
Simplifying solar harvesting model-development in
situated agents using pre-deployment learning and

information sharing

Huzaifa Zafar
Department of Computer Science

University of Massachusetts, Amherst
hzafar@cs.umass.edu

Daniel Corkill
Department of Computer Science

University of Massachusetts, Amherst
corkill@cs.umass.edu

ABSTRACT
Agents deployed in real-world applications typically need
to determine various aspects of their local environments in
order to make appropriate decisions. This must be done
quickly, as performance can suffer until each agent develops
a model of its environment. We use a strategy of factoring
this model development (that would typically be done using
multi-agent learning) into two phases: pre-deployment (site
independent, individual agent) learning and post-deployment
(site dependent, multi-agent) model completion. By per-
forming as much learning as possible prior to deployment, we
simplify what needs to be determined on-site by each agent.
Furthermore, we use collective sharing of local-observation
information, in conjunction with temporal and spatial con-
straints in relating information, to reduce the number of ob-
servations needed to perform each agent’s model-completion
activities. In this paper, we apply this two-phase strategy
in developing prediction models for solar energy to be har-
vested by each agent in a power-aware wireless sensor net-
work. In all but the most unlikely of environmental condi-
tions, this strategy allows individual-agent harvesting mod-
els to be completed using only the first and second day’s
observations.

1. ENVIRONMENTAL MODEL DEVELOP-
MENT

Multi-agent system (MAS) applications, such as wireless
sensor networks (WSNs), suffer from performance degrada-
tion while agents develop models of their local environments.
In developing these models, agents can either use observa-
tion information from other agents in the network (typically
done using multi-agent learning (MAL)) or learn the models
individually (using traditional machine learning (ML) tech-
niques). Agents using either MAL or ML require many ob-
servations before they are able to develop a reasonable local
model.

In order to develop these models faster, we introduce a
strategy that factors model development into two phases;
a pre-deployment learning phase, and a post-deployment
model completion phase. The pre-deployment phase uses

This work is supported by the AFRL“Advanced Computing
Architecture” program, under contract FA8750-05-1-0039.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views contained in this
paper are the authors.’

Figure 1: A TACMET-augmented CNAS sensor agent

traditional ML techniques to develop a partial, parametrized,
model of the environment that captures the agent-specific,
site-independent aspects of the complete model. The site-
specific factors are then maintained as parameters in this
model. By shifting all the site-independent learning to pre-
deployment, an agent can dramatically reduce the informa-
tion and time required to complete the model once situated.

Post-deployment model completion, can be aided further
by sharing information with other agents in the network.
By using constraints defined on the parameters, an agent
can use the shared information to constrain the site specific
parameters in its local model. In fact, we show that in all
but the most unlikely of environmental conditions an agent
is able to develop an accurate solar harvesting model after
a single day of observations; but only if they use shared
information from other agents in the network.

Similar separation strategies have been used in developing
parametrized models with pre-deployment functional depen-
dencies and then using those dependencies along with infor-
mation sharing to improve the model post-deployment. De-
termining costs in network level routing algorithms is one
such example [5, 7, 12]. However, the two-phase strat-
egy presented in this paper is novel in shifting a majority
(if not all) learning to the pre-deployment phase, and us-
ing post-deployment information sharing (along with con-



Figure 2: The Rollable Solar Panel that we are using

straints defined on parameter values) to complete a uniquely
parametrized model with minimal local observations.

2. SOLAR HARVESTING MODELS
In this paper we apply our two phase strategy to the de-

velopment of solar-harvesting prediction models in the Col-
laborative Network for Atmospheric Sensing (CNAS) sensor
network [3]. This model is used to predict the solar energy
to be harvested by an agent given a cloudiness forecast for
each time period in the following solar day. A TACMET-
augmented CNAS sensor agent is shown in Figure 1 includes
capabilities for weather sensing and WiFi based communica-
tion. Each agent is powered by a un-managed 12V battery
(labeled in the figure). In order to extend the lifetime of
the network, a rollable (thin film on plastic) solar panel (see
Figure 2) is added to each agent. This allows the battery re-
serves to grow depending on the attenuation due to clouds,
shade, and panel angle experienced by the agent during the
course of the day. Moreover a requirement of CNAS is that
the positioning of sensor agents cannot be optimized for ei-
ther data collection or solar harvesting. Eventually sensor
agents may be airdropped (rather than hastily deployed by
hand). In either case, the exact placement of sensor cannot
be regulated, which requires the shade and tilt attenuation
to be determined once the agents are situated. Therefore,
each agent in the network needs to develop the following
environmental model:

E(t, l, α) = Emax(t) ∗ (1 − (f(C(t)) + g(S(t, l)) + h(T (t, α))))

Where:

t = time of day

l = geographic location of the agent (and its solar panel)

α = angle of the solar panel

C(t) = function to determine % cloud cover given time

S(t, l) = function to determine % shade cover given time

and location

T (t, α) = function to determine % angle of solar tilt with

respect to panel angle given time

Figure 3 shows an example set of curves that illustrate
the environmental model. In developing the solar harvesting
model, we use an hour long time period (using the averaged
solar energy observed during the hour as our “observation”).
However, any other time period can also be used.

The observation by an agent (E(t, l, α)) depends on the
time period of the observation, the location of the agent,
and the angle of its solar panel relative to the sun. This can

Figure 3: Example cumulative solar energy observed,
along with a curve representing the local harvesting
model of an agent

be given by the unattenuated energy (Emax(t)) at time t
for this agent’s solar panel, reduced by the attenuation from
clouds (C(t)), shade (S(t, l)) and the tilt (T (t, α))1. The
model also accommodates a non-linear effect of attenuation
on the maximum energy observed. These relationships are
given by functions f , g and h in the model.

We assume l and α to be constant for the lifetime of an
agent (CNAS sensor agents are not mobile), and can be com-
bined into a single parameter e that denotes the environment
of the agent. The shade and tilt functions can be modified
to S(t, e) and T (t, e). This makes both shade and tilt at-
tenuation depend on the same parameters, allowing us to
combine shading and tilting into a single attenuation called
site attenuation (S(t, e)). Moreover, we can combine func-
tions g and h, into a single function we call k, applied to
S(t, e).

3. PRE-DEPLOYMENT LEARNING
We start with the following environmental model (from

the previous section) to be developed by each agent:

E(t, e) = Emax(t) ∗ (1 − (f(C(t)) + k(S(t, e)))) (1)

Once an agent develops a complete model, C(t) will be
provided for, and the agent is expected to use the rest of the
parameters from equation 1 in predicting an observation.
Therefore the post-learning model is as follows:

E(t, e, C) = Emax(t) ∗ (1 − (f(C) + k(S(t, e)))) (2)

In moving from equation 1 to equation 2, the agent needs to
retain functions Emax, f , k and S(t).

The function Emax is dependent on the time of observa-
tion but not the site of the agent. Therefore, we can learn
Emax(t) pre-deployment. An example curve for Emax(t)
learned by an agent (pre-deployment) is shown in Figure
3 as “No attenuation curve (E(t))”.

1The accurate solar-harvesting model is more complicated
than this, since the shade function will be applied to the
residual energy after clouds have taken their effect. Similarly
tilt applies after clouds and shade have taken their effect.
However, we use the simple linear version to ease illustration.
The reasoning remains the same for the more complicated
model.

2



Similarly, C(t) cannot be determined pre-deployment, since
it depends on the cloud cover experienced by the agent at
time t. However, again the function f can be learned pre-
deployment in the same way as Emax. An example curve is
given in Figure 4.

Figure 4: Relationship between cloud levels and solar
energy harvested at noon, given no site attenuation

Finally, we can learn k by synthesizing various tilt and
shade environments pre-deployment, leaving only the S(t, e)
function to determine on-site.

Constraints
We make use of the following constraints on variables in our
model;

1. For any given time in a day, the shading and tilting
attenuation for an agent is constant across multiple
days2.

2. We assume the cloud cover is spatially consistent enough,
that every agent experiences the same degree of cloud
attenuation for any energy measurement period.

3. We assume that the effect of shading and cloud atten-
uation is such that unless an agent experiences 100%
cloud and site attenuation, it observes some solar en-
ergy value (possibly very small) that can be used to
determine the degree of shading and clouding. Such
non-zero observations are termed meaningful

Defining Convergence
An agent’s solar harvesting model is said to converge when,
the agent can determine the value returned by the function
Site(t, e), given the constant e of the agent.

We define two levels of convergence. The first level is
hour -convergence, where an agent converges (or is able to
determine the value of S) for a given hour. The second
level is day-convergence, where the agent has obtained hour-
convergence for every hour of the solar day.

4. SITUATED MODEL COMPLETION WITH-
OUT INFORMATION SHARING

We illustrate our strategy for completing the parametrized
solar harvesting model (learned by each agent during the
first phase) by looking at various examples, increasing in
complexity. In the following three scenarios, we look at what
a non-sharing agent can determine using only its local ob-
servations.
2We assume that the solar angle changes so little from day to
day that it can be considered fixed. The model-completion
phase of our strategy is fast enough that it can be repeated
every few weeks to adjust for seasonal sun-angle change.

Scenario A
Description: No information sharing. No site or cloud
attenuation.

Every observation the agent makes is at 100% of the ex-
pected maximum energy that can be collected for the hour.
The agent can easily determine that the environmental at-
tenuation is at 0% (that E(t, e) = Emax(t)). Once the agent
determines its environmental attenuation, it achieves hour-
convergence for that hour. Once the agent achieves hour-
convergence for each hour in the solar day, it achieves day-
convergence.

Scenario B
Description: No information sharing. No site attenuation.
Varying cloud attenuation.

Since the observations the agent makes is less than its
Emax(t) the agent is unable to determine its environmental
attenuation for the hour. For example, if an agent observes
50% energy loss, it can draw one of the three possible con-
clusions; 1) it lost 50% of its energy due to cloud cover, 2)
it lost 50% of its energy due to site attenuation and 3) it
lost 50% of its energy due to some combination of cloud and
site attenuation. Without additional information, the agent
must assume anywhere between 0% to 50% of the energy is
lost due to site attenuation. Since site and cloud attenuation
are not necessarily constant across hours of the day, it has to
make similar observations for all hours of the day. On sub-
sequent days, if the agent makes observations greater than
50%, it can reduce the range of expected loss due to site
attenuation. However, the only way an agent will achieve
hour-convergence is if it makes a 100% observation (mean-
ing no site attenuation). Moreover, the agent will have to
make such an observation for every hour of the day in order
to achieve day-convergence.

In a later section, we will prove that an agent cannot de-
termine the apportioning of site and cloud attenuation based
on its own observations and requires observations from mul-
tiple agents within the network.3

Scenario C
Description: No information sharing. Varying site and
cloud attenuation.

We assume, site attenuation is the same at the same time
each day. However, site attenuation does vary across hours.
This prevents an agent from achieving day-convergence by
converging for a single hour. The scenario is similar to sce-
nario B, and we can draw some of the same conclusions from
it. If an agent makes a 50% observation, it will conclude site
shading is responsible for 0% to 50% of the solar attenua-
tion for the hour. However, since the there exist some site
attenuation, an agent will never make a 100% observation,
and hence can never hour-converge on its own.4

5. SITUATED MODEL COMPLETION WITH
INFORMATION SHARING

In the remaining 4 scenarios, we look at how information
sharing improves convergence.

3This apportioning could be learned over many days given
an expected cloudiness distribution. However, the number
of days this would require precludes this approach.
4without some form of learning (see previous footnote)

3



Scenario D
Description: Observations from at least one hour-converged
agent are received every hour. No site attenuation. Varying
cloud attenuation.

We assume the hour-converged agent in this scenario can
provide a meaningful observation. In the rest of the pa-
per, as we talk about a day-converged (or hour-converged)
agent sharing meaningful observations with other agents, we
assume they can provide the degree of cloud attenuation ex-
perienced by themselves or other agents in the network.

Assume agent A makes a 50% observation, and goes through
the same decision process as in Scenario B. Agent B also
makes a 50% observation (since we assume identical cloud
attenuation across agents). Since agent B is hour-converged,
it can share with agent A, exactly how clouded it is for this
hour. This allows agent A to determine conclusion 1 from
scenario B and hence hour-converge, too.

If a single agent exists that has already hour-converged, all
other agents in the network will hour-converge as soon they
obtain a report from the converged agent. This is because
the hour-converged agent is able to determine the degree
of cloudiness experienced during the hour. As it shares this
information with other agents in the network, agents are able
to separate individual site and cloud attenuation, and are
able to determine site attenuation for that hour immediately,
leading to their own hour-convergence.

Scenario E
Description: Information sharing among agents. No site
attenuation. Varying cloud attenuation. No hour-converged
agents.

Since cloud attenuation is constant at the same time across
agents, all agents will make exactly the same observation
regarding the effects of attenuation on their observations.
Here sharing does not help, as neighboring agents are un-
able to provide any additional information, as they cannot
distinguish cloud and site attenuation. Similar to previous
no-information-sharing scenarios, agents will have to expe-
rience a 100% observation to be able to hour-converge.

As shown in this scenario, if all agents make the exact
same observation, no additional information is gained from
sharing. Similarly, an agent can not learn anything new
from hourly observations on corresponding days unless the
observation has a higher energy value than a previous day’s
observation at the same hour. The analysis of this scenario
highlights the convergence benefit of having site-attenuation
variance among agents.

Scenario F
Description: Observations from at least one hour-converged
agent are received every hour. Varying site and cloud atten-
uation.

This scenario is similar to scenario D. Since we have a
hour-converged agent in our network, that agent is able to
separate the site and cloud attenuation in its current obser-
vation. This allows it to determine the exact level of cloud
attenuation and share this information with un-converged
agents. Each un-converged agent uses the information to
separate the two attenuation components from its own ob-
servation and hour-converge.

Scenario G
Description: Multiple information sharing agents. Vary-
ing cloud and site attenuation.

If all agents are site attenuated in exactly the same way
(highly unlikely), this scenario becomes equivalent to Sce-
nario E (as all agents make the same observation at each
hour). Otherwise, there is at least one agent that makes
a different observation, and all agents can gain information
from this difference. For example, agent A observes 70%
of its maximum energy. For the same hour, agent B ob-
serves 80%. Agent A can then conclude that too should lose
at most 80% of its energy due to cloud attenuation. This
implies the remaining loss must be due to site attenuation,
reducing the site attenuation range from 0%-30% to 10%-
30%. Sharing therefore allows us to tighten the lower bound
on the range, while the observations allow us to tighten the
upper bound. Also, if agent C makes a 100% observation,
agent A can immediately hour-converge by saying its losing
30% of its energy due to site attenuation. Finally if agent
D makes a 50% observation, agent A can gain no additional
information from agent D since all 50% could be lost due
to site attenuation. This shows us sharing is limited in the
same way as hourly observations when assisting agents in
developing a bound on the site attenuation.

A second benefit of sharing is hour-convergence without
having to see a 100% observation. In fact, with sharing an
agent can hour-converge, for any given hour, with 2 different
observations for that hour, and 2 correspondingly different
observations for the same hour by a different agent. The set
of equations solved by the two agents over the two days is as
shown below. For ease of expression, we assume f(Cloud)
and k(S) are linear.

Agent A:

Day 1:

1 − (Cloud(t1) + Site(t1, e1)) = O(t1, e1) (3)

Day 2:

1 − (Cloud(t2) + Site(t2, e1)) = O(t2, e1) (4)

Where O(t, e) = E(t,e)
Emax(t) . Also, constraints define t1 = t2

for the Site function, since the the hour of the day is the
same for both days.

Agent B:

Day 1:

1 − (Cloud(t1) + Site(t1, e2)) = O(t1, e2) (5)

Day 2:

1 − (Cloud(t2) + Site(t2, e2)) = O(t2, e2) (6)

As long as O(t1, e1) #= O(t2, e1) #= O(t1, e2) #= O(t2, e2), the
above equations are solvable, since we have 4 variables, and
4 equations. Therefore, except under very unlikely environ-
mental conditions, agents are able to hour-converge for each
hour throughout day 2. We have already shown that all
other agents hour-converge if 1 agent hour-converges. Note
domain constraints play a big part in arriving at this con-
clusion. Each agent can make use of the constraint that its
site attenuation is the same at the same hour each day and
that all agents have the same cloud attenuation at the same
time. This allows any single agent to solve the 4 equations
from observation reports received from other agents in the
network.

4



Note that, a single agent cannot hour-converge even if it
makes 4 observations over a period of 4 days. This is because
each additional observation adds one additional variable as
illustrated below:

Day 1:

1 − (Cloud(t1) + Site(t1, e1)) = O(t1, e1) (7)

Day 2:

1 − (Cloud(t2) + Site(t2, e1)) = O(t2, e1) (8)

Day 3:

1 − (Cloud(t3) + Site(t3, e1)) = O(t3, e1) (9)

Day 4:

1 − (Cloud(t4) + Site(t4, e1)) = O(t4, e1) (10)

Here we have 4 equations and 5 variables, which is unsolv-
able. Similarly, we cannot take 4 differing observations from
4 separate agents for the same hour as we would again end
up with 5 variables.

6. EXPERIMENTAL RESULTS
In the last few sections, we analyzed the benefit of our two

phased model-development strategy using a number of sce-
nario cases. We call this strategy PLASMA (Pre-deployment
Learning And Situated Model-development in Agents). In
this section, we evaluate PLASMA operationally in a simu-
lated solar harvesting environment.

All experiments were performed using a simulator devel-
oped in GBBopen. For our first experiment, we use a net-
work of 6 agents. The simulation spans 3 days. Cloud at-
tenuation decreases from 50% on day 1 to 30% on day 3,
with 10% decrements at the end of the day. Site attenua-
tion varies from 30% for agent 1 to 80% for agent 6 with
10% increments with each agent. We show a similar curve
as our previous experiment for agent 2 that experiences 40%
site attenuation in Figure 5. In the figure we show 4 curves.

Figure 5: As the number of hourly observations in-
crease, the range of the site attenuation determined by
various scenarios in the model development strategy is
explored

The first curve is a “No information sharing curve”, wherein
agents in our network do not share any information with one
another. On day 1, An agent experiences 50% cloud attenu-
ation and 40% site attenuation, for a combined 70% attenu-
ation. Since it is not sharing any information, it determines

its site attenuation to be anywhere in the 0%-70% range,
the size of which is 70%. Similar calculation is done for days
2 and 3. The second curve is “Information Sharing with
1 converged agent”, wherein the agent shares information
with another agent in the network that has already day-
converged. The day-converged agent does not have 100%
site attenuation and is able to predict the level of cloud at-
tenuation for the hour, allowing the agent depicted in the
graph to day-converge. The third curve is the “Information
sharing” curve. With information sharing our agent is able
to perform better on day 1, since it has another agent in
its network which sees lower attenuation than itself, and is
able to lower the range. However, on day 2, the agent is
able to form 4 equations using observations from itself and
its neighbor agents and day-converge. Finally for the fourth
curve, “Agent w/o Site Attenuation”, we remove site attenu-
ation from the single agent. Also, no information sharing is
allowed. This way, as the agent sees improving observations
from one day to the next, its able to improve its site at-
tenuation range, but can do no better without seeing 100%
sun.

For our second experiment, we show the E(t, l) function
developed at the end of day 2, given 0 cloud attenuation.
Here we have an network with 2 new agents. We showcase
the curve learned by one of the two agents. The agent ex-
periences clouds for the first 6 observations (first 6 hours of
the day) and site attenuation for the remaining 4 hours. By
using the 4 equations developed above, the agent is able to
figure out the degree of site attenuation experienced, and
project the observations from the clouded periods to the ex-
pected maximum values. Figure 6 shows the corresponding
model learned. In the figure, we showcase the benefit of both

Figure 6: Model developed during the simulated run

sharing and pre-deployment learning. The ground truth is
labeled as “Accurate Model”, and represents what the agent
should see given no cloud attenuation. Given observations
with 100% sun for the first 5 hours, the agent is able to both
learn the approximate attenuation due to clouds, and is able
to use pre-deployed learning to project the current observa-
tion to the expected no cloud attenuation observation.

We are thus able to show, in our simulated environment,
the benefit of both pre-deployment learning and collective
information sharing demonstrated mathematically in previ-
ous sections.

7. POWER MANAGEMENT EXPERIMENTS
In this section we look at load assignment based on energy

harvested by a group of agents in a wireless sensor network.

5



The problem was looked at previously by Kansal et. al [10].
We extend our simulation environment as follows; each agent
can undertake a certain task load. To accomplish this load,
the agent requires a certain amount of energy. As the load
increases, energy requirements also increase linearly. The
agent earns a certain utility if a task is completed. Utility-
load relation is the same as that used by Kansal et. al and
is shown in Figure 7.

Figure 7: ρ is the size of the task. Really small tasks
have no utility. As the size of the task gets bigger than
ρmin, the agent starts increasingly gaining utility, which
maxes out at ρmax

We implemented the duty cycle adaptation algorithm de-
fined in Kansal et. al [10]. In order to be able to use
their adaptation algorithm with the model developed by
PLASMA, we modified the adaptation algorithm to make
decisions solely on energy levels predicted for a given time
period. Such a reactive algorithm could also be extended
to take into account predictions of other agents within the
system, which allows for better load balancing across mul-
tiple agents. However, this extension was not implemented
so as to be able to compare results directly with Kansal et.
al. We also implemented their Energy Prediction and Op-
timization model and compared it (using the original adap-
tation algorithm) with the local model developed by each
situated agent in PLASMA (using the modified adaptation
algorithm). For the experiments, we use a network of 10
agents. For each agent, we picked a random period of time
during the day (of random size) to be shaded. Note, once the
shading attenuations are randomly assigned to each agent,
they remain fixed for all the remaining simulations in the
section and are shown in Table 1. The simulation now spans

Agent Time period of shading % Shade Attenuation
1 9:30 - 12:00 27%
2 15:30 - 16:30 80%
3 15:00 - 18:00 14%
4 10:00 - 11:30 32%
5 13:00 - 18:00 15%
6 13:15 - 14:00 66%
7 11:45 - 13:45 51%
8 10:30 - 13:00 42%
9 14:15 - 16:30 21%
10 9:00 - 10:00 37%

Table 1: Shade attenuation for agents in the simulation

20 days, with random cloud attenuation for every time pe-
riod. A random cloud-attenuation pattern was established
for the 20 simulated days and used in all simulation experi-
ments. Mean cloud attenuation is around 25%, with about

20% variance. Each agent is asked to predict the expected
solar energy for every time period, given expected cloud at-
tenuation. The variance from the observation is calculated
for each time period, for each agent, and averaged for each
of the 20 days. Figure 8 compares the average variance cal-
culated. As we can see from the figure, PLASMA is able to

Figure 8: Comparing our strategy with the learning
algorithm described by Kansal et. al.

develop a more accurate model much faster than the Energy
Prediction model defined by Kansal et. al. (the small vari-
ance is primarily due to the error in the cloud attenuation
prediction provided to the agents, where mean error is about
5% with a variance of about 2%, modeled into the simula-
tor. This is to model the real world, where its impossible
to accurately predict cloud attenuation for any given time
period). Also, since Kansal et. al. combine their learning
algorithm with their prediction model (which does not take
into account shade attenuation), their algorithm is unable
to converge to PLASMA.

We compared utilities generated by the two algorithms in
our 10 agent simulation. For the first experiment, each agent
is provided with no accompanying battery, which forces each
agent to make decisions based completely on the expected
solar energy for each time period. We set ρmin to 2 and
ρmax to 5. Also, agents can earn a utility between 0 and
5 every hour, depending on the amount of solar energy it
can harvest for that hour and the task load acquired for
the hour. Agents are penalized 1 utility point per tasks
they cannot complete. Figure 9 shows the results of the
experiment. As we can see from the figure, PLASMA is
fully informed starting on day 3, except for days when the
energy harvested is less than the energy required to perform
all the tasks. However, since Kansal’s algorithm depends
on some battery for their reactive algorithm, we provide
each agent with a battery of infinite size to see how our
strategy compares. Figure 10 shows the results. Here we
see the Energy Prediction Model is able to do as well as our
strategy once it converges to the correct learned values. The
variance in learned values depicted in Figure 8 is covered by
the infinite battery capacity, which allows Kansal et. al.
to use all the energy harvested during the day. However,
a lot of utility is wasted while the agent is trying to learn

6



Figure 9: Utility is calculated by averaging the total
utility earned by each of the 10 agents per day. This
experiment assumes each agent has no battery attached.

during the first 10 days. Also, beyond the first 10 days,
how well the Kansal agent actually performs given a limited
battery capacity, will vary somewhere between performance
given no spare battery (Figure 9) and performance given an
infinite battery (Figure 10), depending on how much of the
difference between the prediction and actual solar energy
harvested is stored by the battery.

From the above three simulations, we can see the benefit
of PLASMA over a similar strategy both in the speed of
convergence and lower battery buffer requirements.

8. APPLICATION TO OTHER DOMAINS
In order to be able to apply PLASMA to a model de-

velopment problem, the domain must satisfy the following
conditions:

1. Pre-deployment and Post-deployment Phase. A
partial local model that captures the agent-specific,
site independent model is developed pre-deployment.
Factors that are site-dependent remain as parameters
within the parametrized model. Parts of the parametrized
model that are dependent on the environment of the
agent can be developed post-deployment. In the so-
lar harvesting domain, the maximum energy curve of
the solar panel, and dependencies between the maxi-
mum energy and cloud and site attenuation were de-
veloped pre-deployment. Individual site attenuation
experienced was determined post-deployment to com-
plete the model.

2. Cooperative Information Sharing. Agents exchange
useful site-specific information to collectively improve
local model completion. In the solar harvesting do-
main, agents share observations as well as cloud cover
estimations from developed models in order to help
other agents develop their own local models.

3. Constraints. Agents require constrains to relate ob-
servations as well as observations made over time as
well as observations made at the same time by other
agents. In the solar harvesting domain, the parametrized
model had two environmental factors, cloud and site

Figure 10: Utility is calculated by averaging the total
utility earned by each of the 10 agents per day. This
experiment assumes each agent has a battery of infinite
size.

attenuation. In order to converge, we require two con-
straints and 4 observations that relate those factors us-
ing both constraints. Furthermore, if we increase the
number of factors to three, we require 3 constraints
and 9 observations to converge.

9. RELATED WORK
Multi-agent learning (MAL) is traditionally subdivided

into multi-agent reinforcement learning (MARL) and multi-
agent inductive learning (MAIL). MARL extends traditional
reinforcement learning to multi-agent systems [2, 6, 13].
The disadvantage of MARL is the large observation set re-
quired for convergence using reinforcement learning tech-
niques. MAIL involves learning models by interacting with
other agents in the network. Work in cooperative MAIL
[1, 4, 9] involves determining what information needs to be
shared between agents in the network, and how to learn
the entire model post-deployment. The disadvantages are
similar to MARL in that many observations are required to
develop a usable on-site model.

We applied our two-phase multi-agent model development
strategy to solar harvesting models in WSNs. Sensor net-
works now incorporate agents that can harvest energy from
their environment [8, 10, 11]. Energy usage protocols have
been developed that depend on energy harvested by individ-
ual agents in the network, including those for routing [16],
duty cycling [15], and sleep wake cycling [14] among various
others. In each of these protocols, there is an added benefit
in having each agent estimate the amount of energy it can
harvest at any particular time based on cloud forecast and
sharing this information with other agents in the network.

10. CONCLUSIONS
We presented a two-phase development strategy called

PLASMA (Pre-deployment Learning And Situated Model-
development in Agents) for MAS environmental models that
separates into a pre-deployment (agent-specific, site-independent)
and post-deployment (multi-agent, site-dependent) phase.

7



By developing a majority of the model pre-deployment, we
are able to simplify what needs to be accomplished once
the agent is situated. Furthermore, we reduce the number
of observations required by an agent post-deployment, by
sharing information among agents. Finally, in order to re-
late observations from other agents to the local model, we
take advantage of domain-specific constraints between the
various environmental parameters in our model. The num-
ber of constraints and number of cooperative agents required
to converge is related to the number of environmental pa-
rameters. Thus by developing a majority of the model pre-
deployment we can converge in a very short time.

In building its solar harvesting model, each agent is able
to obtain day-convergence given observations from day one
and two (except under extremely unlikely environmental
conditions) when sharing information among agents. hour-
convergence requires: 1) another hour-converged agent, that
is able to provide a meaningful report, or 2) four observa-
tions, over two days with different cloud attenuation across
days, and different shade attenuation across agents.

We also showed: 1) if a single agent within the multi-agent
system day-converges, all other agents will also day-converge
as soon as the day-converged agent shares its information
with the rest of the network and the other agents have made
observations throughout the day. 2) a non-interacting agent
requires a single observation with no site or cloud attenua-
tion to be able to hour-converge.

11. REFERENCES
[1] S. Benson. Inductive learning of reactive action

models. In International Conference on Machine
Learning, pages 47–54, 1995.

[2] P. Brazdil, M. Gams, S. Sian, L. Torgo, and W. van de
Velde. Learning in distributed systems and
multi-agent environments. In EWSL-91: Proceedings
of the European working session on learning on
Machine learning, pages 412–423, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

[3] D. Corkill, D. Holzhauer, and W. Koziarz. Turn Off
Your Radios! Environmental Monitoring Using
Power-Constrained Sensor Agents. First International
Workshop on Agent Technology for Sensor Networks
(ATSN-07), 2007.

[4] W. Davies and P. Edwards. The communication of
inductive inferences. In G. Weiß, editor, ECAI ’96:
Selected papers from the Workshop on Distributed
Artificial Intelligence Meets Machine Learning,
Learning in Multi-Agent Environments, pages
223–241. Springer-Verlag, 1997.

[5] Y. T. Hou, Y. Shi, and H. D. Sherali. Rate allocation
in wireless sensor networks with network lifetime
requirement. In MobiHoc ’04: Proceedings of the 5th
ACM international symposium on Mobile ad hoc
networking and computing, pages 67–77, New York,
NY, USA, 2004. ACM.

[6] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: theoretical framework and an algorithm. In
Proc. 15th International Conf. on Machine Learning,
pages 242–250. Morgan Kaufmann, San Francisco,
CA, 1998.

[7] Z. Hu and B. Li. On the fundamental capacity and
lifetime limits of energy-constrained wireless sensor

networks. Real-Time and Embedded Technology and
Applications Symposium. Proceedings. RTAS 2004.
10th IEEE, pages 2–9, 25-28 May 2004.

[8] X. Jiang, J. Polastre, and D. Culler. Perpetual
environmentally powered sensor networks. In IEEE
Information Processing in Sensor Networks, pages
463–468, 2005.

[9] R. A. Jr., W. L. Johnson, J. Rickel, and A. Scholer.
Learning domain knowledge for teaching procedural
skills. In AAMAS’02, 2002.

[10] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava.
Power management in energy harvesting sensor
networks. In ACM Transactions on Embedded
Computing Systems, 2006.

[11] A. Kansal and M. Srivastava. An environmental
energy harvesting framework for sensor networks. In
ACM Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS),
2003.

[12] L. L. L, N. Shroff, and R. Srikant. Asymptotically
optimal power-aware routing for multihop wireless
networks with renewable energy sources. INFOCOM
2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings
IEEE, 2:1262–1272 vol. 2, 13-17 March 2005.

[13] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the 11th International Conference on Machine
Learning (ML-94), pages 157–163, New Brunswick,
NJ, 1994. Morgan Kaufmann.

[14] D. Niyato, E. Hossain, and A. Fallahi. Sleep and
Wakeup Strategies in Solar-Powered Wireless
Sensor/Mesh Networks: Performance Analysis and
Optimization. In Transactions on Mobile Computing,
pages 221–236, Feb 2007.

[15] C. Vigorito, D. Ganesan, and A. Barto. Adaptive
Control for Duty-Cycling in Energy Harvesting-based
Wireless Sensor Networks. In Proceedings of the Fourth
Annual IEEE Communications Society Conference on
Sensor, Mesh, and Ad Hoc Communications and
Networks (SECON 2007), San Diego, CA, June 2007.

[16] T. Voigt, H. Ritter, and J. Schiller. Utilizing solar
power in wireless sensor networks. In 28th Annual
IEEE International Conference on Local Computer
Networks, pages 416–422, October 2003.

8


