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Abstract

Wireless networks, and mobile ad-hoc networks (MANETS) in particular, are characterized by time-
varying link characteristics and network topology. In such an environment, the network must accom-
modate the changes, providing end-end packet delivery while at the same time incurring low control
overhead. This paper proposes a routing algorithm for MANETSs with the primary goal of maximizing
connectivity while limiting overhead. Rather than using one or more disjoint paths between a source and
destination, a set of non-disjoint paths, or braid, is selected. To adapt to link changes, local rerouting is
performed within the braid, thus avoiding network-wide recalculations. We analytically characterize the
source-destination connectivity of the braid. Through simulation, we compare the reliability of braided
routing and various other MANET routing protocols, including Ad-hoc On-Demand Distance Vector
(AODV) routing, and quantify the relative amounts of control overhead incurred by braided routing and
AODV.

1 Introduction

Wireless networks, and mobile ad-hoc networks (MANETS) in particular, are characterized by time-varying
link characteristics and network topology. In such an environment, the network must accommodate the
changes, providing end-end packet delivery while still achieving low control overhead. Yet this ideal is difficult
to meet in practice: end-end delivery requires some form of end-end (potentially global) coordination, and
frequent changes make adaptation to each and every change costly. Link and mobility characteristics may
also be difficult to estimate a priori, making proactive or predictive routing approaches difficult to implement
in practice.

In this paper, we investigate robust routing in MANETs. By “robust” we mean that although a particular
routing configuration (in our case, a set of multipath routes) may not be optimal for a single specific configu-
ration (e.g., specific network topology and link characteristics), it will perform well over a larger set of likely



network configurations: i.e., it is robust to changes without requiring global recomputation. The issues of
local versus global adaptation to link/topology changes, and the timescale(s) at which this adaptation occurs
(and the concomitant overhead incurred) are central to the MANET routing problem. There is a growing
recognition [2, 3, 4] that the scale and dynamic nature of MANETS present severe challenges for classical
MANET protocols, which are conceptually based on maintaining a consistent network-wide topological view-
point. In contrast, the approach to MANET routing explored in this paper is based on the intuition that
a global routing configuration should be determined at a coarse time-scale (e.g., periodically, every T time
units), with local adaptation to link or topology changes occurring at a finer time-scale within the current
global configuration.

This paper specifically investigates an approach towards MANET routing, which we refer to as “braided
routing,” that is robust to changes in link characteristics and network topology. Informally, braided routing
operates at two timescales. At the longer time-scale, a routing subgraph (i.e., a braid, defined formally in
Section 3) is constructed that connects a source and destination. At the shorter time-scale, local forwarding
decisions are made to select the “best” next hop out of all possible next hops. Unlike many existing “backup
routing” approaches that pre-compute disjoint paths, e.g., [12], or partially disjoint paths, e.g., [7], a braid
does not impose such requirements on the subgraph. Like approaches such as [7], braided routing performs
local adaptation in response to link and topology changes. But unlike approaches that route packets over the
entire network topology to achieve robustness (e.g., [26]), the braid subgraph over which packets are forwarded
is purposefully limited to limit control overhead (e.g., for braid construction and state maintenance). The
tradeoff between the control overhead incurred (which depends in turn on the size of the braid and the
interval at which the braid is re-computed), and packet delivery performance will be of principal concern to
us. Our results show that braided routing can indeed achieve a performance gain over a traditional MANET
routing algorithm such as Ad-hoc On-Demand Distance Vector (AODV) routing, and other approaches such
as disjoint path routing, without significantly increasing overhead.

We analyze braided routing from several different viewpoints in order to fully explore and understand its
properties. We analytically characterize the reliability (the probability that the source and destination
nodes have an instantaneous path) of a class of braids, their optimality properties, and counter-examples to
conjectured optimality properties in a well-structured (grid) network. Through simulation, we compare the
reliability of braided, disjoint-path, and full-network routing in both torus and random networks. Finally, we
investigate the control overhead of braided routing and AODV from implementations of these two protocols
in a GloMoSim simulation of a mobile scenario. In addition to quantifying the gains and overheads of braided
routing, our simulations also illustrate the impact and subtleties involved with using different underlying
network models.

The remainder of this paper is structured as follows. In Section 2, we discuss related work on backup
routing. In Section 3, we describe the reliability metric we use as a measure of robustness. In Section 4, we
present analytic results evaluating our braid structure in terms of reliability, while in Section 5. we present
analytic results comparing braids and disjoint paths. Section 6 gives experimental results evaluating our
braid structure. Then in Section 7 we propose a simple algorithm for constructing and maintaining a braid
and present simulation results evaluating its performance. Finally, Section 8 summarizes our results and
outlines future work.

2 Related Work

A variety of other work has considered the use of disjoint routes in ad hoc networks, including [13, 16, 20, 23].
In addition to the overhead cost of finding disjoint paths, if any link in a path breaks then the path itself
breaks. Detection and recovery from failures is also expensive since it cannot be carried out locally. These
considerations have thus motivated research on the use of non-disjoint paths.

Considering non-disjoint paths, backup routing [14] reinforces the path selected by AODV [21] by allowing
nodes that overhear AODV control messages to become part of the routing subgraph, to be used only when



links on the AODV path break. [24] proposes duct routing in mobile packet radio networks, allowing nodes
neighbouring the primary path to be used. When sending packets to the ith hop node along the primary
path, one of either the ith hop node or one of its neighbours will hear the transmission first. The first node
that hears the transmission will forward the packet to the (i + 1)st hop node; the other nodes will overhear
the forwarding transmission and refrain from transmitting. For underwater networks, [19] proposes a geo-
routing mesh using only nodes within a given distance from the vector from the source or current forwarding
node to the sink. Finally, braided multipaths are proposed in [7] to protect against node failure. A braided
multipath corresponds to selecting a primary path and then adding an additional path for each node i on the
primary path that does not use node #, possibly reusing parts of the primary path. We note that [24] (when
all nodes neighbouring the primary path are used) and [14, 19] build routing subgraphs which structurally
correspond to what we will describe in Section IV as a 1-hop braid. Our work generalizes that of [24, 14, 19]
since we consider k-hop braids, with & > 1. Our work differs from [7] in the construction and structure of
the routing subgraph.

For changing network topology, [27] show for a class of graphs that it is possible to maintain paths whose
lengths are within a constant factor of the shortest path while limiting overhead. Considering the Internet,
[18] propose splicing together paths identified using different parameter settings of the routing protocol (e.g.,
such as different perturbations of the link weights in the network); the increased path diversity then gives
increased reliability when links fail. Focusing on reliability, [17] argues for the reliability benefits of using
non-disjoint paths in wireless mesh networks, showing gains over disjoint paths. Also focusing on reliability,
[8] considers the problem of finding the most reliable subgraph for routing. Due to the #P-hardness of
this problem, they propose a method to approximately compute reliability and leverage known contact
probabilities between node pairs to select a routing subgraph. Finally, [25] propose a routing algorithm
that first selects the most reliable path and then locally reinforces those links whose probability of being
up is lower than a threshold. Unlike [8, 25], our work focuses on identifying those properties of a routing
subgraph which make it reliable, and then efficiently identifying such a subgraph without actually computing
reliability.

3 What do we mean by robust?

Informally, we consider a routing subgraph to be robust if there is at least one path up between the source
and destination with high probability. If a subgraph is robust, then even if a link or path between the
source and destination breaks, an alternative link or path is available with (high) probability. In reliability
theory [5], the probability that there is at least one path up between a source and destination is known as
2-terminal reliability, a metric we will use for evaluating the robustness of different routing subgraphs and
providing intuition about what types of graphs are “highly” reliable.

Following Colbourn [5], the 2-terminal reliability of a graph G = (V, E) with IID edges up with probability
p is given by,

R(G,p) = Y Nip'(1—p)™" (1)
i=0

where m = |E|, N; is the number of pathsets with i edges, and p*(1 — p)™~¢ is the probability that a pathset
with 7 edges is up. A pathset is defined as a subset of edges for which there is a route between the two
terminals.

Ideally, for a given source and destination, and specified number of edges or nodes, we would select the
subgraph that has maximum 2-terminal reliability while using at most the specified number of links or
nodes. Computing reliability exactly, however, is generally # P-complete [5], as is solving the corresponding
optimization problem [8]. For all-terminal reliability (the probability that a graph is connected), [11] gives
a randomized fully polynomial time approximation scheme. For very reliable graphs, [11] shows that only
small cuts are likely to fail and that there are only a polynomial number of such cuts, otherwise Monte
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Figure 1: Model used in Section 4, comprising source (s) and destination (d) on a line in a bounded half-plane
grid.
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Figure 2: Example best path, 1-hop braid, and 2-hop braid between a source (s) and destination (d).

Carlo simulation may be used. The approach in [11] could presumably be used to approximate 2-terminal
reliability, although this does not efficiently solve the optimization problem, nor lend itself easily to theoretical
comparisons of the reliability of different subgraphs.

Given the difficulty of exactly computing reliability, except in the case of relatively simple networks, we also
use simulation to estimate reliability. In a discrete-time simulation of a time-varying network, we can check
whether there is a path from the source to the destination at each time-step. The ratio of the number of
time-steps where there was a path and the total number of time-steps simulated is then an estimate of the
probability of there being at least one path from source to destination. We refer to computing the reliability
in this way as “computing the reliability experimentally.”

4 Braided Graphs

In this section, we characterize the properties of braids, concentrating on well-structured grid networks. Our
goal is to analyze how well a braided routing subgraph performs with respect to 2-terminal reliability given a
fixed number of nodes or links in the subgraph. These results then provide insight into more general network
topologies, which are analytically intractable.

4.1 The k-hop Braid

Our goal here is to explore the use of a k-hop braid built around the best (most reliable) path. A k-hop
braid consists of the path itself, and all nodes and links within k& hops of nodes on the best path. Figure 2
shows an example best path, 1-hop braid, and 2-hop braid between a source s and destination d.
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Figure 3: Graphs used in Lemma 1. We decompose the graph shown in (a) into the subgraphs shown in (b)
so we need only compute the reliability for the subgraphs of interest.

In the small p limit, the reliability, see Equation (1), is dominated by terms from shorter paths; this indicates
that in this limit, the most reliable path is an appropriate part of the braid. Conversely, [5, 22] gives an
alternative expression for reliability as a polynomial in ¢ = 1— p with source, s, and destination, d, as follows,

R(G,p) = 1= P(E) (2)

Cc,eC

46 |1 - Z P(E;)

qlc,ij\
Cj GL(Ci)

P(E;)

where C; is the set of edges in minimal cut ¢ (partitioning s and d), C is the set of all C;, and, informally,
L(C;) is the set of minimal cuts lying entirely between node s and edges in cut C;. In the small ¢ limit, the
unreliability 1 — R(G, p) is dominated by the smallest cuts, so we observe that a good braid will have large
minimal cut: i.e., the braid should widen uniformly along the shortest path. In Lemma 1, we show this for
arbitrary p and k = 1 for the idealised network model shown in Figure 1. Informally, Lemma 1 says that
when incrementally adding nodes (one or two at a time), adding all nodes one hop away from the shortest
path before adding any nodes that are two hops away maximizes reliability.

Lemma 1: Assume the network structure in Figure 1: the source, s, and destination, d, are connected
by a shortest path, P, comprising N nodes; links are IID and up with probability 0 < p < 1. Let G be the
sub-graph formed by P plus 0 < n < N additional 1-hop nodes, (where a k-hop node is a node k hops away
from P). Using one additional 1-hop node (and its associated edges) that is also adjacent to another 1-hop
node, increases the reliability of G strictly more than does using any two additional 2-hop nodes (and their
associated edges),

Proof: Figure 3(a) shows the general structure of the graphs we consider. Suppose we can add either one of
the grey nodes or the black node. Adding only one of the grey nodes will not affect the reliability from s
to d, as no links will be reinforced, while adding the black node will increase the probability of getting from
nodes dg and d; to node d.

Now consider adding two nodes at a time. Again consider the topologies in Figure 3. We partition the top
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Table 1: Reliability computation for the top graph in Figure 3.

graph in Figure 3 into the sub-graphs shown in the bottom graph; note that each edge appears only once,
although nodes may be repeated (which will not affect the reliability). Using sub-graph decompositions
we decompose the reliability by conditioning on the intermediate nodes as follows. We first condition on
intermediate nodes sg and s to obtain,

P(d|S) = P(d|8031)P(8051|S) + P(d|80§1)P(80§1 |S) + P(d|§051)P(§081 ‘S) (3)

where e.g., P(d|sg31) is the probability that node d can be reached given that node sy but not s; can be
reached, and P(s(3;|s) is the probability that node sy but not s; can be reached given that node s can be
reached. We recursively condition on nodes {dop,d:} and {go,q1} to obtain an equation for P(d|s) as the
sum of 27 terms, shown in Table 1.

We use the resulting equation to compute both the reliability when adding both of the grey nodes in Figure3
and when adding the black node. Ignoring those terms that correspond to subgraphs that are identical for
both we need only compute the reliability for the {so,s1} — {qo,q1} and {do,d;} — d subgraphs. These
calculations are shown in Table 2. Examining Table 2 shows that for each P({qo, q1}|{s0,51})P(d|{do,d1})
product, adding the black node to the end of the 2 x N node strip gives the same or higher reliability as
compared with adding the two grey nodes anywhere on top of the strip. &

Lemma 1 is more general than stated as it does not depend on the form of the subgraphs between s and
{s0,81}, or {qo, 1} and {dg,d;}. These results suggest that k-hop braids have several desirable reliability
properties, at least in this well-structured environment and with uniform p, giving confidence in studying
k-hop braids in scenarios where the optimum subgraph cannot be determined. In Figure 1, the & x N node
strip from s to d is a (k — 1)-hop braid. We close with two conjectures:

Conjecture 1: Given N additional nodes (and their associated edges) plus the shortest path, the 2 x N
node strip is the most reliable subgraph. It follows from Lemma 1 that for N < 5 additional nodes, reliability
is maximized by the 2 x N node strip,

Conjecture 2: Given 2N additional nodes (and their associated edges) plus the shortest path, the 3 x N
node strip is more reliable than the corresponding pyramid. Comparing the 3 X N node strip for N = 6
versus the pyramid that can be built using 18 nodes, see Figure 4 (a), we find experimentally that the strip
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P(qoq1|s0s1) = P(qolso)P(q1]s1) p(p+p° —p") p-p
P(qoq1|s0s1) = P(qolso)P(qi|s1) | p(1 —p—p* +p*) p(1—p)
P(Goq1|sos1) = P(qolso)P(qi]s1) | (1 —p)(p+p® —p) (1—p)p
P(qoq1|s051) = P(qo|so)P(q1]51) 0 0
P(q0q1|s051) = P(qo|s0)P(q1]51) D D
P(q0q1s051) = P(qo|s0) P(q1]51) 0 0
P(q0q1|5051) = P(qo|50)P(q1]s1) 0 0
P(q0G1|5051) = P(qo|50)P(q1|s1) 0 0
P(goq1[5051) = P(q0|30)P(q1]s1) p+p*—p p
P(d[dody) p <p+p’-p
P(d|dod,) p p+p’ —p*
P(d|dod) P> 2p? — p*

Table 2: Reliability computations for the bottom subgraphs in Figure 3.

18-Node Strip vs. 18-Node Pyramid
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Figure 4: (a) Two topologies, both using 18 nodes. (b) Reliability is averaged over 100 runs of 10,000
time-steps each. 95% bootstrap confidence intervals over the runs are shown.

has higher reliability than the pyramid, as shown in Figure 4(b).

4.2 Exact Results for 2 x N Node Strip

4.2.1 Definitions

For the 2 x N node strip, shown in Figure 5(a), we determine an exact expression for reliability (see Appendix
B for a discussion of the 3 x N node strip). Define

Ry = P(sis connected to d)
SN P(s is connected to d’)
Tn P(s is connected to both d and d’)

If

where s and d are the source and destination respectively, and d’ is the node diagonally opposite to s. All
of these expressions are simple connectedness problems, in that for any pathset which contributes to an
expression, all supersets of the pathset contribute to the same expression. For small graphs (low values of
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Figure 5: (a) The 2 x N node strip. (b) The 2 x (N + 1) node strip.

N), the expressions can be calculated by brute force, by enumerating all the minpaths (pathsets from which
no links can be removed) and then using the inclusion-exclusion principle. The first few values of Ry, Sy,
and Ty can be calculated as:

Ry = p+p*(l-p)

Ry = p*+p'(1-p)(3+p—2p%

Ry = p’+p°(1—p)(6+3p—4p* —6p° + 4p*)

Ry = p*+ 951 —p)(10 + 6p — 4p* — 18p® — 2p* + 20p° — 8p°)
S1 = p’+p’(1-p)(1+p)

Sy = pP+p’(1-p)R2+2p+p°—2p°)

T, = p’+p*(1—-p)(2)

T, = p°+p"(1—p)(3+4p—4p°)

The expressions Ry, Sy and T are not disjoint. We therefore define

ry = P(sis connected to d and not to d’)

sy = P(sis connected to d’ and not to d)
in terms of which

N = RN—TN (4)
SN = SN*TN (5)

4.2.2 Recursion Relationships

We now develop recursion relationships for the reliability expressions for the 2 x (N + 1) node strip, shown in
Figure 5(b), in terms of the expressions for the 2 x N node strip. We consider cutting the strip in the middle
of the last block, and partition the expressions depending on whether only the lower cut link, the upper
cut link, or both cut links are reachable from s, see Figure 5(b). Note that for the conditions represented
by rn and sy, the vertical link before the cut, marked k in Figure 5(a), must be unavailable, because
otherwise either both the cut links would be simultaneously accessible or neither of them would be. Then



the recurrence relationships as the strip grows in length by 1 are,

Ryt = rnp+snp? +In(p+p° —p°)

= Ryp+ Snp®> —Tnp® (6)
Sni1 = rap’+swp+Tn(p+p° —p°)

= Ryp*+ Syp — Tnp® (7)
Tniy1 = (ry +s8)p? + T (3p* — 2p°)

= (Ry +Sn)p* + Tn(p* —2p°) (8)

These equations have been checked to reproduce the first few values for Ry listed above. These equations
hold for N = 0, provided we make the reasonable definitions,

Ry=1, So=p, To=p

We now define new variables ay = Ry — Sy and by = Ry + Sn. Then,

aAN+1 = aNP(l - p) (9)
bni1 = byp(l+p)—2Txp°® (10)
Tni1 = byp® +Tnp*(1—2p) (11)

Solution of the first equation is trivial, with ax = (1 — p)[p(1 — p)]"¥. The other equations can be written in
matrix form for x = (b, T'):

XN+1 = AXN (12)
where
1+p  —2p? )
A= 13
P ( p  p(l1—2p) (13)

4.2.3 Solving the Coupled Equations

To solve the coupled equations, we write A in terms of its eigendecomposition, A = pQAQ~!. The charac-
teristic equation for the eigenvalues is

M= A1+2p—2p")+p—p° =0 (14)
which leads to

Nou = 5 (142001~ p) 4 VT BT p)P) (15)

The eigenvalues p) are always distinct and in the range (0,1) except in the trivial cases p = 0,1. Conven-
tionally we take Ag > A1 in the following. Mg is greater than 1, while \; is always close to zero; indeed,
Xo/A1 > (7 +3+/5)/2. Note also that A\gA; = p(1 — p). Q can then be constructed from the corresponding
eigenvectors of A, finally to give

Ao 1 2p? 2p? po 0 l+p—X\  —2p? (16)
T2 —M) \1+p—Xo l4+p—X\ 0 ph —(1+p—20) 2p°
The coupled equations can now be solved explicitly, in the form

br _ 1 2p? 2p2 o 0 T 1+p—A1  —2p? L+ ) (g7
Ty o220 —A) \ L+tp—X0 14p—M 0 pa ~(14+p—2) 29 p

which in turn gives explicit equations for Ry, Sy. Unfortunately, these expressions do not simplify in any
particularly attractive way.
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Figure 6: Adding nodes (a) contiguously or (b) not contiguously.

4.2.4 Growth of Ry

The full expression for Ry can be written as follows:

Ry = 3G +Cima)Y +(1 - poh)Y)
doa = 5 (1+20- )% VIT R~ PIF) (18)
o - (1Ep? =2’ —n(l+p)
T X — A1
_ (4 p)?—2p° - X(+p)
@o= Ao — A1

Since A1 < Ag for all p, which can be seen by graphing them, then C4 (p)\l)N is always smaller than Cj (p)\O)N .
Since A\; < p for all p, then (1 — p)(AoA1)Y is always smaller than Co(pAo)"¥. Consequently, the largest
eigenvalue (\g) controls the reliability when N is large. The evolution of Ry with N indicates that as s and
d get one hop further apart, the reliability of the strip decreases by a factor of pAg > p, compared to a factor
of p for the single path or a pair of disjoint paths. As p — 1,

pPo — 1-(1-p)?*+0[(1-p) (19)

which is a much slower degradation of robustness. We return to this theme in a more general setting in
Section 5.2.

We now use (18) to establish a subsidiary result about the growth of the 2 x N node strip: that it is
optimal to add nodes contiguously, regardless of how many are added at a time. We consider adding nodes
to give a total of N + M links 1 hop away from the shortest path, either in a single group of N + M + 1
nodes as in Figure 6(a), or separate groups of N 4+ 1 and M + 1 as in Figure 6(b). Formally, we show that
Ryia—1 > Ry Ry for arbitrary N and M, despite the use of fewer nodes and links. Referring to (18), Cy
varies approximately linearly from 1 to 2, whereas C1 is small and negative throughout. Recall that Ry =1
and so Cy + C1 = 1 + p. The expression for Ry is then in the appropriate form for the second inequality of

10



Figure 7: Counterexamples when adding links rather than nodes.

Two Disjoint Paths
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Figure 8: Two disjoint paths versus a 1-hop braid plus a path.

Appendix C provided we make the identifications

Ry — g(7)
C 1-— C
02(p) T P ai, az _12(p) — b
PA0s AoAL — A1, A2 DAL — i1

The condition g(0) = 1 follows directly; that ¢”(0) > 0Vp can be seen by plotting it graphically. That it is
optimal to add nodes contiguously then follows from the inequality of Appendix C.

5 Braid and Disjoint Path Comparison

A degenerate case of a 1-hop braid, where all internal links are missing, is a pair of disjoint paths which
use neighbouring nodes. Does the optimal braid with a constraint on the number of links contain holes of
this type? The answer depends on the measure of overhead and the value of p. Consider the examples in
Figure 7 of a partial braid and a pair of disjoint paths. Graphs A; and A, both use six links total, however
R(A;) = p? + p* — p° while R(Ay) = p? + p* — p®. Hence, graph A, is more reliable than graph A; for all
values of p. Similarly, graphs By and Bz both use eight links total, however R(Bj) = p®+3p® —2p5 —3p” +2p®
while R(Bz) = p® + p° — p®. Now, however, graph By is more reliable than graph B; when p > \/m, ie.,
the braid is only more reliable for low values of p. More generally, a pair of disjoint paths, containing 2n + 1
and 2n + 3 links respectively, see Figure 8, has reliability Pyisjoint = p** (1 + p? — p?"™3). In comparison,
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a braided path of length n 4 1 links, combined with a path of single links of length n, see Figure 8, has
reliability Pyraided = " Rnt2. The question is whether Py qiqeq is greater or less than Pggjoin:. The answer
depends on both n and p:

o n=0: Pyrgiged = Paisjoint (the graphs are identical).

e n =1 Pyryided — Paisjoint = p°(1—p?)(2—3p?). The braided graph is more reliable if p < 1/2/3 ~ 0.816.

e =2 Pyrgided — Paisjoint =" (1 —p)(5+ 2p — 5p* — 7p® + 3p*). The braided graph is more reliable if
p <= 0.875.

o =3 Pyryidea — Paisjoint = P°(1 —p)(9 + 5p — 5p* — 19p3 — 3p* + 19p° — 9p8). The braided graph is
more reliable if p <~ 0.902.

5.1 Cross-over Point

The sequence suggests expanding looking for a cross-over value around ¢ = 1 — p &~ 0 for large n. For large
N and small ¢, only the first term in expression (18) survives since the others are of order ¢%. The other
approximations are:

X = 1+q+0()
Moo= q¢—2¢°+0(¢%)
Co = 2(1-2¢%)+0(¢?)

Ron = (1-2¢°+0(g
Pbraided - Pdisjoint — (1 - 2q2 + O(

p2n+1 (
—(1+(1-9° = (1-9)*")

We approximate the powers of 1 + ¢ using the expression

n+1)\g+1

q
)p
N+ q+0(¢*) ! (20)

(1+a)N = eV (14 0(a)) (21)
which is good for large N and aN = O(1). We end up with
(1+4q=2¢* +0(@))(?™ + 0(9) = 1+ (1 —¢)* = (1 = g)(e >V 1 0(q)) (22)
or
Btha 92t ha g — (p(FDa _ 1) (2 _ p(vFDa 1) = O(q) (23)

Vanishing of the first term corresponds to the trivial case ¢ = 0, while the second is a quadratic which can

be solved to give
1 1+5
~ 1 24
a n+1°g( > ) (24)

where correction terms will be O(1/n?). In other words, the braid is more reliable than the disjoint paths
unless the reliability is within O(1/n) of 1; this is despite the fact that that braid is “in series” with a
sequence of n single links, each of which is a single point of failure. The reliabilities thus match at a critical
link up probability, P.ritica;- As the number of nodes in the shortest path, N = 2n+ 2, increases, 1 — Prritical
increases as follows,

2 1+5
1- Pcritical - N log ( 2 )
Le., the regime in which the braid is more reliable becomes larger for larger networks. Note that this analysis
assumes that “links used” is the appropriate overhead metric; an alternative metric is “nodes used,” for which
the appropriate comparison is between the disjoint paths and the full 1-hop braid, and the latter is always
more reliable.
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5.2 Scaling Behaviour

We extend this analysis to k-hop braids and k’-disjoint paths, studying how the reliability scales with
increasing N by one hop, for large values of N. For disjoint paths, the reliability decreases by factor p
for each additional hop regardless of the value of k¥’ (which only affects a fixed overall coefficient). For the
k-hop braid an exact expression is not available (except for k = 1 as given above); however, we can use the
Provan-Ball equation (2) to find the leading terms in the reliability in the limit of small ¢. As discussed
at the start of Section 4.1, these leading terms correspond to the minimum cuts in the network; as the
source-destination distance increases by 1, there is one additional minimum cut of length k + 1. Thus the
corresponding reliability decrease is just 1 — (1 — p)**! (compare this with Equation 19 for k = 1), which
can be made arbitrarily small by increasing k. Even for moderate values of p, it is possible to grow to large
networks without compromising robustness. Thus, in terms of reliability, braids will be most effective for
large diameter networks with relatively unreliable links.

6 Braid Simulation Results

In this section we compare the reliability of a 1-hop braid with that of the shortest path, the two shortest
disjoint paths, and the entire graph, using a time-varying network simulated in Matlab. We first describe
the model and then present results.

6.1 Network model

Consider a graph G = (V, E) with nodes V and edges E. We examine (i) an \/[V| x /|V]| torus where |E|
comprises the set of all edges in the torus and (ii) a random model, where |V| nodes are placed uniformly
randomly and independently in the plane, and edges exist between those nodes within a communication
radius L of each other. We assume links are IID; to model link changes, we use a two-state Markov model
where links stay up with probability p and stay down with probability ¢ at each time-step. Unlike in the
previous section, in this section we do not assume that ¢ =1 — p.

In our experiments, we use (i) a 10x 10 torus and (ii) 100 nodes distributed randomly in an area of size 10 x 10
using a communication radius L = 2. We perform 500 simulation runs, each comprising 100 timesteps. In
each run, a random source-destination pair is selected. For each time-step, we check whether each link is
up. For the two-state Markov model we use p = {0.75,0.85,0.95} and ¢ = 0.5. We use the steady-state
probability that a link is up to initially select which links are up or down. The routing sub-graph for each
algorithm is recomputed every T timesteps, using only links that are up in the graph at the time of re-
computation. All algorithms were evaluated on identical network topologies, and we estimate the reliability
experimentally as discussed in Section 3.

6.2 Results

Figure 9 shows that for all p, that as the update interval T is increased, the reliability of the selected routing
subgraph decreases and eventually reaches steady-state. For the torus, Figure 9(a) shows that for p = 0.75,
the reliability of the 1-hop braid, 2-shortest-disjoint paths, and shortest path are all within a range of 0.1.
Increasing p to 0.85 in Figure 9(b) shows a larger gap in reliability between the 1-hop braid and the 2-shortest
disjoint paths, and also a larger gap between the braid and the full graph. Using p = 0.95 in Figure 9(c)
shows an even larger gap in reliability between the 1-hop braid and the 2-shortest disjoint paths, but now
a much smaller gap between the braid and the full graph. For the random model, Figures 9(d), (e), and
(f) again show that for all p, the 1-hop braid has consistently higher reliability than the shortest path or
2-shortest disjoint paths, now as much as 0.4 greater than the 2-shortest disjoint paths when p = 0.75 or
p = 0.85. This is in part a consequence of there not always being 2 disjoint paths in the graph (unlike in the
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Figure 9: Reliability of different routing subgraphs. Reliability is averaged over 500 runs of 100 time-steps.
95% confidence intervals over the runs are shown. As not all sets of samples were normally distributed,
bootstrap confidence intervals were computed using Matlab (hence the error bars are not symmetric).

torus). When p = 0.95, in Figure 9(f), the reliability achieved by the 1-hop braid is almost identical to that
achieved by the full graph.

Figure 10 plots the reliability gain and number of additional nodes used over the shortest path by the 2-
shortest disjoint paths, 1-hop braid, and full graph. Each point represents a simulation run (i.e., a selected
source destination pair); for clarity we show only results for when T' = 5. For the torus, Figure 10(a)
indicates that the 1-hop braid provides an increase in reliability while using fewer than 20 extra nodes. For
the random model, Figure 10(b) indicates that while the braid provides consistent and significant (up to
about 0.4) gains in reliability, it also uses around 40 more nodes than the shortest path, but fewer than half
the nodes used by the full graph.

In summary, the torus results indicate that the 1-hop braid can achieve reliability greater than that of the
shortest path and the 2-shortest disjoint paths, and that the gains increase as p increases. We expect,
however, that using a 2-hop braid would increase the reliability gain of the braid for small p. The results
from the random model indicate that while using more nodes, the 1-hop braid can achieve reliability close
to that of the full graph, and that the gain increases as p decreases.
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Figure 10: Overhead of 1-hop braid vs. that of the shortest path, the two shortest disjoint paths, and the
entire graph. Reliability was estimated experimentally.

Table 3: Robust routing algorithm.

Let G be graph of entire network

Loop every T
Select “best” path P from graph G
Build k-hop braid around P to obtain graph B
Perform local forwarding on B

U W N

7 Robust Routing Algorithm

In this section we outline our robust routing algorithm and evaluate it using GloMoSim [28].

7.1 Algorithm

Our robust routing algorithm is summarized in Table 3. The important features are as follows.

Recomputing routes periodically. We select a routing sub-graph that can be found efficiently, and that is
expected to perform “well” over the time period T during which it is not updated. Based on our analysis in
the previous section, we choose this subgraph to be a k-hop braid.

Local forwarding within braid. Given the braid sub-graph B, rather than forwarding packets over a path,
we consider all of B: i.e., we make local forwarding decisions to select the next hop out of all possible next
hops within B. While the sub-graph B changes every T timesteps, local forwarding decisions are computed
by nodes every timestep. A simple approach to perform local forwarding (which we use to obtain simulation
results in the next section) is to have a node select its next hop based on which of its outgoing links have
dropped packets; we describe this approach further in the next sub-section.

7.2 Simulation Results

In this section we compare the performance of the braided routing algorithm using a 1-hop braid, with
that of Ad-hoc On-Demand Distance Vector (AODV) routing [21]. We first describe our implementation in
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GloMoSim [28], and then present experimental results.

7.3 Algorithm Implementation

AODV is used to construct the best path for the braid algorithm (but any other single path routing algorithm
could be used). The 1-hop braid around this best path is then constructed as follows. When a node receives
data to forward along the AODV path, it sends a braid request for the associated destination (if one has
not yet been sent). When a node receives a braid request for a destination, it groups the request with other
requests for that destination. If it finds it can hear at least two nodes on the path, it sends a braid reply to
all nodes it can hear (except the node closest to the destination).

To tear the braid down, a braid node sends error messages to nodes it can hear on the AODV path when
either one of its links to the AODV path breaks (i.e., drops a packet) and T has elapsed, or when it receives
a more recent braid request for the destination (indicating that the current AODV path has been replaced).
A node deletes its next hop braid for a destination when either (i) its next hop or later link on its AODV
best path has dropped a packet for that destination, or (ii) a node for that destination is updated in its
AODV routing table. A node marks a link as “bad” whenever the node attempts to use a link and has a
packet dropped. The AODV path and/or braid will be recomputed only when T has elapsed. Whenever
routes are recomputed, links are marked as “good.”

To summarize, the braid overhead comprises, (1) braid requests by nodes on the AODV path to identify
1-hop neighbours, (2) braid replies by 1-hop neighbours to nodes on the AODV path, and (3) braid errors
by 1-hop neighbours to nodes on the AODV path.

Nodes perform local forwarding within the braid as follows. Nodes on the AODV path select their AODV
next hop with probability 1 if it is “good” or if there is no next hop braid node, and with probability 0.1 if
it is “bad.” If the AODV next hop was not selected, then the node iterates through its braid links. A braid
link is selected with probability 1 if it is good or probability 0.1 if it is bad. If the node iterates through all
of its braid links without selecting a next hop, then by default the AODV next hop is returned. If the node
is a braid node, then it iterates through the nodes it can hear on the AODV path, selecting the AODV path
node that is currently both closest to the destination and good. To ensure that bad links are also attempted,
any AODV path node can be selected with probability 0.1. If the node iterates through all of its AODV
path nodes without selecting a next hop, then by default the first AODV path node in its list is returned.

7.4 Simulation Setup

Our GloMoSim [28] simulation uses 60 nodes, moving according to the following mobility models. (1)
Random waypoint: the pause time was 0 sec and node speeds were uniformly chosen between 4km /hr and
10km/hr. (2) Gauss-Markov [15]: average node speed was 7.2km/hr with standard deviation of 1.08km/hr
and we use a = 0.2 and At = 100. We use a 1.5km x 1.5km area for the random waypoint experiments
and a lkm x lkm area for the Gauss-Markov experiments. Traces of node mobility were generated using
BonnMotion [10] and fed into GloMoSim, letting us evaluate braid routing and AODV on identical mobility
scenarios. We use a constant bit rate flow between two nodes for which data was generated every 0.5 sec
and a total of 5 million packets were generated. We performed 10 simulation runs, each for the duration
of the flow (about 29 simulated days). To address the problem of a long transient phase, the length of the
flow was selected by examining the packet drop rate for progressively longer flows; when the change in % of
packets dropped was sufficiently small (< 0.05%), we assumed that steady-state had been reached. A better
method would be to e.g., implement the “perfect simulation” method of Le Boudec and Vojnovic [1]; we
leave this for future work. The MAC protocol used was 802.11 and the transmission radius was about 250
meters (from setting the radio transmit power to 7.9dBM).
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7.4.1 Results
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Figure 11: Comparison of 1-hop braid with AODV under (a)-(c) random waypoint and (d)-(f) Gauss-Markov
mobility. 95% bootstrap confidence intervals over 10 simulation runs are shown.

Figure 11 compares AODV and braid routing with respect to throughput, overhead, and links used. Fig-
ures 11(a) and (d) show for both mobility models that the braid achieves a maximum of about 5% higher
throughput than AODV for T = 50, 100, 200. Figures 11(b) and (e) show for both mobility models that the
braid uses about the same amount of AODV overhead when building its best path as AODV (as measured
by the number of path requests and replies transmitted by AODV); under Gauss-Markov mobility, however,
this overhead is about 2.7 x 106 fewer packets, likely due in part to the smaller, 1km x 1km, area used.
Figures 11(b) and (d) also show that while the braid incurs overhead from braid requests and replies, this
overhead is about 1/4 of the AODV overhead under random waypoint, and about 1/2 of the AODV overhead
under Gauss-Markov; the total braid overhead, however, for both mobility models is similar. Figures 11(b)
and (d) also show that the total number of error packets transmitted for braid routing (aggregating error
packets for both AODV and the braid) is perhaps five times greater than AODV error packets, in part be-
cause the braid involves more nodes in routing. As in Figure 11, other work, e.g., [6], has also observed that
AODV can use as much (or more) control overhead as data transmitted, so we focus here on the additional
overhead incurred by the braid. Since the braid construction is independent of the “best” path algorithm,
another routing algorithm besides AODV could be used. Finally, Figures 11(c) and (f) show for both mo-
bility models that the braid algorithm attempts to use more links than AODV (where “attempt” indicates
that the routing algorithm attempted to transmit a packet over a link, but may not have been successful),
in part because it may use a longer path. The braid, however, also has fewer links broken on average than
does AODV.
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In summary, Figure 11 indicates that the 1-hop braid gains about 5% more throughput while using sig-
nificantly less overhead than, for instance, would be needed to construct a second disjoint AODV path.
The gains in throughput, however, are not as significant as the gains in reliability shown in the Matlab
experiments in Section 6. We conjecture that this discrepancy is in part a consequence of (1) building the
braid around the shortest path rather than the most reliable path, and (2) the different network models,
particularly in how they differ with respect to the rate at which links appear/disappear, and the temporal
and spatial correlations among links changes. Note that since the braid construction is independent of the
“best” path algorithm, a routing algorithm that identifies the most reliable path could be used rather than
AODV.

Comparing the different network models, consider first the rate at which links appear/disappear. Results
from [9] indicate that the inter-meeting times for two nodes using the random waypoint model are “well-
approximated by an exponential distribution, at least for small to moderate transmission radii (with respect
to the size of the area).” Using Lemma 1 in [9], we compute that for the transmission radius and random
waypoint model considered here, the expected inter-meeting time for two nodes is given by 1/A with A =
2.65/hr. Hence, on average, two nodes will meet once every 22.7 minutes. Thus, in our random waypoint
GloMoSim experiments, when a link breaks (due to mobility) it likely stays down for an interval significantly
longer than T'. Conversely, the probability of transitioning from down to up during 7" was 0.5 in the models
used in the Matlab experiments in Section 6. Long inter-meeting times limit the throughput gains achieved
by the braid since when braid links fail it is unlikely that they will re-appear before the remaining time in
the interval T has elapsed.

Next consider correlations among links. In the Matlab experiments we assumed links failed independently.
Conversely, we would expect that outgoing links of a given node would tend to have correlated failures when
links break due to mobility. We would also expect that since all link failures are varying functions of how
much time ¢ of the interval T has elapsed, that link failures among different nodes would also be dependent,
due to the shared dependence on t. Correlated link failures limit the throughput gains achieved by the braid
since if a link on the AODV path fails, it is also more likely that one of the links routing around the failed
link will also fail soon (if it has not already).

8 Conclusions

This paper described a braided routing algorithm to improve the robustness of dynamic MANETs. We
proposed a general method for braid construction and presented analytic optimality results in a restricted
class of networks. We developed scaling laws for robustness as a function of path length and braid width. We
validated the theoretical results through simulation, finding additional effects due to link failure correlations.

For future work we are interested in triggering route updates as a result of changes in end-to-end network
performance, rather than using a fixed update interval. Similarly, rather than using a fixed braid width,
we are interested in techniques to locally widen the braid to meet a robustness target. Addressing the
issue of correlated links, we would like to explicitly consider correlations as well as more realistic radio link
models. Finally, we would like to explore rate control mechanisms such as backpressure routing [26] for local
forwarding to achieve a solution which is robust in throughput as well as connectivity.
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A The Provan-Ball Equation

The following material is summarised from Section 2.7 of Colbourn [5]. Define a minpath as a set of edges
forming a path from the source to the destination, such that removing any edge on the path would disconnect,
the path. Define a mincut as a cut which separates the source and destination but for which any (strict)
subset leaves the graph connected. The inclusion-exclusion method gives a way to calculate reliability by
enumerating minpaths, and lends itself to examination of the regime p = 0, since only the shortest minpaths
need be considered. The opposite extreme, ¢ = 1 — p =~ 0, can likewise be analysed in terms of mincuts.
The Provan-Ball equation, see Equations (25) and (26), is an expression for the (2-terminal) reliability of a
network in terms of its mincuts. Since the Provan-Ball equation gives a polynomial time expression in terms
of the mincuts, the method is economical if only the shortest mincuts are needed.

For any graph G, denote the set of mincuts as C = {C;}; each edge e in C; has failure probability g.. Then
define for each C},

S(C;) = {nodes between the source node and C;}

L(Cy) {Cj:j#14,5(1) C S(1)}
Informally, L(C;) is the set of cuts that lie to the left of C;, assuming that the source and destination are
read left to right. While some of the C; might intersect with Cj, there must be at least some nodes of
G between the two, otherwise one cut would be a subset of the other, which is impossible, since they are
mincuts. The technique partitions the set of failed states into corresponding (disjoint) events E; for each Cj,
whose probability is P(E;) computed as follows.

[qu] > H (25)

ecC, c eL(c ecc;nc; de

where an empty product in the denominator has the value 1. The ‘leftness’ relationship between cuts given
by L(C;) defines a partial ordering which arranges C into a directed acyclic graph. Each cut C; is a vertex
on this graph, with the cut through the links of the source node corresponding to the root vertex, and the
cut through the links of the destination node corresponding to the sink. The P(E;) typically have to be
calculated sequentially, starting with the root vertex and working forwards along this directed acyclic graph,
since the sum in the second term is over all vertices upstream of the F; being calculated. The probability of
network failure is then just the sum of these P(E;), and the network reliability is

R(G) = 1-) P(E;) (26)
C

where together, Equations 25 and 26 define the Provan-Ball equation.
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Figure 12: The 3 x N node strip.

B The 3 x N Node Strip

Can we extend the recurrence approach of Section 4 to the 3 x N node strip? The number of different
intermediate states increases compared to 2 x N node strip, even when symmetries are taken into account.
In terms of Figure 12 we define:

Ry
R
R

R

R

R

= P(sis connected to dy)

= P(sis connected to dp)

|
e

(

(

(s is connected to dg, and d; is connected to ds)
= P(s is connected to dy and d;)
= P(s is connected to dy and ds)

(

= P(s is connected to dy, d; and ds)

Again we also have to define quantities which are mutually exclusive, namely

A -

p20
NC-

HON
RO
RO

P(s is connected only to d)

P(s is connected only to dy, and d; is not connected to ds)

T

s is connected only to dy, and d; is connected to ds)

T

(
(
(
(s is connected only to do and d)
P(s is connected only to dp and ds)
(

P(s is connected to dg, di and ds)

in terms of which we then have

RE\}) = rg\}) + 27“53) + 7“5\?)

RGY = 00 400 b 4 ()
R

R = P

R =

RO — O
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We conjecture initial (N = 0) values for these as

R(Qa) =p T(()2a) -0
R(()Qb) _ T(()2b) 0

We can now, with some effort, develop recurrence relationships for the RS\?), (these have been checked for
relating Rgx) to R(()z) , and also for some cases of Réx) ):
R, = prdd +20° 0% + 3 200+ 97 - p°)r Y + (207 —prly + (0 + 20" — 29 — p' 4+ p°)rY)
R = §v)+(p+p) 0+ 40"+ =0 + 0+ 20" —p )Y + 040" -+ 0+ 07 -2t 7))
R, = p3r§v1) + @+ + @+ 20" ST+ 0+ 4 3t + 0+ 20° - 2" + (0 + 5p° — 8p* + 3p°)ry)
R, = P27‘§v1) + @S+ 0+ 0P+t =)+ (dp” =Y + (0 + 20" — 20")rl + (3p° — 4p* + 29°)r Y
Ry, = pPry + 200 208 + " - 00T + 230" — 2"y + (07 + 20° — 2pY)rly) + (07 + 5p° — 8p* + 3p°)r )
R(L?_I = p (1) + 2p r(2a) +20p° +p* p5)r§\?b) +2(3p* — 2p")ry ® 4 (4p® — 3p4)r§f,l) + (8p° —11p* + 4p5)r](\?)
which can be rearranged to give

RY, = pRY +2°RYY — 20°RY — p'RY +p° RS

RZY = PR+ +p)RYY + (0" - p")RY — (0 +pRY - p'RY + (20° — p")RY

R = p*RY + (0 + )RV + (0° — )R + (0° = 3pH)RY + (v — 2p")RY) + (4p° — 3p")RY

RY, = PRY+ 0P +0)RYY + 0" - )RS + (0F - 20"~ p)RY + 0° — 20")RY + (3p° — 2p")RY

R, = P°RY +2°REY 420" - p))RY” + 200" — 20" )R + (0° — 2p)RY + (50" — 4p") R

RYL, = p'RY +2°RYY + 200" — p°)RSY +200° — 2" )RS + (20° - 3p")RY + (0° — 6p" + 6p°)RY

These equations appear analytically intractable - there are no obvious simplifications (e.g. eigenvectors
visible by inspection). However, the eigenvalue spectrum can be extracted numerically. For some values of
p there are only two real eigenvalues, with the others coming in conjugate pairs. We expect the behaviour
of the reliability for large N will be dominated by the largest eigenvalue, and this is plotted in Figure 13,
along with the analytic solution for the strip of width 1. Note that at p = 1 the matrix degenerates (all rows
become equal), and this provides the leading eigenvalue A = 1 and corresponding eigenvector (1,1,1,1,1,1). It
might be possible to obtain the leading eigenvalue around g ~ 0 by perturbation; however, the Provan-Ball
method seems more convincing (and much easier to generalize).

C Two Inequalities
The inequality needed for the Ry growth discussion is proved here.
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Figure 13:
First consider f(z), where f”(z) > 0 (f is concave) and f(0) < 0.
f'(z) > 0 (27)
szf'(@)+f(x) > f(2) (28)
oL@ - f@) > 0 (29)
Since f(0) < 0, integrating we find that
xf'(x)—f(x)>o@W>o@%@>o (30)

In other words, f(x)/z is an increasing function. We therefore have

flz+y) f(m+y)+yf(w+y)>mf(w) f(y)
y

r+y)=(r+ =T
f( y) ( y) r+vy r+y r+y x

Now consider g(z), where
n
g(z) = Z a;\; (32)
i=1

where a; > 0 and ¢(0) < 1. We want to show g(x + y) > g(z)g(y) for x > 0. First we show that log g(z) is
concave:

% logg(z) = W (33)
L oeale) = Sy aiAf S aiAF log® Ay — (S, @iy log Ap)” (34)
A2 g(x)?

Dtz aiaj)‘f)‘az'(logz Ai —log Ailog Aj) (35)
g9(x)?
S je1 GG ATAT log® i/
- g(x)>? .
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All the terms in the summation are positive, and so log g(z) is concave with respect to z. Using the previous

result with f(z) = logg(z) we get g(x + y) > g(x)g(y) which is the result we wanted.

Unfortunately, the actual expression for Ry, does not fit exactly this form, since one of the coefficients, C1(p),
is negative. We keep definition (32) and additionally impose (without loss of generality) that Ay > Ay >

-++ > \,. Defining h(z) by

d? h(x)

— 1 =\
122 890 =

(where for the moment « is a free variable) we are interested in the sign of
n
h(z) = Z aiaj(a)*(ar;)® log® a);/a);
ij>1

for which we require h(0) = ¢”(0)g?(0) > 0 and h'(x) > 0 for z = 0. But

B (z) = Z aiajlog(alia);)(aX;)®(a);)" log? al;/a),

ij>1
so to show that h/(x) > 0 it is sufficient (though, maybe, not necessary). to show
Vit (ah)® >0

and so

Ol<1/)\i a; <0
a>1/)\i a; >0

(39)

(41)

Given that the )\; are in decreasing order of size, this is equivalent to the condition that all the negative a;
correspond to the smallest \; (since we can choose « freely). Putting it all together, we have two expressions

for functions g(z) which satisfy g(z + y) > g(x)g(y):

g(z) = Zai)\f with a; >0, g(0) <1
i=1

n m
g(x) = a AT+ bipd  with a; >0, b; <0, A > p;, g(0) <1, g"(0) >0
i=1 j=1
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