
Lazy-Adaptive Tree: An Optimized Index Structure for Flash Devices

Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao, and Shashi Singh
{dagrawal,dganesan,ramesh,yanlei,shashi}@cs.umass.edu,

Department of Computer Science
University of Massachusetts Amherst

Flash memories are in ubiquitous use for storage on sensor
nodes, mobile devices, and enterprise servers. However, they
present significant challenges in designing tree indexes due to
their fundamentally different read and write characteristics
in comparison to magnetic disks.

In this paper, we present the Lazy-Adaptive Tree (LA-
Tree), a novel index structure that is designed to improve
performance by minimizing accesses to flash. The LA-tree
has three key features : 1) it amortizes the cost of node reads
and writes by performing update operations in a lazy man-
ner using cascaded buffers, 2) it dynamically adapts buffer
sizes to workload using an online algorithm, which we prove
to be optimal under the cost model for raw NAND flashes,
and 3) it optimizes index parameters, memory management,
and storage reclamation to address flash constraints. Our
performance results on raw NAND flashes show that the
LA-Tree achieves 2× to 12× gains over the best of alter-
nate schemes across a range of workloads and memory con-
straints. Initial results on SSDs are also promising, with 3×
to 6× gains in most cases.

1. INTRODUCTION
Flash memories are finding widespread use for storage on

embedded sensors, mobile platforms, and enterprise servers.
Their ubiquitous use is due to a myriad of benefits: small
size, low cost, low power consumption, and high random
read performance. These advantages have enabled flash to
be employed in a variety of roles that require local storage
and indexing. Examples include in-network sensor data stor-
age and querying [5], embedded databases on mobile devices
[8], and enterprise databases using SSDs [18, 19]. Thus, the
design of flash-optimized index structures is an important
problem in flash-based database systems.

A key challenge in designing flash-optimized index struc-
tures is that, as a storage medium, flash has fundamentally
different read/write characteristics from other non-volatile
media such as magnetic disks. In particular, flash updates
need to be preceded by an erase operation, which is par-
ticularly cumbersome since the unit of erase spans multi-
ple pages. Modifying a node in its original location is pro-
hibitively expensive: it requires copying all valid pages from
the erase block, then erasing the block, and finally copy-
ing the valid pages and updated page back to the block. A
trivial solution to this problem is provided by Flash Transla-
tion Layers (FTLs [14]) which write the modified node to a
new unwritten flash page, and hide this low-level page move-
ment by exposing logical page numbers to the index. This
is inefficient as every update results in node-rewrites and it
increases the cost of reclaiming invalidated pages.

Many recent studies have addressed the problem of de-
signing flash-optimized index structures (e.g. [21, 23]). At

their core, these approaches employ page-level write opti-
mizations. Instead of performing an expensive re-write of
the original flash page, deltas to the page are stored in a
separate location on flash. When a page needs to be read
back to memory, both the base page, as well as delta pages
are retrieved, and the page is re-constructed.

We argue that page-level optimizations are fundamentally
ill-suited to the design of tree indexes on flash. Page-level
optimizations reduce the cost for node writes, but end up
greatly increasing the cost of node reads due to the overhead
of reading delta pages. Despite reads often being cheaper
than writes on flash, the fact that node reads are performed
at every level of the tree for both update and lookup op-
erations dramatically increases the overhead of page-level
optimizations. In the case of a tree, the overhead of read-
ing delta pages at each level can make a delta-based scheme
more expensive even than an FTL-based approach.

In this paper, we present the LA-Tree, a fundamentally
different tree index for flash that is designed around lazy up-
dation techniques rather than delta-based techniques. Our
design of the LA-Tree has the following key features:

Cascaded Buffers: Unlike a traditional tree index, up-
date operations on an LA-Tree are not immediately propa-
gated down the tree. Instead, flash-resident buffers are at-
tached to various levels of the tree, and updates drip down
from one buffer to another in a cascading manner, eventu-
ally propagating to the leaf nodes. The key benefit of such
lazy updates is that it optimizes both node reads and node
writes during update operations, thereby overcoming a cen-
tral drawback of a delta-based approach.

Adaptive Buffering: While a lazy approach is efficient
for update operations, it is inefficient for lookup operations
where an immediate response needs to be provided to the
user. Performing such immediate lookups on a lazy tree
involves scanning large flash-resident buffers, which is pro-
hibitively expensive. The LA-Tree addresses this drawback
by using a novel online algorithm that intelligently adapts
the buffer size to the observed workload. We prove that this
algorithm is optimal under the cost model for raw NAND
flashes. It enables the LA-Tree to transition seamlessly from
being a fully lazy data structure with large buffers for an
update-intensive workload, to being a fully eager data struc-
ture with no buffers for a lookup-intensive workload, while
choosing an ideal buffer size for any intermediate workload.
The LA-Tree’s adaptive capability is a key distinction from
prior work on lazy trees for bulk loading [1, 2].

Memory and Reclamation optimizations: A holis-
tic implementation of the LA-Tree requires addressing two
important practical considerations. First, available mem-
ory resources need to be carefully used to optimize perfor-
mance. Besides the traditional use of memory for caching

1

to reduce page reads and writes, memory is also needed for
write-coalescing to reduce fragmentation of buffers on flash.
Reducing fragmentation makes buffer scans and reclamation
cheaper. Thus, the LA-Tree appropriately partitions mem-
ory for both caching and write-coalescing to improve perfor-
mance. Second, tree nodes and buffers need to be carefully
laid out on flash to optimize reclamation when flash space
runs low. The large size of a flash erase block makes recla-
mation expensive since valid pages need to be copied out to
a different location before reclaiming a block. The LA-Tree
facilitates reclamation since it uses flash-friendly buffers to
reduce node updates. Buffers are sequentially written and
can be emptied instead of being copied, which make them
cheap to maintain and reclaim.

Generality to flash devices: While our work primarily
focuses on raw NAND flashes, we empirically evaluate the
LA-Tree’s performance over “packaged” flash devices such
as Solid State Drives (SSDs) . These devices are designed
using raw NAND flashes, but have an on-board hardware
controller that hides flash complexity and provides a disk-
like abstraction to the operating system. Our evaluation
shows that the LA-Tree can provide impressive benefits for
these packaged flash devices as well.

In summary, we present a lazy, adaptive, flash-optimized
tree index structure that provides a fundamentally new ap-
proach to optimizing tree indexes over flash devices. Our
technical contributions include:

I We describe the LA-Tree, a novel index structure for
flash memories that combines the benefits of lazy up-
dates with immediate querying. It dynamically adapts
to the workload using an optimal online algorithm.

I We provide a holistic system implementation that op-
timizes 1) LA-Tree parameters such as node size and
buffer placement based on flash characteristics, 2) mem-
ory management across nodes and buffers to maximize
benefits of write-coalescing and caching, and 3) storage
reclamation by exploiting flash-friendly buffers that
are easy to maintain and reclaim.

I We compare the LA-Tree against a spectrum of state-
of-the-art approaches for flash-optimized indexes [18,
21, 23]. Our performance results on raw NAND flashes
show that the LA-Tree achieves 2× to 12× gains over
the best of alternate schemes across a range of work-
loads and memory constraints. Initial results with
SSDs are also promising, with 3× to 6× gains in most
cases.

2. A LAZY ADAPTIVE TREE INDEX
In this section, we propose a new index structure called

Lazy Adaptive (LA) Tree. The main idea underlying an LA-
Tree is to avoid the high cost of updating a flash-based tree
index using lazy updates, and to do so in an adaptive manner
to achieve good performance for both updates and lookups.
To this end, an LA-Tree employes two main techniques:

Cascaded buffers. An LA-Tree attaches buffers to nodes
at multiple levels of the tree. Each buffer contains update
operations to be performed on the node and its descendants.
At an appropriate time, all elements in the buffer are pushed
down in a batch to the buffers at the next level. Thus, the
LA-Tree performs multiple updates all at once, sharing node
accesses from the root to the leaves among the updates,
thereby yielding a better amortized cost for each update.

34 1 267
Root Buffer

。。。

3 21
Buffer 1

。。。

。。。
67

Buffer i
8964

Root Subtree

Subtree S
Subtree S i1

56

Figure 1: An LA-Tree with non-leaf nodes (ovals), leaf

nodes (rectangles), and cascaded buffers at every alter-

nate level. The shaded boxes show the result of emptying

the root buffer into next level buffers.

Parameter Symbol Value

Memory size M given by application

Node size (in num. of elements) F variable
Num. of elements in the tree N variable

Height of the tree H ≈ dlogF
N
F e+ 1

Subtree height for buffering K variable
Effective buffer size Bi ≤ U < M , variable,
(in num. of elements) subtree-specific

Table 1: Notation used in the paper. Bold letters denote

the parameters of an LA-Tree that are tunable.

An online adaptive algorithm. The idea of lazy batched
updates is reminiscent of earlier work on buffering for bulk
updating tree indexes [1, 2]. However, buffering introduces
an inherent tension between update performance and lookup
performance. Hence, those approaches achieve a low update
cost at the expense of a high lookup cost. In contrast, the
LA-Tree adapts dynamically to arbitrary workloads using an
optimal online algorithm, thereby offering efficient support
for both updates and lookups.

2.1 Overview of LA-Trees
Like a B+ tree, an LA-Tree is a balanced tree with fanout

F . A key distinction from a B+ tree is that the LA-Tree
attaches a flash-resident buffer to the nodes at every Kth

level of the search directory, starting at the root. The buffer
is used to batch the update (insert and delete) operations
to be performed on this node and its descendants. Figure 1
illustrates the buffers placed at every alternate level from
the root, i.e., K=2. In an LA-Tree, the term “subtree”
is used to refer to a fragment of the tree that starts with a
buffer-attached node and ends above the next level of buffer-
attached nodes, so a subtree has exactly K levels. Finally,
we use Bi to denote the effective buffer size (in number of
entries) of the ith subtree. Bi cannot exceed the predefined
limit U (chosen to be a fraction of the memory size M), but
often has a smaller value because it is dynamically deter-
mined based on the current workload seen by the subtree.
Table 1 summarizes the notation used in this paper.

We next describe the basic operations on an LA-Tree. Fig-
ure 2 and Figure 3 show the sketches of these operations.

Lazy insertions and deletions (Figures 2(a) and (b)).
An update operation in an LA-Tree is lazy: the new entry for
insert or delete is simply appended to the buffer of the root
node. Then the AppendToBuffer routine checks if the buffer
needs to be emptied by calling the adapt algorithm. If the

2

(a) Routine Insert(R, E)
Input: Root of the tree R, Entry E = (k: key value, rid: record id)

1. Let BUF = buffer of the root node, invoke AppendToBuffer(BUF, E, i).

(c) Routine Search(R, q)
Input : Root of the tree R, Predicate q
Output: Set of entries A that satisfy q

1. Top down search in the tree. For each non-leaf node on the path,
 if the node has a buffer BUF, invoke SearchBuffer(BUF, q) →A.

2. At the leaf node N, invoke SearchNode(N) →A.

3. If q is a range predicate, for each next leaf node N, SearchNode(N) →A,
 for each buffer BUF at an ancestor node of N,
 if BUF has not been scanned, SearchBuffer(BUF, q) →A.

4. If A contains deletion entries, apply deletions to collapse content of A.

(b) Routine Delete(R, E)
Input: Root of the tree R, Entry E = (k: key value, rid: record id)

1. Let BUF = buffer of the root node, invoke AppendToBuffer(BUF, E, d).

Figure 2: Top level routines of an LA-tree (sketches).

decision is yes (which occurs infrequently), buffer emptying
is invoked to push all its entries in a batch to the buffers
at lower levels of the tree, where buffer emptying can occur
recursively until the entries finally reach the leaf nodes.

Immediate lookups (Figure 2(c)). When an LA-Tree
receives a lookup request, it searches the tree top-down. A
main distinction from a B+ tree is that if a node on the
root-to-leaf path has an attached buffer, the LA-Tree also
scans the buffer for updates that have not reached the leaf
nodes. A unique feature of our work is that while perform-
ing a buffer scan (Figure 3(b)), the adapt algorithm checks
whether emptying the buffer will improve performance based
on the workload seen so far. If buffer emptying is deemed
beneficial, all entries in the buffer are pushed down to the
next level; otherwise, the buffer is scanned to find matches of
the search predicate. This procedure continues until reach-
ing the leaf node where more matches may be collected.

For a range predicate, the LA-Tree may sequentially ac-
cess other leaf nodes. While scanning each leaf node, the
LA-Tree also searches the buffers attached to the ancestors
of the leaf node if they have not been visited before (This
is another distinction between the LA-Tree and a B+ Tree).
This additional buffer search cost however is limited: re-
peated scans of those buffers will soon make adapt decide
to empty the buffers. The collected matches are finally con-
densed by sorting them based on the timestamp and key
value and applying deletions, if present.

Dynamic decisions about buffer emptying. adapt
is an online algorithm that is the central intelligence module
of the LA-Tree. It sees a sequence of update and lookup re-
quests for each buffer and controls the effective buffer size by
deciding when to empty it. Update requests do not trigger a
buffer empty unless the buffer overflows its predefined limit
U . For lookups, adapt records both the cost of scanning the
buffer and the estimated cost of emptying it. It then weighs
the one-time cost of emptying the buffer at this point ver-
sus the savings that subsequent lookups can receive due to
this empty. When the savings outweigh the emptying cost,
adapt decides to empty the buffer. adapt is explained in
detail in §2.2.

(a) Routine AppendToBuffer(BUF, E, mode)
Input: Buffer BUF, Entry E, Mode mode = i (insertion) or d (deletion)

1. Add an entry E' = (E, mode, timestamp) to BUF.

2. If ADAPT decides to empty the buffer, invoke EmptyBuffer(BUF).

(b) Routine SearchBuffer(BUF, q)
Input: Buffer BUF, Predicate q
Output: Set of entries A that satisfy q

1. If ADAPT decides to empty the buffer, invoke EmptyBuffer(BUF) and
 piggyback the search for q. Else, directly search BUF for q. Return result.

(c) Routine EmptyBuffer(BUF)
Input: Buffer BUF be emptied

If buffer BUF is attached to an intermediate subtree
1. Sort the buffer.

2. For buffer entries in sorted order, search through the subtree,
 insert a set of entries {E} to each next-level buffer BUF' by
 invoking AppendToBuffer(BUF', E).

If buffer BUF is attached to a bottom subtree
3. Sort the buffer.

4. For buffer entries in sorted order, search through the subtree,
 find a set of buffer entries {E} for each leaf node N.

5. Merge {E} with N, apply deletions if present.

6. If N overflows, split N, add index entries {Ei} to the parent node.
 If needed, recursively split ancestor nodes and their attached buffers.

7. If N underflows, borrow entries from neighbors. If still underflow,
 merge leaf nodes, remove index entries {Ed} from the parent node.
 If needed, recursively apply redistribution/merging to ancestor nodes
 and possibly merge their attached buffers.

Figure 3: Buffer routines of an LA-tree (sketches).

Buffer emptying operations (Figure 3(c)). Upon de-
ciding to empty the buffer, adapt invokes the buffer emp-
tying routine. Buffer emptying at an intermediate subtree
consists of steps 1-2: sort the buffer, and distribute all its
entries in sorted order to the next level buffers after search-
ing the subtree. For example, Figure 1 shows the root buffer
being emptied. The buffer is first read into memory, sorted,
and its keys distributed to the next level buffers.

Buffer emptying at a leaf subtree (steps 3-7) also begins
with sorting the buffer. The buffer entries are then dis-
tributed in sorted order to the leaf nodes. From left to right,
the leaf nodes are processed one at a time: for each leaf N ,
the received buffer entries are merged into N by perform-
ing insertions and deletions as specified in those entries. If
N overflows, it is split into two or more nodes. Such splits
can propagate to the ancestor nodes; non-empty buffers at-
tached to these nodes are also split accordingly. Due to the
mix of insertions and deletions, N seldom underflows. But
when it happens, N is first adjusted by borrowing entries
from a neighboring node. Then, if needed it is merged with
a neighboring node just like in a B+ tree. In the rare event
of a merge, the adjustment of the parent and ancestor nodes
is the same as the B+ tree, except that the buffers of two
merged nodes are also merged.

Buffer emptying can be implemented so that the sorting
step (steps 1, 3) can be performed by scanning the buffer
stored on flash in a single pass, and the distribution steps
(steps 2, 4) performed by reading the subtree from flash in
a single pass. We discuss this optimization in §2.3.

3

Buffer B1

Buffer Size

L1 L4L3L2

12 502718

(scanCost, emptyCost)(75, 215) (230, 370)(120, 260)(90, 230)

Lookups:

(75, 215)1
Register (scanCost, emptyCost)

(90, 230)

(230, 370)
(120, 260)

4
3
2

Lookup

Register Table

Figure 4: For the example sequence of four lookups,

ADAPT empties the buffer at the fourth lookup L4.

Finally, it is important to note that the root to leaf path
taken by each update operation in the LA-Tree is identical
to a B+ Tree. The only change is the increased “travel time”
due to buffering at intermediate nodes along the path.

2.2 Adaptive Buffering
Our motivation for adaptive buffering is based on the ob-

servation that a fixed buffer size does not work well for ar-
bitrary workloads. To illustrate this, consider a root buffer
having a fixed size B. When the buffer has accumulated B
entries, it is emptied by distributing the entries through the
top subtree. As described above, the emptying cost involves
one scan of the buffer and subtree, followed by writing the
elements to lower-level buffers. Thus, the amortized emp-
tying cost (particularly, the amortized subtree read cost)
over all update operations is inversely proportional to B. In
contrast, during a lookup all entries in the buffer must be
scanned, incurring a cost proportional to B. Hence, buffer-
ing introduces an inherent tension between update perfor-
mance and lookup performance.

In this section, we present the adapt algorithm that dy-
namically determines buffer sizes based on the workload.
Such dynamic decisions are made for each buffer individu-
ally because different subtrees can see different workloads,
depending on the key distribution. As a sequence of update
and lookup requests arrive at the buffer, adapt decides in
an online manner whether to empty the buffer so that the
cost of the entire sequence of operations is minimized. In
the following, we first describe the key idea of adapt, then
present the algorithm, and finally prove that adapt is an
optimal online algorithm.

Key Insight. We illustrate the key insight behind adapt
using Figure 4, which shows a single buffer that processes
a sequence of lookup operations. Each lookup, denoted by
Li, sees a certain buffer size bi, and hence pays a certain
buffer scan cost si. For example, the scan cost of lookup L1

is 75, while that of lookup L2 is 90. For each Li, adapt
decides whether to empty the buffer at that point. It bases
this decision on the estimated cost of emptying the buffer
at each lookup. We use ei to denote the estimated cost of
emptying the buffer at lookup Li, which increases with the
buffer size bi. For example, the estimated emptying cost at
lookup L1 is 215, and at lookup L2 is 230.

Consider the benefit of emptying at lookup L1 in Figure 4.
Each lookup Lj (j > 1) after L1 would avoid scanning the
b1 portion of the buffer, thereby accruing savings s1. Each
of the three lookups after L1 saves s1. Hence the benefit of

emptying at lookup L1, denoted by payoff p1, is given by
p1 = 3 · s1 = 225. This benefit outweighs the estimated cost
of emptying e1 and hence it is beneficial to empty at lookup
L1. We can generalize from this that it is always beneficial
to empty at lookup Li, if the future savings pi outweigh the
estimated cost of emptying ei. However, since adapt is an
online algorithm, it does not know the future workload and
hence cannot predict the future payoff pi. adapt avoids this
handicap by reasoning in hindsight, as explained below.

The most important concept of adapt is savings in hind-
sight. Consider a lookup Lj . The savings in hindsight of
a prior lookup Li (i < j) is the potential savings obtained
from emptying at lookup Li. There are (j − i) lookups be-
tween Li and Lj , and each saves the buffer scan cost si.
Hence, the savings in hindsight of Li, denoted by sav(i, j),
is given as sav(i, j) = (j − i) · si. adapt empties the buffer
at lookup Lj , if the savings in hindsight of any prior lookup
Li outweigh the corresponding estimated emptying cost ei.
More formally, adapt empties the buffer at lookup Lj if
∃i<jsav(i, j) > ei. In order to compute this, adapt main-
tains a book-keeping structure called Register Ri for each
old lookup Li. As shown in the figure, Ri has two fields:
scanCost stores the scan cost si, and emptyCost stores the
estimated emptying cost ei. In this example, adapt first
empties at lookup L4 as the savings in hindsight of lookup
L1, given by sav(1, 4) = (4−1) ·R1.scanCost = 225, exceed
the corresponding emptying cost R1.emptyCost = 215.

Algorithm 1 ADAPT(operationType)

1: if (operationType = lookup) then
2: j ← j + 1 {j is the lookup index}
3: {Check if any old lookup triggers emptying}
4: for all lookups Li such that (i < j) do
5: savings← (j − i) · Ri.scanCost {sav(i, j)}
6: if (savings ≥ Ri.emptyCost) then
7: Return EMPTY
8: end if
9: end for
10: Create new Rj = (emptyCost, scanCost)
11: else if (bufferSize > U) then
12: Return EMPTY
13: end if
14: Return NOT EMPTY

The Algorithm. Having explained the key insight, we
now present the complete algorithm as shown in Algorithm 1.
To handle lookup operations, adapt performs two steps
(lines 2 to 10): First, it checks if the savings in hindsight
of any old lookup Li exceed its estimated emptying cost. If
so, it decides to empty the buffer. Then, adapt creates a
new register to save the estimated emptying and scan costs
for the current lookup. Handling update operations is triv-
ial: adapt simply empties the buffer when it exceeds the
limit U (line 11).

We now discuss several practical considerations about the
algorithm. One is to optimize the number of registers stored.
For most real workloads, adapt requires only a few (e.g., 3)
registers for each buffer due to three reasons. First, adapt is
only concerned with the lookups since the last buffer empty.
Hence, we erase a buffer’s registers each time it is emptied.
Second, we only keep one register for each group of consec-
utive lookups. This is because the first lookup in the group
will always be the first to trigger an empty, hence obviating
the need to keep state about the subsequent lookups in the
group. Finally, the number of registers required is low both
under update-heavy workloads, where there are few lookups,

4

Lookup index

Bu
ffe

r E
nt

rie
s

l j k

bj

EMPT

INS
Entries inserted into the buffer
Entries emptied by ADAPT

(a) Buffer entries inserted and emptied

Lookup index

Bu
ffe

r E
nt

rie
s

l j k

sav(j,k)bj

bj
OPT

Entries inserted into the buffer
Entries emptied by ADAPT
Entries emptied by OPT

(b) Proof of Lemma 1

Lookup index

Bu
ffe

r E
nt

rie
s

Entries inserted into the buffer
Entries emptied by ADAPT

l j k

Entries emptied by OPT

C [OPT-ADAPT]
bj

bj
OPT

k - 1

L

(c) Proof of Lemma 4

Figure 5: LA-Tree proof of optimality. The solid staircase line plots the number of buffer entries inserted into the

buffer versus the lookup id. The dashed lines plot the number of buffer entries emptied from the buffer.

and under lookup-heavy workloads, for which the buffer size
is already reduced to a small value.

Another important issue is online estimation of buffer scan
and empty costs. We discuss this aspect in §3 where a thor-
ough cost analysis is presented.

2.2.1 Proof of Optimality
We now prove that adapt is an optimal online algorithm

under the cost model for raw NAND flashes. We compare
adapt’s total cost with the cost of an omniscient offline
optimal algorithm opt that knows the entire sequence of
operations in advance. Hence, opt represents a lower bound
on adapt’s cost. We first show that adapt is 2-competitive,
i.e. its cost is no more than twice that of opt for any input
sequence. We then show that there is no deterministic online
algorithm having a competitive ratio smaller than 2, thereby
proving that adapt is an optimal online algorithm.

Our cost model is abstracted from the detailed model pre-
sented in §3. Lookups and buffer empty costs are linear in
terms of the number of buffer entries. Each lookup opera-
tion costs ρ · bi and each buffer empty costs δ+ γ · bi, where
ρ, δ and γ are constants and bi is the current buffer size (in
the number of entries). We ignore the cost of update oper-
ations as they are already included in the buffer emptying
cost of the parent subtree. We note that this model only
holds for byte addressable flashes like raw NAND, but §6.4
shows how it may serve as an initial approximation for block
based devices like SSDs.

Now we characterize the cost of an entire sequence of op-
erations on a buffer using this simplified cost model. Let
L be the entire sequence of lookups seen by a buffer. For
any given algorithm alg, let LE [alg] denote the subset of
lookups at which a buffer empty is triggered. Therefore the
buffer emptying cost incurred by alg can be written as:

CE [alg] =
X

i∈LE [alg]

(δ + γ · bi) = δ · |LE [alg]|+ γ ·
X
i∈LE

bi

where we use CEf [alg] and CEv [alg] to denote the first and
second terms respectively. They represent the fixed and vari-
able components of the total emptying cost CE [alg] respec-

tively. The cost of the remaining lookups L− LE [alg] is:

CL[alg] = ρ ·
X

i∈L−LE [alg]

bi

. Therefore the total cost incurred by algorithm alg for
the entire lookup sequence L is simply C[alg] = CE [alg] +
CL[alg] = CEf [alg] + CEv [alg] + CL[alg].

Figure 5(a) illustrates an arbitrary mix of updates and
lookups on a buffer. The solid staircase line INS plots the
total number of update entries inserted into the buffer versus
each lookup id. The vertical segments of the staircase repre-
sent consecutive updates, while horizontal segments denote
consecutive lookups. The dashed line EMPT shows the to-
tal number of entries emptied from the buffer versus each
lookup id. A vertical jump in this line represents a buffer
empty operation. For example, the figure shows two buffer
empties at lookups Li and Lk respectively. The instanta-
neous buffer size is given by the difference between the INS
and EMPT curves. For instance, the buffer size bj at lookup
Lj in the figure is equal to INS(j)− EMPT (j).

In the following, Lemma 1 proves an important property
about adapt and Lemmas 2 to 4 individually bound each
of the above three cost components. Theorem 1 then uses
these bounds to derive the competitive ratio for adapt. Fi-
nally, Theorem 2 proves that adapt achieves the optimal
competitive ratio.

Lemma 1: opt has to empty at least once between any
two consecutive empties of adapt.
Proof by contradiction: Let the two consecutive empties
of adapt be at lookups Li and Lk. Assume that there is
no empty of opt in between. Figure 5(b) illustrates such a
scenario. The two dashed lines in the figure depict the emp-
tying operations of adapt and opt. The buffer emptying
at Lk can be triggered due to two cases, which we consider
in turn:
Case 1: Empty at Lk was caused by the buffer getting
full. Thus, there should be at least U update operations
between Li and Lk to fill up the buffer. Let opt contain
bopt
i entries at lookup Li, therefore it should contain at least
bopt
k = bopt

k +U entries at lookup Lk. Since this exceeds the
maximum buffer size U , opt should have emptied at least
once before Lk. This contradicts our original assumption

5

and thereby proves the lemma.
Case 2: Empty at Lk was not caused by the buffer getting
full. Therefore, there must be some prior lookup Lj whose
savings in hindsight sav(j, k) outweighs the cost of emptying
the buffer ej . By our cost model, we get sav(j, k) = q ·ρ · bj ,
where there are q = (k − j + 1) lookups between Lj and
Lk. sav(j, k) is thus equal to ρ times the area of the shaded
rectangle in Figure 5(b). Since the buffer was emptied at Lk,
sav(j, k) >= ej holds. Where ej is the cost of emptying the
buffer at Lj , given by ej = δ+ γ · bj . The buffer size of opt
bopt
j at lookup Lj is necessarily greater than the buffer size

of adapt bj , as adapt emptied after opt. Therefore we can
extend the above inequality to conclude that q ·ρ ≥ δ

bj
+γ >

δ
bopt
j

+ γ. Hence, opt can q · ρ · bopt
j − (δ + γ · bopt

j) units of

cost (a positive amount) by choosing to empty at Lj . This
contradicts our assumption that opt is optimal. Therefore,
opt has to empty at least once before Lk, thereby proving
the lemma.

Lemma 2: CEf [adapt] ≤ CEf [opt].
Proof: By Lemma 1, we can show that there should be
at least one empty of opt between any two consecutive
empties of adapt. Thus, opt empties at least as many
times as adapt and hence |LE [adapt]| ≤ |LE [opt]|. Since
CEf [alg] = δ · |LE [alg]|, the lemma immediately follows.

Lemma 3 : CEv [adapt] ≤ CEv [opt] + γ · U .
Proof: Consider the total number of entries emptied by
both opt and adapt. The difference between the number
of entries emptied by opt and adapt can be at most U ,
because the buffer size of both algorithms is upper bounded
by U . Each entry emptied contributes a constant cost γ to
the variable cost component CEv . The lemma immediately
follows.

Lemma 4 : CL[adapt] ≤ CL[opt] +CEf [opt] +CEv [opt].

Proof: We can write CL[adapt] as CL[adapt] = CL[opt]+
CL[adapt−opt]−CL[opt−adapt]. Here CL[adapt−opt]
denotes the additional lookup cost incurred by adapt that
is not incurred by opt. Similarly CL[opt − adapt] de-
notes the additional lookup cost incurred by opt that is not
incurred by adapt. Thus we can see that CL[adapt] ≤
CL[opt]+CL[adapt−opt]. In the following we prove that
CL[adapt− opt] ≤ CEf [opt] + CEv [opt], which proves the
lemma.

Consider Figure 5(c). Similar to Figure 5(b), adapt emp-
ties consecutively at lookups Li and Lk. From Lemma 1, we
know that opt should empty at least once in this interval.
The figure shows one such empty at lookup Lj . As shown in
the figure, the instantaneous buffer size of adapt is greater
than that of opt during the interval [Lj , Lk−1]. Lookup
Lk is not included in this interval as at that point adapt’s
buffer size is also reduced to zero. Thus, after lookup Lk
the buffer size of adapt is bj greater than that of opt.
Therefore, the additional lookup cost incurred by adapt
CL[adapt − opt] is given by ρ · (k − j) · bj . It is equal
to ρ times the area of the shaded rectangle in Figure 5(c)
and is hence identical to sav(j, k − 1). The shaded area
in Figure 5(c) highlights this region. Since adapt did not
empty at Lk−1, sav(j, k− 1) has to be strictly less than the
corresponding emptying cost of adapt ej . Further, ej is
less than the emptying cost suffered by opt eopt

j as adapt
has a smaller buffer size at Lj . This gives us the inequality
CL[adapt−opt] = sav(j, k−1) < ej ≤ eopt

j . Therefore, the

CL[adapt−opt] cost in the interval (Li, Lk) is bounded by
the emptying cost suffered by opt in that interval. We can
show this holds for every interval, thereby proving that the
total CL[adapt − opt] cost is upper bounded by the total
emptying cost of opt given by CEv [opt] + CEf [opt].

Theorem 1: adapt is 2-competitive.
Proof: Using the three lemmas and the corollary, we have:
CEf [adapt]+CEv [adapt]+CL[adapt] ≤ CEf [opt]+CEv [opt]+

CL[opt] + CEf [opt] + CEv [opt] + γ · U . So, cost[adapt] ≤
2 · cost[opt]− CL[opt] + γ · U ≤ 2 · cost[opt] + γ · U . The
last term γ · U is a constant, hence it follows that adapt is
2-competitive [16]

Theorem 2 : adapt is an optimal online algorithm.
Proof: Ski-rental [16] is a special case of our problem, where
we only get one update and a sequence of lookups after-
wards. Since there is no deterministic online algorithm for
ski-rental having a competitive ratio lower than 2, the same
holds for our more general problem. Hence adapt is an
optimal online algorithm

2.3 Buffer Emptying in a Single Scan
Having discussed the key insights behind adaptive buffer-

ing, we now discuss how buffer emptying can be performed
in a single scan of the flash-resident buffers and subtree.
Buffer emptying involves two main steps: (1) sorting the
buffer, and (2) distributing the sorted buffer entries to the
lower level buffers.

The buffer can be easily sorted in a single scan if it fits in
memory. This is usually the case given our adaptive buffer
size control. In rare cases, the buffer size can exceed avail-
able memory when multiple large buffers cascade into a sin-
gle lower level buffer. To handle this, we adopt the buffer
emptying method in [1]. Here, a buffer is broken into two
parts: the batch of entries Y distributed in the last empty
from its parent subtree, and the entries X in the buffer be-
fore Y . Since Y was distributed from above, it is already
sorted. X was in the buffer within the maximal capacity,
thus X < M . So, we can read X, sort it in memory, and
merge it with Y . As we merge, we can distribute them into
the buffers at the next level. This way, the entire buffer
X + Y can be sorted in a single pass.

The sorted buffer entries are then distributed to the lower
level buffers by reading the subtree once, one path at a time.
Thus, a single subtree scan suffices to empty the buffer.

3. LA-TREE COST ANALYSIS
The adapt algorithm relies on accurate estimates of buffer

scan and empty costs to make informed decisions. In this
section, we present a cost analysis of buffer operations. The
result of the analysis supports the linear cost model of buffer
emptying used in our optimality proof (§2.2). It also allows
us to perform online cost estimation for use by adapt.

We exclusively focus on raw NAND flashes in our analysis.
In contrast to SSDs, these flashes are byte addressable and
their IO cost function has two main components: there is
a fixed cost of accessing the page and a per-byte cost of
reading or writing each byte [9]. The fixed access cost is
much smaller than the disk counterpart due to the absence
of any rotational or seek delay. (Table 2 in §6 shows the cost
function for one such raw NAND flash.)

In the following discussion, we use ar and aw to denote
the costs of reading and writing a tree node, and br and bw

6

for the costs of reading and writing a buffer entry. These
costs depend on how the nodes and buffers are laid out on
flash, which is described in detail in §4. The following two
implementation aspects are relevant to our cost analysis.

First, nodes have a fixed size and do not straddle page
boundaries. Therefore, the node costs ar and aw are con-
stants, which can be calculated by plugging the node size
in the flash cost function. Second, buffers are of variable
size and can span multiple pages. We also pack entries be-
longing to different buffers into a single flash page to mini-
mize page writes. Thus, a buffer can be fragmented across
many pages. This impacts the cost of reading the buffer
as it incurs multiple fixed access costs. We use the term
fragmentation-overhead, f , to denote the overhead of ac-
cessing multiple buffer pages for each buffer read operation,
normalized across all entries in the buffer. Intuitively, f in-
creases as a buffer is spread over more pages. We assume for
simplicity that f remains relatively stable and approximate
it to be a constant. (In practice, f can be estimated online.)
Thus, we can model the total cost of reading each buffer en-
try as br = Rb + f , where Rb denotes the constant per-byte
cost of reading a buffer entry. In contrast, fragmentation
of buffers does not affect the cost of writing a buffer. This
is due to each buffer page being completely packed. Hence
each written buffer entry incurs a fixed amortized overhead
of accessing its page. Therefore, bw remains a constant that
can be readily calculated from the (fixed) number of buffer
entries contained in a page.

Non-leaf subtree: The cost of emptying a non-leaf sub-
tree, having S nodes and B buffer entries, includes:

I buffer read: cost of reading the buffer once, br ·B,
I subtree read: cost of reading the subtree once, ar · S,
I buffer writes: cost of adding B entries to the buffers

of the child subtrees, bw ·B,
So, the total cost is CEm = ar · S + (br + bw) · B. As it can
be seen, this cost is linear in the buffer size B.

Leaf subtree: Buffer emptying at a leaf subtree is simi-
lar to above except that the third step is replaced by writ-
ing buffer entries to the leaf nodes and adjusting the tree
bottom-up, if needed. For tree adjustment, we apply the
prior result on node rebalancing operations for the general
family of a-b trees [12] which includes the LA-Tree. In our
case, the total number of node rebalancing operations, in-
cluding splits, merges, and redistributions, for a buffer of
size Bn is bounded by H + 8·Bn

F
, where H is the height, F

is the fanout of the tree and each node is required to be at
least a quarter full.

Node rebalancing during the bottom up tree adjustment
can also trigger buffer rebalancing operations as discussed
in §2.1. However, we note that buffer rebalancing rarely
happens due to two reasons. First, when we are emptying
the buffer of a leaf subtree, the first non-empty buffer that
we can encounter bottom-up is at the level H − 2K (K is
the subtree height) or higher. If K=2, this means levels
H − 4 or higher. Since all node splits and merges originate
at the bottom of the tree, they rarely propagate that high.
Second, higher-levels buffers see more lookups than lower-
level buffers so they are emptied more frequently. Therefore,
the cost of buffer rebalancing is much smaller than that of
node rebalancing (e.g., less than 1% in practice) and hence
is omitted in the analysis below. To summarize, the buffer
empty cost for a leaf subtree, having S nodes and B buffer
entries, includes:

B5B4B3B2B1B6
Buffer Pool for Write Coalescing

N1
Node cache

N1

N2 N7

N3 N4 N5 N6

LA Tree

MEMORY

N1N4 B3 B5B3B3

N2 N3 N4

B1

B2 B3

... FLASH

N8 N9

Currently Used Partition

(empty) ...

Other Partition

N3

Figure 6: Implementation of the LA-Tree.

I buffer read: cost of reading the buffer once, br ·B,
I subtree read: cost of reading the subtree once, ar · S,
I node writes with tree adjustment: aw · (L+H + 8·B

F
),

where L is the number of leaf nodes in the subtree. So, the
buffer empty cost at a leaf subtree is CEn = (ar · S + aw ·
L+aw ·H) + (br + 8aw

F
) ·B. Again, this cost is linear in the

buffer size B.

Online statistics: In-order to estimate the above costs
at runtime, our implementation collects the following statis-
tics for each subtree: (1) the number of nodes S, (2) the
number of buffer entries B, (3) the number of leaf nodes
L for each leaf subtree, and (4) the fragmentation-overhead
term f , which allows us to approximate the cost of reading
a buffer entry br as discussed above.

Hence, this cost analysis enables adapt to accurately esti-
mate the buffer costs to make intelligent emptying decisions.

4. OPTIMIZING LA-TREE FOR FLASH
Having discussed the the key ideas behind LA-Tree, we

now describe its efficient implementation on flash. In par-
ticular, we develop system-level optimizations including tun-
ing index parameters, optimizing memory usage for write-
coalescing, and optimizing storage layout for reclamation.
Our implementation, shown in Figure 6, is general and works
on both raw NAND and SSDs flash devices.

4.1 Tuning LA-Tree Parameters
We now briefly describe how to tune LA-Tree parame-

ters, namely, the fanout and the subtree height to further
improve the overall performance. We verify these intuitions
empirically in §6.1.

Fanout: The fanout determines the node size and hence
the cost of reading and writing a node. Being byte address-
able, raw NAND flashes favor small nodes as this reduces
the cost of reading and writing the index nodes. However,
an extremely small node size is detrimental since it increases
the tree height and more buffers need to be accessed on each
root-to-leaf path. In contrast to raw NAND flashes, SSDs
are block devices and hence favor page sized nodes. Thus,
the LA-Tree chooses a relatively small node size for raw
NAND flashes while using page sized nodes for SSDs.

Subtree height: The subtree height K also affects the
overall cost. For a very small sub-tree height (e.g. K=1),
the LA-Tree attaches a buffer to each node. This increases
the total number of buffers as well as the number of buffers

7

on a particular root-to-leaf path, thereby increasing buffer
access costs. When K takes a large value, e.g., 4, the subtree
size is relatively large, causing a high buffer empty cost. As
a result, the adapt algorithm is less likely to empty the
buffer, leading to increased lookup cost. Therefore, we set
K to a relatively small value between 2 and 3.

4.2 Optimizing Memory Usage
Memory is needed for optimizing both write-coalescing of

buffers and caching of LA-Tree nodes, as shown in Figure 6.
Write-coalescing of buffers is particularly important since
adaptive buffering can result in small buffers being emp-
tied, triggering writes in units that are considerably smaller
than a flash page. This makes the buffer spread over more
pages, which increases its fragmentation-overhead f , thereby
increasing its read cost. Since buffers are scanned for both
lookups and buffer empties, packing buffers is important.

Therefore, we allocate most of the memory in the system
for write-coalescing of buffers, and only use a small amount
of memory for the nodes (25% of total memory in our imple-
mentation). This is because 1) the cost of scanning buffers
during lookups and empties is typically the dominant fac-
tor in overall cost, hence optimizing packing is critical to
performance of the LA-Tree, and 2) lazy updates already
optimizes node reads and writes, hence the additional im-
provement by node caching is limited.

The memory allocated to the buffers and nodes is man-
aged in different ways. Memory allocated to buffers is man-
aged as a buffer pool. To improve packing, the eviction pol-
icy for the buffer pool is “highest-packed buffer fragment”
i.e. the buffer fragment having the largest number of buffer
entries in it is flushed. For example, in Figure 6, buffer B6
is the highest packed, hence it is chosen as the next buffer
to be evicted. Nodes are managed as a standard node cache
with LRU eviction policy to evict old nodes.

4.3 Optimizing Storage and Reclamation
Storage reclamation can be a complex and expensive op-

eration on flash due to large erase units and the high cost
of performing an in-place update. Node updates on NAND
flashes need to be handled by a translation table that avoids
an in-place update by re-writing the page to an unwritten
location on flash and hiding this physical movement of the
page from the index. Such out-of-place rewrites use flash
space quickly, and trigger more frequent reclamation. In
turn, reclamation incurs the high cost of copying valid node
pages from blocks that need to be erased.

The LA-Tree facilitates efficient reclamation in two ways.
First, it triggers fewer node updates due to cascaded buffers,
thereby invalidating fewer pages. Second, it reduces node
updates by using flash-friendly buffers that are easy to store
and reclaim. Buffers are sequentially written data structures
and trigger no in-place updates. They also trigger no data
copying upon reclamation since they can be emptied instead
of being copied.

Storage and reclamation of the LA-Tree for raw NAND
flashes is done as follows. The LA-Tree is allocated two
equal-sized flash partitions, as shown in Figure 6. The two
partitions are distinct from the other flash partitions used by
the database to store data tables and other metadata. When
one of these two partitions fills up, it is reclaimed in following
two steps: First, we empty all the buffers and recursively
copy the valid nodes to the other partition. Finally, the

erase blocks in the first partitions are erased.
Pages are written sequentially within a partition. Each

page can either be a buffer page that contains one or more
buffer fragments, or a node page that contains one or more
nodes. Fragments belonging to the same buffer are reverse
linked to enable traversal, whereas pages allocated to nodes
are managed using a Node Table (equivalent of an index-
specific FTL). Every node update results in an out-of-place
re-write to the head of the partition, and an update of the
Node Table to reflect the new location1. Note that sequen-
tial writes on flash has the auxiliary benefit of improving
wear-levelling, since writes can be distributed evenly across
erase blocks.

In contrast to raw NAND flashes, SSDs expose a disk-
like block interface and have an on-board controller which
handles reclamation and in-place updates on flash. This
obviates the need for writing nodes out-of-place and hence
we do not use a separate in-memory Node Table nor consider
reclamation for SSDs.

5. IMPLEMENTATION OF OTHER SCHEMES
We compare against three state-of-art flash-optimized in-

dexing schemes — BFTL, FlashDB, and IPL. All techniques
are “delta-based” schemes and encode modifications to nodes
in the form of “deltas” (e.g. an insert operation or update
of child pointer). Each node is stored as a base node and
a sequence of deltas on flash. All delta schemes require an
in-memory table to keep track of the list of delta pages for
each node [21, 23]. Note that all three schemes are just node
level optimizations in that they only change the way a node
is laid out on flash, while retaining the familiar B+ Tree
index structure on top. To ensure a fair comparison, we use
the same underlying B+ Tree implementation as used by
the LA-Tree. Each scheme was further optimized by using
compact semantic-deltas [21] and by tweaking index level
parameters like fanout. We briefly discuss the specifics of
each scheme below:

BFTL: BFTL [23] is designed to maximize write-coalescing
of deltas for a B+ tree node. BFTL buffers the generated
deltas into an in-memory delta pool. This delta pool is
flushed after every N insertions to the tree. While flushing
the delta pool, BFTL packs deltas belonging to the same
node into one (or more) consecutive flash pages. Unused
memory by the delta pool is employed for caching nodes.
We set N = 60 based on the value recommended in [23].

FlashDB: FlashDB [21] reduces the overhead of reading
a long chain of deltas for each lookup by using an online al-
gorithm, called Switch-Mode, to adaptively switch between
maintaining a node as a list of deltas (Log-Mode), or as
a single page on flash (Disk-Mode). Intuitively, this algo-
rithm maintains frequently read nodes, like non-leaf nodes
in Disk-Mode, whereas frequently updated nodes like leaf
nodes are left in the Log-Mode. This adaptive technique al-
lows FlashDB to get the benefits of deltas without suffering
the excessively high cost of node reconstruction.

IPL: IPL [18] is designed to minimize scattered writes of
deltas across erase blocks, thereby optimizing storage recla-
mation. While IPL was proposed as a general storage layer
for flash-based databases, we consider the case where a tree
index uses IPL as the storage layer. IPL partitions pages in

1
A Node Table can also be maintained efficiently on flash if needed

[14], but we do not address this case in this paper.

8

Write Read
Toshiba SLC Energy Fixed 24µJ 4µJ
Small Block 128MB Per-byte 0.09µJ 0.1µJ
512B page, 16KB
erase block [22]

Latency Fixed 274µs 69µs

Per-byte 1.5µs 1.7µs

Table 2: Flash energy/latency numbers for raw NAND

flash. (Numbers are measured using a custom-fabricated

raw NAND flash board for the Mica2 sensor mote.)

an erase block into an equal number of node and delta pages.
Whenever a node page is dirtied and needs to be written to
flash, IPL writes the deltas to one of the delta pages within
the same erase block. When all the delta pages in an erase
block fills up, the node and delta pages are merged, and re-
written to a new erase block. The original erase block can
now be erased and reused.

6. PERFORMANCE EVALUATION
In this section we compare the LA-Tree against the stan-

dard B+ tree, and flash optimized indexes like BFTL, FlashDB
and IPL. We first evaluate the LA-Tree over raw NAND
flash, while presenting our initial results with enterprise
grade SSDs at the end. We start by detailing the flash and
traces used in our experiments.

We built a raw NAND flash emulator for use in Linux,
since we were unable to find a suitable device driver that
would allow us to directly interface the underlying flash chip.
The emulator was populated with exhaustive measurements
from a custom-designed Mica2 sensor board with a 128MB
Toshiba raw NAND flash chip (TC58DVG02A1FT00 [22]).

This Toshiba flash also obeys a linear cost function as
described in §3. Table 2 summarizes the energy and latency
cost functions for this flash. We use Wfixed and Wbyte to
denote the fixed and per-byte cost of writing to flash, and
correspondingly Rfixed and Rbyte for the cost of reading
from flash. We can now write the parameters Rb, bw, ar,
and aw introduced in §3 in terms of the flash cost function
as follows: Rb is the per-byte cost component of reading
an 8 byte buffer entry given by Rb = 8 · Rbyte. bw is the
cost of writing a buffer entry and can be written as bw =
8

512
·Wfixed + 8 ·Wbyte, where the first term represents the

amortized fixed cost of accessing a 512 byte flash pages. The
cost of reading and writing a node, ar and aw, depend on
the node size. For an X byte node, ar is readily obtained
from the flash cost function as Rfixed +X ·Rbyte, while aw
is calculated similar to bw as aw = X

512
·Wfixed +X ·Wbyte.

Traces: Our traces consist of a sequence of updates and
lookups, with each operation specifying a 4-byte integer key
and an optional 4-byte record-id. For most experiments, the
workload consists of a random mix of updates and lookups
with a given lookup-to-update-ratio (LTU), which captures
the likelihood of getting a lookup over an update. To avoid
initial tree construction from influencing the results, we ap-
ply the workload to a pre-constructed tree, containing 200K
keys. The costs obtained were normalized by the workload
size to report the cost per operation. We use the following
workloads in our evaluation that offer a range of LTU ratios,
and different correlations in the key distribution:

(1) Uniform: The keys are drawn uniformly and the
number of updates is fixed to one million. We consider a
range of LTUs from 10% to 1000%.

(2) Temperature: The keys are temperature readings
taken at a local weather station. Similar to the Uniform
trace, we fix the number of inserts to 800K while considering
10% and 200% LTU.

(3) Radar Velocity: This trace is obtained from a me-
teorological radar that scans the atmosphere every minute.
Each radar scan consists of about 300K air-velocity read-
ings, one for each atmospheric cell. Our discussion with
meteorologists reveal that 1) they are interested in detect-
ing high velocity air pockets within the area, and 2) queries
are relatively infrequent. Hence, we use range queries of
the form [X,∞), and a Poisson query arrival pattern with a
mean rate of one query every two seconds. X is chosen by
a power law (Pareto) distribution, such that it is within the
top 20% of the velocity range with a 95% likelihood. This
yields high selectivity, i.e. each query selects approximately
30K keys (1% of the keys inserted).

(4) TPC-C: The TPC-C trace is representative of an
online transaction processing system (OLTP). We used a
TPC-C implementation [13] to obtain the sequence of up-
dates and lookups for each of the 10 indexes. We used four
main traces – Customer, Order, Item and Neworder. The
sizes of these workloads ranged from about 1 million to 4
million keys. The other six consisted of only lookups or
only updates and are hence omitted in our study.

6.1 LA-Tree Benchmarks
In this section we individually evaluate the core compo-

nents of LA-Tree over a raw NAND flash. We first quantify
the role of adaptive-buffering and then benchmark key opti-
mizations like small-fanout and buffer-placement. All exper-
iments were done with the Uniform workload consisting of
a million updates. A majority of the updates (66% percent)
were insertions, while the remaining updates were deletions.
We assume 128 KB of RAM and do not consider storage
reclamation costs to focus on index layer optimizations.

Evaluating Adaptive Buffer Size Control: A key
benefit of the LA-Tree is its ability to adapt to varying work-
loads by dynamically adapting buffer sizes at different sub-
trees. We evaluate this adaptive capability by comparing
it against three alternate buffer sizes: a) B+ Tree with the
same fanout as LA-Tree (no-buffering), b) a large fixed size
buffer (8KB), c) a small buffer (128 bytes).

Our response time results shown in Figure 7(a) reveal
two key observations: First, the graph shows the benefits of
adaptive buffering over fixed-size buffers. We see that large
buffers are well suited for update-heavy workloads, whereas
small buffers are well suited for lookup-heavy ones. On the
other hand, the LA-Tree adjusts its buffer size to match any
workload. This behavior is exemplified in Figure 7(b), which
shows that the LA-Tree gradually reduces its buffer size with
increasing LTU. Second, it shows that the B+ Tree is worse
than all other schemes. For example, at 200% LTU the B+
Tree is 1.9× worse than the LA-Tree. This shows that lazy
updates are useful even for lookup-heavy workloads.

The results of this experiment also indicate the benefits of
adapting each subtree’s buffer size independently to respond
to workload variations within the tree. For example, the root
buffer observes more frequent lookups compared to the leaf
buffer. Therefore, adapt chooses an 8KB buffer for the leaf
subtrees, while restricting the root buffer up to 1KB.

We also use the profiling data from this experiment to
validate the cost estimation procedure outlined in §3. For

9

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180 200R
es

p
o
n

se
 t

im
e

p
er

 o
p

er
a
ti

o
n

 (
in

 u
s)

Lookup to Update Ratio

B+ Tree (fanout 16)
LA-Tree - 128B buffer
LA-Tree - 8KB buffer

LA-Tree Adaptive

(a) Benefits of Adaptive Buffering

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 0 25 50 75 100 125 150 175 200

B
u

ff
er

 S
iz

e
in

 B
y
te

s

Lookup to Update Ratio

Average Bufer Size

(b) Buffer Size Variation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160 180 200R
es

p
o
n

se
 t

im
e

p
er

 o
p

er
a
ti

o
n

 (
in

 u
s)

Lookup to Update Ratio

LA-Tree 64
LA-Tree 8

LA-Tree 16

(c) Effect of Fanout

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160 180 200

R
es

p
o
n

se
 t

im
e

p
er

 o
p

er
a
ti

o
n

 (
u

s)

Lookup to Update ratio

LA-Tree K = 1
LA-Tree K = 2
LA-Tree K = 3
LA-Tree K = 4

(d) Effect of buffer placement

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10 100 200

S
ca

le
 t

o
 B

+
T

re
e

Lookup to Update Ratio

Adaptive Buffering
Adaptive Buffering+Small nodes

LA Tree

(e) Performance breakdown

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 10 100 1000R
es

p
o
n

se
 t

im
e

p
er

 o
p

er
a
ti

o
n

 (
in

 u
s)

Memory (Kilobytes)

IPL
BFTL

FlashDB
LA Tree

(f) Impact of increased memory

Figure 7: Evaluation of LA-Tree over raw NAND flash.

instance, the estimated buffer costs in this experiment were
found to be within 8% of the actual buffer costs.

Choosing Fanout and Sub-tree Height: Raw NAND
flash enables fine-grained optimization of node fanout using
sub-page reads and writes. Figure 7(c) shows that the LA-
Tree favors a node size that is much smaller than a page.
While small fanouts are generally superior, we find that de-
creasing the fanout below 16 results in somewhat worse per-
formance since it increases the number of buffers. This hurts
performance as it increases the fragmentation of buffers.

What levels should the LA-Tree place its buffers? Fig-
ure 7(d) shows the effect of placing buffers at every Kth

level, where K is varied from 1 to 4. As can be seen, ex-
treme choices of k (K = 1 and K = 4) perform poorly
because of high node and buffer costs respectively. The
choice between K = 2 and K = 3 depends on the work-
load. In an update-heavy workload, the adaptive algorithm
chooses large buffers; hence, the dominant cost is due to
buffer reads and writes. In this case, K = 3 is better since
it results in fewer buffers and thus has lower buffer access
costs. For a lookup-heavy workload, the LA-Tree operates
mostly with small buffers, hence node costs dominate, which
favors K = 2. We choose K = 2 since it works better across
a wider range of LTU settings.

LA-Tree Breakdown: We now consider how adaptive
buffering, fanout, and buffer placement contribute to the
overall performance of the LA-Tree. We compare three
versions of LA-Tree (a) LA-Tree with adaptive buffering,
page-sized nodes and buffers at each level, (b) LA-Tree with
adaptive buffering, optimized fanout, and buffers at every
level, and (c) LA-Tree with adaptive buffering, small node
size, and buffers at alternate levels. Since the impact of
these mechanisms depend on the workload, we consider 10%,
100% and 200% LTU regimes.

Figure 7(e) shows the response time performance of the

three schemes normalized to that of a regular B+ Tree with
page-sized nodes. The maximum gains stem from our core
mechanism of Adaptive Buffering, which boosts performance
by more than 6×, 3×, and 2× for the three cases. The re-
duction in benefits with increasing lookups is expected since
the LA-Tree operates more eagerly as the workload becomes
more lookup-dominated. Optimizing the fanout improves
performance by 6%, 26%, and 45% for the three workload
settings. The gains are higher for lookup-heavy settings
since node size has greater impact on overall performance
when the dominant cost is node access for lookups. Finally,
attaching buffers at alternate levels improves performance
by an additional 8% to 20% since it reduces the number of
buffer pages that need to be maintained in memory.

Summary: In conjunction, (a) Adaptive buffering (b)
Small node size and (c) Buffer placement achieve 4.3× to
7.2× improvement over a traditional B+ Tree over a raw
NAND flash. Hence, we do not consider the B+ Tree in our
subsequent raw NAND flash based experiments.

6.2 Workload-driven Performance Study
In this section, we demonstrate that the LA-Tree offers

significant performance gains across a range of workloads
over a raw NAND flash. We use four workloads in our study
— Uniform, Temperature, Radar-Velocity and TPC-C —
and evaluate our performance against three flash-optimized
tree indexes — FlashDB [21], BFTL [23], and IPL [18]. In
all cases, we chose the best node size for each scheme to
ensure fair comparison.

Table 3 shows the performance of difference schemes. As
with the benchmarking experiments, each scheme was given
128KB of RAM. We consider two cases: (a) all schemes
are given sufficiently large flash so that reclamation is not
triggered, and (b) each scheme is given a fixed amount of
flash such that storage reclamation is triggered.

10

Uniform Temperature Radar TPC-C

10% LTU 200% LTU 1000% LTU 10% LTU 200% LTU Scan Customer Order Item New
Order

FlashDB 1270 844 581 345 254 1385 550 111 66 22
BFTL 1322 2073 2386 899 1794 1478 862 69 78 19
IPL 2489 1702 1342 802 1418 2205 999 115 80 19
LA-Tree 113 254 253 71 21 163 119 31 46 14
Gain (resp. time) 11.2× 3.3× 2.3× 4.8× 12× 8.5× 4.6× 2.2× 43% 36%

Gain (Energy) 10.7× 2.9× 2.3× 4.6× 9× 8.2× 4.3× 2.1× 25% 28%
Gain (+reclamation) 12.5× 3.5× 2.5× 5× 12.5× 9.5× 5.8× 70% 23% 24%

Table 3: Workload driven evaluation over raw NAND flash. First four rows show mean response time per operation in

µs for different schemes when reclamation is not considered. Last three rows show gains by LA-Tree over the best of

alternate schemes: 1) in terms of response time, 2) in terms of energy, and 3) when storage reclamation is also taken

into account.

Uniform Temperature Radar TPC-C

10% LTU 200% LTU 1000% LTU 10% LTU 200% LTU Scan Customer Order Item New
Order

B+ Tree 2190 1230 427 136 494 2926 1196 73 56 1.5
FlashDB 1487 1083 485 330 879 642 1877 64 55 1.4
BFTL 1463 1192 571 452 1146 1175 2661 108 61 1.4
IPL 2791 2289 908 2083 3198 6705 5312 544 245 135
LA-Tree 315 351 378 34 133 12 216 9 53 1.4
Gain (over best) 4.6× 3× 1.1× 3.9× 3.7× 52× 5.5× 6.6× 3% 1×
Gain (over worst) 8.8× 6.5× 2.4× 60× 24× 540× 24× 56× 4.5 91×

Table 4: Workload driven evaluation over SSD. First five rows show mean response time per operation in µs.
Last two rows show gains by LA-Tree over the best and worst of alternate schemes, respectively.

Results without reclamation: We discuss LA-Tree’s
gains by considering each dataset in turn. As our energy
gains are almost identical to our response time gains, we
focus on response time gains in the discussion below.
Uniform: Table 3 shows that the LA-Tree outperforms other
schemes across both lookup and update dominated work-
loads. We outperform our closest competitor FlashDB by
2.3× to 11.2×, with larger gains for update-heavy workloads
when the LA-Tree can be lazier.
Temperature: This workload is highly correlated as tem-
perature follows a periodic daily pattern. Therefore, node
accesses have high locality and this improves cache locality
of all schemes. This helps the LA-Tree as it reduces the
working set of its node cache, and therefore frees up most
of the memory for its buffer pool. In turn this significantly
lowers the cost of batching. Table 3 shows that this boosts
LA-Tree’s gains over FlashDB to more than 4.8×.
Radar Air Velocity Scan: This trace is extremely update-
heavy since each radar scan has a huge number of keys.
The LA-Tree operates in a highly lazy manner given the
highly update-dominated workload (0.01% LTU), thereby
performing 8.5× - 13.5× better than other schemes. This
experiment demonstrates that LA-Tree is efficient at answer-
ing range queries in addition to point queries.
TPC-C: The LA-Tree out-performs other approaches across
all four traces. The maximum improvement is observed for
the Customer trace, which is update-heavy (8% LTU) and
has highly uncorrelated keys. This enables the LA-Tree to
operate in a lazy manner, thereby achieving at least 4.6×
improvement over alternate schemes. The other three traces
are lookup-heavy and have highly regular access patterns.
As a result all schemes perform well on them and the LA-
Tree only achieves modest gains of upto 2.2×.

Results with reclamation: How do reclamation costs
impact the above results? The last row in Table 3 shows the
gains when reclamation is considered. Since traces were of
different lengths, we used a flash size that was roughly three

times the size of the tree constructed by that trace. The flash
sizes given to each trace were: 15MB to the Uniform and
Temperature traces, 3.5MB each to the TPC-C Customer,
Order, and NewOrder traces, 35MB to the TPC-C Item trace
and 100MB to the Radar trace. These settings trigger up
to seven storage reclamation attempts for different cases.
The reclamation overhead includes cost of movement of valid
pages and cost of block erase operations.

The results show that the gains when including reclama-
tion overhead are similar to gains when not considering this
overhead. In fact, the LA-Tree has significantly lower recla-
mation overhead in most cases. Only IPL incurs marginally
lower reclamation cost than the LA-Tree for a subset of the
TPC-C traces, however its aggregate performance is consid-
erably worse than all other schemes. Schemes other than
IPL have a high reclamation overhead since they have long
chains of deltas that need to be reclaimed. Thus, the LA-
Tree can be efficiently reclaimed under limited flash space.

Summary: The LA-Tree and three other schemes were
evaluated over diverse workloads on raw NAND flashes. The
LA-Tree improves response time and energy consumption by
up to 12× over the best of other schemes. Similar gains are
obtained when storage reclamation overhead is considered.

6.3 Impact of Increasing Memory
We next explore the impact of memory on the perfor-

mance benefits of the LA tree over raw NAND flash. We
evaluate various schemes using the 100% LTU Uniform work-
load and and vary the memory between 8 KB to 1 MB.

Figure 7(f) shows how LA-Tree’s performance scales with
increasing memory. At very low memory, LA-Tree buffers
are highly fragmented on flash due to limited memory for
write-coalescing. This increases the cost of scanning buffers,
which causes the adapt algorithm to empty more frequently.
This reduces the benefits of buffering. As available memory
increases, both write-coalescing and node caching hit rates
improve. The adapt algorithm therefore empties less fre-

11

quently and allows buffers to grow larger, thereby improv-
ing performance. This trend is seen in the figure: LA-Tree’s
gains scale up with memory – from 3× at 8KB to roughly
33× at 1MB. Our results demonstrate that LA-Tree can
adapt to both workload variations as well as memory varia-
tions using the same adaptive scheme.

Summary: The LA-Tree is 3× to 33× better than the
best of other schemes across a range of memory settings.

Results with other NAND flashes: Our results until
now are on the small block Toshiba raw NAND flash. We
have also evaluated our performance over several large block
raw NAND flashes. Our gains are even better in these cases.
For instance, in the case of a Samsung X9F1208X0C flash,
the LA-Tree’s gains jump to 5× for the 1000% LTU Uniform
workload and 23× for the 10% LTU Uniform workload.

6.4 LA-Tree over SSDs

Random Random Seq. Seq.
Writes Reads Writes Reads

MSP-SATA7525
SSD [6]

8.3 ms 0.11 ms 0.07 ms 0.28 ms

Table 5: Response time benchmarks for SSD.

Until now we have evaluated LA-Tree over a raw NAND
flash. We now provide initial results for LA-Tree’s per-
formance over enterprise grade SSDs. Unlike raw NAND
flashes, these devices are not byte addressable and only al-
low a block I/O interface. As pointed out in §2.2.1, this
impacts the optimality of the adapt algorithm as the buffer
cost is no longer a linear function of the buffer size. De-
spite this key difference, we empirically demonstrate that
LA-Tree continues to greatly outperform other schemes.

We use the 16GB MSP-SATA7525 [6] SSD attached to a
Dual-Core Intel Pentium Linux server for all our SSD exper-
iments. This SSD does not have enough on-disk caching and
as a result it exhibits very poor random write performance.
For example, as can be seen from benchmarks in Table 5,
the random write cost is up to 30× the cost of other I/Os.
Recent work suggests that this is due to the coarse granu-
larity of FTLs employed in such SSDs, which exacerbate the
number of read-modify-write operations [3, 4].

Unlike raw NAND flashes, SSDs are block devices and
do not have a notion of fixed or per-byte costs. We use
the same cost framework as described in §3, but change the
parameters ar, aw, bw, and br as follows: ar is the cost of
reading a page sized node and thus it is equal to the cost
of one random read operation. Similarly, aw is the cost of
writing a page sized node and hence it is equal to the cost
of one random write operation. The cost of writing an (8
byte) buffer entry bw is the amortized cost of writing 8 bytes
sequentially, since buffer entries are packed and written out

sequentially. Therefore, we set bw as 8
512

th
of the sequential

write cost. Reading a buffer can incur multiple random page
reads. To model this, we estimate br in a manner similar to
how the fragmentation-overhead f is estimated for the case
of raw NAND flashes. That is, br is now the estimated cost
of reading the buffer normalized by the number of entries.

We first consider the workloads used in §6.2 with 128KB
of RAM. (We disabled the kernel’s buffer cache to avoid im-
pacting our results.) Table 4 shows that the LA-Tree signifi-
cantly improves performance with more than an order of im-
provement over the best alternate scheme for some update-

heavy workloads. LA-Tree continues to outperform other
schemes due to two main reasons: First, adaptive buffering
amortizes the buffer emptying cost over multiple insertions.
In turn, this reduces expensive random write operations,
which is a major source of inefficiency on SSDs (as shown
in Table 5). Thus, the LA-Tree is able to leverage sequen-
tially written buffers to reduce the number of node re-writes.
In contrast, other schemes trigger many more node updates
and therefore random write operations, which greatly in-
creases their response time. Second, the adapt algorithm
continues to keep the buffer scan cost in check by adapting
the buffer size to the workload.

Scheme 10% LTU 200% LTU 1000% LTU
B+ Tree 2117 µs 1184 µs 395 µs
LA-Tree 308 µs 329 µs 361 µs
Gain 6.8× 3.5× 10%

Table 6: Mean response time per operation for a 2GB
workload over SSD.

We now evaluate the LA-Tree against the B+ Tree over a
large uniform workload consisting of 256 million insertions
yielding an index of size more than 2GB. We gave 32MB
of RAM to both schemes to ensure the same memory-to-
workload ratio as used in §6.2. Table 6 demonstrates the
benefits of LA-Tree for such enterprise grade settings. We
see that the results are quite similar to the ones obtained
with the smaller workload size, as shown in Table 4.

Summary: The adaptive buffering technique of LA-Tree
provides significant benefits over SSDs too, with 3× to 6×
performance gains in most cases.

7. EXTENSION TO GiST INDEXES
Finally, we briefly discuss how the main techniques of the

LA-Tree can be extended to the GiST indexes [11]. The
key insight in the extension is that cascaded buffers in the
LA-Tree do not change the path that each update operation
takes to traverse the tree. They only increases the “travel
time” through buffering at intermediate levels of the tree.
When a batch of updates are merged into a node, node re-
balancing operations propagate bottom-up as before, possi-
bly triggering similar operations on the buffers attached to
those nodes.

As a proof of concept, we sketch the search and insert al-
gorithms for GiST indexes that do not have key values from
an ordered domain, e.g., the R-tree. A complete implemen-
tation is a focus of our future work.

Search in GiST is controlled by the Consistent method.
In an unordered domain, a search may take multiple paths.
The LA-Tree will strictly follow those paths in a search and
scan buffers attached along the paths. However, once adapt
observes repeated scans of the buffers, it will decide to empty
those buffers sooner to adapt to the workload.

Insertion in GiST takes a single path in the tree, guided
by the Penalty method. Once this path is determined, the
LA-Tree can buffer updates at intermediate levels and decide
when to empty using adapt as before. One distinction from
insertion in the LA-Tree is that sorted distribution of buffer
entries is not possible in the unordered domain. To still
perform buffer emptying using a single scan of the buffer and
the subtree, the LA-Tree needs to choose a small subtree size
that can fit in memory. With the subtree loaded in memory,
it can distribute the buffer entries through it one at a time.

12

This way, it still amortizes the subtree read cost over all the
buffer entries. Since buffer entries can now go to lower-level
buffers in an arbitrary order, write-coalescing of buffers will
play a crucial role in avoiding excessive buffer fragmentation.

Finally, the only GiST method that needs to be extended
is PickSplit, for which the LA-Tree will change from a two-
way split to an n-way split. This is because emptying a leaf
subtree could entail multiple index entries being merged into
a leaf node which could split it into multiple nodes.

8. RELATED WORK
In this section, we survey related work that we have not

discussed previously in this paper. (BFTL [23], FlashDB [21],
and IPL [18] are discussed in detail in §5.)

Buffered Tree Structures: The idea of attaching buffers
to nodes or subtrees has been explored in the context of ef-
ficient bulk index operations and bulk-loading of indexes [1,
2, 24]. However, these are specialized indexes and can only
be used for specific workloads — [24] for lookup-dominated
workloads and [1] for update dominated ones. The LA-Tree
is fundamentally different in that we can dynamically adapt
to any workload by means of our online algorithm. Further-
more, we optimize tree parameters, memory management,
and reclamation to suit flash constraints and characteristics.

SSD in DBMS: SSDs offer fast sequential write and
random read performance compared to disks, and consume
lower power [7]. These advantages have led to much recent
research on using SSDs: (1) as replacements for magnetic
disks for enterprise databases [19], (2) as a write cache to
improve latency [10], and (3) as extensions of disks along
with intelligent mechanisms to split or migrate workloads
between the two media [17].

From an indexing perspective, a key limitation of SSDs is
their poor random write performance, which makes in-place
node updates very expensive [3, 4]. FD-Trees is a recent
approach that addresses this problem [20]. Every tree level
in FD-Tree is treated as a sequentially written sorted log
of keys and pointers, and can grow to a fixed size. When
a log fills up, it is merged with the log at the level below
and the merged log is rewritten to flash. This process con-
tinues down if necessary. Any rewrite of a log also triggers
rewrites of all logs above it to maintain the tree structure.
Thus, the FD-Tree avoids the high cost of random writes
on SSDs by using many more sequential writes. Unlike the
LA-Tree, the FD-Tree is designed solely for SSDs, and is im-
practical for raw NAND flashes that do not have a significant
difference between sequential and random writes. Further,
the LA-Tree can also be adapted to avoid random writes by
using it in conjunction with our Node Table (described in
§4.3). With this setup, we believe that the LA-Tree will per-
form better than the FD-Tree since it fundamentally reduces
the total number of I/Os without incurring the overhead of
many more sequential I/Os.

Raw NAND flash based Indexes: The µ-tree tries to
minimize the impact of node rewrites on raw NAND flash
in the absence of an FTL [15]. It does so by packing the
entire path from the root to the leaf node into a single page
on flash. This is orthogonal to the problem of minimizing
the accesses to flash, which we address.

9. CONCLUSION
The use of flash devices has grown dramatically in the

last five years, thereby increasing the importance of design-
ing flash-optimized indexes. In this paper, we presented the
design, analysis, and implementation of the LA-Tree, an op-
timized index structure for flash devices. We show that the
core techniques underlying the design of the LA-Tree— lazy
updates, adaptive buffering, and memory/reclamation opti-
mizations — yield significant performance benefits over di-
verse flash devices ranging from raw NAND flashes to SSDs.
The LA-Tree achieves 2× to 12× gains over the best of al-
ternate schemes on NAND flashes. Initial results on SSDs
are also promising, with 3× to 6× gains in most cases.

LA-Tree enables new research directions in designing flash-
optimized database systems. One direction is designing a
broader spectrum of SSD-optimized indexes in the GiST [11]
family using similar approaches, and integrating them with
a full-function database system. A second research direc-
tion is to explore techniques that maximize the end-to-end
benefits of using flash storage in enterprise database servers.

10. REFERENCES
[1] L. Arge. The buffer tree: A Technique for Designing Batched

External Data Structures. In Algorithmica 37(1):1-24, 2003.

[2] L. Arge, K. Hinrichs et al. Efficient bulk operations on dynamic
R-trees. In Algorithmica 33(1):104-128, 2002.

[3] A. Birrell, M. Isard et al. A Design for High Performance Flash
Disks. In SIGOPS Operating system review, 41(2), 2007.

[4] N. Agrawal, V. Prabhakaran et al. Design Tradeoffs for SSD
Performance. In USENIX 2008.

[5] Y. Diao, D. Ganesan et al. Rethinking data management for
storage-centric sensor networks. In CIDR 2007.

[6] MSP-SATA7525. http://mtron.net/Upload_Data/Spec/ASIC/PRO/
SATA/MSP-SATA7525_rev0.4.pdf

[7] J. Gray, and B. Fitzgerald. Flash Disk Opportunity for Server
Applications. In ACM Queue 2008 4(6).

[8] Enea polyhedra flashlite. http://www.enea.com.

[9] G. Mathur, P. Desnoyers et al. Ultra-Low Power Data Storage
for Sensor Networks. In IPSN-SPOTS, 2006.

[10] G. Graefe. The Five-minute Rule Twenty Years Later, and How
Flash Memory Changes the Rules. In DAMON 2007.

[11] J.M. Hellerstein, J.F. Naughton et al. Generalized Search Trees
for Database Systems. In VLDB, 1995.

[12] S. Huddleston and K. Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17, 1982.

[13] H-Store: A Next Generation OLTP DBMS.
http://db.cs.yale.edu/hstore/.

[14] J.-U. Kang, H. Jo et al. A superblock-based flash translation
layer for nand flash memory. In EMSOFT 2006.

[15] D. Kang, D. Jung et al. µ-tree: an ordered index structure for
NAND flash memory. In EMSOFT 2007.

[16] A. Borodin and E. Y. Ran. Online computation and
competitive analysis. Published by Cambridge University
Press, 1998

[17] I. Koltsidas, S. D. Viglas. Flashing Up the Storage Layer. In
VLDB 2008.

[18] S. Lee and B. Moon. Design of flash-based DBMS: an in-page
logging approach. In SIGMOD 2007.

[19] S. Lee, B. Moon et al. A Case for Flash Memory SSD in
Enterprise Database Applications. In SIGMOD 2008.

[20] Y. Li, B. He et al. Tree Indexing on Flash Disks. In ICDE 2009.

[21] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database
for NAND flash. In IPSN 2007.

[22] Toshiba TC58DVG02A1FT00 NAND flash chip datasheet.
http://toshiba.com/taec, 2003.

[23] C. Wu, T. Wei, and L. P. Chang. An efficient B-tree layer
implementation for flash-memory storage systems. Trans. on
Embedded Computing Systems, 6(3), 2007.

[24] J. Zhou and K. A. Ross. Buffering accesses to memory-resident
index structures. In VLDB 2003.

13

