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1 Introduction

The aim of transfer learning is to reuse behavior by using the knowledge learned
about one domain or task to accelerate learning in a related domain or task.
The new framework of proto-transfer learning transfers the representation rather
than the behavior. This transfer of representation entails the reuse of eigenvec-
tors learned from one graph in another. We explore how to transfer knowledge
learned on the source graph to a similar graph by modifying the eigenvectors of
the Laplacian of the source to be reused for the target. In this paper we explore
solutions to transfer learning within reinforcement learning domains (Sutton &
Barto, 1998) through spectral methods. This abstraction of representation is
something that humans and animals do effortlessly, and is thus of great research
importance to the machine learning community.

For example, a neuroscience study on primates has shown that a rhesus
monkey (Ivan) is capable of using tools for multiple goals. Ivan learns to use
a rake to retrieve a treat in different locations and to perform the same task
with different tools (task transfer). Additionally, it has been shown that he can
maneuver the rake over various barriers of his cage and even go around a corner
to retrieve the treat (domain transfer) (Veino & Novak, 2003).

In past work, (Foster & Dayan, 2000) studied the task transfer problem
by applying unsupervised, mixture model, learning methods to a collection of
optimal value functions of different tasks in order to decompose and extract the
underlying structure. Proto-value functions (PVFs) are a natural abstraction
since they condense a domain by automatically learning an embedding of the
state space based on its topology (Mahadevan, 2005). PVFs lead to the ability to
directly transfer knowledge about domains and tasks, since they are constructed
without taking reward into account.

We define task transfer as the problem of transferring knowledge when the



state space remains the same and only the reward differs. For task transfer,
task-independent basis functions, such as PVFs, can be reused from one task to
the next without modification. Domain transfer refers to the more challenging
problem of the state space changing. This change in state space can be a change
in topology (.i.e. obstacles moving to different locations) or a change in scale
(.i.e. a smaller or larger domain of the same shape). For domain transfer, the
basis functions will need to be modified to reflect the changes in the state space.

In this paper, we investigate task transfer in discrete domains by reusing
PVFs in Markov decision processes (MDPs) with different rewards functions
and different domain dynamics. For domain transfer, we introduce a systematic
approach to modify the eigenvectors for abstraction in the new domain. We
will show results applying the Nystrom extension (Mahadevan et al., 2006) for
interpolation of PVFs between MDPs of different sizes as well as Procrustes
alignment (Gower, 1975). Previous work has been able to speed up learning
when transferring behaviors between tasks and domain (Taylor et al., 2005),
but we are able to transfer representation and reuse knowledge to learn just as
well on a new task or domain. We extend upon our previous results (Ferguson &
Mahadevan, 2006) to include task transfer where the world’s dynamics change,
and to improve the robustness of our domain transfer results by using a new
technique.

2 Framework

2.1 Reinforcement Learning

Reinforcement learning systems contain four main elements: 1) a policy, 2)
a reward function, 3) a value function, 4) a model of the environment. The
policy is a mapping of what action an agent should take in each state of the
environment. We are ultimately trying to optimize the policy so that the agent
can act optimally in accordance to the reward function. The reward function
defines the goal of the system, by assigning a numerical reward to each state.
The value function is the discounted estimate of reward for each state based on
likely future actions. So, the value of a state is the amount of reward an agent
can expect to accumulate when starting from that state. The model of the
environment of a reinforcement learning task determines the agent’s next state
given a current state and action. The dynamics of the model include details
such as if the environment is deterministic or with what probability (which we
refer to as %-stochastic) an agent attempting to take a particular action will
take a random action instead. A reinforcement learning problem that satisfies
the Markov property is called a Markov decision process.

2.2 Markov Decision Process

A Markov decision process (MDP) M = (S, A, P2,  R%,,) is defined by a set of
states S C R?, a set of discrete actions A, a transition model P2, specifying



the distribution over future states s’ when an action a is performed in state
s, and a corresponding reward model R, specifying a scalar cost or reward.
The state-action value function Q7 (s,a) of any policy 7 can be found for all
state-action pairs by solving the linear system of the Bellman equations:

QW(Sa CI,) = R.(Sls’ + 0 Z Psas’ Z 7'('(0,/, S/)QW(SI,GI). (1)
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2.3 Obstacle Gridworld

Figure 1: 12x12 two-room gridworld with various reward functions.

The reinforcement learning task that we will be experimenting on is the
obstacle gridworld—in particular, a two-room gridworld (see Figure 1). Sometime
we will use the gridworld with no obstacles, also known as a one-room gridworld.
The possible actions are North, South, East, and West. If an agent tries to move
into a wall, it will remain in the same state. To estimate the value function,
we collect samples using a random walk of a maximum of 200 episodes, each
with a maximum of 150 steps and random start state. Non-goal states have
zero reward; the goal has reward of 100. This is a discrete domain with 144
states. However, we are also interested in much larger discrete domains, as well
as more complex continuous domains.

2.4 Function Approximation

In large discrete or continuous domains where not all states will be visited
enough to get a good estimate of a value function (some states may not be visited
at all). Function approximation attempts to generalize from the estimated value
functions of some states, an approximation over the entire state space. There are
many different approaches for function approximation. Proto-value functions
approximate the value function using spectral methods.



2.5 Proto-value Functions

Laplacian Eigenfunction 1 for Two Room Environment Laplacian Eigenfunction 2 for Two Room Environment

(a) 15t PVF (b) 274 PVF

Laplacian Eigenfunction 3 for Two Room Environment Laplacian Eigenfunction 4 for Two Room Environment

(c) 37 PVF (d) 4th PVF

Figure 2: Example PVF's of the 12x12 two-room gridworld (Figure 3(c)). Notice
how the PVFs capture the structure inherent to the state space.

Proto-value functions (PVFs) are an orthonormal basis spanning all value
functions on a state space. PVFs are constructed as follows: 1) from an initial
random walk, create an adjacency matrix which reflects the topology of the
state space; 2) compute the graph Laplacian of the adjacency matrix; 3) use
the smoothest k eigenvectors (ranked by eigenvalue) of this graph Laplacian as
PVFs. Thus, PVFs are a bases which respect the topology of the state space
(See Figure 2).

More formally, let G = (V, E, W) denote a weighted undirected graph with
vertices V, edge set E and weights w;; on edge (i,j) € E. The degree of a
vertex v is denoted as d,. The adjacency matrix A can be viewed as a binary
weight matrix describing the connectivity of the graph. Let D be the valency
matrix, in other words, a diagonal matrix whose entries are the row sums of A.
The nomalized Laplacian £ of the graph G is defined as £ = D~ 2 (D - A)D*%,
where the states are the vertices, and edges connect states that are adjacent in



the state space (i.e. a state that can be reached from that state). Specifically,

1—% ifu=wvandd, #0
L(u,v) = —\/17 if w and v are adjacent (2)

dud,
0 otherwise

L is a symmetric self-adjoint operator, and its spectrum (eigenvalues) lie in the
interval A € [0,2]. PVFs are the eigenvectors ¢;(L£), such that L@y = \yéy.

2.6 Task Transfer

For the task transfer problem, the graph Laplacian £ of source graph Gg and
target graph G'r are the same, since only the reward function or model dynamics
have changed, and their adjacency matrix A is the same for both graphs. Thus
the eigenvectors ¢;(L) of Gg can be transferred to Gr. An example of task
transfer of reward is shown in Figure 1; where reward A is the source domain
and reward B is the target. We will also examine the case of task transfer of
dynamics.

2.7 Domain Transfer (topology)

R R R

(a) 8x8 domain transfer (b) 8x8 topological do- (c) 10x10 scaling domain transfer
source. main transfer target. target.

Figure 3: Two-room gridworld examples of topological and scaling domain
transfer.

For the domain transfer problem where the shape of the state space changes,
the connectivity of the graph Gg is different from that of Gr and the adjacency
matrix of the target Ar is the adjacency matrix of the source Ag, perturbed
by some matrix F, i.e. A7 = Ag + E. Thus, we can view the differences in the
corresponding Laplacians of the source and target, Lg and L as:

Ls=Dg?(Ds— As)Dg?

Lr =Dz*(Ds — [As + E]) Dy

1
2



We are currently exploring matrix perturbation theory to quantify how the
eigenvalues and eigenvectors ¢;(Lr) change based on the perturbation E (i.e.
changes in the connectivity of the graph). An example of topological domain
transfer is shown in Figure 3; Figure 3(a) is the source domain and Figure 3(b)
is the target.

2.8 Domain Transfer (scale)

The domain transfer problem where the size of the state space changes, focuses
on the expansion of the connectivity of the graph Gg, where the pattern of the
adjacency graph Ag is retained in Ar, while the sizes of the matrices differ. We
use various techniques to extend the eigenfunctions ¢(Lg) computed on Ag to
the new states of Ar to create ¢(Lr). An example of scaling domain transfer
is shown in Figure 3; Figure 3(a) is the source domain and Figure 3(c) is the
target.

3 Algorithmic Details

We use source and target to describe the domain we transfer knowledge from
and to, respectively. We include the term pure when the PVFs are created from
and used for learning on the same (source) graph, while ¢ransfer will refer to
the case in which the PVFs are created on a (source) graph and transferred to
be used for learning on another (target) graph. Least-squares Policy Iteration
(LSPI) is used to learn the control policy, where the underlying subspace for
approximating the value function is spanned by the learned PVFs.

4 Experimental Results

4.1 Task Transfer (Reward)

These task transfer experiments investigate transfer learning using PVFs; where
the state space and basis functions are constant, but the reward function is
varied . Since this method creates basis functions based on the actual topology
of the state space, it is a natural solution to this task transfer problem.

In Table 1 we see that transferring the basis functions from one grid (Exp
1l.a, with reward in the upper right-hand corner) to grids with different reward
functions (Exp 1.b, with reward in the lower left-hand corner and Exp 1.c, with
reward in the middle) does not affect performance. Thus we have shown that
proto-value functions are reward independent. These 12x12 gridworlds all have
144 states (with the same topology), we use the ’lsqfast’ algorithm, a discount
of 0.9, 130 eigenvectors, and allow 20 iterations. We collect samples using a
random walk of a maximum of 200 episodes, each with a maximum of 150 steps
and random start state. During testing, the learned policy is evaluated allowing
a maximum of 50 steps, and averaged over 20 runs. The reward function assigns
zero reward to all states except for the goal which has reward of 100.



Proto-transfer (doms,domr, S(sr},J, N, €k, P):

1. Representation Learning Phase: Perform a random walk of J trials,
each of maximum N steps on the source domain doms, and store the states
visited in the dataset Dgs.

(a) Create PVFs for the source domain: Build an undirected weighted
graph G from D where edges can be inserted between a pair of points
z; and x; if , x; is among the k nearest neighbors of z; and all edges
have weight 1. Construct the normalized Laplacian £ on graph G as
in Equation 2.

(b) Compute the k smoothest eigenvectors of £ on the graph G, and collect
them as columns of the basis function matrix ®, a Sg x k matrix, where
Ss is the number of states in the source. The embedding of a state
action pair ¢(s,a) where s € D is given as e, ® ¢(s), where e, is the
unit vector corresponding to action a, ¢(s) is the st row of @, and ®
is the tensor product.

2. Control Learning Phase: Perform a random walk of J trials, each of
maximum N steps on the target domain domr, and store the states visited
in the dataset D;. Initialize w® € R* to a random vector.

Repeat the following steps:

(a) Transfer PVFs from source to target domain: Set i <— i+ 1. For each
transition (s¢, at, st, a3, r¢) € Dr, compute low rank approximations of
matrix A and b as follows:

At+1 = At + ¢(St7 at)(¢(st7 CLt) - 7¢(5;7 a;))T
Et+1 = Bt + ()ZS(St, at)rt
where ¢(s¢,a+) is approximated using the Nystrom extension (Equa-
tion ?7?) when s; ¢ Ds (necessary for domain transfer only).
(b) Solve the system Aw® =b

3. until [|w’ —w"? < e

4. Return Q” =>. w'® as the approximation to the optimal value function.

Figure 4: Pseudo-code of the proto-transfer algorithm for both task and domain
transfer learning.

The results in Figures 5 are for transfer experiments set up the same as
above except for the following: We use a discount of 0.8, and vary the number
of eigenvectors to show how many PVF's are needed for good accuracy. Trans-
ferring the basis functions learned from a grid with reward in position A to a
grid with the reward in position B retains 100% probability of success. We see
that the transferred task matched, but can do no better than the best of the
pure experiments. Results are similar with other reward functions.
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Figure 5: Reward Experiments on the 12x12 gridworld.

Table 1: Results comparison between experiments in which the eigenfunctions
for the current grid are learned and used (pure) versus when the learned eigen-
functions for Exp 1.a are used in grids with different goal location (transfer).

Exp l.a Exp 1.b Exp 1.b Exp 1l.c Exp l.c

(pure) (pure) (transfer) (pure) (transfer)
Prob. of success || 100% 100% 100% 100% 100%
Avg. # of steps 14.8 £2.1 13.6 £2.1 | 14.9+3.0 73+1.2 74+1.2
Min/Max steps [5,27] 4, 22] (5, 24] [3,13] (2, 11]
Avg. total 26.2 1+ 5.6 30.0+£7.1 | 29.2+£8.8 53.5+6.5 | 563.1+£7.3
discounted rew.
Iterations to 19 16 11 12 12
convergence

4.2 Task Transfer (Dynamics)

These task transfer experiments investigate transfer learning using PVF's, where
the state space and basis functions are constant, but the dynamics of the envi-
ronment is varied . More specifically, since our domains are non-deterministic,
we will modify the percentage of the time that the agent will choose a random
action instead of the currently learned optimal action. Since this method creates
basis functions based on the actual topology of the state space, it is a natural
solution to this task transfer problem.

The results in Figures 6 are for transferring the representation of two 12x12
two-room gridworlds with different dynamics. We use the ’lsqfast’ algorithm in
LSPI , a discount of 0.8, allow 20 iterations, and vary the number of eigenvectors.
The learned policy is evaluated allowing a maximum of 50 steps, and averaged
over 20 runs. Non-goal states have zero reward; the goal is consistently in
position A and has reward of 100. Transferring the basis functions learned



from a 10%-stochastic grid to a 20%-stochastic grid retains 100% probability of
success. We see that the transferred task matched, but can do no better than
the best of the pure experiments. The 20%-stochastic pure experiment results
may need to be re-run, since the results show it reaches the goal in the least
number of steps, but has a poor probability of success. Results are similar when
transferring between deterministic and stochastic domains.
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Figure 6: Dynamics Experiments on the 12x12 gridworld.

4.3 Domain Transfer (Scale)

These domain transfer experiments investigate transfer learning using PVFs,
where the size of the state space changes and the the basis functions must be
modified interpolated to span a larger state space. For simplicity, the reward
function and state dynamics will remain constant. This is an important trype
of transfer learning since the dynamics of a gridworld with no obstacles are
the same regardless of scale; the basic topology is a square, the actions are
North, East, South, West, and you cannot walk through the walls on the border.
An agent should be able to transfer the representation it has learned in one
gridworld to another. We will focus on the harder case: transferring from a
smaller domain to a larger domain.

In initial work, the Nystrom extension was used to transfer the PVF's from a
smaller gridworld to a larger gridworld (i.e., 10x10 grid to 20x20 grid) (Ferguson
& Mahadevan, 2006). This method interpolated new PVFs for the new states
in the larger domain by basically averaging the nearby known PVFs taken from
the smaller domain. Proto-transfer using the Nystrom worked in several simple
cases, but one downfall was that if the goal was in the section that needed
interpolation, the method did not work.

Even though Table 1 shows that the extending the basis functions to larger
state spaces using the Nystrom method is working well (100% for larger mag-
nifications), the learned proto-value functions show that the interpolation may



not be correct (see Figure 7). The transfer works well as long as the reward
is not in the area being extended. This is another possible indication that the
learned value-functions are not correct. Figure 7?7 shows the different results for
transferring from a 10x10 gridworld to a 20x20 gridworld with the reward state
in different locations. Perhaps adding states to the grid is moving the reward
in a significant way and we can’t deal with moving the reward and changing
the state space and basis functions all at once. It is likely that the Nystrom’s
method of averaging is to simple for this problem and another method may be
a better fit.

teration number 11 teration number 14

(a) Exp 3.a (Transfer): Learned value func-  (b) Exp 3.b (Transfer): Learned value func-
tion when transferring from 10x10 grid to  tion when transferring from 10x10 grid to
12x12 grid. 15x15 grid.

teration number 18

(c) Exp 3.c (Transfer): Learned value func-
tion when transferring from 10x10 grid to
20x20 grid.

Figure 7: Graphs of the value functions where the transfer learning is done using
the Nystrom extension to interpolate basis function up to a larger state space,
with the same reward functions.

Our method of choice, Procrustes alignment, essentially stretches the PVFs
of the small domain to the size of the large domain based on several given state
correspondences. In our case, we give the 4 corners of the gridworld as correspon-
dences which an agent could easily discover. This approach easily gives 100%
success when transferring from a larger domain to a smaller domain, specifically
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from a 15x15 gridworld (225 states) to a 12x12 gridworld (144 states).

Our preliminary set of experiments gives the corners of a 12x12 gridworld
(source) and a 15x15 gridworld (target) as the the correspondences (i.e. state 1
(source) aligns with state 1 (target), state 12 (source) aligns with state 15 (tar-
get), state 133 (source) aligns with state 211 (target), and state 144 (source)
aligns with state 225 (target)). These correspondences are currently hand-coded
into the system. Future work will include automatically finding these correspon-
dences. The results of these experiments show that this technique can transfer
with 100% accuracy, independent of where the reward is located.

4.4 Domain Transfer (Topology)

These domain transfer experiments investigate transfer learning using PVFs,
where the shape of the state space changes and the the basis functions must be
modified accordingly. For simplicity, the reward function and state dynamics
will remain constant.

Since proto-value funcitons are constructed based on the connectedness of
the states, transferring basis functions with no modification to domains of the
same size but different topologies did poorly as expected. This sanity check just
confirms that we will need a structured method for modifying PVF's for specific
states that have changed (new obstacles, or no longer obstacles, and possibly
their neighbors). Notice the difference in the purely learned value functions in
Figure 8. Matrix Perturbation techniques need to be explored further before we
suggest a good solution to this type of domain transfer.

5 Future Work

In this paper we have focused on proto-transfer in discrete domains only. How-
ever, PVFs also naturally abstract continuous domains (Mahadevan et al.,
2006). Future work will explore proto-transfer in continuous Markov decision
processes.

Using proto-value functions, an agent can transfer knowledge learned in a
smaller gridworld to a larger gridworld, with high success. One exciting appli-
cation for this transfer is in representation learning. Can an agent in a domain
learn which domain it is in? If we have different domains as sources for transfer
(i.e. a gridworld, a torroid, a chain, etc. or more abstract domains) the agent
can try to transfer the knowledge from each of these domains to a knew domain
(with the same reward function), and the matching domain should have a high
probability of success. Therefore, which ever source domain’s interpolated basis
functions yield the best results on our new domain, we can conclude this new
domain is of that the same type. A concrete example of when this is useful is
a robot exploring the computer science department. Once it has learned the
basis functions for an office and a classroom, it can use representation learning
to recognize a new room as either an office or a classroom, and therefor reuse
the knowledge it already has about that sub-domain.

11
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(a) Exp 2.a (pure): Learned value function (b) Exp 2.b (pure): Learned value function when
when there is a half-wall on the right side there is a full wall with a doorway separating the
separating the two rooms which will be trans- two rooms.

fered to experiments 2.b and 2.c.

Figure 8: Graphs of the value functions where the transfer learning is done
using the same reward and basis functions, but different state spaces. The
eigenvectors are learned on Exp 2.a with and transferred to be used on Exp 2.b
where the topology is slightly different.
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