundant with the 

DDG. This redundant information should be thought of as documentation intended to be 

helpful to the user. In this example, the packet consists of SensorDatum.original along 

with appropriate information about its provenance, such as the date and time of the 

original measurement, the sensordatum.modeled, and the model used to generate 

sensordatum.modeled along with the date and time that model was applied.  

This stream of ordered triples is the real-time output of this process and is presumably 

made available via the Internet in real time in addition to being collected up into the 24-

hour datasets. We assume that such data streams will also be labeled by a unique process 

identifier and the DDG representing the precise trace through the process, as well as with 

further annotations, indicating the place, dates, and times at which the data streams were 

collected. As this information consists largely of pointers into the DDG, most of the cost 

 

Figure 16: The DDG formed by combining the DDGs of Figure 12 and Figure 15 
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of carrying this provenance information lies in the cost of the DDG itself, which should 

be relatively efficiently represented as a collection of pointers. 

4.10 The PP Periodic Processing and Alt Model Processing steps: abstraction 

supporting process reuse 

Recall from the Process Data step shown in Figure 9 that the real-time data stream is 

not the only data stream that is produced as the product of this process. The Water 

Budget process calls for automatic post-processing of newly collected data streams 

exactly 30 days later. As noted above, the correction of missing or out of bounds data 

during real-time processing must rely only upon retrospective data, and we have shown 

that this can be done by allowing for the caching of such data locally in the Apply A 

Model step. But post-processing after 30 days allows data gathered both before and after 

the selected data item to be taken into consideration. This post processing is done in the 

PP Periodic Processing substep of Process Data. In addition, consideration of further 

models is made perhaps every few weeks or months, resulting in the creation of new 

models and their application to various historical data streams. The way this is done is 

defined in the Alt Model Processing substep of Process Data. Note that the Process 

Data definition indicates that PP Periodic Processing is invoked every 24 hours, using an 

interval timer mechanism that works analogously to the way in which a timer is used to 

trigger processing in the RT Periodic Processing step.  

The Process PP Datum step is defined in Figure 17 and consists of the reinstantiation 

of the step structure that supported the Process RT Datum step, described previously. 

In particular, Process PP Datum consists of a first substep, Get Last Month Data, 

followed sequentially by Get RT Datum. The purpose of Get Last Month Data is to 

identify the data stream produced exactly 30 days earlier and to output the information 

 

Step: Process PP Datum 

Outputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par}; SetOfVPD {vpd}; 

 SetOfUStar {uStar} 

Step: Get Last Month Data 

FIFO Channel SensorStream sensorStream = new SensorStream(); // to be populated with 

"last month" data items 

Step: Get RT Datum 

Comments: “Augmented model set” is a set of models that also includes models that can 

benefit from prospective data, now available, as well as retrospective data 

Figure 17: The Process PP Datum step 
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needed to access that stream. That having been done, the stream is then taken as the 

inputs to this new instantiation of Get RT Datum. The process steps required to carry 

out Process PP Datum are then the same as those needed to carry out Process RT 

Datum, and differ only in that 1) the data streams to be processed are now historical 

rather than streaming real-time, and 2) some additional models, namely models that make 

use of prospective data, as well as retrospective data, can now be used to deal with 

missing or out of bounds data items. Thus some different channels are indicated as the 

inputs to the Process RT Datum step, but the step structure used to process them is 

identical. 

To illustrate this, Figure 18 depicts the DDG that would result from the execution of the 

Process PP Datum step, where for simplicity we assume that only one additional model 

is selected for application to the sensor datum. Note, in particular, that the sensor datum 

under consideration is actually the triple that has resulted from the execution of the Get 

RT Datum step shown in Figure 10. Thus, Figure 18 shows that a fourth instance of 

sensor datum, Sensor Datum 4, has been produced by consideration of an additional 

model, and that this is now compared with SensorDatum.modeled, which had been the 

result of the prior comparison of three modeled data items and the original sensor 

reading. The result shown is the next instance of SensorDatum.modeled (indicated by 

 

Figure 18: The DDG showing the results of the execution of Process PP Datum 
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italics), which is now made available for possible future consideration. Note that 

subsequent comparisons of SensorDatum.modeled with the results of other models 

would be represented as successive elaborations of the DDG shown in Figure 18.  

To be completely fair, the reused subprocess steps of Get RT Datum must be designed 

to be applicable in both the RT Periodic Processing and PP Periodic Processing 

contexts. Thus, for example, the data measurements that are cached for use in the Apply 
A Model steps of Apply Models must include prospective data (acquired by some sort of 

lookahead) in the PP Periodic Processing context, while they will have only 

retrospective data in the RT Periodic Processing context. 

The reuse of modular capabilities is an inherent abstraction capability in programming 

languages that usually requires careful design choices. Thus, it should not be a surprise 

that the reuse of process definitions in a process language also requires some care.  

Finally, note that the Alt Model Processing step is defined in a manner that is analogous 

to the definition of the PP Periodic Processing step. This step defines the way in which 

scientists can recall historical datasets and apply new models to them, thus offering new 

ways to replace missing or out of bounds data. The step is to be executed at any time that 

a scientist wishes to reanalyze a particular dataset. In all other ways, however, this 

process is virtually identical to the PP Periodic Processing step. Thus, in particular, the 

first substep of Alt Model Processing is a step whose only role is to identify historical 

datasets to be reanalyzed and to pass the information needed to access them as handles to 

channels. The sequentially executed next step is again Get RT Datum.  

5 Evaluation 

The Water Budget example has provided a vehicle for demonstrating how an analytic 

web provides provenance information needed by both producers and consumers of 

scientific datasets. More specifically this example has demonstrated that a broad range of 

semantic capabilities, including hierarchical decomposition, abstraction, concurrency, 

exception management, and complex data handling facilities, are needed to define 

modern scientific processes. We now present a more detailed analysis of what the need 

for these capabilities tells us about desiderata for the semantic features of languages that 

are to be used as the basis for defining an analytic web’s PDG. 

5.1 Strengths and weaknesses of Little-JIL 

Little-JIL is not simply a vehicle for supporting hierarchical decomposition (as is the case 

in many other process languages), but is better thought of as a vehicle for implementing 

abstraction. The difference is that a Little-JIL step is accurately thought of as the 

definition of an abstract concept, capable of being made a concrete specification by its 

bindings to concrete artifacts and placement in a specific execution context. A step 

defines a scope, and thus establishes a context. One key mechanism for context definition 

is the binding of artifacts as a step’s inputs and outputs. This capability is tantamount to a 

capability for passing arguments to a procedure. By varying the argument stream to and 
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from a step, the step is made to perform somewhat differently in different contexts. Steps 

also provide different contexts by providing different exception handling capabilities. 

Every step may define a set of handlers for the various types of exceptions that may be 

raised in its scope. Different instantiations of a step may offer different exception 

handlers, thereby establishing different execution contexts. 

The Water Budget example made interesting use of Little-JIL’s facilities for abstraction, 

for example, by its reuse of the Get RT Datum step. Reuse of this step emphasized the 

strong similarities in the ways in which RT Periodic Processing, PP Periodic 

Processing and Alt Model Processing perform their work. This reuse shortens the 

process definitions and clarifies the reader’s (e.g. the consumer of a analytic web’s PDG) 

understanding of these processes. Another application of this concept was seen in the 

Apply Models step, which consisted of two different instances of the Apply A Model 
step. This step definition emphasized the iterative nature of the step, yet left little doubt 

about the differences between the two invocations of its substeps, namely the differences 

in their arguments.  

Some of the complexity in the Water Budget process is attributable to the way in which 

different activities occur in parallel. Data streams from various sensors are processed in 

parallel, and the data must be processed in real-time as data are gathered and transmitted 

concurrently. Simultaneously, the much slower activity of generating new models and 

evaluating both new and existing models occurs. Little-JIL’s parallel step is effective in 

defining what activities are executed in parallel with each other. Channels in Little-JIL 

are effective at defining data streams between steps that were distant from each other in 

the architecture of the Water Budget process. Channels also supported synchronization. 

For example, the parallelism defined by the top step in Sensor Data Management 
clearly depicted the way in which sensor data was generated and processed.  

Little-JIL at present has a relatively simple communication model. Channels are limited 

to first-in/first out queues and parameters are passed by copy. The Water Budget process 

however requires more than this. For example, the Eval Model step accesses a more or 

less static collection of models but is required to retrieve a new copy at each access in 

case any of the existing models have been modified or new models have been added. 

Transaction-like semantics might better support the implementation of a step of this kind. 

Transactions would also support the manipulation of data at different levels of 

granularity. For example Get RT Datum produces a single result, but is used by PP 

Periodic Processing to produce a dataset containing all of the results from a 24-hour 

period. Transaction-like semantics could permit Get RT Datum to release individual 

results, but allow PP Periodic Processing to control the visibility until a complete 

dataset has been constructed.  

The exception management facilities in Little-JIL enabled us to define features of the 

Water Budget process that contributed to its reliability and robustness. Thus these 

features seem important to include in a language used to define PDGs. For example, the 

Get Met Station Data step indicated both how to identify and how to respond to the 

lack of needed sensor readings. Requisites are particularly clear devices for showing 

where missing data can be detected, and exception handlers (such as Handle MS Sensor 

Timeout) were placed to clearly indicate where responsibility for responding to such 
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contingencies was located. This example also showed the importance of dealing with 

exceptions that occur during the handling of exceptions themselves.  The nested 

exception handling in the Get Met Station Data step provided an example of this. Such 

situations also emphasize the importance of providing facilities for specifying how to 

continue execution upon completion of exception handling.  

The example also showed the importance of supporting the late-binding of resources to 

steps to permit flexible reactions to contingencies (e.g. by the run-time selection of agents 

to retry an execution of a step). For example, in the elaboration of the Handle MS 

Sensor Timeout step, the process defined the need to execute a step to obtain a data 

value. The required agent was specified only as an agent having the capability to provide 

a precipitation reading. The choice of the agent was left to a Resource Manager having a 

repository of agents, some of which offered this capability. The indicated facility for 

specifying a needed capability, rather than a specific agent, enables the late-binding of 

any of a number of possible agents to this step. It enables a separate Resource Manager to 

keep track of the agents that are able to deal with a request at any given time, and thus 

supports the real-time selection of one that is actually able to satisfy the request.  

In summary, we were able to use the Little-JIL language to support the specification of 

the PDG for a large and complex scientific process. Such processes are needed to handle 

and process contemporary scientific data. While Little-JIL offered many specification 

language features that seemed quite useful and effective, some important deficiencies 

were also noted. All of this has created a very useful picture of what semantic features 

seem to be needed in a language that can support the definition of the PDG in an analytic 

web. There is a striking similarity between these needs of the scientific community and 

what is generally provided by modern programming languages. This supports our 

intuition that scientific processes bear some strong similarities to computer software, and 

thus the challenges of defining them have strong parallels with the challenges of 

programming complex software systems.  Thus, it is not surprising to find that a process 

language needs to incorporate the salient control features of modern programming 

languages.  It is, moreover, not surprising to also find that modern capabilities for dealing 

with data, such typing mechanisms, also seem important to the precise specification of 

processes.  Indeed, another weakness of Little-JIL as a language for specifying processes 

seems to be its relatively weak support for defining data objects, 

5.2 DDG Evaluation 

The example of the Water Budget process also showed how DDGs can be built 

incrementally as the execution of a PDG proceeds and can be defined as traces through 

the PDG. Dataset Derivation Graphs grow as DAGs, increasing in depth as PDG 

execution proceeds; iteration of processing steps is manifest as additional levels in the 

DDG DAG (e.g., Figure 18 is an elaboration of the leaves of Figure 16, which in turn 

elaborates DDGs shown in earlier figures). Each iteration of the steps of a PDG creates a 

new scope, and such scopes are root nodes in successive DDGs. This emphasizes the role 

of these steps in establishing scopes, and the DDG clearly illustrates this role. 
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DDGs that are derived from the executions of lengthy processes seem large and 

cumbersome. But it is the pictorial depiction of an entire DDG that is large. Their internal 

representations are typical tree-like structures that are amenable to terse internal 

representation. In addition, the depiction of the entire DDG is not likely to be of interest 

in most cases; elided versions would probably suffice in many cases. Tools for allowing 

viewers of DDGs to tailor their views through devices such as elision seem necessary. A 

number of web-based viewing tools for hierarchical viewing of this kind already exist.  

Clear depiction of the features of the DDG of greatest interest to dataset producers and 

consumers may prove to be a challenge. Long and complex process executions will yield 

DDGs whose depictions are indeed large and potentially confusing. Figure 18 may seem 

daunting, certainly at first. But DDGs will be produced automatically from executing 

PDGs and have the virtues of being precise and accurate. We do worry, however, about 

their clarity, and thus DDG presentation is an important area that requires future research. 

6 Related Work 

There are numerous other scientific workflow projects, many of which have been 

presented at meetings such as [Cooper, et.al. 2006; SAG 2004; SSDBM 2004].  Most of 

these projects (e.g. Kepler [Ludäscher, et.al. 2006; Altintas, et.al. 2005; Altintas, et. al  

2004], Taverna [Wolstencroft, et. al. 2005; Oinn, et.al. 2004], and JOpera [Pautasso, et.al. 

2005; Heinis, et.al 2006]) base their specification of process flow upon the use of various 

kinds of data flow graphs (DFGs; e.g., Fig. 1).  Indeed,  Kepler, perhaps the most 

noteworthy of these projects, is based upon Ptolemy II [Edwards, et.al. 2003; Baldwin, 

et.al. 2004; Ptolemy URL] which uses a powerful and flexible DFG structure to specify 

how datasets can be moved between processing capabilities.  Kepler integrates a broad 

range of support tools that help with such key activities as specification, execution, and 

visualization of scientific data processes.  It seems particularly effective in supporting the 

processing of streaming data, such as data produced by sensors and intended for real-time 

processing. Chimera [Foster, et.al. 2003; Foster, et.al. 2002; Deelman, et. al. 2003] was 

one of the earliest scientific workflow systems.  It emphasized the use of pictorial 

visualizations to represent scientific processes.  Chimera pictorial representations 

depicted a form of a DFG.  Taverna [Wolstencroft, et. al. 2005; Oinn, et.al. 2004] is a 

more recent system that seems to focus on supporting the integration of web services, 

particularly for the creation of bioinformatics applications.  Taverna’s integration 

mechanism is a workflow notation that is also based upon a DFG formalism.  More 

recently JOpera [Pautasso, et.al. 2005; Heinis, et.al 2006] has suggested the use of XML 

to specify scientific workflows as plugins that could be integrated using Eclipse.  JOpera 

workflows also are based upon the use of a DFG formalism to represent scientific 

processes.  Teuta [Fahringer, et.al. 2005a; Fahringer, et. al. 2005b represents scientific 

processes through UML diagrams that offer some features, such as limited forms of 

concurrency, that go beyond the semantic features of a basic DFG.   

We believe that the reliance of all of these other scientific workflow systems upon the 

DFG as their basis for the specification of processes is a major drawback.  The DFG-

based systems described above, for example, make it very difficult to support 
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specification of any but the most straightforward kinds of looping.  The example 

presented in this paper indicates some ways in which complex iterative control is 

essential to scientific inquiry.  Moreover DFG-based process definitions complicate the 

clear depiction of such semantic features as exceptions and abstraction, whose 

importance was also demonstrated by the example in this paper.  Indeed, as noted above, 

Figure 1 is a data flow diagram of the Water Budget process, but it is not a satisfactory 

PDG, as it lacks the ability to specify the details of all the different cases that can arise 

during execution of a scientific process.  On the other hand, a DFG can often provide an 

intuitive depiction of how information flows through a system.  Thus, a DFG might be 

useful as a complementary representation to the PDG for defining an initial, high-level 

view of the process. But difficulties arise in trying to maintain consistency between the 

PDG and DFG, especially at lower levels of hierarchical elaboration, where typical data 

or control flow oriented graphs have been found to be clumsy for representing more 

detailed flow.  Indeed, we have developed a tool that translates Little-JIL-based PDGs 

into internal representations that are essentially equivalent to DFGs.  Our experimentation 

with this tool has shown that even modest amounts of use of concurrency and exception 

handling can cause the number of nodes in the generated DFG to be hundreds or 

thousands of times as large as the number of steps in the original PDG.  

There is also a substantial amount of work aimed at supporting the documentation of the 

provenance of scientific datasets.   Many of the approaches to provenance documentation 

are summarized in [Simmhan, et.al 2005a; Simmhan, et.al. 2005b].  Indeed, these 

approaches have been compared to each other more formally in [Moreau, et.al 2007]. 

These approaches seem to fall generally into two categories. In one approach (e.g. 

[Buneman, et.al 2001; Lanter 1991; Aiken, et.al. 1996] each data artifact generated by 

execution of a scientific process is annotated with detailed information about the tool or 

system used to create the artifact, along with precise specification of the input artifacts 

used, and the output artifacts created.  Each such annotation is then stored in a database.  

The complete documentation of the provenance of an artifact can then be obtained by 

recursively querying the database for the annotations that describe the activities that 

produced as outputs the artifacts used as inputs to the query. The second approach entails 

building a derivation graph on the fly as execution of the scientific process proceeds (e.g., 

[Foster, et.al 2002] and Kepler [Altintas, et.al. 2006]) .We note that these two approaches 

are essentially equivalent to each other.  Both collect provenance information by 

documenting the execution trace that has led to the creation of the data artifact being 

documented.  In the former, the provenance structure is stored implicitly and is created 

upon demand by database queries.  In the latter, the derivation structure is built 

incrementally during execution.   

Our own approach falls into the latter category, entailing the on-the-fly construction of a 

derivation structure, namely the DDG.  What distinguishes our work from the prior 

efforts is that our DDG depicts the progress of execution through our PDG, a process 

definition structure that can define and depict more complex semantic structures such as 

concurrency, exception handling, non-trivial iteration, and abstraction.   Our DDGs offer 

depictions of how these semantic features are used to contribute to the development of 

data artifacts.  Thus, for example, artifacts produced on different iterations through a 

given activity are shown as the roots of distinctly different subgraphs of a DDG, where 



 37

the context of each activity execution is provided by the DDG.  Our work is strongly 

reminiscent of earlier work on the Odin project [Clemm, et.al. 1990] that documented the 

ways in which collections of software tools are applied to produce software products.  As 

in the case of the work described in this paper, Odin maintained two coordinated 

structures, a type structure, showing which types of software objects can be generated 

through the applications of which software tools, and an instance structure that recorded 

the specific software artifacts generated by a specific sequence of applications of tools. 

The Odin Project was aimed at supporting the clear and precise documentation of how 

various software artifacts resulted from somewhat different applications of somewhat 

different versions of various tools.  It could use that documentation to make smart 

decisions about what data to store and what data to rederive, as well as to determine when 

to automatically do the derivation based on desired outputs. It thus extended earlier work 

on software configuration management (SCM), such as Make [Feldman 1979] and SCCS 

[Rochkind 1975].  It seems significant, therefore, to note that fundamental problems in 

documenting scientific data artifact provenance bear a striking resemblance to 

fundamental problems in SCM [Estublier, et.al. 2005].  In both cases there is a need to 

document and communicate a clear and precise understanding of how artifacts of interest 

have come into existence.  In both cases, the derivation history may be quite complex, 

and must be maintained despite such complications as changes in versions of tools, 

reworking of artifacts, concurrent activities by diverse agents, etc.  Thus, it is not 

surprising that the solution approach suggested in this paper is strongly reminiscent of 

approaches taken in early work in SCM.  Indeed, we note that other recent work in 

scientific data provenance has also started to recognize the problem of documenting 

provenance in situations where the scientific process is evolving [Altintas, et.al. 2006; 

Callahan et.al. 2006] and we suspect that future work in the area of scientific data 

provenance documentation is likely to follow closely the progress of the SCM field. 

7 Future Work 

This paper describes the concept of an analytic web as the integration of two 

complementary graph types. Preliminary evaluation of this concept suggests that it is 

promising, but also suggests the need for considerable amounts of subsequent 

development and evaluation.  

While we believe that the semantic features in Little-JIL present a useful starting point 

for considering the features that should be incorporated into languages that are used as 

the basis for defining the PDG, we have also noted a number of shortcomings. Further 

investigation of the essential requirements for the semantics of an analytic web PDG is 

needed. Similarly we believe that the DDG described in this paper offers clear value as 

the basis for the process metadata needed by scientists. But specific details concerning 

the DDG require further evaluation. For example, we need to evaluate various internal 

representations of the DDG to determine how to store the DDG efficiently while still 

supporting efficient creation of needed visual representations. Moreover, we have 

suggested that the datasets represented by the nodes of the DDG might be either 

regenerated from scratch, or might be cached to expedite generation of subsequent 
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datasets. Specific strategies for determining when and what to cache should be the subject 

of future research. 

In addition, we have suggested that the DDG be used as the basis for the creation and 

attachment of process metadata to datasets, but further research is needed to determine 

how this is done best. We have noted that metadata standards such as EML are starting to 

appear, and have suggested that process metadata might be most usefully seen as an 

augmentation of standard annotations of this sort.  

The value of an analytic web will be greatly enhanced by the availability of a tool set that 

supports such capabilities as the creation of the PDG, the execution of the PDG, the 

automatic creation of the DDG, viewing and querying these graph structures, and 

reasoning about the soundness of the scientific processes defined. We have indeed begun 

the creation of such a prototype toolset, called SciWalker. Our existing prototype 

provides weak and preliminary support for dataset producers, and virtually no support for 

dataset consumers. Future work will entail integration of our existing Little-JIL language 

support into SciWalker and capture of the dataset products of Little-JIL execution to 

support DDG creation and management. Extensive work on the development and 

evaluation of user interfaces to these tools, particularly emphasizing the sorts of visual 

depictions of the PDG and DDG, is clearly required as well. 

Of particular interest is the possibility of using PDGs as vehicles for integrating other 

systems that support scientific workflow.  We have noted above that there are a number 

of other projects that have developed capabilities for the specification and execution of 

scientific processes.  Our view is that the basis of most of these systems upon a DFG 

model of such processes is severely limiting, and that the effective representation of such 

processes requires more expressive semantic features, such as those supported by the 

PDG presented here.  But we also note that our concept of a PDG supports the idea that 

PDG steps can be performed by different agents, either human or automated.  We suggest 

that existing scientific workflow systems, such as Kepler, might be used to define lower 

level scientific processes (e.g., those not entailing complex iteration or exception 

management), and that those process fragments might then be considered to be the agents 

responsible for performing PDG steps. Such an approach could make good use of the 

better developed performance features of established systems such as Kepler and the 

needed semantic features offered by our PDGs. 

In future work, we also propose to add an important new dimension of support for dataset 

consumers by integrating powerful analyzers into SciWalker. One form of analysis 

that seems particularly important to dataset consumers is finite-state verification, which is 

capable of examining a PDG in order to determine whether or not it is possible to execute 

worrisome sequences of functional capabilities [Avrunin, et.al. 2000; Dwyer, et.al. 2004; 

Cobleigh, et.al. 2000].   We have noted that faulty scientific inferences can result for 

example when a dataset consumer applies certain types of interpolation models to 

datasets that been smoothed in certain ways by the dataset producer. This worrisome 

sequence of events may occur only for certain combinations of executions of the 

producer’s process with the consumer’s process. Such potential combinations can be 

detected by finite-state analysis of PDGs representing both processes. We suggest that it 
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is important to investigate how best to integrate such analysis capabilities into a toolkit 

such as SciWalker 

Finally, we believe that the best way to make the progress needed in developing the ideas 

just outlined is to continue to create analytic webs to represent scientific processes of 

various kinds. Our work with ecological processes is encouraging, yet preliminary. We 

hope that there will be much more work of this sort, not just in ecology, but also in the 

representation of processes in a wide range of other sciences. This work should shed 

important light on the nature of languages needed to represent such processes, and tools 

needed to make them accessible to working scientists. 
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