Lazy-Adaptive Tree: An Optimized Index Structure for Flash Devices

Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao, and Shashi Singh

{dagrawal,dganesan,ramesh,yanlei,shashi}@cs.umass.edu,
Department of Computer Science
University of Massachusetts Amherst

Flash memories are in ubiquitous use for storage on sensor nodes, mobile devices, and enterprise servers. However, they present significant challenges in designing tree indexes due to their fundamentally different read and write characteristics in comparison to magnetic disks.

In this paper, we present the Lazy-Adaptive Tree (LA-Tree), a novel index structure that is designed to improve performance by minimizing accesses to flash. The LA-tree has three key features: 1) it amortizes the cost of node reads and writes by performing update operations in a lazy manner using cascaded buffers, 2) it dynamically adapts buffer sizes to workload using an online algorithm, which we prove to be optimal under the cost model for raw NAND flashes, and 3) it optimizes index parameters, memory management, and storage reclamation to address flash constraints. Our performance results on raw NAND flashes show that the LA-Tree achieves 2 × to 12 × gains over the best of alternate schemes across a range of workloads and memory constraints. Initial results on SSDs are also promising, with 3 × to 6 × gains in most cases.

1. INTRODUCTION

Flash memories are finding widespread use for storage on embedded sensors, mobile platforms, and enterprise servers. Their ubiquitous use is due to a myriad of benefits: small size, low cost, low power consumption, and high random read performance. These advantages have enabled flash to be employed in a variety of roles that require local storage and indexing. Examples include in-network sensor data storage and querying [5], embedded databases on mobile devices [8], and enterprise databases using SSDs [18, 19]. Thus, the design of flash-optimized index structures is an important problem in flash-based database systems.

A key challenge in designing flash-optimized index structures is that, as a storage medium, flash has fundamentally different read/write characteristics from other non-volatile media such as magnetic disks. In particular, flash updates need to be preceded by an erase operation, which is particularly cumbersome since the unit of erase spans multiple pages. Modifying a node in its original location is prohibitively expensive: it requires copying all valid pages from the erase block, then erasing the block, and finally copying the valid pages and updated page back to the block. A trivial solution to this problem is provided by Flash Translation Layers (FTLs [14]) which write the modified node to a new unwritten flash page, and hide this low-level page movement by exposing logical page numbers to the index. This is inefficient as every update results in node-rewrites and it increases the cost of reclaiming invalidated pages.

Many recent studies have addressed the problem of designing flash-optimized index structures (e.g., [21, 23]). At their core, these approaches employ page-level write optimizations. Instead of performing an expensive re-write of the original flash page, deltas to the page are stored in a separate location on flash. When a page needs to be read back to memory, both the base page, as well as delta pages are retrieved, and the page is re-constructed.

We argue that page-level optimizations are fundamentally ill-suited to the design of tree indexes on flash. Page-level optimizations reduce the cost for node writes, but end up greatly increasing the cost of node reads due to the overhead of reading delta pages. Despite reads often being cheaper than writes on flash, the fact that node reads are performed at every level of the tree for both update and lookup operations dramatically increases the overhead of page-level optimizations. In the case of a tree, the overhead of reading delta pages at each level can make a delta-based scheme more expensive even than an FTL-based approach.

In this paper, we present the LA-Tree, a fundamentally different tree index for flash that is designed around lazy update techniques rather than delta-based techniques. Our design of the LA-Tree has the following key features:

- **Cascaded Buffers:** Unlike a traditional tree index, update operations on an LA-Tree are not immediately propagated down the tree. Instead, flash-resident buffers are attached to various levels of the tree, and updates drip down from one buffer to another in a cascading manner, eventually propagating to the leaf nodes. The key benefit of such lazy updates is that it optimizes both node reads and node writes during update operations, thereby overcoming a central drawback of a delta-based approach.

- **Adaptive Buffering:** While a lazy approach is efficient for update operations, it is inefficient for lookup operations where an immediate response needs to be provided to the user. Performing such immediate lookups on a lazy tree involves scanning large flash-resident buffers, which is prohibitively expensive. The LA-Tree addresses this drawback by using a novel online algorithm that intelligently adapts the buffer size to the observed workload. We prove that this algorithm is optimal under the cost model for raw NAND flashes. It enables the LA-Tree to transition seamlessly from being a fully lazy data structure with large buffers for an update-intensive workload, to being a fully eager data structure with no buffers for a lookup-intensive workload, while choosing an ideal buffer size for any intermediate workload. The LA-Tree’s adaptive capability is a key distinction from prior work on lazy trees for bulk loading [1, 2].

- **Memory and Reclamation optimizations:** A holistic implementation of the LA-Tree requires addressing two important practical considerations. First, available memory resources need to be carefully used to optimize performance. Besides the traditional use of memory for caching
to reduce page reads and writes, memory is also needed for write-coalescing to reduce fragmentation of buffers on flash. Reducing fragmentation makes buffer scans and reclamation cheaper. Thus, the LA-Tree appropriately partitions memory for both caching and write-coalescing to improve performance. Second, tree nodes and buffers need to be carefully laid out on flash to optimize reclamation when flash space runs low. The large size of a flash erase block makes reclamation expensive since valid pages need to be copied out to a different location before reclaiming a block. The LA-Tree facilitates reclamation since it uses flash-friendly buffers to reduce node updates. Buffers are sequentially written and can be emptied instead of being copied, which makes them cheap to maintain and reclaim.

Generality to flash devices: While our work primarily focuses on raw NAND flashes, we empirically evaluate the LA-Tree’s performance over “packaged” flash devices such as Solid State Drives (SSDs). These devices are designed using raw NAND flashes, but have an on-board hardware controller that hides flash complexity and provides a disk-like abstraction to the operating system. Our evaluation shows that the LA-Tree can provide impressive benefits for these packaged flash devices as well.

In summary, we present a lazy, adaptive, flash-optimized tree index structure that provides a fundamentally new approach to optimizing tree indexes over flash devices. Our technical contributions include:

- We describe the LA-Tree, a novel index structure for flash memories that combines the benefits of lazy updates with immediate querying. It dynamically adapts to the workload using an optimal online algorithm.
- We provide a holistic system implementation that optimizes 1) LA-Tree parameters such as node size and buffer placement based on flash characteristics, 2) memory management across nodes and buffers to maximize benefits of write-coalescing and caching, and 3) storage reclamation by exploiting flash-friendly buffers that are easy to maintain and reclaim.
- We compare the LA-Tree against a spectrum of state-of-the-art approaches for flash-optimized indexes [18, 21, 23]. Our performance results on raw NAND flashes show that the LA-Tree achieves 2× to 12× gains over the best of alternate schemes across a range of workloads and memory constraints. Initial results with SSDs are also promising, with 3× to 6× gains in most cases.

2. **A LAZY ADAPTIVE TREE INDEX**

In this section, we propose a new index structure called Lazy Adaptive (LA) Tree. The main idea underlying an LA-Tree is to avoid the high cost of updating a flash-based tree index using lazy updates, and to do so in an adaptive manner to achieve good performance for both updates and lookups. To this end, an LA-Tree employs two main techniques:

- **Cascaded buffers.** An LA-Tree attaches buffers to nodes at multiple levels of the tree. Each buffer contains update operations to be performed on the node and its descendants. At an appropriate time, all elements in the buffer are pushed down in a batch to the buffers at the next level. Thus, the LA-Tree performs multiple updates all at once, sharing node accesses from the root to the leaves among the updates, thereby yielding a better amortized cost for each update.

- **Lazy insertions and deletions (Figures 2(a) and (b)).** An update operation in an LA-Tree is lazy: the new entry for insert or delete is simply appended to the buffer of the root node. Then the AppendToBuffer routine checks if the buffer needs to be emptied by calling the ADAPT algorithm. If the

![Figure 1: An LA-Tree with non-leaf nodes (ovals), leaf nodes (rectangles), and cascaded buffers at every alternate level. The shaded boxes show the result of emptying the root buffer into next level buffers.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory size</td>
<td>M</td>
<td>given by application</td>
</tr>
<tr>
<td>Node size (in num. of elements)</td>
<td>F</td>
<td>variable</td>
</tr>
<tr>
<td>Num. of elements in the tree</td>
<td>N</td>
<td>variable</td>
</tr>
<tr>
<td>Height of the tree</td>
<td>B</td>
<td>$\approx \log_2 \frac{F}{F+1}$</td>
</tr>
<tr>
<td>Subtree height for buffering</td>
<td>K</td>
<td>variable</td>
</tr>
<tr>
<td>Effective buffer size</td>
<td>B_i</td>
<td>$\leq U < M$, variable, subtree-specific</td>
</tr>
</tbody>
</table>

Table 1: Notation used in the paper. Bold letters denote the parameters of an LA-Tree that are tunable.

An online adaptive algorithm. The idea of lazy batched updates is reminiscent of earlier work on buffering for bulk updating tree indexes [1, 2]. However, buffering introduces an inherent tension between update performance and lookup performance. Hence, those approaches achieve a low update cost at the expense of a high lookup cost. In contrast, the LA-Tree adapts dynamically to arbitrary workloads using an optimal online algorithm, thereby offering efficient support for both updates and lookups.

2.1 Overview of LA-Trees

Like a B+ tree, an LA-Tree is a balanced tree with fanout F. A key distinction from a B+ tree is that the LA-Tree attaches a flash-resident buffer to the nodes at every Kth level of the search directory, starting at the root. The buffer is used to batch the update (insert and delete) operations to be performed on this node and its descendants. Figure 1 illustrates the buffers placed at every alternate level from the root, i.e., $K=2$. In an LA-Tree, the term “subtree” is used to refer to a fragment of the tree that starts with a buffer-attached node and ends above the next level of buffer-attached nodes, so a subtree has exactly K levels. Finally, we use B_i to denote the effective buffer size (in number of entries) of the ith subtree. B_i cannot exceed the predefined limit U (chosen to be a fraction of the memory size M), but often has a smaller value because it is dynamically determined based on the current workload seen by the subtree. Table 1 summarizes the notation used in this paper.

We next describe the basic operations on an LA-Tree. Figure 2 and Figure 3 show the sketches of these operations.

- Lazy insertions and deletions (Figures 2(a) and (b)). An update operation in an LA-Tree is lazy: the new entry for insert or delete is simply appended to the buffer of the root node. Then the AppendToBuffer routine checks if the buffer needs to be emptied by calling the ADAPT algorithm. If the
and possibly merge for each buffer. If needed, recursively apply redistribution/merging to ancestor nodes and possibly merge their attached buffers.

1. Let BUF = buffer of the root node, invoke AppendToBuffer(BUF, E, i).

(b) Routine Delete(R, E)
Input: Root of the tree R, Entry E = (k: key value, rid: record id)
1. Let BUF = buffer of the root node, invoke AppendToBuffer(BUF, E, d).

3. If needed, recursively split ancestor nodes and their attached buffers.

(c) Routine Search(R, q)
Input: Root of the tree R, Predicate q
Output: Set of entries A that satisfy q
1. Top down search in the tree. For each non-leaf node on the path, if the node has a buffer BUF, invoke SearchBuffer(BUF, q) → A.
2. At the leaf node N, invoke SearchNode(N) → A.
3. If q is a range predicate, for each next leaf node N, SearchNode(N) → A, for each buffer BUF at an ancestor node of N, if BUF has not been scanned, SearchBuffer(BUF, q) → A.
4. If A contains deletion entries, apply deletions to collapse content of A.

Figure 2: Top level routines of an LA-tree (sketches).

Dynamic decisions about buffer emptying. ADAPT is an online algorithm that is the central intelligence module of the LA-Tree. It sees a sequence of update and lookup requests for each buffer and controls the effective buffer size by deciding when to empty it. Update requests do not trigger a buffer empty unless the buffer overflows its predefined limit U. For lookups, ADAPT records both the cost of scanning the buffer and the estimated cost of emptying it. It then weighs the one-time cost of emptying the buffer at this point versus the savings that subsequent lookups can receive due to this empty. When the savings outweigh the emptying cost, ADAPT decides to empty the buffer. ADAPT is explained in detail in §2.2.

Buffer emptying operations (Figure 3(c)). Upon deciding to empty the buffer, ADAPT invokes the buffer emptying routine. Buffer emptying at an intermediate subtree consists of steps 1-2: sort the buffer, and distribute all its entries in sorted order to the next level buffers after searching the subtree. For example, Figure 1 shows the root buffer being emptied. The buffer is first read into memory, sorted, and its keys distributed to the next level buffers.

Buffer emptying at a leaf subtree (steps 3-7) also begins with sorting the buffer. The buffer entries are then distributed in sorted order to the leaf nodes. From left to right, the leaf nodes are processed one at a time: for each leaf node N, the received buffer entries are merged into N by performing insertions and deletions as specified in those entries. If N overflows, split N, add index entries (E) to the parent node. If needed, recursively split ancestor nodes and their attached buffers. If N underflows, borrow entries from neighbors. If still underflow, merge leaf nodes, remove index entries (E) from the parent node. If needed, recursively apply redistribution/merging to ancestor nodes and possibly merge their attached buffers.

Figure 3: Buffer routines of an LA-tree (sketches).
Finally, it is important to note that the root to leaf path taken by each update operation in the LA-Tree is identical to a B+ Tree. The only change is the increased “travel time” due to buffering at intermediate nodes along the path.

2.2 Adaptive Buffering

Our motivation for adaptive buffering is based on the observation that a fixed buffer size does not work well for arbitrary workloads. To illustrate this, consider a root buffer having a fixed size B. When the buffer has accumulated B entries, it is emptied by distributing the entries through the top subtree. As described above, the emptying cost involves one scan of the buffer and subtree, followed by writing the elements to lower-level buffers. Thus, the amortized emptying cost (particularly, the amortized subtree read cost) over all update operations is inversely proportional to B. In contrast, during a lookup all entries in the buffer must be scanned, incurring a cost proportional to B. Hence, buffering introduces an inherent tension between update performance and lookup performance.

In this section, we present the ADAPT algorithm that dynamically determines buffer sizes based on the workload. Such dynamic decisions are made for each buffer individually because different subtrees can see different workloads, depending on the key distribution. As a sequence of update and lookup requests arrive at the buffer, ADAPT decides in an online manner whether to empty the buffer so that the cost of the entire sequence of operations is minimized. In the following, we first describe the key idea of ADAPT, then present the algorithm, and finally prove that ADAPT is an optimal online algorithm.

Key Insight. We illustrate the key insight behind ADAPT using Figure 4, which shows a single buffer that processes a sequence of lookup operations. Each lookup, denoted by L_i, sees a certain buffer size b_i, and hence pays a certain buffer scan cost s_i. For example, the scan cost of lookup L_1 is 75, while that of lookup L_2 is 90. For each L_i, ADAPT decides whether to empty the buffer at that point. It bases this decision on the estimated cost of emptying the buffer at each lookup. We use e_i to denote the estimated cost of emptying the buffer at lookup L_i, which increases with the buffer size b_i. For example, the estimated emptying cost at lookup L_3 is 215, and at lookup L_2 is 230.

Consider the benefit of emptying at lookup L_3 in Figure 4. Each lookup L_j ($j > 1$) after L_1 would avoid scanning the b_1 portion of the buffer, thereby accruing savings s_1. Each of the three lookups after L_1 saves s_1. Hence the benefit of emptying at lookup L_3, denoted by payoff p_3, is given by $p_3 = 3 \cdot s_1 = 225$. This benefit outweighs the estimated cost of emptying e_1 and hence it is beneficial to empty at lookup L_1. We can generalize from this that it is always beneficial to empty at lookup L_i, if the future savings p_i outweigh the estimated cost of emptying e_i. However, since ADAPT is an online algorithm, it does not know the future workload and hence cannot predict the future payoff p_i. ADAPT avoids this handicap by reasoning in hindsight, as explained below.

The most important concept of ADAPT is savings in hindsight. Consider a lookup L_i. The savings in hindsight of a prior lookup L_j ($i < j$) is the potential savings obtained from emptying at lookup L_j. There are $(j - i)$ lookups between L_i and L_j, and each saves the buffer scan cost s_i. Hence, the savings in hindsight of L_i, denoted by $sav(i, j)$, is given as $sav(i, j) = (j - i) \cdot s_i$. ADAPT empties the buffer at lookup L_j, if the savings in hindsight of any prior lookup L_i outweigh the corresponding estimated emptying cost e_i. More formally, ADAPT empties the buffer at lookup L_i if $\exists j, i : sav(i, j) > e_i$. In order to compute this, ADAPT maintains a book-keeping structure called Register R_i for each old lookup L_i. As shown in the figure, R_i has two fields: $scanCost$ stores the scan cost s_i, and $emptyCost$ stores the estimated emptying cost e_i. In this example, ADAPT first empties at lookup L_4 as the savings in hindsight of lookup L_4, given by $sav(1, 4) = (4 - 1) \cdot R_1.scanCost = 225$, exceed the corresponding emptying cost $R_1.emptyCost = 215$.

Algorithm 1 ADAPT(operationType)

1: if (operationType = lookup) then
2: \hspace{1em} $j \leftarrow j + 1$ (j is the lookup index)
3: \hspace{1em} [Check if any old lookup triggers emptying]
4: \hspace{1em} for all lookups L_i such that $(i < j)$ do
5: \hspace{2em} savings \leftarrow (j - i) \cdot R_i.scanCost \cdot sav(i, j))
6: \hspace{1em} if (savings \geq R_i.emptyCost) then
7: \hspace{2em} Return EMPTY
8: \hspace{1em} end if
9: \hspace{1em} end for
10: \hspace{1em} Create new $R_1 = (emptyCost, scanCost)$
11: \hspace{1em} else if (bufferSize > U) then
12: \hspace{2em} Return EMPTY
13: \hspace{1em} end if
14: \hspace{1em} Return NOT EMPTY

The Algorithm. Having explained the key insight, we now present the complete algorithm as shown in Algorithm 1. To handle lookup operations, ADAPT performs two steps (lines 2 to 10): First, it checks if the savings in hindsight of any old lookup L_i exceed its estimated emptying cost. If so, it decides to empty the buffer. Then, ADAPT creates a new register to save the estimated emptying and scan costs for the current lookup. Handling update operations is trivial: ADAPT simply empties the buffer when it exceeds the limit U (line 11).

We now discuss several practical considerations about the algorithm. One is to optimize the number of registers stored. For most real workloads, ADAPT requires only a few (e.g., 3) registers for each buffer due to three reasons. First, ADAPT is only concerned with the lookups since the last buffer empty. Hence, we erase a buffer’s registers each time it is emptied. Second, we only keep one register for each group of consecutive lookups. This is because the first lookup in the group will always be the first to trigger an empty, hence obviating the need to keep state about the subsequent lookups in the group. Finally, the number of registers required is low both under update-heavy workloads, where there are few lookups,
and under lookup-heavy workloads, for which the buffer size is already reduced to a small value.

Another important issue is online estimation of buffer scan and empty costs. We discuss this aspect in §3 where a thorough cost analysis is presented.

2.2.1 Proof of Optimality

We now prove that ADAPT is an optimal online algorithm under the cost model for raw NAND flashes. We compare ADAPT’s total cost with the cost of an omniscient offline optimal algorithm OPT that knows the entire sequence of operations in advance. Hence, OPT represents a lower bound on ADAPT’s cost. We first show that ADAPT is 2-competitive, i.e., its cost is no more than twice that of OPT for any input sequence. We then show that there is no deterministic online algorithm having a competitive ratio smaller than 2, thereby proving that ADAPT is an optimal online algorithm.

Our cost model is abstracted from the detailed model presented in §3. Lookups and buffer empty costs are linear in terms of the number of buffer entries. Each lookup operation costs $\rho \cdot b_i$ and each buffer empty costs $\delta + \gamma \cdot b_i$, where ρ, δ, and γ are constants and b_i is the current buffer size (in the number of entries). We ignore the cost of update operations as they are already included in the buffer emptying cost of the parent subtree. We note that this model only holds for byte addressable flashes like raw NAND, but §6.4 shows how it may serve as an initial approximation for block based devices like SSDs.

Now we characterize the cost of an entire sequence of operations on a buffer using this simplified cost model. Let L be the entire sequence of lookups seen by a buffer. For any given algorithm ALG, let $L_E[ALG]$ denote the subset of lookups at which a buffer empty is triggered. Therefore the buffer emptying cost incurred by ALG can be written as:

$$C^E[ALG] = \sum_{i \in L_E[ALG]} (\delta + \gamma \cdot b_i) = \delta \cdot |L_E[ALG]| + \gamma \cdot \sum_{i \in L_E} b_i$$

where we use $C^F[ALG]$ and $C^E[ALG]$ to denote the first and second terms respectively. They represent the fixed and variable components of the total emptying cost $C^E[ALG]$ respectively.

Figure 5: LA-Tree proof of optimality. The solid staircase line plots the number of buffer entries inserted into the buffer versus the lookup id. The dashed lines plot the number of buffer entries emptied from the buffer.

...Proof by contradiction: Let the two consecutive empties of ADAPT be at lookups L_i and L_k. Assume that there is no empty of OPT in between. Figure 5(b) illustrates such a scenario. The two dashed lines in the figure depict the emptying operations of ADAPT and OPT. The buffer emptying at L_k can be triggered due to two cases, which we consider in turn:

Case 1: Empty at L_k was caused by the buffer getting full. Thus, there should be at least U update operations between L_i and L_k to fill up the buffer. Let OPT contain b_{OPT}^U entries at lookup L_i, therefore it should contain at least $b_{OPT}^k = b_{OPT}^U + U$ entries at lookup L_k. Since this exceeds the maximum buffer size U, OPT should have emptied at least once before L_k. This contradicts our original assumption.
and thereby proves the lemma.

Case 2: Empty at \(L_k \) was not caused by the buffer getting full. Therefore, there must be some prior lookup \(L_j \) whose savings in hindsight \(s_a(j, k) \) outweighs the cost of emptying the buffer \(e_j \). By our cost model, we get \(s_a(j, k) = q \cdot \rho \cdot b_j \), where there are \(q = (k - j + 1) \) lookups between \(L_j \) and \(L_k \). Thus, \(s_a(j, k) \) is thus equal to \(q \cdot \rho \cdot \) the time of the shaded rectangle in Figure 5(b). Since the buffer was emptied at \(L_k \), \(s_a(j, k) \geq e_j \) holds. Where \(e_j \) is the cost of emptying the buffer at \(L_j \), given by \(e_j = \delta + \gamma \cdot b_j \). The size of \(b_j \) at lookup \(L_j \) is necessarily greater than the buffer size of \(\mu _{n} \) as \(\mu _{n} \) emptied after \(\mu \). Therefore we can extend the above inequality to conclude that \(q \cdot \rho \geq \frac{e_j}{\delta + \gamma} \). Hence, \(\mu \) can cost \(q \cdot \rho \cdot b_j \geq (\delta + \gamma \cdot b_j) \) units of cost (a positive amount) by choosing to empty at \(L_j \). This contradicts our assumption that \(\mu \) is optimal. Therefore, \(\mu \) has to empty at least once before \(L_k \), thereby proving the lemma.

Lemma 2: \(C_{\mu}^{F}[\mu] \leq C_{\mu}^{F}[\mu_{opt}] \).

Proof: By Lemma 1, we can show that there should be at least one empty of \(\mu \) between any two consecutive empties of \(\mu \). Thus, \(\mu \) empties at least as many times as \(\mu_{opt} \) and hence \(|L_{\mu}[\mu_{opt}]| \leq |L_{\mu}[\mu_{opt}]| \). Since \(C_{\mu}^{F}[\mu_{opt}] = \delta \cdot |L_{\mu}[\mu_{opt}]| \), the lemma immediately follows.

Lemma 3: \(C_{\mu}^{F}[\mu_{opt}] \leq C_{\mu}^{E}[\mu_{opt}] + \gamma \cdot U \).

Proof: Consider the total number of entries emptied by both \(\mu \) and \(\mu_{opt} \). The difference between the number of entries emptied by \(\mu \) and \(\mu_{opt} \) can be at most \(U \), because the buffer size of both algorithms is upper bounded by \(U \). Each entry emptied contributes a constant cost \(\gamma \) to the variable cost component \(C_{\mu}^{E} \). The lemma immediately follows.

Lemma 4: \(C_{\mu}^{L}[\mu_{opt}] \leq C_{\mu}^{L}[\mu_{opt}] + C_{\mu}^{F}[\mu_{opt}] + C_{\mu}^{E}[\mu_{opt}] \).

Proof: We can write \(C_{\mu}^{L}[\mu_{opt}] \) as \(C_{\mu}^{L}[\mu_{opt}] = C_{\mu}^{L}[\mu_{opt}] + C_{\mu}^{F}[\mu_{opt}] + C_{\mu}^{E}[\mu_{opt}] \). Here \(C_{\mu}^{L}[\mu_{opt}] \) denotes the additional lookup cost incurred by \(\mu_{opt} \) that is not incurred by \(\mu \). Similarly \(C_{\mu}^{L}[\mu_{opt}] \) denotes the additional lookup cost incurred by \(\mu_{opt} \) that is not incurred by \(\mu_{opt} \). Thus, we can see that \(C_{\mu}^{L}[\mu_{opt}] \leq C_{\mu}^{L}[\mu_{opt}] + C_{\mu}^{F}[\mu_{opt}] + C_{\mu}^{E}[\mu_{opt}] \). In the following we prove that \(C_{\mu}^{L}[\mu_{opt}] \leq C_{\mu}^{F}[\mu_{opt}] \), which proves the lemma.

Consider Figure 5(c). Similar to Figure 5(b), \(\mu_{opt} \) empties consecutively at lookups \(L_k \) and \(L_k \). From Lemma 1, we know that \(\mu_{opt} \) should empty at least once in this interval. The figure shows one such empty at lookup \(L_j \). As shown in the figure, the instantaneous buffer size of \(\mu_{opt} \) is greater than that of \(\mu \) during the interval \([L_j, L_k - 1]\). Lookup \(L_k \) is not included in this interval as at that point \(\mu_{opt} \)’s buffer size is also reduced to zero. Thus, after lookup \(L_k \) the buffer size of \(\mu_{opt} \) is \(b_j \) greater than that of \(\mu \). Therefore, the additional lookup cost incurred by \(\mu_{opt} \) is equal to \(\rho \cdot (k - j) \cdot b_j \). It is equal to \(\rho \) is the area of the shaded rectangle in Figure 5(c) and hence identical to \(s_m(j, k - 1) \). The shaded area in Figure 5(c) highlights this region. Since \(\mu_{opt} \) did not empty at \(L_k - 1 \), \(s_m(j, k - 1) \) has to strictly less than the corresponding emptying cost of \(\mu_{opt} \) at \(L_k \). Further, \(e_j \) is less than the emptying cost incurred by \(\mu_{opt} \) at \(L_k \) has a smaller buffer size at \(L_k \). This gives us the inequality \(C_{\mu_{opt}}^{L}[\mu_{opt}] = s_m(j, k - 1) < e_j \leq e_j^o \). Therefore, the

\(C_{\mu_{opt}}^{L}[\mu_{opt}] \) cost in the interval \([L_j, L_k]\) is bounded by the emptying cost suffered by \(\mu_{opt} \) in that interval. We can show this holds for every interval, thereby proving that the total \(C_{\mu_{opt}}^{L}[\mu_{opt}] \) cost is upper bounded by the total emptying cost of \(\mu_{opt} \) given by \(C_{\mu_{opt}}^{F}[\mu_{opt}] + C_{\mu_{opt}}^{E}[\mu_{opt}] \).

Theorem 1: \(\mu_{opt} \) is 2-competitive.

Proof: Using the three lemmas and the corollary, we have:

\[C_{\mu_{opt}}^{F}[\mu_{opt}] + C_{\mu_{opt}}^{E}[\mu_{opt}] + C_{\mu_{opt}}^{L}[\mu_{opt}] \leq C_{\mu_{opt}}^{F}[\mu_{opt}] + C_{\mu_{opt}}^{E}[\mu_{opt}] +\]

\[C_{\mu_{opt}}^{L}[\mu_{opt}] + C_{\mu_{opt}}^{E}[\mu_{opt}] + C_{\mu_{opt}}^{E}[\mu_{opt}] + \gamma \cdot U \].

So, \(cost[\mu_{opt}] \leq 2 \cdot cost[\mu_{opt}] - C_{\mu_{opt}}^{L}[\mu_{opt}] + \gamma \cdot U \leq 2 \cdot cost[\mu_{opt}] + \gamma \cdot U \). The last term \(\gamma \cdot U \) is a constant, hence it follows that \(\mu_{opt} \) is 2-competitive [16] ⌊

Theorem 2: \(\mu_{opt} \) is an optimal online algorithm.

Proof: Ski-rental [16] is a special case of our problem, where we only get one update and a sequence of lookups afterwards. Since there is no deterministic online algorithm for ski-rental having a competitive ratio lower than 2, the same holds for our more general problem. Hence \(\mu_{opt} \) is an optimal online algorithm ⌊

2.3 Buffer Emptying in a Single Scan

Having discussed the key insights behind adaptive buffering, we now discuss how buffer emptying can be performed in a single scan of the flash-resident buffers and subtree. Buffer emptying involves two main steps: (1) sorting the buffer, and (2) distributing the sorted buffer entries to the lower level buffers.

The buffer can be easily sorted in a single scan if it fits in memory. This is usually the case given our adaptive buffer size control. In rare cases, the buffer size can exceed available memory when multiple large buffers cascade into a single lower level buffer. To handle this, we adopt the buffer emptying method in [1]. Here, a buffer is broken into two parts: the batch of entries \(Y \) distributed in the last empty from its parent subtree, and the entries \(X \) in the buffer before \(Y \). Since \(Y \) was distributed from above, it is already sorted. \(X \) was in the buffer within the maximal capacity, thus \(X < M \). So, we can read \(X \), sort it in memory, and merge it with \(Y \). As we merge, we can distribute them into the buffers at the next level. This way, the entire buffer \(X + Y \) can be sorted in a single pass.

The sorted buffer entries are then distributed to the lower level buffers by reading the subtree once, one path at a time. Thus, a single subtree scan suffices to empty the buffer.

3. LA-TREE COST ANALYSIS

The \(\mu_{opt} \) algorithm relies on accurate estimates of buffer scan and empty costs to make informed decisions. In this section, we present a cost analysis of buffer operations. The result of the analysis supports the linear cost model of buffer emptying used in our optimality proof (§2.2). It also allows us to perform online cost estimation for use by \(\mu_{opt} \).

We exclusively focus on raw NAND flashes in our analysis. In contrast to SSDs, these flashes are byte addressable and their IO cost function has two main components: there is a fixed cost of accessing the page and a per-byte cost of reading or writing each byte [9]. The fixed access cost is much smaller than the disk counterpart due to the absence of any rotational or seek delay. (Table 2 in §6 shows the cost function for one such raw NAND flash.)

In the following discussion, we use \(a_{w} \) and \(a_{r} \) to denote the costs of reading and writing a tree node, and \(b_{w} \) and \(b_{w} \)
for the costs of reading and writing a buffer entry. These costs depend on how the nodes and buffers are laid out on flash, which is described in detail in §4. The following two implementation aspects are relevant to our cost analysis.

First, nodes have a fixed size and do not straddle page boundaries. Therefore, the node costs \(a_r \) and \(a_w \) are constants, which can be calculated by plugging the node size in the flash cost function. Second, buffers are of variable size and can span multiple pages. We also pack entries belonging to different buffers into a single flash page to minimize page writes. Thus, a buffer can be fragmented across many pages. This impacts the cost of reading the buffer as it incurs multiple fixed access costs. We use the term \textit{fragmentation-overhead}, \(f \), to denote the overhead of accessing multiple buffer pages for each buffer read operation, normalized across all entries in the buffer. Intuitively, \(f \) increases as a buffer is spread over more pages. We assume for simplicity that \(f \) remains relatively stable and approximate it to be a constant. (In practice, \(f \) can be estimated online.)

Thus, we can model the total cost of reading each buffer entry as \(b_r = R_l + f \), where \(R_l \) denotes the constant per-byte cost of reading a buffer entry. In contrast, fragmentation of buffers does not affect the cost of writing a buffer. This is due to each buffer page being completely packed. Hence each written buffer entry incurs a fixed amortized overhead of accessing its page. Therefore, \(b_w \) remains a constant that can be readily calculated from the (fixed) number of buffer entries contained in a page.

\textbf{Non-leaf subtree:} The cost of emptying a non-leaf subtree, having \(S \) nodes and \(B \) buffer entries, includes:

- \textbf{buffer read:} cost of reading the buffer once, \(b_r \cdot B \),
- \textbf{subtree read:} cost of reading the subtree once, \(a_r \cdot S \),
- \textbf{buffer writes:} cost of adding \(B \) entries to the buffers of the child subtrees, \(b_w \cdot B \).

So, the total cost is \(C_{rn} = a_r \cdot S + (b_r + b_w) \cdot B \). As it can be seen, this cost is linear in the buffer size \(B \).

\textbf{Leaf subtree:} Buffer emptying at a leaf subtree is similar to above except that the third step is replaced by writing buffer entries to the leaf nodes and adjusting the tree bottom-up, if needed. For tree adjustment, we apply the prior result on node rebalancing operations for the general family of \(a-b \) trees [12] which includes the LA-Tree. In our case, the total number of node rebalancing operations, including splits, merges, and redistributions, for a buffer of size \(B_n \) is bounded by \(H + \frac{1}{2}B_n \), where \(H \) is the height, \(F \) is the fanout of the tree and each node is required to be at least a quarter full.

Node rebalancing during the bottom up tree adjustment can also trigger buffer rebalancing operations as discussed in §2.1. However, we note that buffer rebalancing rarely happens due to two reasons. First, when we are emptying the buffer of a leaf subtree, the first non-empty buffer that we can encounter bottom-up is at the level \(H - 2K \) (\(K \) is the subtree height) or higher. If \(K = 2 \), this means levels \(H - 4 \) or higher. Since all node splits and merges originate at the bottom of the tree, they rarely propagate that high. Second, higher-levels buffers see more lookups than lower-level buffers so they are emptied more frequently. Therefore, the cost of buffer rebalancing is much smaller than that of node rebalancing (e.g., less than \(1\% \) in practice) and hence is omitted in the analysis below. To summarize, the buffer empty cost for a leaf subtree, having \(S \) nodes and \(B \) buffer entries, includes:

\begin{equation}
C_{rn} = a_r \cdot S + (b_r + b_w) \cdot B
\end{equation}
on a particular root-to-leaf path, thereby increasing buffer access costs. When K takes a large value, e.g., 4, the subtree size is relatively large, causing a high buffer empty cost. As a result, the ADAPT algorithm is less likely to empty the buffer, leading to increased lookup cost. Therefore, we set K to a relatively small value between 2 and 3.

4.2 Optimizing Memory Usage

Memory is needed for optimizing both write-coalescing of buffers and caching of LA-Tree nodes, as shown in Figure 6. Write-coalescing of buffers is particularly important since adaptive buffering can result in small buffers being emptied, triggering writes in units that are considerably smaller than a flash page. This makes the buffer spread over more pages, which increases its fragmentation-overhead f, thereby increasing its read cost. Since buffers are scanned for both lookups and buffer empties, packing buffers is important.

Therefore, we allocate most of the memory in the system for write-coalescing of buffers, and only use a small amount of memory for the nodes (25% of total memory in our implementation). This is because 1) the cost of scanning buffers during lookups and empties is typically the dominant factor in overall cost, hence optimizing packing is critical to performance of the LA-Tree, and 2) lazy updates already optimize node reads and writes, hence the additional improvement by node caching is limited.

The memory allocated to the buffers and nodes is managed in different ways. Memory allocated to buffers is managed as a buffer pool. To improve packing, the eviction policy for the buffer pool is “highest-packed buffer fragment” i.e. the buffer fragment having the largest number of buffer entries in it is flushed. For example, in Figure 6, buffer B_6 is the highest packed, hence it is chosen as the next buffer to be evicted. Nodes are managed as a standard node cache with LRU eviction policy to evict old nodes.

4.3 Optimizing Storage and Reclamation

Storage reclamation can be a complex and expensive operation on flash due to large erase units and the high cost of performing an in-place update. Node updates on NAND flashes need to be handled by a translation table that avoids an in-place update by re-writing the page to an unwritten location on flash and hiding this physical movement of the page from the index. Such out-of-place rewrites use flash space quickly, and trigger more frequent reclamation. In turn, reclamation incurs the high cost of copying valid node pages from blocks that need to be erased.

The LA-Tree facilitates efficient reclamation in two ways. First, it triggers fewer node updates due to cascaded buffers, thereby invalidating fewer pages. Second, it reduces node updates by using flash-friendly buffers that are easy to store and reclaim. Buffers are sequentially written data structures and trigger no in-place updates. They also trigger no data copying upon reclamation since they can be emptied instead of being copied.

Storage and reclamation of the LA-Tree for raw NAND flashes is done as follows. The LA-Tree is allocated two equal-sized flash partitions, as shown in Figure 6. The two partitions are distinct from the other flash partitions used by the database to store data tables and other metadata. When one of these two partitions fills up, it is reclaimed in following two steps: First, we empty all the buffers and recursively copy the valid nodes to the other partition. Finally, the erase blocks in the first partitions are erased.

Pages are written sequentially within a partition. Each page can either be a buffer page that contains one or more buffer fragments, or a node page that contains one or more nodes. Fragments belonging to the same buffer are reverse linked to enable traversal, whereas pages allocated to nodes are managed using a Node Table (equivalent of an index-specific FTL). Every node update results in an out-of-place re-write to the head of the partition, and an update of the Node Table to reflect the new location. Note that sequential writes on flash has the auxiliary benefit of improving wear-levelling, since writes can be distributed evenly across erase blocks.

In contrast to raw NAND flashes, SSDs expose a disk-like block interface and have an on-board controller which handles reclamation and in-place updates on flash. This obviates the need for writing nodes out-of-place and hence we do not use a separate in-memory Node Table nor consider reclamation for SSDs.

5. IMPLEMENTATION OF OTHER SCHEMES

We compare against three state-of-art flash-optimized indexing schemes — BFTL, FlashDB, and IPL. All techniques are “delta-based” schemes and encode modifications to nodes in the form of “deltas” (e.g. an insert operation or update of child pointer). Each node is stored as a base node and a sequence of deltas on flash. All delta schemes require an in-memory table to keep track of the list of delta pages for each node [21, 23]. Note that all three schemes are just node level optimizations in that they only change the way a node is laid out on flash, while retaining the familiar B+ Tree index structure on top. To ensure a fair comparison, we use the same underlying B+ Tree implementation as used by the LA-Tree. Each scheme was further optimized by using compact semantic-deltas [21] and by tweaking index level parameters like fanout. We briefly discuss the specifics of each scheme below:

BFTL: BFTL [23] is designed to maximize write-coalescing of deltas for a B+ tree node. BFTL buffers the generated deltas into an in-memory delta pool. This delta pool is flushed after every N insertions to the tree. While flushing the delta pool, BFTL packs deltas belonging to the same node into one (or more) consecutive flash pages. Unused memory by the delta pool is employed for caching nodes. We set $N = 60$ based on the value recommended in [23].

FlashDB: FlashDB [21] reduces the overhead of reading a long chain of deltas for each lookup by using an online algorithm, called Switch-Mode, to adaptively switch between maintaining a node as a list of deltas (Log-Mode), or as a single page on flash (Disk-Mode). Intuitively, this algorithm maintains frequently read nodes, like non-leaf nodes in Disk-Mode, whereas frequently updated nodes like leaf nodes are left in the Log-Mode. This adaptive technique allows FlashDB to get the benefits of deltas without suffering the excessively high cost of node reconstruction.

IPL: IPL [18] is designed to minimize scattered writes of deltas across erase blocks, thereby optimizing storage reclamation. While IPL was proposed as a general storage layer for flash-based databases, we consider the case where a tree index uses IPL as the storage layer. IPL partitions pages in

1 A Node Table can also be maintained efficiently on flash if needed [14], but we do not address this case in this paper.
<table>
<thead>
<tr>
<th>Toshiba SLC</th>
<th>Energy</th>
<th>Fixed</th>
<th>Write</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Block 128MB</td>
<td>2µJ</td>
<td>0.69µJ</td>
<td>4µJ</td>
<td>0.1µJ</td>
</tr>
<tr>
<td>512B page, 16KB erase block [22]</td>
<td>Latency</td>
<td>Fixed</td>
<td>274µs</td>
<td>69µs</td>
</tr>
<tr>
<td></td>
<td>Per-byte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5µs</td>
<td>1.7µs</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Flash energy/latency numbers for raw NAND flash. (Numbers are measured using a custom-fabricated raw NAND flash board for the Mica2 sensor mote.)

an erase block into an equal number of node and delta pages. Whenever a node page is dirtied and needs to be written to flash, IPL writes the deltas to one of the delta pages within the same erase block. When all the delta pages in an erase block fill up, the node and delta pages are merged, and re-written to a new erase block. The original erase block can now be erased and reused.

6. PERFORMANCE EVALUATION

In this section we compare the LA-Tree against the standard B+ tree, and flash optimized indexes like BFTL, FlashDB and IPL. We first evaluate the LA-Tree over raw NAND flash, while presenting our initial results with enterprise grade SSDs at the end. We start by detailing the flash and traces used in our experiments.

We built a raw NAND flash emulator for use in Linux, since we were unable to find a suitable device driver that would allow us to directly interface the underlying flash chip. The emulator was populated with exhaustive measurements from a custom-designed Mica2 sensor board with a 128MB Toshiba raw NAND flash chip (TC58DVG02A1FT00 [22]).

This Toshiba flash also obeys a linear cost function as described in §3. Table 2 summarizes the energy and latency cost functions for this flash. We use \(W_{\text{fixed}} \) and \(W_{\text{byte}} \) to denote the fixed and per-byte cost of writing to flash, and correspondingly \(R_{\text{fixed}} \) and \(R_{\text{byte}} \) for the cost of reading from flash. We can now write the parameters \(R_b \), \(b_w \), \(a_r \), and \(a_w \) introduced in §3 in terms of the flash cost function as follows: \(R_b \) is the per-byte cost component of reading an 8-byte buffer entry given by \(R_b = 8 \cdot R_{\text{byte}} \). \(b_w \) is the cost of writing a buffer entry and can be written as \(b_w = \frac{8}{512} \cdot W_{\text{fixed}} + 8 \cdot W_{\text{byte}} \), where the first term represents the amortized fixed cost of accessing a 512-byte flash page. The cost of reading and writing a node, \(a_r \) and \(a_w \), depend on the node size. For an X-byte node, \(a_r \) and \(a_w \) depend on the node size.

Traces: Our traces consist of a sequence of updates and lookups, with each operation specifying a 4-byte integer key and an optional 4-byte record-id. For most experiments, the workload consists of a random mix of updates and lookups with a given lookup-to-update-ratio (LTU), which captures the likelihood of getting a lookup over an update. To avoid initial tree construction from influencing the results, we apply the workload to a pre-constructed tree, containing 200K keys. The costs obtained were normalized by the workload size to report the cost per operation. We use the following workloads in our evaluation that offer a range of LTU ratios, and different correlations in the key distribution:

1. **Uniform**: The keys are drawn uniformly and the number of updates is fixed to one million. We consider a range of LTUs from 10% to 1000%.

(2) **Temperature**: The keys are temperature readings taken at a local weather station. Similar to the Uniform trace, we fix the number of inserts to 800K while considering 10% and 200% LTU.

(3) **Radar Velocity**: This trace is obtained from a meteorological radar that scans the atmosphere every minute. Each radar scan consists of about 300K air-velocity readings, one for each atmospheric cell. Our discussion with meteorologists reveals that 1) they are interested in detecting high velocity air pockets within the area, and 2) queries are relatively infrequent. Hence, we use range queries of the form \(\{X, \infty\} \) and a Poisson query arrival pattern with a mean rate of one query every two seconds. \(X \) is chosen by a power law (Pareto) distribution, such that it is within the top 20% of the velocity range with a 95% likelihood. This yields high selectivity, i.e. each query selects approximately 30K keys (1% of the keys inserted).

(4) **TPC-C**: The TPC-C trace is representative of an online transaction processing system (OLTP). We use a TPC-C implementation [13] to obtain the sequence of updates and lookups for each of the 10 indexes. We used four main traces - Customer, Order, Item and Neworder. The sizes of these workloads ranged from about 1 million to 4 million keys. The other six consisted of only lookups or only updates and are hence omitted in our study.

6.1 LA-Tree Benchmarks

In this section we individually evaluate the core components of LA-Tree over a raw NAND flash. We first quantify the role of adaptive-buffering and then benchmark key optimizations like small-fanout buffer-placement. All experiments were done with the Uniform workload consisting of a million updates. A majority of the updates (66% percent) were insertions, while the remaining updates were deletions. We assume 128 KB of RAM and do not consider storage reclamation costs to focus on index layer optimizations.

Evaluating Adaptive Buffer Size Control: A key benefit of the LA-Tree is its ability to adapt to varying workloads by dynamically adapting buffer sizes at different subtrees. We evaluate this adaptive capability by comparing it against three alternate buffer sizes: a) B+ Tree with the same fanout as LA-Tree (no-buffering), b) a large fixed size buffer (8KB), c) a small buffer (128 bytes).

Our response time results shown in Figure 7(a) reveal two key observations: First, the graph shows the benefits of adaptive buffering over fixed-size buffers. We see that large buffers are well suited for update-heavy workloads, whereas small buffers are well suited for lookup-heavy ones. On the other hand, the LA-Tree adjusts its buffer size to match the workload. This behavior is exemplified in Figure 7(b), which shows that the B+ Tree is worse than all other schemes. For example, at 200% LTU the B+ Tree is 1.9× worse than the LA-Tree. This shows that lazy updates are useful even for lookup-heavy workloads.

The results of this experiment also indicate the benefits of adapting each subtree’s buffer size independently to respond to workload variations within the tree. For example, the root buffer observes more frequent lookups compared to the leaf buffer. Therefore, ADAPT chooses an 8KB buffer for the leaf subtrees, while restricting the root buffer up to 1KB.

We also use the profiling data from this experiment to validate the cost estimation procedure outlined in §3. For
instance, the estimated buffer costs in this experiment were found to be within 8% of the actual buffer costs.

Choosing Fanout and Sub-tree Height: Raw NAND flash enables fine-grained optimization of node fanout using sub-page reads and writes. Figure 7(c) shows that the LA-Tree favors a node size that is much smaller than a page. While small fanouts are generally superior, we find that decreasing the fanout below 16 results in somewhat worse performance since it increases the number of buffers. This hurts performance as it increases the fragmentation of buffers.

What levels should the LA-Tree place its buffers? Figure 7(d) shows the effect of placing buffers at every K^{th} level, where K is varied from 1 to 4. As can be seen, extreme choices of k ($K = 1$ and $K = 4$) perform poorly because of high node and buffer costs respectively. The choice between $K = 2$ and $K = 3$ depends on the workload. In an update-heavy workload, the adaptive algorithm chooses large buffers; hence, the dominant cost is due to buffer reads and writes. In this case, $K = 3$ is better since it results in fewer buffers and thus has lower buffer access costs. For a lookup-heavy workload, the LA-Tree operates mostly with small buffers, hence node costs dominate, which favors $K = 2$. We choose $K = 2$ since it works better across a wider range of LTU settings.

LA-Tree Breakdown: We now consider how adaptive buffering, fanout, and buffer placement contribute to the overall performance of the LA-Tree. We compare three versions of LA-Tree: (a) LA-Tree with adaptive buffering, page-sized nodes and buffers at each level, (b) LA-Tree with adaptive buffering, optimized fanout, and buffers at every level, and (c) LA-Tree with adaptive buffering, small node size, and buffers at alternate levels. Since the impact of these mechanisms depend on the workload, we consider 10%, 100% and 200% LTU regimes.

Figure 7(e) shows the response time performance of the three schemes normalized to that of a regular B+ Tree with page-sized nodes. The maximum gains stem from our core mechanism of Adaptive Buffering, which boosts performance by more than 6×, 3×, and 2× for the three cases. The reduction in benefits with increasing lookups is expected since the LA-Tree operates more eagerly as the workload becomes more lookup-dominated. Optimizing the fanout improves performance by 6%, 26%, and 45% for the three workload settings. The gains are higher for lookup-heavy settings since node size has greater impact on overall performance when the dominant cost is node access for lookups. Finally, attaching buffers at alternate levels improves performance by an additional 8% to 20% since it reduces the number of buffer pages that need to be maintained in memory.

Summary: In conjunction, (a) Adaptive buffering (b) Small node size and (c) Buffer placement achieve 4.3× to 7.2× improvement over a traditional B+ Tree over a raw NAND flash. Hence, we do not consider the B+ Tree in our subsequent raw NAND flash based experiments.

6.2 Workload-driven Performance Study

In this section, we demonstrate that the LA-Tree offers significant performance gains across a range of workloads over a raw NAND flash. We use four workloads in our study — Uniform, Temperature, Radar-Velocity and TPC-C — and evaluate our performance against three flash-optimized tree indexes — FlashDB [21], BFTL [23], and IPL [18]. In all cases, we chose the best node size for each scheme to ensure fair comparison.

Table 3 shows the performance of difference schemes. As with the benchmarking experiments, each scheme was given 128KB of RAM. We consider two cases: (a) all schemes are given sufficiently large flash so that reclamation is not triggered, and (b) each scheme is given a fixed amount of flash such that storage reclamation is triggered.
Table 3: Workload driven evaluation over raw NAND flash. First four rows show mean response time per operation in μs for different schemes when reclamation is not considered. Last three rows show gains by LA-Tree over the best of alternate schemes: 1) in terms of response time, 2) in terms of energy, and 3) when storage reclamation is also taken into account.

<table>
<thead>
<tr>
<th>Uniform</th>
<th>Temperature</th>
<th>Radar</th>
<th>TPC-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LTU</td>
<td>200% LTU</td>
<td>100% LTU</td>
<td>10% LTU</td>
</tr>
<tr>
<td>FlashDB</td>
<td>1270</td>
<td>824</td>
<td>581</td>
</tr>
<tr>
<td>BFTL</td>
<td>1322</td>
<td>2073</td>
<td>2586</td>
</tr>
<tr>
<td>IPL</td>
<td>2389</td>
<td>1702</td>
<td>1342</td>
</tr>
<tr>
<td>LA-Tree</td>
<td>113</td>
<td>254</td>
<td>253</td>
</tr>
<tr>
<td>Gain (resp. time)</td>
<td>11.2\times</td>
<td>3.3\times</td>
<td>2.3\times</td>
</tr>
<tr>
<td>Gain (Energy)</td>
<td>10.7\times</td>
<td>2.9\times</td>
<td>2.3\times</td>
</tr>
<tr>
<td>Gain (+reclamation)</td>
<td>12.5\times</td>
<td>3.5\times</td>
<td>2.5\times</td>
</tr>
</tbody>
</table>

Table 4: Workload driven evaluation over SSD. First five rows show mean response time per operation in μs. Last two rows show gains by LA-Tree over the best and worst of alternate schemes, respectively.

<table>
<thead>
<tr>
<th>Uniform</th>
<th>Temperature</th>
<th>Radar</th>
<th>TPC-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% LTU</td>
<td>200% LTU</td>
<td>100% LTU</td>
<td>10% LTU</td>
</tr>
<tr>
<td>B+ Tree</td>
<td>2190</td>
<td>1230</td>
<td>427</td>
</tr>
<tr>
<td>FlashDB</td>
<td>1487</td>
<td>1083</td>
<td>485</td>
</tr>
<tr>
<td>BFTL</td>
<td>1463</td>
<td>1192</td>
<td>571</td>
</tr>
<tr>
<td>IPL</td>
<td>2791</td>
<td>2289</td>
<td>908</td>
</tr>
<tr>
<td>LA-Tree</td>
<td>315</td>
<td>351</td>
<td>378</td>
</tr>
<tr>
<td>Gain (over best)</td>
<td>4.6\times</td>
<td>3\times</td>
<td>1.1\times</td>
</tr>
<tr>
<td>Gain (over worst)</td>
<td>8.8\times</td>
<td>6.5\times</td>
<td>2.4\times</td>
</tr>
</tbody>
</table>

Results without reclamation: We discuss LA-Tree’s gains by considering each dataset in turn. As our energy gains are almost identical to our response time gains, we focus on response time gains in the discussion below.

Uniform: Table 3 shows that the LA-Tree outperforms other schemes across both lookup and update dominated workloads. We outperform our closest competitor FlashDB by 2.3\times to 11.2\times, with larger gains for update-heavy workloads when the LA-Tree can be lazier.

Temperature: This workload is highly correlated as temperature follows a periodic daily pattern. Therefore, node accesses have high locality and this improves cache locality of all schemes. This helps the LA-Tree as it reduces the working set of its node cache, and therefore frees up most of the memory for its buffer pool. In turn this significantly lowers the cost of batching. Table 3 shows that this boosts LA-Tree’s gains over FlashDB to more than 4.8\times.

Radar Air Velocity Scan: This trace is extremely update-heavy since each radar scan has a huge number of keys. The LA-Tree operates in a highly lazy manner given the highly update-dominated workload (0.01% LTU), thereby performing 8.5\times - 13.5\times better than other schemes. This experiment demonstrates that LA-Tree is efficient at answering range queries in addition to point queries.

TPC-C: The LA-Tree out-performs other approaches across all four traces. The maximum improvement is observed for the Customer trace, which is update-heavy (8% LTU) and has highly uncorrelated keys. This enables the LA-Tree to operate in a lazy manner, thereby achieving at least 4.6\times improvement over alternate schemes. The other three traces are lookup-heavy and have highly regular access patterns. As a result all schemes perform well on them and the LA-Tree only achieves modest gains of up to 2.2\times.

Results with reclamation: How do reclamation costs impact the above results? The last row in Table 3 shows the gains when reclamation is considered. Since traces were of different lengths, we used a flash size that was roughly three times the size of the tree constructed by that trace. The flash sizes given to each trace were: 15MB to the Uniform and Temperature traces, 3.5MB each to the TPC-C Customer, Order, and NewOrder traces, 35MB to the TPC-C Item trace and 100MB to the Radar trace. These settings trigger up to seven storage reclamation attempts for different cases. The reclamation overhead includes cost of movement of valid pages and cost of block erase operations.

The results show that the gains when including reclamation overhead are similar to gains when not considering this overhead. In fact, the LA-Tree has significantly lower reclamation overhead in most cases. Only IPL incurs marginally lower reclamation cost than the LA-Tree for a subset of the TPC-C traces, however its aggregate performance is considerably worse than all other schemes. Schemes other than IPL have a high reclamation overhead since they have long chains of deltas that need to be reclaimed. Thus, the LA-Tree can be efficiently reclaimed under limited flash space.

Summary: The LA-Tree and three other schemes were evaluated over diverse workloads on raw NAND flash. The LA-Tree improves response time and energy consumption by up to 12\times over the best of other schemes. Similar gains are obtained when storage reclamation overhead is considered.

6.3 Impact of Increasing Memory

We next explore the impact of memory on the performance benefits of the LA tree over raw NAND flash. We evaluate various schemes using the 100% LTU Uniform workload and vary the memory between 8 KB to 1 MB.

Figure 7(f) shows how LA-Tree’s performance scales with increasing memory. At very low memory, LA-Tree buffers are highly fragmented on flash due to limited memory for write-coalescing. This increases the cost of scanning buffers, which causes the ADAPT algorithm to empty more frequently. This reduces the benefits of buffering. As available memory increases, both write-coalescing and node caching hit rates improve. The ADAPT algorithm therefore empties less fre-
Results with other NAND flashes: Our results until now are on the small block Toshiba raw NAND flash. We have also evaluated our performance over several large block raw NAND flashes. Our gains are even better in these cases. For instance, in the case of a Samsung X9F1208X0C flash, the LA-Tree’s gains jump to $5 \times$ for the 100% LTU Uniform workload and $23 \times$ for the 10% LTU Uniform workload.

6.4 LA-Tree over SSDs

<table>
<thead>
<tr>
<th>Scheme</th>
<th>10% LTU</th>
<th>200% LTU</th>
<th>1000% LTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+ Tree</td>
<td>2117 µs</td>
<td>1184 µs</td>
<td>395 µs</td>
</tr>
<tr>
<td>LA-Tree</td>
<td>908 µs</td>
<td>639 µs</td>
<td>361 µs</td>
</tr>
<tr>
<td>Gain</td>
<td>6.8x</td>
<td>3.5x</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 6: Mean response time per operation for a 2GB workload over SSD.

We now evaluate the LA-Tree against the B+ Tree over a large uniform workload consisting of 256 million insertions yielding an index of size more than 2GB. We gave 23MB of RAM to both schemes to ensure the same memory-to-workload ratio as used in §6.2. Table 6 demonstrates the benefits of LA-Tree for such enterprise grade settings. We see that the results are quite similar to the ones obtained with the smaller workload size, as shown in Table 4.

Summary: The adaptive buffering technique of LA-Tree provides significant benefits over SSDs too, with $3 \times$ to $6 \times$ performance gains in most cases.

7. EXTENSION TO GiST INDEXES

Finally, we briefly discuss how the main techniques of the LA-Tree can be extended to the GiST indexes [11]. The key insight in the extension is that cascaded buffers in the LA-Tree do not change the path that each update operation takes to traverse the tree. They only increases the “travel time” through buffering at intermediate levels of the tree. When a batch of updates are merged into a node, node rebalancing operations propagate bottom-up as before, possibly triggering similar operations on the buffers attached to those nodes.

As a proof of concept, we sketch the search and insert algorithms for GiST indexes that do not have key values from an ordered domain, e.g., the R-tree. A complete implementation is a focus of our future work.

Search in GiST is controlled by the Consistent method. In an unordered domain, a search may take multiple paths. The LA-Tree will strictly follow those paths in a search and scan buffers attached along the paths. However, once ADAPT observes repeated scans of the buffers, it will decide to empty those buffers sooner to adapt to the workload.

Insertion in GiST takes a single path in the tree, guided by the Penalty method. Once this path is determined, the LA-Tree can buffer updates at intermediate levels and decide when to empty using ADAPT as before. One distinction from insertion in the LA-Tree is that sorted distribution of buffer entries is not possible in the unordered domain. To still perform buffer emptying using a single scan of the buffer and the subtree, the LA-Tree needs to choose a small subtree size that can fit in memory. With the subtree loaded in memory, it can distribute the buffer entries through it one at a time.
This way, it still amortizes the subtree read cost over all the buffer entries. Since buffer entries can now go to lower-level buffers in an arbitrary order, write-coalescing of buffers will play a crucial role in avoiding excessive buffer fragmentation.

Finally, the only GiST method that needs to be extended is PickSplit, for which the LA-Tree will change from a two-way split to an n-way split. This is because emptying a leaf subtree could entail multiple index entries being merged into a leaf node which could split it into multiple nodes.

8. RELATED WORK

In this section, we survey related work that we have not discussed previously in this paper. (BFTL [23], FlashDB [21], and IPL [18] are discussed in detail in §5.)

Buffered Tree Structures: The idea of attaching buffers to nodes or subtrees has been explored in the context of efficient bulk index operations and bulk-loading of indexes [1, 2, 24]. However, these are specializations and can only be used for specific workloads — [24] for lookup-dominated workloads and [1] for update dominated ones. The LA-Tree is fundamentally different in that we can dynamically adapt to any workload by means of our online algorithm. Furthermore, we optimize tree parameters, memory management, and reclamation to suit flash constraints and characteristics.

SSD in DBMS: SSDs offer fast sequential write and random read performance compared to disks, and consume lower power [7]. These advantages have led to much recent research on using SSDs: (1) as replacements for magnetic disks for enterprise databases [19], (2) as a write cache to improve latency [10], and (3) as extensions of disks along with intelligent mechanisms to split or migrate workloads between the two media [17].

From an indexing perspective, a key limitation of SSDs is their poor random write performance, which makes in-place node updates very expensive [3, 4]. FD-Trees is a recent approach that addresses this problem [20]. Every tree level in FD-Tree is treated as a sequentially written sorted log of keys and pointers, and can grow to a fixed size. When a log fills up, it is merged with the log at the level below and the merged log is rewritten to flash. This process continues down if necessary. Any rewrite of a log also triggers rewrites of all logs above it to maintain the tree structure. Thus, the FD-Tree avoids the high cost of random writes on SSDs by using many more sequential writes. Unlike the LA-Tree, the FD-Tree is designed solely for SSDs, and is impractical for raw NAND flashes that do not have a significant difference between sequential and random writes. Further, the LA-Tree can also be adapted to avoid random writes by using it in conjunction with our Node Table (described in §4.3). With this setup, we believe that the LA-Tree will perform better than the FD-Tree since it fundamentally reduces the total number of I/Os without incurring the overhead of many more sequential I/Os.

Raw NAND flash based Indexes: The μ-tree tries to minimize the impact of node rewrites on raw NAND flash in the absence of an FTL [15]. It does so by packing the entire path from the root to the leaf node into a single page on flash. This is orthogonal to the problem of minimizing the accesses to flash, which we address.

9. CONCLUSION

The use of flash devices has grown dramatically in the last five years, thereby increasing the importance of designing flash-optimized indexes. In this paper, we presented the design, analysis, and implementation of the LA-Tree, an optimized index structure for flash devices. We show that the core techniques underlying the design of the LA-Tree — lazy updates, adaptive buffering, and memory/reclamation optimizations — yield significant performance benefits over diverse flash devices ranging from raw NAND flashes to SSDs. The LA-Tree achieves 2× to 12× gains over the best of alternate schemes on NAND flashes. Initial results on SSDs are also promising, with 3× to 6× gains in most cases.

LA-Tree enables new research directions in designing flash-optimized database systems. One direction is designing a broader spectrum of SSD-optimized indexes in the GiST [11] family using similar approaches, and integrating them with a full-function database system. A second research direction is to explore techniques that maximize the end-to-end benefits of using flash storage in enterprise database servers.

10. REFERENCES