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ABSTRACT
We identify privacy risks associated with releasing network data
sets and provide an algorithm that mitigates those risks. A network
consists of entities connected by links representing relations such as
friendship, communication, or shared activity. Maintaining privacy
when publishing networked data is uniquely challenging because
an individual’s network context can be used to identify them even
if other identifying information is removed. In this paper, we quan-
tify the privacy risks associated with three classes of attacks on the
privacy of individuals in networks, based on the knowledge used by
the adversary. We show that the risks of these attacks vary greatly
based on network structure and size. We propose a novel approach
to anonymizing network data that models aggregate network struc-
ture and then allows samples to be drawn from that model. The
approach guarantees anonymity for network entities while preserv-
ing the ability to estimate a wide variety of network measures with
relatively little bias.

1. INTRODUCTION
A network data set is a graph representing a set of entities and

the connections between them. Network data can describe a vari-
ety of domains: a social network describes individuals connected
by personal relationships; an information network might describe
a set of articles connected by citations; a communication network
might describe Internet hosts related by traffic flows. As our ability
to collect network data has increased, so too has the importance of
analyzing these networks. Networks are analyzed in many ways: to
study disease transmission, to measure the influence of a publica-
tion, and to evaluate the network’s resiliency to faults and attacks.
Such analyses inform our understanding of network structure and
function.

However, many networks contain highly sensitive data. For ex-
ample, Potterat et al. [21] published a social network which shows a
set of individuals related by sexual contacts and shared drug injec-
tions. While society knows more about how HIV spreads because
this network was published and analyzed, researchers had to weigh
that benefit against possible losses of privacy to the individuals in-
volved without clear knowledge of potential attacks. Other kinds
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of networks, such as communication networks are also considered
sensitive. The sensitivity of the data often prevents the data owner
from publishing it. For example, to our knowledge, the sole pub-
licly available network of email communication was published only
because of government litigation [7].

The objective of the data owner is to publish the data in such
a way that permits useful analysis yet avoids disclosing sensitive
information. Because network analysis can be performed in the ab-
sence of entity identifiers (such as name or social security number),
the data owner first replaces identifying attributes with synthetic
identifiers. We refer to this procedure as naive anonymization. It is
a common practice in many domains, and it is often implemented
by simply encrypting identifiers. Presumably, it protects sensitive
information because it breaks the association between the sensitive
data and real-world individuals.

However, naive anonymization may be insufficient. A distinctive
threat in network data is that an entity’s connections (i.e., the net-
work structure around it) can be distinguishing, and may be used to
re-identify an otherwise anonymous individual. In this paper, we
investigate the threat of structural re-identification in anonymized
networks. We consider how a malicious individual (the adversary)
might learn about the network structure and then attempt to re-
identify entities in the anonymized network. We formally model
adversary capabilities, demonstrate successful attacks on real net-
works, and propose an improved anonymization technique.

Most existing work on privacy in data publishing has focused on
tabular data, where each record represents a separate entity, and an
individual may be re-identified by matching the individual’s pub-
licly known attributes with the attributes of the anonymized ta-
ble. Anonymization techniques for tabular data do not apply to
networked data because they fail to account for the interconnect-
edness of the entities (i.e., they destroy the network structure). It
is not well-understood how publishing a network threatens privacy;
initial investigations, including anonymization algorithms, are just
emerging [4, 14, 17, 26, 28, 31, 32, 33].

Formally, we model a network as an undirected graph G =
(V, E). The naive anonymization of G is an isomorphic graph,
Ga = (Va, Ea), defined by a random bijection f : V → Va.
For example, Figure 1 shows a small network along with its naive
anonymization. The anonymization mapping f , also shown, is a
random, secret mapping.

Naive anonymization prevents re-identification when the adver-
sary has no information about individuals in the original graph.
Formally stated, an individual x ∈ V , called the target, has a
candidate set, denoted cand(x), which consists of the nodes of
Ga that could feasibly correspond to x. To assess the risk of re-
identification, we assume each element of the candidate set is equally
likely and use the size of the candidate set as a measure of resis-
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Figure 1: A social network (G), the naive anonymization (Ga),
and the anonymization mapping (f ).

tance to re-identification. Since f is random, in the absence of
other information, any node in Ga could correspond to the target
node x. Thus, given an uninformed adversary, each individual has
the same risk of re-identification, specifically cand(x) = Va for
each target individual x.

However, in practice the adversary may have access to external
information about the entities in the graph and their relationships.
This information may be available through a public source beyond
the control of the data owner, or may be obtained by the adversary’s
malicious actions. For example, for the graph in Figure 1, the ad-
versary might know that “Bob has three or more neighbors,” or
that “Greg is connected to at least two nodes, each with degree 2.”
Such information allows the adversary to reduce the set of candi-
dates in the anonymized graph for each of the targeted individuals.
For example, the first statement allows the adversary to partially
re-identify Bob: cand(Bob) = {2, 4, 7, 8}. The second statement
re-identifies Greg: cand(Greg) = {4}.

Although an adversary may also have information about the at-
tributes of nodes, the focus of this paper is structural re-identifi-
cation, where the adversary’s information is about graph structure.
Re-identification with attribute knowledge has been well-studied,
as have techniques for resisting it [18, 19, 24, 25, 27]. More im-
portantly, many network analyses are concerned exclusively with
structural properties of the graph, therefore safely publishing an
unlabeled network is a legitimate goal. For example, the follow-
ing common analyses examine only the network structure: finding
communities, fitting power-law graph models, enumerating motifs,
measuring diffusion, and assessing resiliency [20]. While most of
our discussion focuses on unlabeled graphs, we do study the impact
of combining attributes and structural information in Section 5.

Whether a re-identification attack succeeds depends on two fac-
tors: the descriptive power of the adversary’s external information
and the structural similarity of nodes. Descriptive external informa-
tion allows the adversary to distinguish between entities, allowing
more accurate re-identification. But structural similarity means that
entities can be hidden in a crowd, resisting re-identification.

To investigate these two factors, and to improve the anonymity
of published networks, we make the following contributions:

• We propose three models of external information used by
an adversary to attack naively-anonymized networks. These
models represent a range of structural information that may
be available to an adversary including complete and partial
descriptions of node neighborhoods, and connections to hubs
in the network. We formalize the structural indistinguisha-
bility of a node with respect to an adversary with locally-
bounded external information. (Sections 2 and 3)

• We evaluate the effectiveness of these attacks in two ways.
First, we apply the attacks to real networks from different
domains, measuring successful node disclosures. Second,
we study anonymity in random graphs. Our results show that

real networks are diverse in their resistance to attacks, that
anonymity is determined in part by a graph’s density and de-
gree distribution, and that hubs, while distinctive themselves,
cannot be used to re-identify many of their neighbors. (Sec-
tions 4 and 5)

• To resist re-identification attacks, we propose a novel algo-
rithm which anonymizes the graph by partitioning the nodes
and then describing the graph at the level of partitions. The
output is a generalized graph, which consists of a set of su-
pernodes — one for each partition — and a set of superedges
— which report the density of edges (in the original graph)
between the partitions they connect. The generalized graph
can be used to study graph properties by randomly sampling
a graph that is consistent with the generalized graph descrip-
tion and then performing a standard analysis on this syn-
thetic graph. These sampled graphs retain key properties
of the original — such as degree distribution, path lengths,
and transitivity — allowing complex analyses, such as net-
work resiliency and disease transmission, to be accurately
performed. (Section 6)

2. ANONYMITY IN NETWORKS
Before formally describing adversary knowledge in Section 3 we

consider the practical properties of adversary knowledge that moti-
vate our definitions. We also explain how structural similarity in a
graph can protect against re-identification.

2.1 Knowledge Acquisition in Practice
Accurately modeling adversary knowledge is crucial for under-

standing the vulnerabilities of naively-anonymized networks, and
for developing new anonymization strategies. External information
about a published social network may be acquired through mali-
cious actions by the adversary or from public information sources.
In addition, a participant in the network, with some innate knowl-
edge of entities and their relationships, may be acting as an adver-
sary in an attempt to uncover unknown information. A legitimate
privacy objective in some settings is to publish a network in which
participating individuals cannot re-identify themselves.

Our goal is to develop parameterized and conservative models
of external information that capture the power of a range of adver-
saries, and to then study the threats to anonymity that result. One
of our guiding principles is that adversary knowledge about a tar-
geted individual tends to be local to the targeted node, with more
powerful adversaries capable of exploring the neighborhood around
a node with increasing diameter. For the participant-adversary,
whose knowledge is based on their participation in the network,
existing research about institutional communication networks sug-
gests that there is a horizon of awareness of about distance two
around most individuals [11]. We formalize the external informa-
tion available to an adversary through a set of knowledge queries
described in the next section. Each knowledge query is parameter-
ized by the radius around the targeted individual which it describes.

We also consider the impact of hubs, which are highly connected
nodes observed in many networked data sets. In a Web graph, a hub
may be a highly visited website. In a graph of email connections,
hubs often represent influential individuals. Because hubs are of-
ten outliers in a graph’s degree distribution, the true identity of hub
nodes is often apparent in a naively-anonymized graph. In addi-
tion, an individual’s connections to hubs may be publicly known or
easily deduced. We consider attackers who use hub connections as
a structural fingerprint to re-identify nodes.



Our assumption throughout the present work is that external in-
formation sources are accurate, but not necessarily complete. Ac-
curacy means that when an adversary learns facts about a named
individual, those facts are true of the original graph. However,
we distinguish between a closed-world adversary, in which absent
facts are false, and an open-world adversary in which absent facts
are simply unknown. For example, when a closed-world adversary
learns that Bob has three neighbors, he also learns that Bob has no
more than three neighbors. An open-world adversary would learn
only that Bob has at least three neighbors. Hub fingerprints have an
analogous open- and closed-world interpretation.

In practice, an adversary may acquire knowledge that is com-
plete. For example, an attacker who acquires the address book for
a targeted individual would learn a complete list of their neighbors
in an email communication network. Another example of closed-
world external information is the attack proposed by Backstrom et
al. [4]. They propose an attack in which a small group of partici-
pants in the network collude and each member of the group reveals
all their relationships with all other participants.

As we would expect, closed-world adversaries are significantly
more powerful (see the experimental results on real networks in
Section 4). However, in many settings, the adversary cannot be
certain that their information is complete and must assume an open
world. We believe both closed- and open-world variants of adver-
sary knowledge are important.

2.2 Anonymity Through Structural Similarity
Intuitively, nodes that look structurally similar may be indistin-

guishable to an adversary, in spite of external information. A strong
form of structural similarity between nodes is automorphic equiv-
alence. Two nodes x, y ∈ V are automorphically equivalent (de-
noted x ≡A y) if there exists an isomorphism from the graph onto
itself that maps x to y.

EXAMPLE 2.1. Fred and Harry are automorphically equiva-
lent nodes in the graph of Figure 1. Bob and Ed are not auto-
morphically equivalent: the subgraph around Bob is different from
the subgraph around Ed and no isomorphism proving automorphic
equivalence is possible.

Automorphic equivalence induces a partitioning on V into sets
whose members have identical structural properties. It follows that
an adversary — even with exhaustive knowledge of a target node’s
structural position — cannot identify an individual beyond the set
of entities to which it is automorphically equivalent. We say that
these nodes are structurally indistinguishable and observe that nodes
in the graph achieve anonymity by being “hidden in the crowd” of
its automorphic class members.

Some special graphs have large automorphic equivalence classes.
For example, in a complete graph, or in a graph which forms a ring,
all nodes are automorphically equivalent. But in most graphs we
expect to find small automorphism classes, likely to be insufficient
for protection against re-identification.

Though automorphism classes may be small in real networks,
automorphic equivalence is an extremely strong notion of struc-
tural similarity. In order to distinguish two nodes in different auto-
morphic equivalence classes, it may be necessary to use complete
information about their positions in the graph. For example, for
a weaker adversary, who only knows the degree of targeted nodes
in the graph, Bob and Ed are indistinguishable (even though they
are not automorphically equivalent). Thus we must consider the
distinguishability of nodes to realistic adversaries with limited ex-
ternal information.

3. ADVERSARY KNOWLEDGE
We model the adversary’s external information as access to a

source that provides answers to a restricted knowledge query Q
evaluated for a single target node of the original graph G. We
always assume knowledge gathered by the adversary is accurate:
that is, no spurious answers are provided to the adversary by the
information source.

For a target node x, the adversary uses Q(x) to refine the feasi-
ble candidate set. Since Ga is published, the adversary can easily
evaluate any structural query directly on Ga. Thus the adversary
will compute the refined candidate set that contains all nodes in the
published graph Ga that are consistent with answers to the knowl-
edge query on the target node.

DEFINITION 1 (CANDIDATE SET UNDER Q). For a query Q
over a graph, the candidate set of x w.r.t Q is candQ(x) = {y ∈
Va | Q(x) = Q(y)}.

In the next subsections we present three variants of adversary
knowledge. The first is a class of very expressive structural queries
that provide a precise way to capture structural knowledge of in-
creasing diameter around a node, and that model an adversary with
closed-world information about node degree. In Section 3.2, we
present a less powerful class of queries, intended to model a weaker
adversary who explores the graph edge-by-edge, possessing only
open-world information. Lastly we consider knowledge provided
by hub connections.

3.1 Vertex Refinement Queries
We define a class of queries, of increasing power, which report

on the local structure of the graph around a node. These queries are
inspired by iterative vertex refinement, a technique originally de-
veloped to efficiently test for the existence of graph isomorphisms
[8]. The weakest knowledge query, H0, simply returns the label of
the node. (We consider here unlabeled graphs, so H0 returns ε on
all input nodes; these queries are extended to include attributes in
Section 5.) The queries are successively more descriptive: H1(x)
returns the degree of x, H2(x) returns the multiset of each neigh-
bors’ degree, and so on. The queries can be defined iteratively,
where Hi(x) returns the multiset of values which are the result of
evaluating Hi−1 on the set of nodes adjacent to x:

Hi(x) = {Hi−1(z1),Hi−1(z2) . . . ,Hi−1(zm)}

where z1 . . . zm are the nodes adjacent to x.

EXAMPLE 3.1. Figure 2 contains the same graph from Figure 1
along with the computation of H0, H1, and H2 for each node.
For example: H0 is uniformly ε. H1(Bob) = {ε, ε, ε, ε}, which
we abbreviate in the table simply as 4. Using this abbreviation,
H2(Bob) = {1, 1, 4, 4} which represents Bob’s neighbors’ de-
grees.

For each query Hi, we define an equivalence relation on nodes
in the graph in the natural way.

DEFINITION 2 (RELATIVE EQUIVALENCE). Two nodes x, y
in a graph are equivalent relative to Hi, denoted x ≡Hi y, if and
only if Hi(x) = Hi(y).

EXAMPLE 3.2. Figure 2(c) lists the equivalence classes of nodes
according to relations≡H0 ,≡H1 , and≡H2 . All nodes are equiva-
lent relative toH0 (for an unlabeled graph). As i increases, the val-
ues forHi contain successively more precise structural information
about the node’s position in the graph, and as a result, equivalence
classes are divided.
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(a) graph

Node ID H0 H1 H2

Alice ε 1 {4}
Bob ε 4 {1, 1, 4, 4}

Carol ε 1 {4}
Dave ε 4 {2, 4, 4, 4}
Ed ε 4 {2, 4, 4, 4}

Fred ε 2 {4, 4}
Greg ε 4 {2, 2, 4, 4}
Harry ε 2 {4, 4}

(b) vertex refinements

Equivalence Relation Equivalence Classes
≡H0 {A, B, C, D, E, F, G, H}
≡H1 {A, C} {B, D, E, G} {F, H}
≡H2 {A, C}{B}{D, E}{G}{F, H}
≡A {A, C}{B}{D, E}{G}{F, H}

(c) equivalence classes

Figure 2: (a) A sample graph, (b) external information consisting of vertex refinement queries H0,H1 and H2 computed for each
individual in the graph, (c) the equivalence classes of nodes implied by vertex refinement. For the sample data, ≡H2 , corresponds to
automorphic equivalence, ≡A.

To an adversary limited to knowledge query Hi, nodes equiva-
lent with respect to Hi are indistinguishable. The following propo-
sition formalizes this intuition:

PROPOSITION 1. Let x, x′ ∈ V . If x ≡Hi x′ then candHi(x) =
candHi(x

′).

Iterative computation of H continues until no new vertices are
distinguished. We call this query H∗. In the example of Figure 2,
H∗ = H2. The vertex refinement technique is the basis of efficient
graph isomorphism algorithms which can be shown to work for
almost all graphs [3]. In our setting, this means that equivalence
under H∗ is very likely to coincide with automorphic equivalence.
In Section 5 we analyze theoretically the expected disclosure under
Hi for various random graph models and graph densities.

3.2 Subgraph Queries
Vertex refinement queries are a concise way to describe locally

expanding structural queries. However, as a model of adversary
knowledge they have two limitations. First, they always provide
complete information about the nodes adjacent to the target (they
are therefore an instance of closed-world knowledge). For example,
H1(x) returns the exact number of neighbors of x. Second, H
queries can describe arbitrarily large subgraphs around a node if
that node is highly connected. For example, if H1(x) = 100, the
adversary learns about a large subgraph in G, whereas H1(y) = 2
provides much less information. Thus, the index of the H query
may be a coarse measure of the amount of information learned.

As an alternative, we consider a very general class of queries
which assert the existence of a subgraph around the target node. We
measure the descriptive power of a query by counting the number
of edges in the described subgraph; we refer to these as edge facts.
For example, Figure 3 illustrates three subgraph queries centered
around Bob. The first simply asserts that Bob has (at least) three
distinct neighbors, the second describes a tree of nodes near Bob,
and the third relates nearby nodes in a subgraph. These informal
query patterns use 3, 4, and 5 edge facts, respectively.

Note that we do not model an adversary capable of constructing
and evaluating arbitrary subgraph queries. Instead, we assume the
adversary is capable of gathering some fixed number of edge facts
around the target x. The adversary learns the existence of a sub-
graph around x which may be incomplete. The existence of this
subgraph can be expressed as a query, and we model the adver-
sary’s knowledge by granting the answer to such a query. Because
such a query has existential semantics, it is open-world knowledge.

Naturally, for a fixed number of edge facts there are many sub-
graph queries that are true around a node x. These can be thought

of as corresponding to different strategies of knowledge acquisi-
tion that could be employed by the adversary. In testing the distin-
guishing power of subgraph queries in Section 4, we test a range
of strategies including breadth-first exploration, induced subgraphs
of radius 1 and 2, and strategies that emphasize small distinctive
structures. For a given number of edge facts, some queries are more
effective at distinguishing individuals. We report on the diversity
of disclosure that can result from a fixed number of edge facts.

3.3 Hub Fingerprint Queries
A hub is a node in a network with high degree and high between-

ness centrality (the proportion of shortest paths in the network that
include the node). In an email communication graph, a hub may
correspond to a well-known administrator responsible for dissem-
inating information to all department members. Hubs are impor-
tant components of the topology of networks, and they have been
widely observed in social and information networks [20]. Hubs are
often outliers in a network, making it difficult to protect their iden-
tity through anonymization. For example, in a naively-anonymized
network trace, the hubs correspond to the most frequently visited
websites, which are typically known by an adversary.

A hub fingerprint for a target node x is a description of the node’s
connections to a set of designated hubs in the network. We denote
the hub fingerprint of x by Fi(x) where the subscript i places a
limit on the maximum distance of observable hub connections. For
example, if we consider Dave and Ed hubs, Fred’s hub fingerprint
is a vector of his shortest path lengths (bounded by i) to each hub.
F1(Fred) = (1, 0) because Fred is distance 1 from Dave but not
connected to Ed in one hop or less; F2(Fred) = (1, 2) because
Fred is distance 1 from Dave and distance 2 from Ed.

We consider an adversary capable of gathering hub fingerprints
in both an open and a closed world. In the closed world, the lack
of a connection to a hub implies with certainty that no connec-
tion exists. In the open world, the absence of a connection in a
hub fingerprint may simply represent incompleteness in the adver-
sary’s knowledge. Thus in the open world, if the adversary knows
F1(Fred) = (1, 0) then nodes in the anonymized graph with F1

fingerprints of (1, 0) or (1, 1) are both candidates for Fred. In Sec-
tion 4, we study the distinguishing power of hub fingerprints em-
pirically by computing candidate sets in real networks.

3.4 Comparison of Knowledge Models
Vertex refinement queries and subgraph queries are related, but

they differ in their expressiveness and the efficiency of evaluating
their re-identification risk. First, vertex refinement queries provide
complete information about node degree. A subgraph query can
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Figure 3: Three instances of the partial information about en-
tity Bob that can be expressed as a subgraph query.

Table 1: Summary of networks studied.
Statistic Data Set

Hep-Th Enron Net-trace
Nodes 2510 111 4213
Edges 4737 287 5507
Minimum degree 1 1 1
Maximum degree 36 20 1656
Median degree 2 5 1
Average degree 3.77 5.17 2.61
Avg. cand. set size (H1) 558.45 12.05 2792.09
Avg. cand. set size (H2) 25.38 1.49 608.58
Fraction re-identified (H1) 0.002 0.027 0.006
Fraction re-identified (H2) 0.404 0.739 0.111

never express Hi knowledge because subgraph queries are exis-
tential and cannot assert exact degree constraints or the absence of
edges in a graph. Second, the complexity of computing H∗ is lin-
ear in the number of edges in the graph, and is therefore efficient
even for large datasets. Evaluating subgraph queries, on the other
hand, can be NP-hard in the number of edge facts, as computing
candidate sets for subgraph queries requires finding all isomorphic
subgraphs in the input graph. Although we do not place compu-
tational restrictions on the adversary, the vertex refinement queries
allow a data owner to efficiently assess disclosure risk.

Yet, the semantics of subgraph queries seem to model realistic
adversary capabilities more accurately. It may be difficult for an
adversary to acquire the detailed structural description of higher-
order vertex refinement queries. Nevertheless, we believe vertex
refinement queries offer an efficient and conservative measure of
structural diversity in a graph. In addition, Hi queries are con-
ceptually appealing as they represent a natural spectrum of struc-
tural knowledge, beginning with H1 which reports node degree,
and converging, as i increases, on automorphic equivalence.

Finally, we note that both of the above models of knowledge
have well-studied logical foundations. Hi knowledge corresponds
to first order logic with counting quantifiers, restricted to i variables
[15]. Subgraph queries can be expressed as conjunctive queries
with disequalities. The number of edge facts corresponds to the
number of subgoals in the query.

4. DISCLOSURE IN REAL NETWORKS
In this section we evaluate empirically the impact of external

information on the adversary’s ability to re-identify individuals.
We study three networked data sets, drawn from diverse do-

mains. For each data set, we consider each node in turn as a target.
We assume the adversary computes a vertex refinement query, a
subgraph query, or a hub fingerprint query on that node, and then
we compute the corresponding candidate set for that node. We re-
port the distribution of candidate set sizes across the population of
nodes to characterize how many nodes are protected and how many
are identifiable.

We use the following data sets. The Hep-Th database describes
papers and authors in theoretical high-energy physics, taken from

Hep-Th
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Figure 4: Relationship between candidate size and vertex re-
finement knowledge Hi for i = 1..4 for three network datasets.
The trend lines show the percentage of nodes whose candidate
sets have sizes in the following buckets: [1] (black), [2, 4], [5, 10],
[11, 20], [21,∞] (white).

the arXiv archive. We extracted a subset of the authors and con-
sidered them linked if they wrote at least two papers together. The
Enron dataset is derived from a corpus of email sent to and from
managers at Enron Corporation, made public by the Federal En-
ergy Regulatory Commission during its investigation of the com-
pany. Two individuals are connected if they corresponded at least 5
times. The Net-trace dataset was derived from an IP-level network
trace collected at a major university. The trace monitors traffic at
the gateway; it produces a bipartite graph between IP addresses in-
ternal to the institution, and external IP addresses. We restricted
the trace to 187 internal addresses from a single campus depart-
ment and the 4026 external addresses to which at least 20 packets
were sent on port 80 (http traffic).

All datasets have undirected edges, with self-loops removed. We
eliminated a small percentage of disconnected nodes in each dataset,
focusing on the largest connected component in the graph. Detailed
statistics for the datasets are shown in Table 1.

4.1 Re-identification: Vertex Refinement
Recall from Section 3 that nodes contained in the same candi-

date set for knowledge Hi share the same value for Hi, are in-
distinguishable according to Hi, and are therefore protected if the
candidate set size is sufficiently large.

Figure 4 is an overview of the likelihood of re-identification un-
der H1,H2,H3 and H4 knowledge queries. For each Hi, the
graph reports on the percentage of nodes whose candidate sets have
sizes in the following buckets: [1] , [2, 4], [5, 10], [11, 20], [21,∞].
Nodes with candidate set size 1 have been uniquely identified, and
nodes with candidate sets between 2 and 4 are at high risk for re-
identification. Nodes are at fairly low risk for re-identification if
there are more than 20 nodes in their candidate set.1 Each Hi is
represented as a different point on the x-axis.

1We do not suggest these categories as a universal privacy standard,
but merely as divisions that focus attention on the most important
part of the candidate set distribution where serious disclosures are
at risk.
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Figure 5: Candidate set sizes (on a log scale) for sampled
subgraph queries consisting of specified number of edge facts.
(Please note differences in scale.)

Figure 4 shows that for the Hep-Th data, H1 leaves nearly all
nodes at low risk for re-identification, and it requiresH3 knowledge
to uniquely re-identify a majority of nodes. For Enron, under H1

about 15% of the nodes have candidate sets smaller than 5, while
only 19% are protected in candidate sets greater than 20. Under
H2, re-identification jumps dramatically so that virtually all nodes
have candidate sets less than 5.

Net-trace has substantially lower disclosure overall, with very
few identified nodes under H1, and even H4 knowledge does not
uniquely identify more than 10% of the nodes. This results from
the unique bipartite structure of the network trace dataset: many
nodes in the trace have low degree, as they are unique or rare web
destinations contacted by only one internal host.

A natural precondition for publication is a very low percentage
of high-risk nodes under a reasonable assumption about adversary
knowledge. Two datasets meet that requirement for H1 (Hep-Th
and Net-trace), but no datasets meet that requirement for H2.

Overall, we observe that there can be significant variance across
different datasets in their vulnerability to different adversary knowl-
edge. However, across all datasets, the most significant change
in re-identification is from H1 to H2, illustrating the increased
power of adversaries that can explore beyond the target’s imme-
diate neighborhood. Re-identification tends to stabilize after H3—
more information in the form of H4 does not lead to an observable
increase in re-identification in any dataset. Finally, even though
there are many re-identified nodes, a substantial number of nodes
are not uniquely identified even with H4 knowledge.

4.2 Re-identification: Subgraph Queries
Recall from Section 3 that we also model an adversary explor-

ing the local graph around a target individual, and we measure that
knowledge by counting the number of edge facts acquired. Fig-
ure 5 shows the relationship between the number of edge facts and
re-identification success. Each point represents a subgraph query

of a specified size; the re-identification success is measured by the
size of the candidate set (vertical axis). For a fixed number of
edge facts, there are many possible subgraph queries. We simu-
lated adversaries who gather facts around the target according to
a variety of strategies: breadth-first exploration (labelled “Degree
subgraphs” in the figure), random subgraphs, induced subgraphs of
radius 1 and 2, and small dense structures (collectively referred to
as “Sampled subgraphs”).

Overall, disclosure is substantially lower than for vertex refine-
ment queries. To select candidate sets of size less than 10 requires
a subgraph query of size 24 for Hep-Th, size 12 for Enron, and
size 32 for Net-trace. The smallest subgraph query resulting in
a unique disclosure was size 36 for Hep-Th and size 20 for En-
ron. The smallest candidate set witnessed for Net-trace was size
2, which resulted from a query consisting of 88 edge facts.

Breadth-first exploration led to selective queries across all three
datasets. Such a query explores all neighbors of a node and then
starts to explore all neighbors of a randomly chosen neighbor, etc.
This asserts lower bounds on the degree of nodes. In Enron, these
were the most selective subgraph queries witnessed; for Hep-Th
and Net-trace, the more selective subgraph queries asserted the ex-
istence of two nodes with a large set of common neighbors.

The results presented above illustrate the diverse subset of sub-
graph queries we sampled. While it is clearly intractable to per-
form an exhaustive search over all possible subgraphs and matching
them to each node in the graph, it is an interesting open question
to determine, given a graph, and a fixed number of edge facts, the
subgraph query that will result in the smallest candidate set. This
would reflect the worst-case disclosure possible from an adversary
restricted to a specified number of edge facts. Finding the worst-
case subgraph queries is related to searching for motifs in a network
[20], which are small structures that occur frequently. Efficient al-
gorithms for this problem are currently under investigation [13].

4.3 Re-identification: Hub Fingerprints
Recall that the hub fingerprint query Fi(x) returns a vector de-

scribing the length of the shortest path from x to each of a distin-
guished set of hubs. In Figure 6 we show the candidate set sizes
for hub fingerprints F1 and F2, choosing the five highest degree
nodes as hubs for Enron, and the ten highest degree nodes for both
Hepth and Net-trace. The choice of the number of hubs was made
by considering whether the degree of the node was distinguishable
in the degree distribution and therefore likely to be an outlier in the
original graph. We computed the candidate sets for these hub fin-
gerprint queries under both the closed-world interpretation and the
open-world interpretation.

Generally we find disclosure is low using hub fingerprints. At
distance 1, 54% of the nodes in Enron were not connected to any
hub and therefore hub fingerprints provide no information. This
statistic was 90% for Hepth and 28% for Net-trace. In addition,
connectivity to hubs was fairly uniform across individuals. For ex-
ample, the space of possible fingerprints at distance 1 for Hepth
and Net-trace is 210 = 1024. Of these, only 23 distinct finger-
prints were observed for Hepth and only 46 for Net-trace.

In essence, there are two competing effects on the distinguishing
power of hubs. While hubs themselves stand out, they have high-
degrees, which means connections to a hub are shared by many.
While hubs would appear to be a challenge for anonymization, this
finding suggests that disguising hubs in published data may not be
required to maintain anonymity.

5. ANONYMITY IN RANDOM GRAPHS
In this section, we study re-identification risk by analyzing mod-
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els of random graphs. While a thorough theoretical study of graph
models and anonymity risk is a subject of future work, we pro-
vide here initial results that describe some of the most important
relationships between graph models, their key properties, and our
models of knowledge.

First we use Hi knowledge to study re-identification risk in two
popular models of graphs: classical random graphs and power-
law graphs. Second, we describe a result which allows us to
guarantee protection against subgraph queries of a specific size
based on the presence of cliques. Last, we consider random graphs
with attributes and show re-identification success is determined by
attribute-structure correlation.

5.1 Re-identification in Random Graphs
Here, we study how anonymity is affected by two key graph

properties, density and degree distribution. To study the relation-
ship between graph density and anonymity, we analyze the Erdős-
Rényi (ER) model, the simplest random graph model. Following
that, we study random graphs with power-law degree distributions.

The ER model generates a graph with n nodes by sampling each
edge independently with probability p. As the number of nodes,
n, increases, these graphs exhibit different behaviors depending
on how p scales as a function of n. Three scalings correspond to
sparse, p = c/n, dense, p = c log n/n, and super-dense, p = c
(where c is a constant). The first two are of interest because when
c > 1, the graph includes a giant connected component of size
Θ(n) and a collection of smaller components (in the sparse case)
or the graph is completely connected (in the dense case) [10]. We
consider below the sparse and super-dense cases and conclude with
some remarks regarding the dense case.

We begin with sparse graphs. In sparse graphs, nodes cannot
be distinguished because the graph lacks sufficient edge density to
create diversity in structure. Because the edge probability is p =
c/n, the expected node degree, which is p(n − 1), goes to c as
n → ∞. Intuitively, because the expected degree is constant, then
for sufficiently large n, structural patterns must repeat, leading to
structural uniformity. As the following theorem shows, no degree
of Hi knowledge will be distinguishing. (See the Appendix for

theorem proofs.)

THEOREM 1 (SPARSE ER RANDOM GRAPHS). Let G be an
ER random graph containing n nodes with edge probability given
by p = c/n for c > 1. With probability going to one, the expected
sizes of the equivalence classes induced by Hi is Θ(n), for any
i ≥ 0.

This is an encouraging result for large graphs. (However, in sim-
ulations, we found that some re-identification occurs in random
graphs of less than 106 nodes.) We now consider the case of a
super-dense graph where p = 1/2. The following theorem, orig-
inally due to Babai and Kucera [3] but rephrased here, shows that
with high probability, every node will be uniquely identified using
H3 knowledge:

THEOREM 2 (SUPER-DENSE ER RANDOM GRAPHS). Let G
be an ER random graph on n nodes with edge probability p =
1/2. The probability that there exist two nodes x, y ∈ V such that
x ≡H3 y is less than 2−cn for constant value c > 0.

This result provides a sufficient condition for unique re-ident-
ification of the entire population in a network. It is more disap-
pointing from a privacy perspective than the previous result. Fortu-
nately, few real graphs exhibit such a high average degree and ER
graphs with edge probability p = 1/2 are not realistic models of
the networks analysts are likely to study as most social and com-
munication networks tend to be sparse. Thus Theorem 1 is likely
to be more applicable.

In between these densities, there is the class of dense ER graphs
where p = c log n/n and the expected degree is c log n. The
case where c > 1 is of particular interest because it gives rise to
connected graphs for sufficiently large n. These dense graphs bet-
ter match realistic expectations of graph growth since the average
degree grows slowly as the size of the population increases. Pre-
liminary analysis, coupled with simulation, suggests that, for suffi-
ciently large n, nodes cannot be identified byH1 for any c > 0 but,
unfortunately, that all nodes are re-identified by H2 for any c > 1.

Unlike ER graphs, real networks often have degree distributions
which follow a power law (are heavy-tailed). To capture this prop-
erty, several graph models have been proposed, including the power
law random graph (PLRG) model [1]. In this model, a graph is con-
structed by first assigning a degree to each node, where the degree
is sampled from a power law distribution. Edges are inserted by
randomly choosing endpoints until every node has as many edges
as its specified degree. (This can result in self-loops or multiple
edges between a pair of nodes.)

The PLRG, and other power-law models, generate graphs with
constant average degree as the number of nodes increases. Thus
the edge density is low, and despite the skew in node degree, the
structural diversity is insufficient for re-identification. We state this
formally for PLRG because it is the easiest model to analyze.

THEOREM 3 (POWER-LAW RANDOM GRAPHS). Let G be a
PLRG on n nodes. With probability going to one, the expected sizes
of the equivalence classes induced by Hi is Θ(n), for any i ≥ 0.

Simulations show that the same relationship holds for other power-
law models, such as the preferential attachment model [5].

5.2 Anonymity Against Subgraph Queries
The existence of a clique in a graph immediately implies re-

identification resistance against any subgraph query that can be em-
bedded in the clique. For a graph G, its clique number, denoted
ω(G), is the number of nodes in the largest clique.



PROPOSITION 2. Let G be any graph, and Q(x) a subgraph
query around any node x. If Q(x) contains fewer than ω(G) nodes,
then |candQ(x)| ≥ ω(G).

This proposition holds because any subgraph query mentioning
fewer than ω(G) nodes, irrespective of the number of edges, will
match any node in the fully connected clique (recall that our sub-
graph queries assume an open-world). It will therefore have a can-
didate set of size at least ω(G). This proposition allows a data
owner to quickly determine the minimum size subgraph that could
possibly re-identify a node in their graph. For example, the clique
number of both the Hepth and Enron data sets is seven.2 Any sub-
graph query mentioning 7 or fewer nodes (which could contain as
many as 7 ∗ 6/2 = 21 edges) will not succeed in distinguishing an
individual to within 7 candidates.

Proposition 2 is also useful because the expected clique number
for various graph models is known. For ER random graphs, the
expected clique number is known to be approximately 2logn for
almost every graph [30]. Compared with ER random graphs, the
cliques observed in many social and communication networks are
substantially larger. Recently, Bianconi et al. calculated bounds on
the expected clique number for models of scale-free graphs that
match observed properties of some social networks [6]. These
bounds, combined with Proposition 2, result in useful lower bounds
on the disclosure under subgraph queries in open worlds.

5.3 Random Graphs with Attributes
Until now we have treated our social networks as unlabeled, fo-

cusing exclusively on structural re-identification. Clearly nodes in a
social network may contain descriptive attributes relevant to social
analysis. For example, age, gender, and salary might be common
attributes in an institutional social network. If an adversary can dis-
cover the attributes of individuals known to be present in the data
set, then these attributes can act as quasi-identifiers, in combina-
tion with structural features. To model knowledge of attributes and
structure, we use vertex refinement queries where the initial query
H0 returns a node label instead of ε. We use the notation HA

i to
denote vertex refinement queries augmented with attributes.

The degree to which attribute knowledge helps to re-identify in-
dividuals depends first, on the selectivity of published attributes,
and second, on the correlation between attributes and structure.
To explore these factors, we augment a sparse ER random graph
(|V | = 10, 000, |E| = 20, 000) with randomly assigned attributes.
Two parameters govern the assignment process: the number of dis-
tinct attribute values in the label alphabet A, |A| ∈ [1, 10000]; and
the degree to which attribute assignment is correlated with struc-
ture, governed by parameter p ∈ [0, 1]. We explain the use of this
correlation parameter later. First, we look at the affect of attributes
generated independently from structure.

We find that attributes, when combined with structural informa-
tion provided by vertex refinement queries, have a compounding
effect on re-identification. Recall that H0 simply returns the label
of a node without any information about its neighborhood. For an
unlabeled graph, there is a single candidate set of size |V | under
H0. As expected, if attributes from an alphabet of size |A| are
added uniformly to nodes, then the average candidate set size for
HA

0 diminishes to |V |/|A|. As i increases, this effect continues,
each time dividing the average candidate size by at least a factor
of |A| and increasing re-identification. These results are shown in
Figure 7 (top), and demonstrate the significant power of an adver-
sary capable of discovering descriptive attributes of nodes along
with structural properties.
2Since Net-trace is a bipartite graph, its clique number is 2.

Figure 7: Effect of attribute knowledge on re-identification
measured by average size of candidate sets. Top: attributes
are sampled independently (p = 0) from an alphabet of vary-
ing size. Bottom: attribute-structure correlation p varies while
alphabet size is fixed at five. The dashed lines show candidate
set sizes under Hi (no attribute knowledge).

However, this analysis assumes that attributes are assigned to
nodes independently of structure. Instead, the structural properties
of nodes in a social network are often correlated with attributes of
the nodes. This phenomenon dampens the increased re-identifiability
possible with attributes. To sample attributes correlated with struc-
ture, we map each node degree to an attribute value by partitioning
the degree distribution into |A| bins. Then with probability p we
assign a node to the attribute associated with its degree; with prob-
ability (1 − p) we sample an attribute value uniformly at random.
Observe that when p = 0, attributes are uniformly distributed.
When p = 1, then attribute knowledge serves as approximate de-
gree knowledge; as |A| approaches the number of distinct degrees
in the graph, the approximation becomes exact. Figure 7 (bottom)
shows the increase in average candidate set size with increasing
correlation. For example, when p = 0, HA

1 knowledge is more
informative than H2; but as correlation increases it becomes less
informative, being equally informative at around p = 0.6.

6. ANONYMIZATION ALGORITHM
In this section we describe an anonymization technique that pro-

tects against re-identification by generalizing the input graph. We
generalize a graph by grouping nodes into partitions, and then pub-
lishing the number of nodes in each partition, along with the density
of edges that exist within and across partitions. The adversary at-
tempts re-identification in the generalized graph, while the analyst
uses it to study properties of the original graph.

6.1 Graph Generalization
To generalize a naively-anonymized graph Ga = (Va, Ea), we

partition its nodes into disjoint sets. The elements of a partitioning
V are subsets of Va. They can be thought of as supernodes since
they contain nodes from Ga, but are themselves the nodes of a
undirected generalized graph G = (V, E). The superedges of E
include self-loops and are labeled with non-negative weights by
the function d : E → Z∗. GV is a generalization of Ga under a
partitioning V if the edge labels report the density of edges (in Ga)
that exist within and across the partitions:



DEFINITION 3 (GENERALIZATION OF GRAPH). Let V be the
supernodes of Va. G is a generalization of Ga under V if, for all
X, Y ∈ V , d(X, Y ) = |{(x, y) ∈ Ea| x ∈ X, y ∈ Y }|.

G summarizes the structure of Ga, but the accuracy of that sum-
mary depends on the partitioning. For any generalization G of
Ga, we denote by W(G), the set of possible worlds (graphs over
Va) that are consistent with G. Intuitively, this set of graphs is
generated by considering each supernode X and choosing exactly
d(X, X) edges between its elements, then considering each pair of
supernodes (X, Y ) and choosing exactly d(X, Y ) edges between
elements of X and elements of Y . The size of W(G) is a measure
of the accuracy of G as a summary of Ga.

The partitioning of nodes is chosen so that the generalized graph
satisfies privacy goals and maximizes utility, as explained in Sec-
tions 6.2 and 6.3 respectively. In the extreme case that all partitions
contain a single node, then the graph generalization G does not pro-
vide any additional anonymity: W(G) contains just the graph Ga

(the function d encodes its adjacency matrix). At the other extreme,
if all nodes are grouped into a single partition, then G consists of a
single supernode with a self-loop labeled with |Ea| (the total num-
ber of edges in the original graph). W(G) is thus the set of all
graphs over Va with |Ea| edges. In this case the generalization
provides anonymity, but is unlikely to be useful to the analyst since
it reflects only the edge density of the original graph.

In studying a generalized graph, the analyst can sample a single
random graph from W(G) and then perform standard graph analy-
sis on this synthetic graph. Repeated sampling can improve the ac-
curacy of analysis. We study in Section 6.4 the bias and variance of
estimates of graph properties based on graphs sampled fromW(G).

6.2 Anonymity of Generalized Graphs
To ensure anonymity we require that the adversary have a min-

imum level of uncertainty about the re-identification of any target
node in V . Because only the edge density is published with each
partition, it is never possible for the adversary to distinguish be-
tween individuals in a partition. Therefore, in reasoning about the
candidate set for a query Q, the adversary can attempt to refine the
candidates for a target node x only down to a set of feasible parti-
tions, with each node in the partition an equally-likely candidate.

As a result, we use the size of a partition to provide a basic
guarantee against re-identification, similar to that provided by k-
anonymity [24, 25, 27], and require that each partition have size
at least k. This ensures that candQ(x) ≥ k for any adversary Q.
Unlike most formulations of k-anonymity, k is only a lower bound:
some adversaries may not be able to re-identify the target node’s
partition. For example, consider an adversary who knows only the
degree of its target. The adversary must consider as candidates
the nodes of all partitions X for which mindegree(X) ≤ m ≤
maxdegree(X) where mindegree and maxdegree are defined as fol-
lows. For any partition X ∈ V and any node x ∈ X , there exists
some graph in W(G) where the degree of x is mindegree(X) =
max(0, d(X, X)−

`|X|−1
2

´
) +
P

Y ∈V max(0, d(X, Y )− (|X|−
1)|Y |). Similarly, there is some graph in W(G) where the degree
of x is as large as maxdegree(X) = min(|X| − 1, d(X, X)) +P

Y ∈V min(|Y |, d(X, Y )) Thus, for some adversaries the candi-
date set may include multiple partitions and the lower bound on
candidate set size may be even larger than k. However, capitalizing
on this improved bound introduces additional complexity into the
graph generalization algorithm because it must then obey an en-
hanced privacy constraint. We conservatively require k-sized parti-
tions and leave improvements in this area as future work.

6.3 Algorithm Description
We now present the graph generalization algorithm. The input

to the algorithm is Ga and privacy parameter k. The output is a
partitioning V of Va which determines the generalized graph G that
is published.

Subject to the privacy constraint, which requires partitions of
size at least k, we would like to find the partitioning that best
fits the input graph. We estimate fitness via a maximum likeli-
hood approach. We consider a uniform probability distribution
over the possible worlds W(G). For a graph g ∈ W(G) we de-
fine PrG [g] = 1/|W(G)| where the number of possible worlds is:

|W(G)| =
Y

X∈V

 
1
2 |X|(|X|− 1)

d(X, X)

!
Y

X,Y ∈V

 
|X||Y |
d(X, Y )

!

Without regard to the anonymity condition, the partitioning that
maximizes likelihood is the one with each node in a separate par-
tition. Then, as explained above, |W(G)| = 1 and PrG [Ga] = 1.
In general, likelihood is greater with more partitions because each
partition introduces more parameters to fit a fixed amount of data.
But subject to the minimum size constraint, partitionings can vary
greatly in their fit to the input graph. The algorithm uses local
search to explore the exponential number of partitionings.

The design of the search algorithm is based on techniques for
solving a related social network analysis problem: stochastic block-
modeling [20]. The objective of stochastic block-modeling is to
cluster the nodes of the graph so that nodes in the same group play
a similar “social role” in the network. While the high-level idea
is the same, there are a few key distinctions from our work. First,
our differing motivations result in different likelihood functions. In
stochastic block-modeling, the goal is to build a predictive model
of the data and so the likelihood includes a penalty term for model
complexity; in contrast, our goal is to fit the original network as
closely as possible given the anonymity condition. Second, the
anonymity condition imposes a new constraint on the search space,
which makes search more complex.

To find the partitioning that maximizes the likelihood function,
the algorithm searches using simulated annealing [23]. Each valid
partitioning (i.e., a minimum partition of at least k nodes) is a state
in the search space. Starting with a single partition containing all
nodes, the algorithm proposes a change of state, by splitting a par-
tition, merging two partitions, or moving a node to a different par-
tition. The proposal of moving from partition V to some new parti-
tion V ′ is evaluated based on the change in likelihood that results.
The proposal is always accepted if it improves the likelihood and
accepted with some probability if it decreases the likelihood. The
acceptance probability starts high and is cooled slowly until, as it
approaches zero, a move is accepted only if it increases the likeli-
hood. We terminate search when fewer than 10% of proposals are
accepted.

The algorithm may return a partitioning that is only locally max-
imal. Whether this happens depends in part on the cooling schedule
of simulated annealing; if cooled slowly enough, it will return the
global maximum with high probability [23]. Nevertheless, find-
ing the globally optimal partition is an intractable problem, and we
cannot quantify how close the output is to the optimum. In exper-
imental results not shown, we did a more systematic exploration
of the search space using random restarts. On the Enron graph
with k = 3, the log-likelihood of the output partition ranged from
−362.6 to −353.3; in contrast, a greedy algorithm returns a parti-
tion with log-likelihood of only −511.5.

To make search more efficient, we cache the statistics needed to
compute likelihood. We maintain a cache of edge counts d(X, Y )



to facilitate computing the likelihood. Furthermore, when consid-
ering a move in search space, it is only necessary to compute the
change in likelihood, which is more efficient since a move only af-
fects a subset of terms in the likelihood equation. For example, to
split assignment X into X ′ and X ′′, the only affected terms are
the ones involving X . Furthermore, it is only necessary to consider
those Y where d(X, Y ) > 0. Since the input graphs are sparse,
there are typically only a small number of affected terms. In the
worst-case, computing the change in likelihood requires time that
is linear in the size of the input graph.

We also made a few design choices that make search more effi-
cient. Partitions are split in a greedy fashion: a randomly chosen
node is moved from X to a new group X ′, and then for each of
the next k − 1 nodes, we select the node that maximizes the like-
lihood when moved from X to X ′. Second, for merges and node
moves, we only consider partitions X, Y where d(X, Y ) > 0 or
there exists Z such that d(X, Z) > 0 and d(Y, Z) > 0. This is
locally optimal, in that if Y does not satisfy this condition, then
merging X and Y can only decrease the likelihood of the current
partitioning. While these choices may exclude the optimal assign-
ment, results indicate that they are effective heuristics: they greatly
reduce runtime without any decrease in likelihood.

Based on experiments on the three networks, search terminates
after roughly 100 |V | steps. Since each step takes worst-case linear
time, the total runtime of the algorithm is O(n2). For the smaller
dataset, Enron, search completes in minutes; for the largest net-
work, Net-trace, search plateaus after a few hours.

6.4 Experimental Results
We now investigate how graph generalization affects network

properties. The algorithm output is a generalized graph G, which
the analyst can use to infer properties of the original graph. Here,
we consider an analyst who estimates a graph property by drawing
samples graphs from W(G), measuring the property of each sam-
ple, and then aggregating measurements across samples. Anonym-
ization can introduce two sources of error: estimates of a graph
property can be systematically biased or highly variable. We inves-
tigate the bias and variance of several properties on three real-world
networks: Enron, Hep-th, and Net-trace.

We examined five properties commonly measured and reported
on network data. Degree is a distribution of the degrees of all ver-
tices in the graph. Path length is a distribution of the lengths of the
shortest paths between 500 randomly sampled pairs of vertices in
the network. Transitivity (a.k.a. clustering coefficient) is a distri-
bution of values where, for each vertex, we find the proportion of
all possible neighbor pairs that are connected. Network resilience
is measured by plotting the number of vertices in the largest con-
nected component of the graph as nodes are removed in decreas-
ing order of degree [2]. Infectiousness is measured by plotting the
proportion of vertices infected by a hypothetical disease, which is
simulated by first infecting a randomly chosen node and then trans-
mitting the disease to each neighbor with the specified infection
rate [29].

We measured each of these characteristics for the original input
graph Ga and for a set of 200 output graphs sampled from W(G).
We sampled uniformly fromW(G) subject to the constraint that the
minimum degree be one, since each input graph contains a single
connected component, a fact assumed to be known by the adver-
sary. We repeat this for each k ∈ {2, 5, 10, 20} (each k produces a
different G). As a baseline, we also include a random graph of the
same density as the original; this is equivalent to setting k = |V |.
In the first five columns of Figure 8, we show results for output
graphs with k = 10 only, although results for other values of k

were qualitatively similar. We also indicate the variability of the
measured values on the output graphs by either showing the 10th
and 90th percentiles or showing a large number of curves, each
of which corresponds to results for a single sampled output graph.
Finally, in the rightmost column of Figure 8, we summarize the dif-
ference between the input and output graphs for all five measures
as k varies. For degree, path lengths, and transitivity, the difference
is the average value of the Kolmogorov-Smirnov statistic, which
measures the maximum vertical distance between two cumulative
distributions. For the last two properties (which are not distribu-
tions), the difference is measured in a similar way: it is the average
maximum vertical difference between the curve corresponding to
the input graph and each curve corresponding to an output graph.

The distributions of degree for the output graphs are qualitatively
very similar to the input graphs for all three data sets with some
exceptions. The degrees of the highest degree nodes are systemat-
ically reduced by the graph generalization. However, when com-
pared to the random graph model (k = |V |), graph generalization
at k = 10 produces far less bias.

This bias in the degree distribution appears to have relatively lit-
tle effect on the distributions of path length and transitivity. The
distribution of the output graphs closely resemble those of the input
graph while the distributions of the random graphs are significantly
distorted from those of the input graphs. This effect is particularly
pronounced on the Net-trace and Enron data sets.

The effect is similar for resiliency and infectiousness. In many
cases, the random graphs are significantly distorted from the input
graph, while the results for the output graphs for k = 10 are much
more similar or nearly identical to the results for the input graph.
The effect is particularly pronounced for resiliency of Net-trace.

Finally, the summary plots show how the distortion varies with k.
In general, distortion increases slowly with k, and is maximized for
k = |V | (the random graph baseline). For degree distribution and
path length particularly, increasing values of k seems to produce
only very small increases in distortion, and these values are low
relative to output graphs created with the random model.

6.5 Discussion
These experimental results demonstrate that graph generaliza-

tion protects privacy while allowing a range of accurate analyses.
Furthermore, the proposed algorithm is an instance of a generic
framework that can accommodate alternative utility objectives or
privacy criteria. For a utility objective, we chose maximum like-
lihood, which measures the fidelity of the output graph indepen-
dent of any particular analysis. The results indicate that it works
well, but it is also possible to design a utility objective so that the
accuracy of targeted analyses is maximized. In addition, the pri-
vacy criterion could also be changed; for instance, if the adversary
knowledge was bounded by Hi, the algorithm could allow nodes
naturally hidden in large Hi equivalence classes to be placed in
partitions smaller than size k.

Even without changing the algorithm, the utility of the output
may be improved by enhancing the analysis of the output, the gen-
eralized graph G. For example, rather than sample graphs uni-
formly from W(G), the analyst could sample graphs favoring cer-
tain degree distributions. The sampling procedure could be pub-
lished along with the generalized graph, without threatening pri-
vacy under our assumptions.

7. RELATED WORK
Backstrom et al. [4] were the first to propose an attack on anonym-

ized networks, demonstrating that removing identifiers (naive anon-
ymization) does not ensure privacy. Their main result concerns an
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(c) Net-trace

Figure 8: Effect of anonymization on five commonly measured network properties for three different datasets. The figure compares
randomly sampled anonymous graphs (black, open-circles or thin lines) to the original input graph (red, solid line) and to a random
graph (gray, dashed line). The rightmost column summarizes the effect on all five measures as k varies.

active attack, where the adversary is capable of adding nodes and
edges prior to anonymization. The attack re-identifies an arbitrary
set of targets by inserting a random subgraph that will be unique
with high probability, independent of the input graph, and then con-
necting the subgraph to the targets. We do not consider the threat
of active attacks; while relevant to online social networks, they are
difficult or impossible to carry out in many networks (such as email
networks internal to an organization).

Passive attacks — where the adversary attacks an already pub-
lished network — have been more extensively studied. This in-
cludes measures of anonymity: Singh and Zhan [26] measure the
vulnerability to attack as a function of well known topological prop-
erties of the graph, and Wang et al. [28] propose a measure of
anonymity based on description logic. In an earlier technical re-
port, we introduced the models of adversary knowledge analyzed
in Sections 3 and 4, and proposed the Hi queries as measures of
re-identification risk, because of their computational efficiency and
convergence (for most graphs) to automorphic equivalence [14].

In the same report, we proposed the first anonymization tech-
nique for graphs, a technique based on random edge deletions and
insertions, which resisted attacks of an H1 adversary, but at a sig-
nificant cost in graph utility [14]. Edge randomization is further ex-
plored by Ying and Wu [31], who quantify the relationship between
the amount of randomization and the adversary’s ability to infer the
presence of an edge. They also present a randomization strategy
that preserves the spectral properties of the graph; the graph utility

is much improved, but the effect on privacy is not quantified.
Two groups have proposed anonymizing graphs by inserting edges

until a certain level of structural uniformity is achieved. Zhou and
Pei [33] consider a node-labeled graph and anonymize with respect
to an adversary who knows the local neighborhood of a target (the
induced subgraph of the target and its neighbors). They anonymize
the graph by generalizing node labels and inserting edges until each
neighborhood is isomorphic to at least k − 1 others. Liu and Terzi
[17] present an efficient graph anonymization algorithm that inserts
edges into a graph until it becomes k-degree anonymous (for each
node there are at least k − 1 other nodes with the same degree).
The above privacy conditions assume the adversary’s knowledge
is limited, and may not protect against the more powerful adver-
saries considered here. Furthermore, the cost of the anonymiza-
tion is the number of edges added, a measure which assumes that
edges have uniform cost; our approach explicitly models the like-
lihood of edges and penalizes the insertion of unlikely edges (as
well as the deletion of likely edges). Also, anonymization by edge
addition alone significantly biases the utility of the anonymized
graph: degrees increase, paths become shorter, infections spread
more rapidly, etc. In contrast, our algorithm outputs a distribution
over graphs, which introduces relatively little bias in utility (as we
show empirically) and also enables the analyst to estimate the un-
certainty that the anonymization introduces by measuring variance.

Zheleva et al. [32] consider graphs with labeled edges and an
adversary with a predictive model for links and knowledge of con-



straints on connections in the graph; the goal of anonymization is to
prevent accurate prediction of a class of sensitive edges. The data
model, threats considered, and adversary capabilities differ signifi-
cantly from those treated here.

Rather than publish an anonymized network, Dwork et al. [9]
propose an interactive mechanism, where the analyst poses queries
and receives noisy answers. While the mechanism satisfies a strong
notion of privacy, only queries with low “sensitivity” can be an-
swered accurately, a condition which precludes many of the social
network analyses (e.g., transitivity has O(n) sensitivity). Further-
more, only a sub-linear number of queries can be answered in total
(not per user). Rastogi et al. [22] present a non-interactive mech-
anism with equivalent privacy guarantees, but it does not address
queries that require joins on the edge table, which are clearly cru-
cial to network analysis.

Frikken and Golle [12] designed a protocol for privately assem-
bling a graph that is distributed among a large number of parties;
the output of the protocol is a naively-anonymized graph. Korolova
et al. [16] consider an adversary who tries to re-assemble the graph
from a set of views of local neighborhoods (obtained, for example,
by breaking into user accounts of an online social network).

8. CONCLUSION
We have focused on what we believe to be one of the most ba-

sic and distinctive challenges for protecting privacy in network data
sets—understanding the extent to which graph structure acts as an
identifier. We have formalized classes of adversary knowledge and
evaluated their impact on real networks as well as models of ran-
dom graphs. We proposed anonymizing a graph by generalizing it:
partitioning the nodes and summarizing the graph at the partition
level. We show that a wide range of important graph analyses can
be performed accurately on a generalized graph while protecting
against re-identification risk.
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APPENDIX
The appendix contains proofs of Theorems 1 and 3, which we re-
state here for convenience.

THEOREM 1 (SPARSE ER RANDOM GRAPHS). Let G be an
ER random graph containing n nodes with edge probability given
by p = c/n for c > 1. With probability going to one, the expected
sizes of the equivalence classes induced by Hi is Θ(n), for any
i ≥ 0.

PROOF OF THEOREM 1. Consider a network of size n. Let Ni

denote the degree of the i-th node, i ≤ n. As n →∞

P (Ni = k)→ ck

k!
e−c

Let M1,k(n) denote the expected size of the equivalence class of
H1 corresponding to node degree k when the graph is of size n and
let M1,k = limn→∞M1,k(n). We have

M1,k = lim
n→∞

nX

i=1

P (Ni = k)

= Θ(n)

A similar argument holds for Hi, i = 2, . . .. Consider a node x.
We first note that the Hi equivalence class that x belongs to is de-
termined by the subgraph that centered at x that includes all nodes
within distance i of it. Now, as n → ∞, with probability going to
one, this subgraph is a tree. Moreover the probability of the above
subgraph deviating from a tree is O(1/n). Another observation is
that every Hi induced equivalence class contains at least one node,
whose distance i subgraph is a tree in the limit as n →∞. This fol-
lows because any Hi consistent multi-set can be used to construct
a tree. Thus any distance i subgraph centered at a node that is not a
tree is hidden by commonly found trees.

Consider a tree, t, of height i or less. Let N(t) be a set containing
the numbers of children for all nodes in the tree that are at distance
j = 0, 1, . . . , i− 1 from the root. Let Gi(x) denote the distance i
subgraph centered at node x and let Ti denote the set of all possible
height i or less trees. Then

P (Gi(x) = t) =
Y

k∈N(t)

ck

k!
e−c + O(1/n), t ∈ Ti

= Θ(1)

P (Gi(x) /∈ Ti) = O(1/n)

Note that as n grows, the distribution of the number of children that
a node within the tree has is a Poisson distribution.

Since each equivalence class contains at least one height i or less
tree in the limit as n → ∞, it follows from the above expressions
that the expected size of each equivalence class is Θ(n).

THEOREM 3 (POWER-LAW RANDOM GRAPHS). Let G be a
PLRG on n nodes. With probability going to one, the expected
sizes of the equivalence classes induced by Hi is Θ(n), for any
i ≥ 0.

PROOF OF THEOREM 3. The proof of Theorem 3 proceeds in a
similar manner except that the Poisson distribution is replaced by
P (Ni = k) = ak−α > 0, k = 0, 1, . . .. Here a is chosen so thatP∞

k=0 P (Ni = k) = 1.


